JP2014151333A - Method of manufacturing weld joint and apparatus for manufacturing the weld joint - Google Patents

Method of manufacturing weld joint and apparatus for manufacturing the weld joint Download PDF

Info

Publication number
JP2014151333A
JP2014151333A JP2013021738A JP2013021738A JP2014151333A JP 2014151333 A JP2014151333 A JP 2014151333A JP 2013021738 A JP2013021738 A JP 2013021738A JP 2013021738 A JP2013021738 A JP 2013021738A JP 2014151333 A JP2014151333 A JP 2014151333A
Authority
JP
Japan
Prior art keywords
welding
weld metal
aspect ratio
manufacturing
base steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013021738A
Other languages
Japanese (ja)
Other versions
JP5991217B2 (en
Inventor
Takuya Kuwayama
卓也 桑山
Yasunobu Miyazaki
康信 宮▲崎▼
Masahiko Yoshino
雅彦 吉野
Shigeru Yonemura
繁 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013021738A priority Critical patent/JP5991217B2/en
Publication of JP2014151333A publication Critical patent/JP2014151333A/en
Application granted granted Critical
Publication of JP5991217B2 publication Critical patent/JP5991217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a weld joint capable of obtaining the weld joint having less difference in hardness between a weld metal and a base-material steel sheet, and having excellent forming workability without heat-treating a portion including the weld metal.SOLUTION: There is provided a method of manufacturing a weld joint formed by welding a plurality of base-material steel sheets 1a, 1b. The method of manufacturing the weld joint includes a welding stage of welding the base-material steel sheets at welding speed of 0.5 m/min or more using a direct diode laser 3 as a light source. The laser in which the shape of a condensed beam 5 in the half width of peak intensity is long in a welding direction, and the aspect ratio (welding direction/direction orthogonal to welding) of the length of the condensed beam 5 in the welding direction and that in the direction orthogonal to welding is in a prescribed range, is used as the direct diode laser 3. In the method of welding the weld joint, in the welding stage, the weld metal including 50% or more of ferrite having a particle size of 30-150 μm is formed.

Description

本発明は、溶接継ぎ手の製造方法および溶接継ぎ手の製造装置に関し、特に、溶接金属と母材鋼板との硬さの差が小さく、優れた成形加工性を有する溶接継ぎ手の製造方法に関する。   The present invention relates to a welded joint manufacturing method and a welded joint manufacturing apparatus, and more particularly to a welded joint manufacturing method having a small difference in hardness between a weld metal and a base steel plate and having excellent formability.

テーラードウェルデッドブランク材は、従来から、自動車のドアアウターやボディサイドパネルなど、車両の外板部材に用いられている。テーラードウェルデッドブランク材は、板厚や種類の異なる複数の母材鋼板を溶接して1枚としたものであり、部分的に材料特性の異なるものである。所定の材料特性を有する領域が適切に配置されているテーラードウェルデッドブランク材を車両の内外板部材に用いることにより、車体の軽量化および高強度化を図ることができる。   The tailored welded blank material is conventionally used for a vehicle outer plate member such as an automobile door outer or a body side panel. The tailored welded blank material is formed by welding a plurality of base material steel plates having different thicknesses and types, and has partially different material characteristics. By using a tailored welded blank material in which regions having predetermined material characteristics are appropriately arranged for the inner and outer plate members of the vehicle, the weight and strength of the vehicle body can be reduced.

また、従来、高張力鋼板のレーザ溶接方法において、溶接金属の硬さを低減して成形性の良好な溶接部を形成する技術として、溶接レーザビームが通過して1秒以上経過した後に、溶接金属を含む部分を局所加熱する熱処理方法が開示されている(例えば、特許文献1参照)。特許文献1の技術では、溶接金属を含む部分を局所加熱することにより、硬度が高くなった溶接金属が焼き戻されるので、溶接部の伸びが改善される。   Conventionally, in a laser welding method of a high-tensile steel plate, as a technique for reducing the hardness of the weld metal and forming a welded portion having good formability, welding is performed after the welding laser beam has passed for more than 1 second. A heat treatment method for locally heating a portion containing a metal is disclosed (for example, see Patent Document 1). In the technique of Patent Document 1, since the weld metal having high hardness is tempered by locally heating the portion including the weld metal, the elongation of the welded portion is improved.

特開2004−209497号公報JP 2004-209497 A

従来のテーラードウェルデッドブランク材では、複数の母材鋼板を溶接してなる溶接継ぎ手部分における溶接金属の硬さが、母材鋼板と比較して高いため、母材鋼板と比較して成形加工性が低いことが問題となっている。
具体的には、例えば、車両の外板部材に用いられるテーラードウェルデッドブランク材に、プレス成形加工などの成形加工を行って歪を付与した場合に、溶接金属の硬さが高いため、溶接金属の表面が母材鋼板の表面の位置から盛り上がってしまうことがあった。溶接金属の盛り上がった高さが高くて、表面を塗装しても十分に隠蔽できない場合には、車両の外板部材として使用するための所定の外観を得ることは困難となる。
In conventional tailored welded blanks, the weld metal hardness at the welded joint made by welding multiple base steel plates is higher than that of the base steel plates, so that it is easier to form than the base steel plates. Is a problem.
Specifically, for example, when a welded blank material used for a vehicle outer plate member is subjected to a forming process such as a press forming process to impart distortion, the weld metal has a high hardness, so that the weld metal In some cases, the surface of the steel plate rises from the position of the surface of the base steel plate. If the raised height of the weld metal is high and cannot be sufficiently concealed even if the surface is painted, it is difficult to obtain a predetermined appearance for use as a vehicle outer plate member.

この問題を解決する方法としては、溶接金属を含む部分を局所加熱する熱処理を行って、溶接金属の硬さを低減することが考えられる。しかし、溶接金属を含む部分を局所加熱する場合、熱処理を行うための装置が必要であるし、手間がかかるという不都合があった。
このため、複数の母材鋼板を溶接してなる溶接継ぎ手において、熱処理を行うことなく、溶接金属と母材鋼板との硬さの差の小さくすることが要求されていた。
As a method for solving this problem, it is conceivable to reduce the hardness of the weld metal by performing a heat treatment that locally heats a portion including the weld metal. However, in the case of locally heating the portion including the weld metal, there is an inconvenience that an apparatus for performing heat treatment is necessary and time-consuming.
For this reason, in a welding joint formed by welding a plurality of base steel plates, it is required to reduce the difference in hardness between the weld metal and the base steel plate without performing heat treatment.

本発明は上記事情に鑑みてなされたもので、溶接金属を含む部分を熱処理することなく、溶接金属と母材鋼板との硬さの差が小さく、優れた成形加工性を有する溶接継ぎ手が得られる溶接継ぎ手の製造方法および溶接継ぎ手の製造装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to obtain a welded joint having excellent forming workability with a small difference in hardness between the weld metal and the base steel plate without heat-treating the portion containing the weld metal. It is an object of the present invention to provide a welded joint manufacturing method and a welded joint manufacturing apparatus.

本発明者は、上記課題を解決するために、溶接継ぎ手の溶接金属のミクロ組織に着目して鋭意検討を重ねた。その結果、溶接継ぎ手の溶接金属が、粒径30〜150μmのフェライトを50%以上含むものである場合、軟らかく延性に優れた組織であるフェライトによって、溶接金属の硬さと母材鋼板の硬さとの差が十分に小さい溶接継ぎ手となることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied paying attention to the microstructure of the weld metal of the weld joint. As a result, when the weld metal of the weld joint contains 50% or more of ferrite having a particle size of 30 to 150 μm, the difference between the hardness of the weld metal and the hardness of the base steel plate is caused by the ferrite that is soft and excellent in ductility. It was found to be a sufficiently small weld joint.

粒径30〜150μmのフェライトを50%以上含む溶接金属を得る方法としては、溶接金属の冷却速度を遅くして、粒径30〜150μmのフェライトの生成を促進させることが考えられる。溶接金属の冷却速度を遅くするには、溶接速度を遅くすればよい。しかし、溶接速度を遅くすると生産性が低下してしまう。
そこで、本発明者は、十分な溶接速度を確保しつつ、溶接金属の冷却速度を遅くする方法について検討した。
As a method for obtaining a weld metal containing 50% or more of ferrite having a particle size of 30 to 150 μm, it is conceivable to slow the cooling rate of the weld metal and promote the formation of ferrite having a particle size of 30 to 150 μm. In order to slow down the cooling rate of the weld metal, the welding speed may be slowed down. However, if the welding speed is slowed down, the productivity will decrease.
Therefore, the present inventor has studied a method for reducing the cooling rate of the weld metal while ensuring a sufficient welding speed.

その結果、溶接手段に備えられる光源としてダイレクトダイオードレーザーを用い、ダイレクトダイオードレーザーの集光ビームの形状を溶接方向に十分に長いものとすればよいことを見出した。そして、集光ビームの溶接方向長さと溶接直交方向長さとのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たす場合、0.5m/分以上の十分に速い溶接速度で溶接しても、粒径30〜150μmのフェライトを50%以上含み、母材鋼板との硬さの差が小さい溶接継ぎ手の溶接金属が得られることを確認し、本発明を想到した。本発明の要旨は、以下のとおりである。   As a result, it has been found that a direct diode laser may be used as a light source provided in the welding means, and the shape of the focused beam of the direct diode laser should be sufficiently long in the welding direction. And when the aspect ratio (welding direction / welding orthogonal direction) of the welding direction length and the welding orthogonal direction length of the focused beam is 2.5 or more and satisfies the following formula (1), it is 0.5 m / min or more. Even if welding is performed at a sufficiently high welding speed, it has been confirmed that a weld metal containing a weld having a grain size of 30 to 150 μm in 50% or more and having a small difference in hardness from the base steel sheet can be obtained. I came up with. The gist of the present invention is as follows.

[1] 複数の母材鋼板を溶接してなる溶接継ぎ手の製造方法であって、光源としてダイレクトダイオードレーザーを用いて0.5m/分以上の溶接速度で溶接する溶接工程を有し、前記ダイレクトダイオードレーザーとして、ピーク強度の半値幅における集光ビームの形状が溶接方向に長く、前記集光ビームの溶接方向長さと溶接直交方向長さとのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たすものを用い、前記溶接工程において、粒径30〜150μmのフェライトを50%以上含む溶接金属を形成することを特徴とする溶接継ぎ手の製造方法。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
[1] A method for manufacturing a welded joint obtained by welding a plurality of base steel sheets, including a welding process of welding at a welding speed of 0.5 m / min or more using a direct diode laser as a light source, As the diode laser, the shape of the focused beam at the half-value width of the peak intensity is long in the welding direction, and the aspect ratio (welding direction / welding orthogonal direction) between the welding direction length of the focused beam and the welding orthogonal length is 2.5. A method for manufacturing a welded joint, wherein a weld metal containing 50% or more of ferrite having a particle size of 30 to 150 μm is formed in the welding step using a material satisfying the following formula (1).
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)

[2] 所定のひずみ比で加工される溶接継ぎ手の製造方法であって、前記ダイレクトダイオードレーザーとして,前記アスペクト比が下記式(2)を満たすものを用い,前記溶接工程において,前記粒径30〜150μmのフェライトの含有量が下記式(3)を満たす溶接金属を形成することを特徴とする[1]に記載の溶接継ぎ手の製造方法。
アスペクト比≧(5.8+1.6×ひずみ比)×溶接速度(m/分) ・・・式(2)
フェライト含有量≧53+6×ひずみ比 ・・・式(3)
[2] A method of manufacturing a welded joint processed at a predetermined strain ratio, wherein the direct diode laser has an aspect ratio satisfying the following formula (2). The method for producing a welded joint according to [1], wherein a weld metal satisfying the following formula (3) is formed with a ferrite content of ˜150 μm.
Aspect ratio ≧ (5.8 + 1.6 × strain ratio) × welding speed (m / min) (2)
Ferrite content ≧ 53 + 6 × strain ratio Equation (3)

[3] 前記ダイレクトダイオードレーザーとして、前記アスペクト比が下記式(4)を満たすものを用い、前記溶接工程において、前記フェライトの最大粒径が350μm以下である前記溶接金属を形成することを特徴とする[1]または[2]に記載の溶接継ぎ手の製造方法。
アスペクト比≦16.0×溶接速度(m/分)−3.0 ・・・式(4)
[3] Using the direct diode laser having an aspect ratio satisfying the following formula (4), and forming the weld metal in which the maximum grain size of the ferrite is 350 μm or less in the welding step. The method for manufacturing a welded joint according to [1] or [2].
Aspect ratio ≦ 16.0 × Welding speed (m / min) −3.0 Formula (4)

[4] 前記ダイレクトダイオードレーザーの平均パワー密度を0.6kW/mm以下とすることを特徴とする[1]〜[3]のいずれかに記載の溶接継ぎ手の製造方法。 [4] The method for producing a welded joint according to any one of [1] to [3], wherein an average power density of the direct diode laser is 0.6 kW / mm 2 or less.

[5] [1]〜[4]のいずれかに記載の溶接継ぎ手の製造方法に使用される溶接継ぎ手の製造装置であって、0.5m/分以上の溶接速度で溶接する溶接手段を有し、
前記溶接手段が、光源としてピーク強度の半値幅における集光ビームの形状が溶接方向に長く、前記集光ビームの溶接方向長さと溶接直交方向長さとのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たすダイレクトダイオードレーザーを備えることを特徴とする溶接継ぎ手の製造装置。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
[5] A welded joint manufacturing apparatus used in the welded joint manufacturing method according to any one of [1] to [4], having welding means for welding at a welding speed of 0.5 m / min or more. And
As the light source, the shape of the focused beam as a light source at the half width of the peak intensity is long in the welding direction, and the aspect ratio (welding direction / welding orthogonal direction) between the welding direction length of the focused beam and the welding orthogonal direction length is A welding joint manufacturing apparatus comprising a direct diode laser satisfying the following formula (1) that is 2.5 or more.
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)

本発明の溶接継ぎ手の製造方法では、光源としてダイレクトダイオードレーザーを用いて0.5m/分以上の溶接速度で前記鋼板を溶接する溶接工程を有し、前記ダイレクトダイオードレーザーとして、ピーク強度の半値幅における集光ビームの形状が所定の形状であるものを用い、前記溶接工程において、粒径30〜150μmのフェライトを50%以上含む溶接金属を形成するので、溶接金属を含む部分を熱処理する工程を行うことなく、溶接金属と母材鋼板との硬さの差が小さく、優れた成形加工性を有する溶接継ぎ手が得られる。   The method for manufacturing a welded joint according to the present invention includes a welding step of welding the steel sheet at a welding speed of 0.5 m / min or more using a direct diode laser as a light source, and the half width of peak intensity as the direct diode laser. In the welding step, a weld metal containing 50% or more of ferrite having a particle size of 30 to 150 μm is formed, and a step of heat-treating a portion containing the weld metal is used. Without doing so, a difference in hardness between the weld metal and the base steel sheet is small, and a weld joint having excellent formability can be obtained.

したがって、本発明の製造方法を用いて得られた溶接継ぎ手は、成形加工により歪を付与した場合であっても、溶接金属の表面が母材鋼板の表面の位置から盛り上がってしまうことを防止でき、溶接金属が盛り上がったりビード表面が多少肌荒れしたりしても、必要に応じて僅かに表面を研磨し、表面を塗装することにより十分に隠蔽できるものとなる。したがって、本発明の製造方法を用いて得られた溶接継ぎ手は、例えば、プレス成形加工などの成形加工を行った後、必要ならば僅かに研磨した後に表面に塗装を行うことにより、車両の外板部材として好適に使用できる平滑で美しい外観を有する成形加工品が得られるものである。   Therefore, the welded joint obtained using the manufacturing method of the present invention can prevent the surface of the weld metal from rising from the position of the surface of the base steel plate even when distortion is applied by forming. Even if the weld metal rises or the bead surface becomes somewhat rough, the surface can be sufficiently concealed by slightly polishing the surface and painting the surface as necessary. Therefore, the welded joint obtained by using the manufacturing method of the present invention can be applied to the exterior of the vehicle by, for example, performing a molding process such as a press molding process and then painting the surface after slightly polishing if necessary. A molded product having a smooth and beautiful appearance that can be suitably used as a plate member is obtained.

図1は、本発明の溶接継ぎ手の製造装置の一例を説明するための概略図である。FIG. 1 is a schematic view for explaining an example of a welding joint manufacturing apparatus according to the present invention. 図2は、図1に示す溶接継ぎ手の製造装置に備えられたダイレクトダイオードレーザーの集光ビームの形状を示した平面図である。FIG. 2 is a plan view showing the shape of a focused beam of a direct diode laser provided in the welding joint manufacturing apparatus shown in FIG. 図3は、本発明の溶接継ぎ手の製造方法を用いて得られた溶接継ぎ手に歪を付与した後の状態を説明するための模式図であり、溶接方向に直交方向から見た拡大断面模式図である。FIG. 3 is a schematic view for explaining a state after applying strain to the welded joint obtained by using the method for manufacturing a welded joint according to the present invention, and is an enlarged cross-sectional schematic diagram viewed from a direction orthogonal to the welding direction. It is. 図4は、実験例27および実験例30の溶接不良の発生率とダイレクトダイオードレーザーの平均パワー密度との関係を示したグラフである。FIG. 4 is a graph showing the relationship between the incidence of poor welding in Experimental Examples 27 and 30 and the average power density of the direct diode laser.

以下、本発明の溶接継ぎ手の製造方法および溶接継ぎ手の製造装置について、詳細に説明する。
本実施形態の溶接継ぎ手の製造方法は、本実施形態の溶接継ぎ手の製造装置を用いて、複数の母材鋼板を溶接してなる溶接継ぎ手の製造方法である。図1は、本発明の溶接継ぎ手の製造装置の一例を説明するための概略図である。また、図2は、図1に示す溶接継ぎ手の製造装置に備えられたダイレクトダイオードレーザーの集光ビームの形状を示した平面図である。
Hereinafter, the manufacturing method and apparatus for manufacturing a welded joint according to the present invention will be described in detail.
The method for manufacturing a welded joint according to the present embodiment is a method for manufacturing a welded joint obtained by welding a plurality of base steel plates using the welded joint manufacturing apparatus according to the present embodiment. FIG. 1 is a schematic view for explaining an example of a welding joint manufacturing apparatus according to the present invention. FIG. 2 is a plan view showing the shape of the focused beam of the direct diode laser provided in the welding joint manufacturing apparatus shown in FIG.

図1において符号1a、1bは母材鋼板を示している。図1に示す溶接継ぎ手の製造装置は、0.5m/分以上の溶接速度で溶接する溶接手段30を有している。溶接手段30は、光源としてのダイレクトダイオードレーザー3と、溶接用のシールドガスを供給するガス供給手段4とを備えている。   In FIG. 1, the codes | symbols 1a and 1b have shown the base material steel plate. The welding joint manufacturing apparatus shown in FIG. 1 has welding means 30 for welding at a welding speed of 0.5 m / min or more. The welding means 30 includes a direct diode laser 3 as a light source and a gas supply means 4 for supplying a shielding gas for welding.

図1に示すダイレクトダイオードレーザー3は、ピーク強度の半値幅における集光ビーム5の形状が、図2に示すように、溶接方向(図2における矢印の方向)に長く、集光ビームの溶接方向長さAと溶接直交方向長さBとのアスペクト比(溶接方向/溶接直交方向(図2におけるA/B))が2.5以上であって下記式(1)を満たすものである。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
In the direct diode laser 3 shown in FIG. 1, the shape of the condensed beam 5 at the half width of the peak intensity is long in the welding direction (the direction of the arrow in FIG. 2) as shown in FIG. The aspect ratio (the welding direction / the welding orthogonal direction (A / B in FIG. 2)) of the length A and the welding orthogonal direction length B is 2.5 or more and satisfies the following formula (1).
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)

集光ビーム5の形状は、図2に示すように、楕円形とすることができるが、アスペクト比が上記範囲を有するものであればよく、例えば長円形や卵形であってもよい。   As shown in FIG. 2, the shape of the focused beam 5 can be an elliptical shape, but it may be any shape as long as the aspect ratio has the above range, and may be, for example, an oval shape or an oval shape.

本実施形態の製造装置を用いる本実施形態の製造方法を用いて得られた溶接継ぎ手は、成形加工により歪を付与される材料として、好適に用いられるものである。図3は、本発明の溶接継ぎ手の製造方法を用いて得られた溶接継ぎ手に歪を付与した後の状態を説明するための模式図であり、溶接方向と直交方向から見た拡大断面模式図である。図3において、符号1a、1bは母材鋼板、符号2は溶接金属を示している。   The welded joint obtained by using the manufacturing method of the present embodiment using the manufacturing apparatus of the present embodiment is preferably used as a material to which distortion is imparted by molding. FIG. 3 is a schematic view for explaining a state after applying strain to the welded joint obtained by using the method for manufacturing a welded joint according to the present invention, and an enlarged cross-sectional schematic view seen from a direction orthogonal to the welding direction. It is. In FIG. 3, reference numerals 1a and 1b denote base steel plates, and reference numeral 2 denotes a weld metal.

本実施形態の製造方法において、母材鋼板1a、1bとしては、特に限定されるものではないが、車両に用いられる鋼板などを好適に用いることができる。また、溶接される複数の母材鋼板は、全て同じ板厚および種類のものであってもよいし、それぞれ異なる板厚および/または種類のものであってもよい。なお、本発明の製造方法によって得られる溶接継ぎ手が、テーラードウェルデッドブランク材の溶接継ぎ手部分である場合、複数の母材鋼板は、それぞれ異なる板厚および/または種類のものとされる。   In the manufacturing method of the present embodiment, the base steel plates 1a and 1b are not particularly limited, but steel plates used in vehicles can be suitably used. The plurality of base steel plates to be welded may all have the same plate thickness and type, or may have different plate thicknesses and / or types. In addition, when the welded joint obtained by the manufacturing method of the present invention is a welded joint part of a tailored welded blank material, the plurality of base material steel plates have different plate thicknesses and / or types.

また、母材鋼板1a、1bとしては、Bの含有量が0.0006質量%以下である鋼板を用いることが好ましく、0.0003質量%以下であることがより好ましい。Bは焼入れ性に大きく影響を与える元素であり、母材鋼板1a、1bがBを含有するものである場合、溶接継ぎ手の溶接金属の硬度が高くなる。しかし、母材鋼板1a、1b中のBの含有量を0.0006質量%以下とした場合には、溶接後に形成される溶接継ぎ手の溶接金属における硬度の向上を抑制でき、0.0003質量%以下とした場合には、より効果的に溶接金属の硬度向上を抑制できる。したがって、母材鋼板1a、1bとしてBの含有量が0.0006質量%以下である鋼板を用いた場合、溶接金属と母材鋼板1a、1bとの硬さの差がより一層小さい溶接継ぎ手が得られる。   Further, as the base steel plates 1a and 1b, it is preferable to use a steel plate having a B content of 0.0006% by mass or less, and more preferably 0.0003% by mass or less. B is an element that greatly affects the hardenability. When the base steel plates 1a and 1b contain B, the hardness of the weld metal of the weld joint increases. However, when the content of B in the base steel plates 1a and 1b is 0.0006% by mass or less, an improvement in the hardness of the weld metal formed after welding can be suppressed, and 0.0003% by mass In the case of the following, the hardness improvement of the weld metal can be more effectively suppressed. Therefore, when a steel plate having a B content of 0.0006% by mass or less is used as the base steel plates 1a and 1b, there is a weld joint in which the difference in hardness between the weld metal and the base steel plates 1a and 1b is much smaller. can get.

本実施形態の溶接継ぎ手の製造方法は、光源としてダイレクトダイオードレーザー3を用いて0.5m/分以上の溶接速度で溶接する溶接工程を有している。
本実施形態において用いられるダイレクトダイオードレーザー3は、集光ビームのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たすものである。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
The manufacturing method of the welding joint of this embodiment has the welding process of welding at the welding speed of 0.5 m / min or more using the direct diode laser 3 as a light source.
The direct diode laser 3 used in the present embodiment has a focused beam aspect ratio (welding direction / welding orthogonal direction) of 2.5 or more and satisfies the following formula (1).
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)

本実施形態においては、溶接工程における溶接速度が0.5m/分以上であるので、効率よく溶接継ぎ手を製造できる。溶接速度は、生産性の向上、溶融池の安定性から0.5m/分以上とする。溶接速度が0.5m/分未満であると、生産性が不十分であることに加えて、溶融池の形成が不安定となり、溶接不良が発生しやすくなる。また、溶接継ぎ手の溶接金属と母材鋼板1a、1bとの硬さの差を十分に小さくしつつ、溶接速度を早くするには、式(1)に示すように、ダイレクトダイオードレーザー3の集光ビーム5のアスペクト比(溶接方向/溶接直交方向)を大きくする必要がある。溶接速度を10m/分以上にすると、アンダーカットが発生し、溶接不良となりやすくなるので、溶接速度を10m/分未満にすることが好ましい。   In the present embodiment, since the welding speed in the welding process is 0.5 m / min or more, a welding joint can be manufactured efficiently. The welding speed is 0.5 m / min or more from the viewpoint of improvement in productivity and stability of the molten pool. If the welding speed is less than 0.5 m / min, in addition to insufficient productivity, the formation of the molten pool becomes unstable, and welding defects are likely to occur. Further, in order to increase the welding speed while sufficiently reducing the difference in hardness between the weld metal of the weld joint and the base steel plates 1a and 1b, as shown in the equation (1), the collection of the direct diode laser 3 is performed. It is necessary to increase the aspect ratio (welding direction / welding orthogonal direction) of the light beam 5. When the welding speed is set to 10 m / min or more, undercut occurs and welding is likely to be poor. Therefore, the welding speed is preferably set to less than 10 m / min.

本実施形態においては、溶接工程における溶接速度が0.5m/分以上であって、ダイレクトダイオードレーザー3の集光ビーム5のアスペクト比が、上記範囲を有するものであるので、溶接工程において、粒径30〜150μmのフェライトを50%以上含む溶接金属2を形成できる。
なお、溶接金属2のフェライトの粒径は、溶接金属2の断面をナイタール腐食させ、光学顕微鏡や走査型電子顕微鏡を用いてミクロ組織を観察し、切断法や、ミクロ組織写真の画像解析を行う方法などによって算出できる。また、フェライトの含有量は、ミクロ組織写真を画像解析することによって求めたフェライトの面積率とすることができる。
In the present embodiment, the welding speed in the welding process is 0.5 m / min or more, and the aspect ratio of the focused beam 5 of the direct diode laser 3 has the above range. A weld metal 2 containing 50% or more of ferrite having a diameter of 30 to 150 μm can be formed.
The ferrite particle size of the weld metal 2 is such that the cross-section of the weld metal 2 is subjected to nital corrosion, the microstructure is observed using an optical microscope or a scanning electron microscope, and a cutting method or image analysis of the microstructure photograph is performed. It can be calculated by a method or the like. The ferrite content can be the area ratio of ferrite determined by image analysis of a microstructure photograph.

溶接金属2に含まれる粒径30〜150μmのフェライトは、溶接工程において生成されるものである。粒径30μm未満のフェライトは、溶接金属2の硬さを抑制する効果が不十分である。また、粒径150μmを超えるフェライトは、成形加工により歪を付与した場合に変形不均一を生じさせる粗大粒となり、成形加工により歪を付与した後の溶接金属2の表面粗度(Rmax)を高くして、軽研磨では補正できない程度に溶接金属2の外観を低下させる恐れがある。   The ferrite having a particle size of 30 to 150 μm contained in the weld metal 2 is generated in the welding process. The ferrite having a particle size of less than 30 μm is insufficient in the effect of suppressing the hardness of the weld metal 2. Further, ferrite having a particle size exceeding 150 μm becomes coarse particles that cause non-uniform deformation when strain is imparted by forming, and the surface roughness (Rmax) of weld metal 2 after imparting strain by forming is increased. In addition, the appearance of the weld metal 2 may be deteriorated to an extent that cannot be corrected by light polishing.

また、溶接金属2に含まれる粒径30〜150μmのフェライトが50%未満であると、フェライトによる溶接金属2と母材鋼板1a、1bとの硬さの差を小さくする効果が十分に得られない。また、溶接金属2に含まれる粒径30〜150μmのフェライトが95%を超えると、溶接金属2と母材鋼板1a、1bとの硬さの差が小さくなりすぎて、溶接継ぎ手が破断しやすいものとなる恐れがある。したがって、溶接金属2に含まれる粒径30〜150μmのフェライトは95%未満であることが好ましい。
なお、溶接金属2に含まれる粒径30〜150μmのフェライトが、50%以上であれば、溶接金属2と母材鋼板1a、1bとの硬さの差を小さくする効果が十分に得られるが、溶接金属2と母材鋼板1a、1bとの硬さの差をより一層小さくするために、70%以上であることが好ましい。
Further, when the ferrite having a particle size of 30 to 150 μm contained in the weld metal 2 is less than 50%, an effect of reducing the difference in hardness between the weld metal 2 and the base steel plates 1a and 1b due to the ferrite is sufficiently obtained. Absent. When the ferrite having a particle size of 30 to 150 μm contained in the weld metal 2 exceeds 95%, the difference in hardness between the weld metal 2 and the base steel plates 1a and 1b becomes too small, and the weld joint is easily broken. There is a risk of becoming a thing. Therefore, it is preferable that the ferrite with a particle size of 30 to 150 μm contained in the weld metal 2 is less than 95%.
In addition, if the ferrite with a particle size of 30 to 150 μm contained in the weld metal 2 is 50% or more, the effect of reducing the difference in hardness between the weld metal 2 and the base steel plates 1a and 1b can be sufficiently obtained. In order to further reduce the difference in hardness between the weld metal 2 and the base steel plates 1a and 1b, it is preferably 70% or more.

本実施形態の製造方法を用いて製造された溶接継ぎ手は、溶接金属2が粒径30〜150μmのフェライトを50%以上含むものであるので、溶接金属2と母材鋼板1a、1bとの硬さの差が小さく、優れた成形加工性を有するものとなる。したがって、成形加工により歪を付与した場合に、溶接金属2の表面が母材鋼板1a、1bの表面の位置から盛り上がることが防止される。   In the welded joint manufactured using the manufacturing method of the present embodiment, since the weld metal 2 contains 50% or more of ferrite having a particle size of 30 to 150 μm, the hardness of the weld metal 2 and the base steel plates 1a and 1b is low. The difference is small and it has excellent moldability. Therefore, when distortion is applied by forming, the surface of the weld metal 2 is prevented from rising from the position of the surfaces of the base steel plates 1a and 1b.

ここで、本実施形態の製造方法を用いて製造された溶接継ぎ手に、歪を付与した場合における溶接金属の表面について、図面を用いて説明する。
図3において、符号11a、11bは母材鋼板1a、1bの表面、符号21は溶接金属2の表面を示している。また、符号m1aは母材鋼板1aの表面位置の平均線、符号m1bは母材鋼板1bの表面位置の平均線、符号m2は溶接金属2の表面位置の平均線を示し、符号Ra1aは母材鋼板1aの粗度(Rmax)、符号Ra1bは母材鋼板1bの粗度(Rmax)、符号Ra2は溶接金属2の粗度(Rmax)、符号Hは溶接金属の盛り上がり量を示している。なお、本実施形態においては、母材鋼板1aと母材鋼板1bの表面位置の平均線(符号m1a、m1b)は同じとなっている。
Here, the surface of the weld metal when distortion is applied to the weld joint manufactured by using the manufacturing method of the present embodiment will be described with reference to the drawings.
In FIG. 3, reference numerals 11 a and 11 b indicate the surfaces of the base steel plates 1 a and 1 b, and reference numeral 21 indicates the surface of the weld metal 2. Reference numeral m1a denotes an average line of the surface position of the base steel plate 1a, reference sign m1b denotes an average line of the surface position of the base steel plate 1b, reference sign m2 denotes an average line of the surface position of the weld metal 2, and reference sign Ra1a denotes the base material. The roughness (Rmax) of the steel plate 1a, the symbol Ra1b represents the roughness (Rmax) of the base steel plate 1b, the symbol Ra2 represents the roughness (Rmax) of the weld metal 2, and the symbol H represents the swell amount of the weld metal. In the present embodiment, the average lines (reference numerals m1a and m1b) of the surface positions of the base steel plate 1a and the base steel plate 1b are the same.

母材鋼板1a、1bの粗度Ra1a、Ra1bは、表面粗度計を用いて測定できる。
また、溶接金属2の表面粗度Ra2は、表面粗度計を用いて溶接金属2の表面の断面曲線の粗さを測定し、その断面曲線からカットオフ波長以下の高周波成分のみを粗さ曲線として抽出し、その粗さ曲線からRmaxを算出することによって得られる。なお、断面曲線の粗さの測定方向は、溶接方向に直交方向とする。
The roughness Ra1a and Ra1b of the base steel plates 1a and 1b can be measured using a surface roughness meter.
Further, the surface roughness Ra2 of the weld metal 2 is measured by measuring the roughness of the cross section curve of the surface of the weld metal 2 using a surface roughness meter, and only a high frequency component having a cutoff wavelength or less is measured from the cross section curve. And Rmax is calculated from the roughness curve. Note that the measurement direction of the roughness of the cross-sectional curve is a direction orthogonal to the welding direction.

また、溶接金属2の盛り上がり量Hは、母材鋼板1a、1bの表面位置の平均線m1a、m1bと溶接金属2の表面位置の平均線m2との差を意味している。溶接金属2の盛り上がり量Hは、溶接金属2の板厚と母材鋼板1a、1bの板厚をそれぞれ測定し、その差分の半値とすることができる。また、溶接金属2の盛り上がり量Hは、表面粗度計を用いて得られた溶接金属2の表面の断面曲線からカットオフ波長以上の低周波成分のみを形状偏差曲線として抽出し、その最大断面高さと定義してもよい。   Further, the swell amount H of the weld metal 2 means a difference between the average lines m1a and m1b of the surface positions of the base steel plates 1a and 1b and the average line m2 of the surface positions of the weld metal 2. The swell amount H of the weld metal 2 can be set to half the difference between the thickness of the weld metal 2 and the thickness of the base steel plates 1a and 1b. Further, the swell amount H of the weld metal 2 is extracted from the cross-sectional curve of the surface of the weld metal 2 obtained using a surface roughness meter, and only the low frequency component having a cutoff wavelength or more is extracted as a shape deviation curve, and its maximum cross section It may be defined as height.

本実施形態の製造方法を用いて製造された溶接継ぎ手は、成形加工により歪を付与した場合に、溶接金属2の表面21が母材鋼板1a、1bの表面11a、11bの位置から盛り上がることが防止される。このため、図3に示すように、溶接金属2の表面21(溶接金属2の表面位置の平均線m2参照)が盛り上がったとしても、溶接金属2の盛り上がり量Hが、溶接金属2を挟んで対向配置されて溶接されている2つの母材鋼板1a、1bの粗度Ra1a(Rmax)、Ra1b(Rmax)以下となるため、表面を塗装することにより十分に隠蔽できる溶接継ぎ手となる。   In the welded joint manufactured using the manufacturing method of the present embodiment, the surface 21 of the weld metal 2 may rise from the positions of the surfaces 11a and 11b of the base steel plates 1a and 1b when strain is applied by forming. Is prevented. For this reason, as shown in FIG. 3, even if the surface 21 of the weld metal 2 (see the average line m2 of the surface position of the weld metal 2) rises, the swell amount H of the weld metal 2 sandwiches the weld metal 2 therebetween. Since the roughness Ra1a (Rmax) and Ra1b (Rmax) of the two base steel plates 1a and 1b which are arranged opposite to each other and are welded to each other, it becomes a welding joint that can be sufficiently concealed by painting the surface.

本実施形態の製造方法において、使用するダイレクトダイオードレーザー3の集光ビーム5のアスペクト比が2.5未満である場合、集光ビーム5のアスペクト比を高くすることによる溶接金属2の冷却速度を遅くする効果が不十分となる。このため、溶接工程における溶接速度を0.5m/分以上としつつ、粒径30〜150μmのフェライトの生成を十分に促進させることができなくなる。   In the manufacturing method of the present embodiment, when the aspect ratio of the focused beam 5 of the direct diode laser 3 used is less than 2.5, the cooling rate of the weld metal 2 by increasing the aspect ratio of the focused beam 5 is set. The effect of delaying is insufficient. For this reason, it becomes impossible to sufficiently promote the generation of ferrite having a particle size of 30 to 150 μm while setting the welding speed in the welding process to 0.5 m / min or more.

また、集光ビーム5のアスペクト比が式(1)を満たさない場合、粒径30〜150μmのフェライトの含有量が不足して、母材鋼板1a、1bとの硬さの差が十分に小さい溶接金属2を形成できない。したがって、集光ビーム5のアスペクト比が式(1)を満たさないと、製造された溶接継ぎ手は、成形加工により歪を付与した場合に、溶接金属2の表面21が母材鋼板1a、1bの表面11a、11bの位置から母材鋼板1a、1bの粗度Ra1a、Ra1bを超える盛り上がり量Hで盛り上がり、表面を塗装しても隠蔽困難なものとなる。   Further, when the aspect ratio of the focused beam 5 does not satisfy the formula (1), the content of ferrite having a particle size of 30 to 150 μm is insufficient, and the difference in hardness from the base steel plates 1a and 1b is sufficiently small. The weld metal 2 cannot be formed. Therefore, if the aspect ratio of the focused beam 5 does not satisfy the formula (1), the manufactured weld joint has a surface 21 of the weld metal 2 of the base steel plates 1a and 1b when strain is applied by forming. From the position of the surfaces 11a and 11b, the base steel plates 1a and 1b swell with a swell amount H exceeding the roughness Ra1a and Ra1b of the base steel plates 1a and 1b.

本発明の製造方法を用いて、予め決定された所定のひずみ比で加工される溶接継ぎ手を製造する場合,ダイレクトダイオードレーザー3として、集光ビーム5のアスペクト比が下記式(2)を満たすものを用いることが好ましく,溶接工程において、フェライトの含有量が下記式(3)を満たす溶接金属を形成することが好ましい。
アスペクト比≧(5.8+1.6×ひずみ比)×溶接速度(m/分) ・・・式(2)
フェライト含有量≧53+6×ひずみ比 ・・・式(3)
ここでひずみ比は,2軸の応力が作用して生じたひずみ量のうち,最小主ひずみを最大主ひずみで除した値である。
When manufacturing a welded joint that is processed at a predetermined strain ratio determined in advance using the manufacturing method of the present invention, the aspect ratio of the focused beam 5 satisfies the following formula (2) as the direct diode laser 3 In the welding process, it is preferable to form a weld metal in which the ferrite content satisfies the following formula (3).
Aspect ratio ≧ (5.8 + 1.6 × strain ratio) × welding speed (m / min) (2)
Ferrite content ≧ 53 + 6 × strain ratio Equation (3)
Here, the strain ratio is a value obtained by dividing the minimum principal strain by the maximum principal strain out of the amount of strain generated by the action of biaxial stress.

テーラードウェルデッドブランク材をプレス成形する場合,通常、テーラードウェルデッドブランク材を、金型に対して溶接継ぎ手に作用する最大主ひずみ方向が溶接線方向と概ね平行となるように配置する。この理由は,最大主ひずみ方向が溶接線方向に対して角度がある状態でプレス加工を行うと,溶接継ぎ手周辺の母材鋼板に変形が集中して,破断を生じる危険性が高くなるためである。   When press-molding a tailored welded blank material, the tailored welded blank material is usually arranged so that the maximum principal strain direction acting on the weld joint with respect to the mold is substantially parallel to the weld line direction. The reason for this is that if pressing is performed in a state where the maximum principal strain direction is at an angle with respect to the weld line direction, deformation concentrates on the base steel plate around the weld joint and the risk of breakage increases. is there.

また,溶接継ぎ手の成形加工においては、溶接線方向に加えて,溶接線方向と直交する方向にも応力が作用する場合がある。この状態を溶接継ぎ手に2軸の応力が作用する状態と呼称する。溶接継ぎ手に2軸の応力が作用する場合,溶接線直交方向に作用する応力によって、溶接継ぎ手周辺の母材鋼板が変形し,板厚が薄くなる。これは図3において,母材鋼板1a、1bの表面位置の平均線m1a、m1bの位置が低くなることと等価である。溶接金属2の盛り上がり量Hは、母材鋼板1a、1bの表面位置の平均線m1a、m1bと溶接金属2の表面位置の平均線m2との差である。したがって,溶接継ぎ手に2軸の応力が作用する場合,溶接継ぎ手の概ね溶接線方向に単軸の応力が作用する場合と比較して、溶接金属2の盛り上がり量Hが大きくなる。   Further, in forming a welded joint, stress may be applied in a direction perpendicular to the weld line direction in addition to the weld line direction. This state is called a state in which biaxial stress acts on the weld joint. When biaxial stress is applied to the weld joint, the base steel plate around the weld joint is deformed by the stress acting in the direction perpendicular to the weld line, and the plate thickness is reduced. In FIG. 3, this is equivalent to lowering the positions of the average lines m1a and m1b of the surface positions of the base steel plates 1a and 1b. The swell amount H of the weld metal 2 is a difference between the average lines m1a and m1b of the surface positions of the base steel plates 1a and 1b and the average line m2 of the surface position of the weld metal 2. Therefore, when biaxial stress acts on the welded joint, the swell amount H of the weld metal 2 becomes larger than when uniaxial stress acts on the welded joint in the direction of the weld line.

本実施形態において、予め決定された所定のひずみ比で加工される溶接継ぎ手を製造する場合に,ダイレクトダイオードレーザー3として、集光ビーム5のアスペクト比が式(2)を満たすものを用い、溶接工程において、フェライトの含有量が式(3)を満たす溶接金属を形成すると、成形加工により歪を付与することによって溶接金属2の表面が盛り上がることを、効果的に抑制できる。このため、成形加工により溶接継ぎ手に2軸の応力が作用して、溶接線方向に単軸の応力が作用する場合よりも溶接金属2の盛り上がり量Hが大きくなったとしても、溶接金属2の盛り上がり量Hを、溶接金属2を挟んで対向配置されて溶接されている2つの母材鋼板1a、1bの粗度Ra1a(Rmax)、Ra1b(Rmax)以下とすることができる。   In this embodiment, when manufacturing a welded joint that is processed at a predetermined strain ratio that is determined in advance, a direct diode laser 3 that has an aspect ratio of the focused beam 5 that satisfies Equation (2) is used. In the process, when the weld metal having the ferrite content satisfying the formula (3) is formed, it is possible to effectively suppress the surface of the weld metal 2 from being raised by applying strain by forming. For this reason, even if the biaxial stress acts on the weld joint by the forming process and the bulge amount H of the weld metal 2 becomes larger than the case where the uniaxial stress acts in the weld line direction, the weld metal 2 The swell amount H can be set to be equal to or less than the roughness Ra1a (Rmax) and Ra1b (Rmax) of the two base steel plates 1a and 1b that are arranged to be opposed to each other with the weld metal 2 interposed therebetween.

ダイレクトダイオードレーザー3として、集光ビーム5のアスペクト比が式(2)を満たさないものを用いた場合および/または溶接金属2のフェライトの含有量が式(3)を満たさない場合には,成形加工により溶接継ぎ手に2軸の応力が作用することによって溶接金属2が盛り上がる現象を、十分に抑制できず,溶接金属2が母材鋼板1a、1bの粗度Ra1a、Ra1bを超える盛り上がり量Hで盛り上がり、表面を塗装しても隠蔽困難となる恐れがある。   When the direct diode laser 3 is used in which the aspect ratio of the focused beam 5 does not satisfy the formula (2) and / or when the ferrite content of the weld metal 2 does not satisfy the formula (3), the direct diode laser 3 is formed. The phenomenon that the weld metal 2 swells due to the biaxial stress acting on the weld joint due to the processing cannot be sufficiently suppressed, and the weld metal 2 has a swell amount H exceeding the roughness Ra1a, Ra1b of the base steel plates 1a, 1b. There is a risk that it will rise and be difficult to conceal even if the surface is painted.

集光ビーム5のアスペクト比は、下記式(4)を満たすものであることが好ましい。集光ビーム5のアスペクト比が下記式(4)を満たす場合、溶接工程において、フェライトの最大粒径が350μm以下である溶接金属2を形成することができ、成形加工により歪を付与したとしても、溶接金属2に存在する粗大粒による変形不均一に起因する溶接金属2の表面粗度(Rmax)の増大が生じにくく、表面の平滑な溶接金属2を有する溶接継ぎ手が得られる。
アスペクト比≦16.0×溶接速度(m/分)−3.0 ・・・式(4)
The aspect ratio of the focused beam 5 preferably satisfies the following formula (4). When the aspect ratio of the focused beam 5 satisfies the following formula (4), the weld metal 2 having a maximum grain size of ferrite of 350 μm or less can be formed in the welding process, and even if distortion is imparted by forming. The surface roughness (Rmax) of the weld metal 2 due to uneven deformation due to coarse grains existing in the weld metal 2 is unlikely to increase, and a weld joint having the weld metal 2 with a smooth surface is obtained.
Aspect ratio ≦ 16.0 × Welding speed (m / min) −3.0 Formula (4)

集光ビーム5のアスペクト比が式(4)を満たさない場合、集光ビーム5のアスペクト比が高くなり、溶接金属2の冷却速度を遅くなりすぎるため、溶接金属2に含まれるフェライトの粒径が大きいものとなる。このため、溶接金属2は、最大粒径が350μmを超えるフェライトを含むものとなり、溶接金属2と母材鋼板1a、1bとの粒径差が大きい溶接継ぎ手となる。その結果、成形加工により歪を付与した場合に、溶接金属2と母材鋼板1a、1bとの粒径差による変形不均一によって、溶接金属2の表面粗度Ra2が大きくなり、表面を塗装しても、車両の外板部材として好適に使用できる平滑で美しい外観が得られにくいものとなる。   When the aspect ratio of the focused beam 5 does not satisfy the formula (4), the aspect ratio of the focused beam 5 becomes high and the cooling rate of the weld metal 2 becomes too slow. Is a big one. For this reason, the weld metal 2 contains ferrite having a maximum particle size exceeding 350 μm, and becomes a weld joint having a large particle size difference between the weld metal 2 and the base steel plates 1a and 1b. As a result, when distortion is imparted by forming, the surface roughness Ra2 of the weld metal 2 increases due to nonuniform deformation due to the particle size difference between the weld metal 2 and the base steel plates 1a and 1b, and the surface is coated. However, it is difficult to obtain a smooth and beautiful appearance that can be suitably used as a vehicle outer plate member.

すなわち、成形加工により歪を付与した後の溶接継ぎ手の溶接金属2は、図3に示すように、表面21が母材鋼板1a、1bの表面11a、11bの位置から盛り上がっていたとしても、溶接金属2の盛り上がり量Hが母材鋼板1a、1bの表面粗度Ra1a、Ra1b以下であって、さらに、表面粗度Ra2が母材鋼板1a、1bの表面粗度Ra1a、Ra1b以下であることが好ましい。   That is, as shown in FIG. 3, the weld metal 2 of the weld joint after applying distortion by forming is welded even if the surface 21 is raised from the positions of the surfaces 11 a and 11 b of the base steel plates 1 a and 1 b. The rising amount H of the metal 2 is not more than the surface roughness Ra1a, Ra1b of the base steel plates 1a, 1b, and the surface roughness Ra2 is not more than the surface roughness Ra1a, Ra1b of the base steel plates 1a, 1b. preferable.

また、本実施形態においては、ダイレクトダイオードレーザー3の平均パワー密度を0.6kW/mm以下とすることが好ましい。平均パワー密度を0.6kW/mm以下とすることにより、溶接欠陥が生じにくい熱伝導モード溶接を実現することができ、溶接不良を防止できる。平均パワー密度が0.6kW/mmを超えると、キーホールモード溶接となる。本実施形態においては、ダイレクトダイオードレーザー3として、集光ビーム5が所定のアスペクト比であるものを用いるので、キーホールモード溶接を行うと、溶融池を閉じるに足るだけの表面張力が得られず、溶接不良が生じやすくなる。平均パワー密度が低いほど、溶接不良が生じにくく好ましいが、平均パワー密度が0.01kW/mm未満であると、溶接速度を0.5m/分以上にしにくくなる。このため、平均パワー密度は、0.01kW/mm以上であることが好ましい。 In the present embodiment, the average power density of the direct diode laser 3 is preferably 0.6 kW / mm 2 or less. By setting the average power density to 0.6 kW / mm 2 or less, it is possible to realize heat conduction mode welding in which welding defects are unlikely to occur, and to prevent poor welding. When the average power density exceeds 0.6 kW / mm 2 , keyhole mode welding is performed. In the present embodiment, since the focused laser beam 5 having a predetermined aspect ratio is used as the direct diode laser 3, surface tension sufficient to close the molten pool cannot be obtained when keyhole mode welding is performed. , Welding defects are likely to occur. It is preferable that the average power density is low, so that poor welding is less likely to occur. However, if the average power density is less than 0.01 kW / mm 2, it is difficult to make the welding speed 0.5 m / min or more. For this reason, it is preferable that an average power density is 0.01 kW / mm < 2 > or more.

また、本実施形態においては、溶接用のシールドガスとして、ガス供給手段4から酸素Oを体積%で0.5〜10%含有し、その他が不可避的不純物を含むArガスおよび/またはHeガスであるものを供給することが望ましい。
上記のシールドガスを用いた場合、シールドガス中に含まれる酸素と、母材鋼板1a、1b中に含まれるCやMnなどの焼入れ性に寄与する元素とが反応して酸化物を形成するため、焼入れ性が低下される。したがって、溶接後に形成される溶接継ぎ手の溶接金属2における硬度の向上が抑制される。
Further, in the present embodiment, Ar gas and / or He gas containing 0.5 to 10% by volume of oxygen O 2 from the gas supply means 4 as a shielding gas for welding and the other containing inevitable impurities. It is desirable to supply what is.
When the above shielding gas is used, oxygen contained in the shielding gas reacts with elements contributing to hardenability such as C and Mn contained in the base steel plates 1a and 1b to form oxides. , Hardenability is reduced. Therefore, the improvement of the hardness in the weld metal 2 of the weld joint formed after welding is suppressed.

また、溶接時の加熱により母材鋼板1a、1b中に含まれるTiNが分解して、フリーのNが発生するが、このNとシールドガス中に含まれる酸素とが反応して酸化物を形成するため、固溶強化元素であるNの量が低減し、溶接後に形成される溶接継ぎ手の溶接金属2における硬度の向上が抑制される。   Further, TiN contained in the base steel plates 1a and 1b is decomposed by heating at the time of welding, and free N is generated. This N and oxygen contained in the shield gas react to form an oxide. Therefore, the amount of N which is a solid solution strengthening element is reduced, and the improvement in the hardness of the weld metal 2 formed after welding is suppressed.

[実施例1]
母材鋼板として、以下に示す2枚の鋼板を使用し、表1に示す溶接速度で、表1に示す集光ビームのアスペクト比および光源のレーザーを用い、シールドガスとして酸素Oを体積%で3%含有するArガスを使用し、表1に示す平均パワー密度で溶接し、実験例1〜実験例32の溶接継ぎ手を得た。
なお、光源としてYAGレーザを用いた場合には出力を900Wとし、DDL(ダイレクトダイオードレーザ)を用いた場合には出力を500Wとした。
また、光源のピーク強度の半値幅における集光ビームは、溶接直交方向長さを0.6mmで一定とし、溶接方向長さを変化させてアスペクト比(溶接方向/溶接直交方向)を変化させた。
[Example 1]
Two steel plates shown below are used as the base steel plate, and at the welding speed shown in Table 1, the aspect ratio of the focused beam shown in Table 1 and the laser of the light source are used, and oxygen O 2 is used as a shielding gas in volume%. Using Ar gas containing 3%, welding was performed at an average power density shown in Table 1 to obtain weld joints of Experimental Examples 1 to 32.
The output was 900 W when a YAG laser was used as the light source, and the output was 500 W when a DDL (direct diode laser) was used.
In addition, the focused beam at the half-value width of the peak intensity of the light source was made constant in the welding orthogonal length at 0.6 mm, and the aspect ratio (welding direction / welding orthogonal direction) was changed by changing the welding direction length. .

「鋼板」
Bを質量%で0.0002%含有し、板厚が0.8mm, 降伏応力が135.4MPa, 引張強度が287MPa, 伸びが45%、ビッカース硬度Hvが80.5、粗度Rmaxが9.1μmの合金化溶融亜鉛めっき鋼板を使用した。
"steel sheet"
B is contained at 0.0002% by mass, the plate thickness is 0.8 mm, the yield stress is 135.4 MPa, the tensile strength is 287 MPa, the elongation is 45%, the Vickers hardness Hv is 80.5, and the roughness Rmax is 9. A 1 μm galvannealed steel sheet was used.

Figure 2014151333
Figure 2014151333

このようにして得られた実験例1〜実験例32の溶接継ぎ手の溶接金属について、以下に示す方法により、粒径30〜150μmのフェライトの面積率と、フェライトの最大粒径とを調べた。その結果を表1に示す。   With respect to the weld metal of the weld joints of Experimental Examples 1 to 32 thus obtained, the area ratio of ferrite having a particle size of 30 to 150 μm and the maximum particle size of ferrite were examined by the following method. The results are shown in Table 1.

「フェライトの面積率」
溶接金属の断面をナイタール腐食させ、走査型電子顕微鏡を用いて撮影したミクロ組織写真(観察視野800μm×800μm)を用いてポイントカウンティング法(6400点計測)により算出した。
「フェライトの最大粒径」
JIS G0551に規定されている方法を用いてフェライトの粒径を調べ、その最大粒径を求めた。
"Ferrite area ratio"
The cross section of the weld metal was subjected to Nital corrosion, and calculated by a point counting method (6400 points measurement) using a microstructure photograph (observation field of view 800 μm × 800 μm) taken using a scanning electron microscope.
"Maximum grain size of ferrite"
Using the method defined in JIS G0551, the grain size of ferrite was examined and the maximum grain size was determined.

続いて、実験例1〜実験例32の溶接継ぎ手からJIS5号引張試験片を採取し、実験例1〜実験例32の試験片とした。なお、実験例1〜実験例32の試験片は、中央に溶接金属が引張方向と平行に位置するものとした。
次いで、実験例1〜実験例32の試験片を片面につき0.05mmずつ両面を機械研磨することによって研磨し、母材鋼板と溶接金属とにおいて表面粗度および板厚が均一となるようにした。研磨後の実験例1〜実験例32の試験片の両面の表面粗度Rmaxは3.0μm以下であり、板厚は0.7mmであった。なお、試験片の両面の表面粗度は、表面粗度計を用いて測定した。
Subsequently, a JIS No. 5 tensile test piece was collected from the welded joints of Experimental Examples 1 to 32, and used as Test Samples of Experimental Examples 1 to 32. In the test pieces of Experimental Examples 1 to 32, the weld metal was positioned in the center in parallel with the tensile direction.
Next, the test pieces of Experimental Examples 1 to 32 were polished by mechanically polishing both sides by 0.05 mm per side so that the surface roughness and thickness were uniform in the base steel plate and the weld metal. . The surface roughness Rmax on both surfaces of the test pieces of Experimental Examples 1 to 32 after polishing was 3.0 μm or less, and the plate thickness was 0.7 mm. In addition, the surface roughness of both surfaces of the test piece was measured using a surface roughness meter.

その後、研磨後の実験例1〜実験例32の試験片について、JIS Z 2241に準拠して引張試験を行い、15%の歪を付与し、以下に示す方法により、溶接金属の盛り上がり量と、溶接金属の表面粗度とを評価した。その結果を表1に示す。   Thereafter, for the test pieces of Experimental Example 1 to Experimental Example 32 after polishing, a tensile test is performed in accordance with JIS Z 2241, a strain of 15% is applied, and by the method shown below, The surface roughness of the weld metal was evaluated. The results are shown in Table 1.

「溶接金属の盛り上がり量」
溶接金属の板厚と母材鋼板の板厚をそれぞれ測定し、その差分の半値とした。
「溶接金属の表面粗度」
表面粗度計を用いて溶接金属の表面の断面曲線の粗さを測定し、その断面曲線からカットオフ波長(0.8mm)以下の高周波成分のみを粗さ曲線として抽出し、その粗さ曲線からRmaxを算出することによって得られた値とした。なお、断面曲線の粗さの測定方向は、溶接方向と直交方向とし、測定距離は10mmとし、測定領域の中心を溶接金属の母材鋼板間の中心位置とした。
“Weld metal swell amount”
The plate thickness of the weld metal and the plate thickness of the base steel plate were measured, and the difference was half the value.
"Surface roughness of weld metal"
Using a surface roughness meter, measure the roughness of the cross-section curve of the surface of the weld metal, and extract only the high-frequency component below the cutoff wavelength (0.8 mm) from the cross-section curve as the roughness curve. It was set as the value obtained by calculating Rmax from. In addition, the measurement direction of the roughness of the cross-sectional curve was orthogonal to the welding direction, the measurement distance was 10 mm, and the center of the measurement region was the center position between the base metal plates of the weld metal.

表1に示すように、本発明の実施例である実験例7、13、14、19〜23、26〜31では、溶接金属の盛り上がり量が、母材鋼板の表面粗度(9.10μm)以下となっていることがわかる。   As shown in Table 1, in Experimental Examples 7, 13, 14, 19 to 23, and 26 to 31, which are examples of the present invention, the swell amount of the weld metal is the surface roughness (9.10 μm) of the base steel plate. It turns out that it is the following.

これに対し、集光ビームのアスペクト比が上記式(1)を満たさず、溶接金属における粒径30〜150μmのフェライトが50%未満である実験例1〜6、8〜12、15〜18、24、25、32では、溶接金属の盛り上がり量が、母材鋼板の表面粗度を超えている。
これは、実験例1〜6、8〜12、15〜18、24、25、32では、溶接金属の硬度が母材鋼板と比較して高いため、歪を付与した際の溶接金属と母材鋼板との変形能が大きく異なることによるものと推定される。
On the other hand, Examples 1-6, 8-12, 15-18, in which the aspect ratio of the focused beam does not satisfy the above formula (1), and the ferrite having a particle size of 30 to 150 μm in the weld metal is less than 50%. In 24, 25, and 32, the swell amount of the weld metal exceeds the surface roughness of the base steel plate.
This is because in Experiments 1-6, 8-12, 15-18, 24, 25, 32, the hardness of the weld metal is higher than that of the base steel plate, so the weld metal and base material when strain was applied. It is presumed that the deformability differs greatly from the steel sheet.

また、表1に示すように、実験例7、13、14、19〜23、26〜31のうち、集光ビームのアスペクト比が上記式(4)を満たす実験例7、13、14、21〜23、29〜31では、フェライトの最大粒径が350μm以下となり、溶接金属の表面粗度が母材鋼板の表面粗度以下となっている。   Also, as shown in Table 1, among Experimental Examples 7, 13, 14, 19-23, and 26-31, Experimental Examples 7, 13, 14, and 21 in which the aspect ratio of the condensed beam satisfies the above formula (4) In -23 and 29-31, the maximum grain size of ferrite is 350 μm or less, and the surface roughness of the weld metal is not more than the surface roughness of the base steel plate.

また、表1に示す実験例27および実験例30の溶接条件において、平均パワー密度のみ0.4kW/mm、0.6kW/mm、0.8kW/mm、1.0kW/mmに変化させて溶接し、平均パワー密度毎にそれぞれ長さ100mmの溶接金属を1000箇所形成する溶接試験を行い、以下に示す溶接不良の判定方法により溶接不良の有無を判定し、平均パワー密度毎の溶接不良の発生率を調べた。その結果を図4に示す。 Further, in the welding conditions of Example 27 and Experiment Example 30 shown in Table 1, the average power density only 0.4kW / mm 2, 0.6kW / mm 2, 0.8kW / mm 2, to 1.0 kW / mm 2 Welding was performed, and a welding test was performed in which 1000 weld metals each having a length of 100 mm were formed for each average power density, and the presence or absence of welding failure was determined by the welding failure determination method described below. The incidence of poor welding was investigated. The result is shown in FIG.

「溶接不良の判定方法」
溶接金属に板厚方向に貫通する孔(欠陥)が存在するか否かを目視にて判断し、孔が存在する場合を溶接不良「有り」とした。
"Judgment method of poor welding"
Whether or not there is a hole (defect) penetrating in the thickness direction in the weld metal was determined visually, and a case where a hole was present was judged as “existent”.

図4は、実験例27および実験例30の溶接不良の発生率とダイレクトダイオードレーザーの平均パワー密度との関係を示したグラフである。
図4に示すように、実験例27および実験例30において、ダイレクトダイオードレーザーの平均パワー密度が0.6kW/mm以下である場合には、溶接不良は発生しなかった。
FIG. 4 is a graph showing the relationship between the incidence of poor welding in Experimental Examples 27 and 30 and the average power density of the direct diode laser.
As shown in FIG. 4, in Experimental Example 27 and Experimental Example 30, no welding failure occurred when the average power density of the direct diode laser was 0.6 kW / mm 2 or less.

[実施例2]
母材鋼板として、実施例1と同じ2枚の鋼板を使用し、表2に示す溶接速度で、表2に示す集光ビームのアスペクト比および光源のレーザーを用い、シールドガスとして酸素Oを体積%で3%含有するArガスを使用し、表2に示す平均パワー密度で溶接し、実験例33〜実験例73の溶接継ぎ手を得た。
なお、光源としてDDL(ダイレクトダイオードレーザ)を使用し,その出力を500Wとした。
また、光源のピーク強度の半値幅における集光ビームは、溶接直交方向長さを0.6mmで一定とし、溶接方向長さを変化させてアスペクト比(溶接方向/溶接直交方向)を変化させた。
[Example 2]
As the base material steel plate, the same two steel plates as in Example 1 were used, and at the welding speed shown in Table 2, the condensed beam aspect ratio shown in Table 2 and the light source laser were used, and oxygen O 2 was used as the shielding gas. Using Ar gas containing 3% by volume, welding was performed at an average power density shown in Table 2 to obtain weld joints of Experimental Examples 33 to 73.
In addition, DDL (direct diode laser) was used as a light source, and the output was 500W.
In addition, the focused beam at the half-value width of the peak intensity of the light source was made constant in the welding orthogonal length at 0.6 mm, and the aspect ratio (welding direction / welding orthogonal direction) was changed by changing the welding direction length. .

Figure 2014151333
Figure 2014151333

このようにして得られた実験例33〜実験例73の溶接継ぎ手の溶接金属について、実施例1と同様にして、粒径30〜150μmのフェライトの面積率と、フェライトの最大粒径とを調べた。その結果を表3に示す。   For the weld metal of the weld joints of Experimental Examples 33 to 73 obtained in this manner, the area ratio of ferrite having a particle size of 30 to 150 μm and the maximum particle size of ferrite were examined in the same manner as in Example 1. It was. The results are shown in Table 3.

Figure 2014151333
Figure 2014151333

続いて、実験例33〜実験例73の溶接継ぎ手からマルシニアック試験片を採取し,実験例33〜実験例73の試験片とした。なお、実験例33〜実験例73の試験片は、中央に溶接金属の溶接方向が最大主ひずみ方向と平行に位置するものとした。
次いで、実験例33〜実験例73の試験片を片面につき0.05mmずつ両面を機械研磨することによって研磨し、母材鋼板と溶接金属とにおいて表面粗度および板厚が均一となるようにした。研磨後の実験例33〜実験例77の試験片の両面の表面粗度Rmaxは3.0μm以下であり、板厚は0.7mmであった。なお、試験片の両面の表面粗度は、表面粗度計を用いて測定した。
Subsequently, a Marciniac test piece was collected from the weld joints of Experimental Example 33 to Experimental Example 73, and used as a test piece of Experimental Example 33 to Experimental Example 73. In addition, the test pieces of Experimental Example 33 to Experimental Example 73 were arranged such that the welding direction of the weld metal was located in the center in parallel with the maximum principal strain direction.
Next, the test pieces of Experimental Example 33 to Experimental Example 73 were polished by mechanically polishing both sides by 0.05 mm per side so that the surface roughness and thickness were uniform in the base steel plate and the weld metal. . The surface roughness Rmax on both surfaces of the test pieces of Experimental Examples 33 to 77 after polishing was 3.0 μm or less, and the plate thickness was 0.7 mm. In addition, the surface roughness of both surfaces of the test piece was measured using a surface roughness meter.

その後、研磨後の実験例33〜実験例73の試験片について、ISO 12004に準拠してマルシニアック試験を行なった。マルシニアック試験では,最大主ひずみとして15%のひずみを付与し、さらにひずみ比が−0.5(単軸変形),0(平面ひずみ変形),0.5,1.0(等二軸変形)となるように試験を行った。
試験後に実施例1と同様にして、溶接金属の盛り上がり量と、溶接金属の表面粗度とを評価した。その結果を表3に示す。
Then, the marcinic test was done based on ISO12004 about the test piece of Experimental example 33-Experimental example 73 after grinding | polishing. In the Marcinic test, a strain of 15% was applied as the maximum principal strain, and the strain ratio was -0.5 (uniaxial deformation), 0 (plane strain deformation), 0.5, 1.0 (equal biaxial deformation). The test was conducted so that
After the test, the amount of swell of the weld metal and the surface roughness of the weld metal were evaluated in the same manner as in Example 1. The results are shown in Table 3.

「ひずみ比が−0.5の場合」
表3に示すように、本発明の実施例である実験例33〜35、40〜51、54〜72では、溶接金属の盛り上がり量が、母材鋼板の表面粗度(9.10μm)以下となっていることがわかる。
"When strain ratio is -0.5"
As shown in Table 3, in Experimental Examples 33 to 35, 40 to 51, and 54 to 72, which are examples of the present invention, the swell amount of the weld metal is equal to or less than the surface roughness (9.10 μm) of the base steel plate. You can see that

これに対し、集光ビームのアスペクト比が上記式(1)および上記式(2)を満たさず、溶接金属における粒径30〜150μmのフェライトが上記式(3)より算出されるフェライト含有量50%未満である実験例36〜39、52〜53、73では、溶接金属の盛り上がり量が、母材鋼板の表面粗度を超えている。
これは、実験例36〜39、52〜53、73では、溶接金属の硬度が母材鋼板と比較して高いため、歪を付与した際の溶接金属と母材鋼板との変形能が大きく異なることによるものと推定される。
On the other hand, the ferrite content 50 in which the aspect ratio of the focused beam does not satisfy the above formulas (1) and (2) and the ferrite having a particle size of 30 to 150 μm in the weld metal is calculated from the above formula (3). In Experimental Examples 36 to 39, 52 to 53, and 73 that are less than%, the swell amount of the weld metal exceeds the surface roughness of the base steel plate.
In Experimental Examples 36 to 39, 52 to 53, and 73, since the hardness of the weld metal is higher than that of the base steel plate, the deformability of the weld metal and the base steel plate when applying strain is greatly different. It is estimated that

また、表2および表3に示すように、実験例33〜35、40〜51、54〜72のうち、集光ビームのアスペクト比が上記式(4)を満たす実験例33〜35、43〜51、59〜72では、フェライトの最大粒径が350μm以下となり、溶接金属の表面粗度が母材鋼板の表面粗度以下となっている。   Moreover, as shown in Table 2 and Table 3, among the experimental examples 33 to 35, 40 to 51, and 54 to 72, the experimental examples 33 to 35 and 43 to 43 in which the aspect ratio of the condensed beam satisfies the above formula (4). In 51 and 59 to 72, the maximum grain size of ferrite is 350 μm or less, and the surface roughness of the weld metal is less than or equal to the surface roughness of the base steel plate.

「ひずみ比が0の場合」
表2および表3に示すように、集光ビームのアスペクト比が上記式(2)を満たす実験例33〜34、40〜48、54〜68では、溶接金属の盛り上がり量が、母材鋼板の表面粗度(9.10μm)以下となっていることがわかる。
“When the strain ratio is 0”
As shown in Tables 2 and 3, in Experimental Examples 33 to 34, 40 to 48, and 54 to 68 in which the aspect ratio of the focused beam satisfies the above formula (2), the amount of swell of the weld metal is that of the base steel plate. It can be seen that the surface roughness is not more than 9.10 μm.

これに対し、集光ビームのアスペクト比が上記式(2)を満たさず、溶接金属における粒径30〜150μmのフェライトが上記式(3)より算出されるフェライト含有量53%未満である実験例35〜39、49〜53、69〜73では、溶接金属の盛り上がり量が、母材鋼板の表面粗度を超えている。
これは、実験例35〜39、49〜53、69〜73では、溶接金属の硬度が母材鋼板と比較して高いため、歪を付与した際の溶接金属と母材鋼板との変形能が大きく異なることによるものと推定される。
On the other hand, the experimental example in which the aspect ratio of the focused beam does not satisfy the above formula (2), and the ferrite content of the weld metal with a particle size of 30 to 150 μm is less than 53% calculated from the above formula (3). In 35-39, 49-53, 69-73, the amount of swell of the weld metal exceeds the surface roughness of the base steel plate.
In Experimental Examples 35 to 39, 49 to 53, and 69 to 73, since the hardness of the weld metal is higher than that of the base steel plate, the deformability between the weld metal and the base steel plate when strain is applied. This is presumably due to a large difference.

また、表2および表3に示すように、実験例33〜34、40〜48、54〜68のうち、集光ビームのアスペクト比が上記式(4)を満たす実験例33〜34、43〜48、59〜68では、フェライトの最大粒径が350μm以下となり、溶接金属の表面粗度が母材鋼板の表面粗度以下となっている。   Moreover, as shown in Table 2 and Table 3, among Experimental Examples 33-34, 40-48, 54-68, Experimental Examples 33-34, 43- In 48 and 59 to 68, the maximum grain size of ferrite is 350 μm or less, and the surface roughness of the weld metal is less than or equal to the surface roughness of the base steel plate.

「ひずみ比が0.5の場合」
表2および表3に示すように、集光ビームのアスペクト比が上記式(2)を満たす実験例33、40〜47、54〜65では、溶接金属の盛り上がり量が、母材鋼板の表面粗度(9.10μm)以下となっていることがわかる。
“When the strain ratio is 0.5”
As shown in Tables 2 and 3, in Experimental Examples 33, 40 to 47, and 54 to 65 in which the aspect ratio of the focused beam satisfies the above formula (2), the swell amount of the weld metal is the surface roughness of the base steel plate. It can be seen that the degree is not higher than 9.10 μm.

これに対し、集光ビームのアスペクト比が上記式(2)を満たさず、溶接金属における粒径30〜150μmのフェライトが上記式(3)より算出されるフェライト含有量56%未満である実験例34〜39、48〜53、66〜73では、溶接金属の盛り上がり量が、母材鋼板の表面粗度を超えている。
これは、実験例34〜39、48〜53、66〜73では、溶接金属の硬度が母材鋼板と比較して高いため、歪を付与した際の溶接金属と母材鋼板との変形能が大きく異なることによるものと推定される。
On the other hand, an experiment example in which the aspect ratio of the focused beam does not satisfy the above formula (2), and the ferrite content of the weld metal with a particle size of 30 to 150 μm is less than 56% calculated from the above formula (3). In 34 to 39, 48 to 53, and 66 to 73, the swell amount of the weld metal exceeds the surface roughness of the base steel plate.
This is because, in Experimental Examples 34 to 39, 48 to 53, and 66 to 73, the hardness of the weld metal is higher than that of the base material steel plate, so that the deformability of the weld metal and the base material steel plate when strain is applied. This is presumably due to a large difference.

また、表2および表3に示すように、実験例33、40〜47、54〜65のうち、集光ビームのアスペクト比が上記式(4)を満たす実験例33、43〜47、59〜65では、フェライトの最大粒径が350μm以下となり、溶接金属の表面粗度が母材鋼板の表面粗度以下となっている。   Moreover, as shown in Table 2 and Table 3, among Experimental Examples 33, 40 to 47, and 54 to 65, Experimental Examples 33, 43 to 47, and 59 to 65 in which the aspect ratio of the condensed beam satisfies the above formula (4). In 65, the maximum grain size of ferrite is 350 μm or less, and the surface roughness of the weld metal is less than or equal to the surface roughness of the base steel plate.

「ひずみ比が1.0の場合」
表2および表3に示すように、集光ビームのアスペクト比が上記式(2)を満たす実験例33、40〜46、54〜63では、溶接金属の盛り上がり量が、母材鋼板の表面粗度(9.10μm)以下となっていることがわかる。
“When the strain ratio is 1.0”
As shown in Table 2 and Table 3, in Experimental Examples 33, 40 to 46, and 54 to 63 in which the aspect ratio of the focused beam satisfies the above formula (2), the amount of swell of the weld metal is the surface roughness of the base steel plate. It can be seen that the degree is not higher than 9.10 μm.

これに対し、集光ビームのアスペクト比が上記式(2)を満たさず、溶接金属における粒径30〜150μmのフェライトが上記式(3)より算出されるフェライト含有量59%未満である実験例34〜39、47〜53、64〜73では、溶接金属の盛り上がり量が、母材鋼板の表面粗度を超えている。
これは、実験例34〜39、47〜53、64〜73では、溶接金属の硬度が母材鋼板と比較して高いため、歪を付与した際の溶接金属と母材鋼板との変形能が大きく異なることによるものと推定される。
On the other hand, the experimental example in which the aspect ratio of the focused beam does not satisfy the above formula (2), and the ferrite content of the weld metal with a particle size of 30 to 150 μm is less than 59% calculated from the above formula (3). In 34 to 39, 47 to 53, and 64 to 73, the swell amount of the weld metal exceeds the surface roughness of the base steel plate.
In Experimental Examples 34 to 39, 47 to 53, and 64 to 73, since the hardness of the weld metal is higher than that of the base steel plate, the deformability between the weld metal and the base steel plate when strain is applied. This is presumably due to a large difference.

また、表2および表3に示すように、実験例33、40〜46、54〜63のうち、集光ビームのアスペクト比が上記式(4)を満たす実験例33、43〜46、59〜63では、フェライトの最大粒径が350μm以下となり、溶接金属の表面粗度が母材鋼板の表面粗度以下となっている。   Moreover, as shown in Table 2 and Table 3, among Experimental Examples 33, 40 to 46, and 54 to 63, Experimental Examples 33, 43 to 46, and 59 to 63 in which the aspect ratio of the condensed beam satisfies the above formula (4). In No. 63, the maximum grain size of ferrite is 350 μm or less, and the surface roughness of the weld metal is not more than the surface roughness of the base steel plate.

1a、1b…母材鋼板、2…溶接金属、3…ダイレクトダイオードレーザー、4…ガス供給手段、5…集光ビーム、11a、11b…母材鋼板の表面、21…溶接金属の表面、30…溶接手段、Ra1…母材鋼板の粗度、Ra2…溶接金属の粗度、H…溶接金属の盛り上がり量。   DESCRIPTION OF SYMBOLS 1a, 1b ... Base material steel plate, 2 ... Weld metal, 3 ... Direct diode laser, 4 ... Gas supply means, 5 ... Condensed beam, 11a, 11b ... Surface of base material steel plate, 21 ... Surface of weld metal, 30 ... Welding means, Ra1 ... roughness of base steel plate, Ra2 ... roughness of weld metal, H ... swell amount of weld metal.

Claims (5)

複数の母材鋼板を溶接してなる溶接継ぎ手の製造方法であって、
光源としてダイレクトダイオードレーザーを用いて0.5m/分以上の溶接速度で溶接する溶接工程を有し、
前記ダイレクトダイオードレーザーとして、ピーク強度の半値幅における集光ビームの形状が溶接方向に長く、前記集光ビームの溶接方向長さと溶接直交方向長さとのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たすものを用い、
前記溶接工程において、粒径30〜150μmのフェライトを50%以上含む溶接金属を形成することを特徴とする溶接継ぎ手の製造方法。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
A method for producing a welded joint by welding a plurality of base steel plates,
Having a welding process of welding at a welding speed of 0.5 m / min or more using a direct diode laser as a light source;
As the direct diode laser, the shape of the focused beam at the half-value width of the peak intensity is long in the welding direction, and the aspect ratio (welding direction / welding orthogonal direction) between the welding direction length of the focused beam and the welding orthogonal direction length is 2. More than 5 and satisfying the following formula (1)
In the welding step, a weld metal including 50% or more of ferrite having a particle size of 30 to 150 μm is formed.
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)
所定のひずみ比で加工される溶接継ぎ手の製造方法であって、
前記ダイレクトダイオードレーザーとして,前記アスペクト比が下記式(2)を満たすものを用い,
前記溶接工程において,前記粒径30〜150μmのフェライトの含有量が下記式(3)を満たす溶接金属を形成することを特徴とする請求項1に記載の溶接継ぎ手の製造方法.
アスペクト比≧(5.8+1.6×ひずみ比)×溶接速度(m/分) ・・・式(2)
フェライト含有量≧53+6×ひずみ比 ・・・式(3)
A method for manufacturing a welded joint processed at a predetermined strain ratio,
As the direct diode laser, a laser whose aspect ratio satisfies the following formula (2) is used:
2. The method for manufacturing a welded joint according to claim 1, wherein in the welding step, a weld metal is formed in which the content of the ferrite having a particle size of 30 to 150 μm satisfies the following formula (3).
Aspect ratio ≧ (5.8 + 1.6 × strain ratio) × welding speed (m / min) (2)
Ferrite content ≧ 53 + 6 × strain ratio Equation (3)
前記ダイレクトダイオードレーザーとして、前記アスペクト比が下記式(4)を満たすものを用い、
前記溶接工程において、前記フェライトの最大粒径が350μm以下である前記溶接金属を形成することを特徴とする請求項1または請求項2に記載の溶接継ぎ手の製造方法。
アスペクト比≦16.0×溶接速度(m/分)−3.0 ・・・式(4)
As the direct diode laser, the aspect ratio satisfies the following formula (4),
The method for manufacturing a welded joint according to claim 1 or 2, wherein, in the welding step, the weld metal having a maximum grain size of the ferrite of 350 µm or less is formed.
Aspect ratio ≦ 16.0 × Welding speed (m / min) −3.0 Formula (4)
前記ダイレクトダイオードレーザーの平均パワー密度を0.6kW/mm以下とすることを特徴とする請求項1〜請求項3のいずれか一項に記載の溶接継ぎ手の製造方法。 The method for manufacturing a welded joint according to any one of claims 1 to 3, wherein an average power density of the direct diode laser is 0.6 kW / mm 2 or less. 請求項1〜請求項4のいずれか一項に記載の溶接継ぎ手の製造方法に使用される溶接継ぎ手の製造装置であって、
0.5m/分以上の溶接速度で溶接する溶接手段を有し、
前記溶接手段が、光源としてピーク強度の半値幅における集光ビームの形状が溶接方向に長く、前記集光ビームの溶接方向長さと溶接直交方向長さとのアスペクト比(溶接方向/溶接直交方向)が2.5以上であって下記式(1)を満たすダイレクトダイオードレーザーを備えることを特徴とする溶接継ぎ手の製造装置。
アスペクト比≧5.0×溶接速度(m/分) ・・・式(1)
A welded joint manufacturing apparatus used in the welded joint manufacturing method according to any one of claims 1 to 4,
Having welding means for welding at a welding speed of 0.5 m / min or more;
As the light source, the shape of the focused beam as a light source at the half width of the peak intensity is long in the welding direction, and the aspect ratio (welding direction / welding orthogonal direction) between the welding direction length of the focused beam and the welding orthogonal direction length is A welding joint manufacturing apparatus comprising a direct diode laser satisfying the following formula (1) that is 2.5 or more.
Aspect ratio ≧ 5.0 × Welding speed (m / min) (1)
JP2013021738A 2013-02-06 2013-02-06 Welded joint manufacturing method and welded joint manufacturing apparatus Active JP5991217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021738A JP5991217B2 (en) 2013-02-06 2013-02-06 Welded joint manufacturing method and welded joint manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021738A JP5991217B2 (en) 2013-02-06 2013-02-06 Welded joint manufacturing method and welded joint manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014151333A true JP2014151333A (en) 2014-08-25
JP5991217B2 JP5991217B2 (en) 2016-09-14

Family

ID=51573735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021738A Active JP5991217B2 (en) 2013-02-06 2013-02-06 Welded joint manufacturing method and welded joint manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5991217B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104484A (en) * 1988-09-10 1990-04-17 Fried Krupp Gmbh Method and device for measuring position of junction joint for laser welding
JPH05131285A (en) * 1991-11-12 1993-05-28 Sumitomo Metal Ind Ltd Manufacture of welded tube
JPH06190575A (en) * 1992-10-23 1994-07-12 Mitsui Petrochem Ind Ltd Welding method and fequipment by laser beam
JP2004249360A (en) * 2003-02-21 2004-09-09 Nippon Steel Corp Steel tube combined body of excellent fatigue strength, and working method therefor
WO2008105163A1 (en) * 2007-02-28 2008-09-04 Osaka University Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite
JP2008200713A (en) * 2007-02-20 2008-09-04 Tokyu Car Corp Head for laser welding
JP2011020174A (en) * 2009-07-14 2011-02-03 Ma Tech Kk Method of welding ultra thin sheet by semiconductor laser and ultra high-speed laser micro welding apparatus by the semiconductor laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104484A (en) * 1988-09-10 1990-04-17 Fried Krupp Gmbh Method and device for measuring position of junction joint for laser welding
JPH05131285A (en) * 1991-11-12 1993-05-28 Sumitomo Metal Ind Ltd Manufacture of welded tube
JPH06190575A (en) * 1992-10-23 1994-07-12 Mitsui Petrochem Ind Ltd Welding method and fequipment by laser beam
JP2004249360A (en) * 2003-02-21 2004-09-09 Nippon Steel Corp Steel tube combined body of excellent fatigue strength, and working method therefor
JP2008200713A (en) * 2007-02-20 2008-09-04 Tokyu Car Corp Head for laser welding
WO2008105163A1 (en) * 2007-02-28 2008-09-04 Osaka University Method for forming joint part having excellent sealing properties between dissimilar metal materials, and dissimilar metal composite
JP2011020174A (en) * 2009-07-14 2011-02-03 Ma Tech Kk Method of welding ultra thin sheet by semiconductor laser and ultra high-speed laser micro welding apparatus by the semiconductor laser

Also Published As

Publication number Publication date
JP5991217B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
KR102292675B1 (en) Steel welded parts with aluminum or aluminum alloy coating and method for their preparation
JP4017571B2 (en) Laser welding method for steel sheet
TWI725454B (en) Steel sheet, tailor welded blank, hot press formed product, steel pipe, hollow quenched product, and manufacturing method of steel sheet
Jia et al. Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels
JP4195722B1 (en) Method of manufacturing impact beam
JP6683093B2 (en) Hot-dip galvanized steel sheet with ridges, method for producing the same, and hot stamped body
US20210222804A1 (en) Steel sheet, tailored blank, hot stamped product, steel pipe, hollow hot stamped product, method of manufacturing steel sheet, method of manufacturing tailored blank, method of manufacturing hot stamped product, method of manufacturing steel pipe, and method of manufacturing hollow hot stamped product
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP5991217B2 (en) Welded joint manufacturing method and welded joint manufacturing apparatus
JP2007283341A (en) Press-forming die for butt-welded metal plate, and press-forming method
WO2020152887A1 (en) Steel sheet, tailored blank, hot-press molded article, steel pipe, hollow quenched molded article, and method for producing steel sheet
JP5334519B2 (en) Method of processing members with excellent chemical conversion properties
JP4125325B2 (en) Laser welding method for steel plate and method for producing composite plate material
JPWO2020059804A1 (en) Tailored blanks, methods for manufacturing tailored blanks, press-molded products, and methods for manufacturing press-molded products.
JP4520549B2 (en) Press forming method of different material tailored blanks with excellent formability
CN114007796B (en) Spot welded joint and method for manufacturing spot welded joint
JP6310605B1 (en) Laser-welded section and manufacturing method thereof
KR20180086486A (en) Nitriding plate parts and manufacturing method thereof
JP2006218500A (en) Steel sheet welded by laser beam butt welding, and its welding method
CN113597475B (en) Steel sheet and member
JP2002361460A (en) Welded joint
WO2023190867A1 (en) Steel member and steel sheet
TWI512116B (en) A hot-pressed steel sheet member, a method for manufacturing the same, and a steel sheet for hot pressing
CN114450456A (en) Square steel pipe, method for producing same, and building structure
JP2010174295A (en) Steel sheet to be die-quenched superior in hot-punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R151 Written notification of patent or utility model registration

Ref document number: 5991217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350