JP2014149075A - Roller clutch device - Google Patents

Roller clutch device Download PDF

Info

Publication number
JP2014149075A
JP2014149075A JP2013030430A JP2013030430A JP2014149075A JP 2014149075 A JP2014149075 A JP 2014149075A JP 2013030430 A JP2013030430 A JP 2013030430A JP 2013030430 A JP2013030430 A JP 2013030430A JP 2014149075 A JP2014149075 A JP 2014149075A
Authority
JP
Japan
Prior art keywords
torque
clutch device
conical surface
roller
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013030430A
Other languages
Japanese (ja)
Inventor
Shiro Sawa
司郎 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013030430A priority Critical patent/JP2014149075A/en
Publication of JP2014149075A publication Critical patent/JP2014149075A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Mechanical Operated Clutches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a roller clutch capable of transmitting a huge torque thanks to shear resistance and plastic deformation resistance caused by a hydraulic pressure enclosed at an ultra high pressure on a raceway surface.SOLUTION: Only mounting rollers 5 skewed by a cage 18 between a shaft having a simple conical surface and an outer ring raceway allows transmission of a huge torque. All the rollers 5 used contribute to torque transmission, thus providing a huge torque capacity. Thanks to self-hold type clutch, it does not require any pushing energy, such as electromagnet, air pressure, and hydraulic pressure, and is thus energy saving.

Description

機械装置の動力の断続装置  Mechanical power interrupting device

機械装置の駆動力の伝達制御には、粘性接ぎ手、流体接ぎ手、摩擦板クラッチ、歯車と爪のラチェット、コイルスプリングの巻き付き摩擦クラッチ、1932年発明のスプラグ式ワンウエイクラッチ、及び円筒ローラーと多角形のカムリングの組み合わせのワンウエイクラッチ、最近ではそれを応用した2ウエイクラッチ、などがある。これら古典的原理に対して、転がり接触面に潤滑油が3MPa以上の高圧で閉じ込めらて固化する現象を活用した流体摩擦伝達力制限装置、特許2903325号がある。これは円すい面でなる内輪軌道面と外輪軌道面の間に回転軸に対して3次元に傾斜したスキュウド、ローラを介装することで、トルクを負荷したときに、ローラがトラクションで噛み合ってその軸方向の成分で内外輪の円すいの軌道間にローラーが転がって食い込み、接点下に高圧の閉じ込め油膜が形成されるとともにこれに浮上したローラが固化油膜のせん断抵抗でトルクを伝達するというものである。  For the transmission control of the driving force of the mechanical device, there are a viscous joint, a fluid joint, a friction plate clutch, a gear and pawl ratchet, a coil spring wrapping friction clutch, a sprag type one-way clutch of the 1932 invention, and a cylindrical roller and many There are one-way clutches with a combination of square cam rings, and recently two-way clutches using it. In contrast to these classical principles, there is a fluid frictional transmission force limiting device, Patent No. 2903325, which utilizes the phenomenon that lubricating oil is trapped and solidified at a high pressure of 3 MPa or more on the rolling contact surface. This is because a scoop and a roller, which are inclined in three dimensions with respect to the rotation axis, are interposed between the inner ring raceway surface and the outer ring raceway surface, which are conical surfaces. The roller rolls between the conical orbits of the inner and outer rings with an axial component, and a high-pressure confined oil film is formed under the contact, and the roller that floats on this transmits torque with the shear resistance of the solidified oil film. is there.

前述の油膜とは、転がり接触下の弾性流体潤滑理論(EHL)で、英、D.Dowson,.Higginson.V.Whitaker:J.Mech.Eng,.4,2(1962)121.によって、潤滑油が高圧で閉じ込められて、弾性固化する、ことが論証されており、以降転がり軸受、無断変速機CVT等において実用化が進み今では周知の油膜である。  The above-mentioned oil film is the elastohydrodynamic lubrication theory (EHL) under rolling contact. Dowson,. Higginson. V. Whitaker: J.M. Mech. Eng,. 4, 2 (1962) 121. It is proved that the lubricating oil is confined and elastically solidified at a high pressure, and since then it has been put into practical use in rolling bearings, continuously variable transmissions CVT, etc., and is now a well-known oil film.

特許第2903325Patent No. 2903325 特開平05−149352JP 05-149352 A 特開2011−144918JP2011-144918 特許4470588Patent 4470588

前記の、スプラグ式とローラ式のワンウエイクラッチの課題を述べる。前記の通称メカニカルクラッチの実施例ではヘリコプターのエンジン停止時に自動的にローターを切り離すオートローテーションがある。過去不具合の都度対策が繰り返され、最近の例ではスプラグの硬さをビッカース硬度でHv2000近くまで上げるとともに保持器の材質の強化がある。しかし近時のトライボロジの観点ではスプラグの接点に油膜が超高圧で閉じ込められて凍結状態に固化し固着する。又は微振動の負荷を繰り返すと接点から油分がスクイズアウトして金属同士の接触になりこの場合も金属の分子間の結合力で固着する。こういった固着を伴うとその引き剥がし抵抗の反動でスプラグが跳ね上がり押えているリボンバネが変形して保持器を破損(ポップアウト)したり、また変動トルクを負荷してもスプラグが弾性で共振して偶発的に一部のスプラグだけが噛み合ってしまいそのスプラグは過負荷になって座屈し反対側に転覆するロールオーバ事故が起きる。  The problems of the sprag type and roller type one-way clutch will be described. In the embodiment of the so-called mechanical clutch, there is an autorotation in which the rotor is automatically separated when the engine of the helicopter is stopped. Countermeasures are repeated each time a past defect occurs. In recent examples, the hardness of the sprag is increased to near Hv2000 by the Vickers hardness and the material of the cage is strengthened. However, from a recent tribological point of view, an oil film is trapped at the sprag contact at an ultra-high pressure, and is solidified and fixed in a frozen state. Alternatively, when the load of slight vibration is repeated, the oil component is squeezed out from the contact point and comes into contact with each other, and in this case, it is fixed by the bonding force between the metal molecules. When such sticking occurs, the sprags spring up due to the reaction of the peeling resistance, and the ribbon spring that is holding down is deformed and the cage is damaged (pop-out). Also, even when a fluctuating torque is applied, the sprags elastically resonate. As a result, only a part of the sprags are accidentally engaged, and the sprags are overloaded, buckling and rolling over to the opposite side.

また高速回転するとスプラグが遠心力での軌道から浮き上がため、及びスプラグの共振を抑えるため、リボンバネでスプラグを軌道表面に常に押し付ける。そのため接点が擦れて早期に摩滅する。またローラーのカム式クラッチでは接点のカム面が永久に同じ位置で噛み合うため陥没摩耗して噛み合い不能に陥る。
ローラー式では収容するローラーの数が限られ大きなトルクを負荷すると軌道輪が多角形に変形してローラーを収容するカム溝の角の薄肉部に応力が集中し破壊しやすい。空転時の許容回転速度においても通常2000rpm以下に制限される。またトルク振動、衝撃入力には衝撃吸収ダンパーを、過剰入力にはトルクリミッタの併設が不可欠である。
In addition, the sprags are lifted from the orbit due to centrifugal force when rotating at a high speed, and in order to suppress sprag resonance, the sprags are always pressed against the orbital surface with a ribbon spring. As a result, the contacts are rubbed and worn out early. Further, in the roller cam type clutch, the cam surface of the contact is permanently engaged at the same position, so that it becomes indented and wears and cannot be engaged.
In the roller type, the number of rollers to be accommodated is limited, and when a large torque is applied, the raceway ring is deformed into a polygon and stress is concentrated on the thin wall portion of the corner of the cam groove that accommodates the rollers, and is easily broken. The allowable rotational speed during idling is usually limited to 2000 rpm or less. A shock absorbing damper is indispensable for torque vibration and shock input, and a torque limiter is indispensable for excessive input.

上述のような多くの課題に対して、背景技術に述べたところの先行技術文献1の特許2903325および、その改良の特開2011−144918、の課題について述べる。
この発明の特徴は軌道輪を僅かに(1ミリ)軸方向に離せば、トルクは遮断されて正逆自由回転する。軽く接すれば、スキュウしたローラーのトラクションの軸方向成分で内外輪の軌道間距離が狭くなり(吸い込まれて)トルク負荷で自己締結する自己保持形のクラッチになる。また噛み合う際には、入出力軸間の回転差、及び衝撃を、油膜が圧力で粘性流体から塑性体、弾性体に遷移する過程で吸収し更に接点のヘルツ弾性と、内外輪の膨張収縮の弾性変形で極めて柔らかなクッション形クラッチになる。この原理でエステル系潤滑剤を用いると、スベリの全く無いワンウエイクラッチが得られ、高粘度油に極圧添加剤(二硫化モリブデン、フッソ樹脂等)を用いればトルクの大小に拘わらず速度が一定の速さで粘性回転する、等速の粘性継手、になる。
With respect to many problems as described above, the problems of Japanese Patent No. 2903325 of Prior Art Document 1 described in the background art and Japanese Patent Application Laid-Open No. 2011-144918 of the improvement will be described.
The feature of the present invention is that if the raceway is separated slightly (1 mm) in the axial direction, the torque is cut off and the forward and reverse free rotation is performed. When lightly touching, the distance between the inner and outer rings of the track becomes narrower (sucked in) due to the axial component of the squeezed roller traction, resulting in a self-holding clutch that self-fastens with torque load. Also, when meshing, the rotational difference between the input and output shafts and the shock are absorbed in the process of the oil film transitioning from viscous fluid to plastic body and elastic body by pressure, and further the Hertz elasticity of the contacts and the expansion and contraction of the inner and outer rings. It becomes an extremely soft cushion type clutch by elastic deformation. Using ester-based lubricants based on this principle, a one-way clutch with no slippage is obtained. If an extreme pressure additive (molybdenum disulfide, fluorine resin, etc.) is used for high-viscosity oil, the speed is constant regardless of the magnitude of torque. Viscous joint with constant velocity that rotates at a high speed.

逆方向に回転すると吸い込みから吐き出しに転じて油膜に浮上して空転するので摩擦抵抗が少なく省エネになる。またローラーが遠心力の影響を受けないので皿バネ1枚で常時噛み合いが担保される。更に当該方式はトルク容量が非常に大きい、例えば、サイズが外径φ100mm、幅52mmで、ローラーがφ8×32mm、18本使用で、ローラー面圧が3.0GPaになるときの負荷トルクは150kg−mの容量となる。また内外輪の軸方向の相対変位量は3mm程度になる。  When rotating in the opposite direction, it changes from suction to discharge, floats on the oil film, and idles, reducing frictional resistance and saving energy. Further, since the roller is not affected by the centrifugal force, the meshing is always secured with one disc spring. Furthermore, this method has a very large torque capacity. For example, when the size is an outer diameter of φ100 mm, the width is 52 mm, the rollers are φ8 × 32 mm, 18 rollers are used, and the roller surface pressure is 3.0 GPa, the load torque is 150 kg− The capacity is m. The relative displacement in the axial direction of the inner and outer rings is about 3 mm.

上述を実施する場合の課題について述べる。
当該発明の原型は古く実願昭39−16385で始まり以降49年間に多くの業者が試行したがいまだに実用化されない。その主たる理由を述べる。先ず当該クラッチの動作は、スキュウしたローラが公転方向に圧力を受けて転がると切線力つまりトラクションを生ずる。そのトラクションはスキュウ角度によって一部が軸方向成分に変換される、この軸方向成分で内外輪の円すい面が間隔が狭くなる側に相対変位(以降、吸い込み力と称する)する。するとローラーは円すいの軌道間に食い込んでロックするという動作である。ところがこの軌道輪の軸方向の相対変位を許容する必須の摺接部材の摺接抵抗が吸い込み力を勝ると完全にロック不能となる。
The problem in carrying out the above will be described.
The prototype of the present invention is old and started in the actual application No. 39-16385, but has not yet been put into practical use after 49 years of trials by many contractors. The main reason is described. First, the operation of the clutch generates a tangential force, that is, traction, when the skewed roller rolls under pressure in the revolution direction. A part of the traction is converted into an axial component depending on the skew angle, and the conical surface of the inner and outer rings is relatively displaced (hereinafter referred to as suction force) to the side where the interval is narrowed by the axial component. The roller then moves into the conical track and locks. However, when the sliding contact resistance of the essential sliding contact member allowing the relative displacement in the axial direction of the raceway is greater than the suction force, it cannot be completely locked.

上記のローラーの転動で生ずる吸い込み力は、ローラー接点下の油剤のトラクション係数(μの値、μ=0.04〜0.08)に依存する。
吸い込み開始時の入力初期はトルが小さくローラー面圧も低いので小さな吸い込み力しか得られず付勢ばね力のみに依存する。因みにワンウエイクラッチは、機械の逆転防止の安全装置に使用されることが多く、耐用年数の期間内で一瞬でもスリップすると重大事故になる。にも拘わらず当該クラッチでは締結の成否を担保する摺接部の信頼性が欠落してきた。
The suction force generated by the rolling of the roller depends on the traction coefficient (μ value, μ = 0.04 to 0.08) of the oil agent under the roller contact.
At the beginning of suction, the initial torque is small and the roller surface pressure is low, so that only a small suction force can be obtained, which depends only on the biasing spring force. Incidentally, the one-way clutch is often used as a safety device for preventing reverse rotation of a machine, and if it slips even within the lifetime of its service life, a serious accident occurs. Nevertheless, the clutch has lacked the reliability of the sliding contact portion that ensures the success or failure of the engagement.

これ迄その信頼性改善に摺接部にスパイラルのスプラインを用いた案(特許文献4の4470588)及びそのスパイラル溝にボール介在させたスパイラルボールスプライン(摩擦係数μ=0.003)の特許文献2、特開平05−149352がある。上記考案のスプラインの摺接面の摩擦係数は鋼の平滑な面同士の場合、乾燥時の動摩擦係数μは、0.12で、これが起動する静的摩擦は特に大きく(最大静摩擦係数)μは、動摩擦係数μの5〜6倍にもなる。特に近時の電力と内燃機関の複合動力を用いる場合では摺接部位が電位差、漏電によって電腐(腐蝕)を生じたり、寒冷地では凍結、長期間停止による油分の乾燥、異物の噛み込み、露結による発▲錆▼、微振動によるフレッティング発▲錆▼で、摺接部位が固着し異常に起動摩擦抵抗が増大する恐れがある。To date, a proposal using a spiral spline in the sliding contact portion (4470588 of Patent Document 4) and a spiral ball spline (friction coefficient μ = 0.003) interposing a ball in the spiral groove have been proposed. JP-A-05-149352. The friction coefficient of the sliding contact surfaces of the spline of the above-mentioned device is a smooth surface of steel, the dynamic friction coefficient μ at the time of drying is 0.12, and the static friction that starts is particularly large (maximum static friction coefficient) μ 0 Is 5 to 6 times the dynamic friction coefficient μ. Especially in the case of using combined power of recent power and internal combustion engine, the sliding contact part causes electric corrosion (corrosion) due to potential difference, electric leakage, freezing in cold district, drying of oil due to long-term stop, biting of foreign matter, There is a risk that the sliding contact portion may be fixed and abnormally increase the starting frictional resistance due to rusting due to condensation and fretting rusting due to minute vibration.

また前述の特開平05−149352のスプラインのボール化では、長時間微振動トルクを負荷するとボール接点が陥没摩耗したり、往復の揺動距離が1.5mm以下では微小揺動で接点から油分がスクイズアウトして乾燥状態の金属接触になりたちまち擬似圧痕(フレッティングコロージョン)を生じるし面圧強度の点からも成立しない。In addition, in the above-described splined Japanese Patent Application Laid-Open No. 05-149352, when a slight vibration torque is applied for a long time, the ball contact is depressed and worn, or when the reciprocating swing distance is 1.5 mm or less, the swing causes a minute swing to remove oil from the contact. It squeezes out to form a dry metal contact, which immediately produces pseudo-indentation (fretting corrosion) and does not hold in terms of surface pressure strength.

ここで前述のスプラインの摺接摩擦の大きさの試算例を述べる。仮に20Kg−mのトルクがキーに作用すると、キーの伝達半径が20mmでは、キーの摺接面に作用する力は1,000kgfに及ぶ、そのキーのスライドの起動力つまり静摩擦抵抗は600〜700kgfに達する。Here, a trial calculation example of the magnitude of the sliding friction of the above-mentioned spline will be described. If a torque of 20 kg-m acts on the key, the force acting on the sliding surface of the key reaches 1,000 kgf when the key transmission radius is 20 mm. The starting force of the key, that is, the static friction resistance, is 600 to 700 kgf. To reach.

この静摩擦抵抗に対して吸い込み力を補うスラスト方向の付勢ばね力では遠く及ばない。仮にばね圧を上げても今度は空転時にスキュウしたローラーの差動スベリの油膜のせん断が激しく発熱とブレーキを伴い、大きなエネルギー損失を招く。  The biasing spring force in the thrust direction that supplements the suction force with respect to the static frictional resistance is not far away. Even if the spring pressure is increased, the oil film of the differential slip of the roller that has been skewed during idling is severely sheared, generating heat and braking, resulting in a large energy loss.

また前述のスパイラルのスプラインにすると、入力トルクに比例して発生するスラスト分力が(軸力)ローラークラッチの円すい面に作用してしまいトルク容量を大幅に低下さる不都合が起きる。In addition, when the above-described spiral spline is used, a thrust component force generated in proportion to the input torque acts on the conical surface of the (axial force) roller clutch, resulting in a disadvantage that the torque capacity is greatly reduced.

そこで起動摩擦抵抗を下げる対策に、先ずはスプラインの起動時の不安定な静摩擦係数の領域を回避して低い動摩擦係数で噛み合いを開始させることであるこの機序の過程を図9のダイアグラムで説明する。横軸36はクラッチの吸い込み力、縦軸35は入力トルクを示す。入力が作用する以前から予め予圧付勢ばね図3の22、でもって図11の41、のようにローラーは軌道に押し付けられているので初期段階で図7の外輪6、に回転力が発生(40)しスプラインのバックラッシュの分だけ回転する。このバックラッシュ分の変位が開始する前に図2のクサビ(カム)斜面図5の12と13を当接させることで図11の線分Aに沿って推力(軸力)44が発生する。この推力(軸力)でもって先ず▲錆▼、凍結などによるスプラインの張り付き固着を解除する。解除後はバックラッシュが消滅して一旦図9の41、の位置まで戻る。この時点からスプラインの受圧面が見かけ上当接してトルク伝達が始まりローラーの公転方向への転がりのトラクションでクラッチの締結が開始する。同時にトルクで図10のスプライン歯筋の角度21(0〜5°)によって推力を生じて図11の39、の線に沿って変位し締結を完了する。このとき図11の38、の矢印に沿った変位は、図6に示すスプラインのスキマに介装した板部材30、のディンプル穴、図13、の28の周辺に介在する油膜(図6の43)の、ずり変位と、圧力48、で介装板30、の凸部が弾性範囲で押しつぶされることでディンプル穴28、から油43がスクイズアウトされる、これにより図6のスクイズ流体膜42、に浮上することで、μ=0.04(実際は0.01以下)以下の低い摩擦抵抗で変位する。Therefore, as a measure to reduce the starting frictional resistance, the process of this mechanism, which is to start the meshing with a low dynamic friction coefficient by avoiding the unstable static friction coefficient region at the start of the spline, is explained with the diagram of FIG. To do. The horizontal axis 36 indicates the clutch suction force, and the vertical axis 35 indicates the input torque. Before the input is applied, the preload biasing spring 22 is pressed in advance as shown in FIG. 3 and 41 in FIG. 11 so that the rotational force is generated in the outer ring 6 in FIG. 40) Then, the spline rotates by the amount of backlash. Before the displacement for the backlash starts, the wedge (cam) slope 12 in FIG. 2 is brought into contact with 12 and 13 in FIG. 5 to generate a thrust (axial force) 44 along the line A in FIG. With this thrust (axial force), the spline sticking due to rust or freezing is first released. After the release, the backlash disappears and returns to the position 41 in FIG. From this point of time, the pressure-receiving surface of the spline apparently comes into contact, torque transmission starts, and the engagement of the clutch starts with the rolling traction in the roller revolution direction. At the same time, a torque is generated by the angle 21 (0 to 5 °) of the spline tooth trace of FIG. 10 by torque, and is displaced along the line 39 in FIG. 11 to complete the fastening. At this time, the displacement along the arrow 38 in FIG. 11 is caused by an oil film (43 in FIG. 6) located around the dimple hole of the plate member 30 interposed in the gap of the spline shown in FIG. ), The oil 43 is squeezed out of the dimple hole 28 by crushing the convex portion of the interposition plate 30 in the elastic range by the shear displacement and the pressure 48, whereby the squeeze fluid film 42 in FIG. As a result, it is displaced with a low frictional resistance of μ = 0.04 (actually 0.01 or less).

クラッチが無負荷になると図10に示す、クリップばね20、(20は説明用であって実際はばね鋼製波形の板材30、の弾性反力による)でバックラッシュ31、は元のスキマに復元し受圧面間に油が取り込まれる。従って当該バネは繰り返し応力への疲労耐久強度を要するので、一枚当たりの変形量を抑えた図12のような積層方式が望ましい。上記のバネ30、及びクリップばね20、は締結作用を妨げない程度に弱くする。When the clutch is unloaded, the backlash 31 is restored to its original clearance by the clip spring 20 shown in FIG. 10 (20 is for explanation and actually due to the elastic reaction force of the spring steel corrugated plate 30). Oil is taken in between the pressure-receiving surfaces. Therefore, since the spring requires fatigue durability against repeated stress, a laminating method as shown in FIG. 12 is preferable in which the amount of deformation per sheet is suppressed. The spring 30 and the clip spring 20 are weakened to such an extent that the fastening action is not hindered.

当該クラッチのスプラインの負荷と摺接距離の関係動作について述べる。図6に示すようにトルク入力による負荷48、が増えるに連れて変位量も矢印24、25、も徐々に増え最後にスプラインのPCDがφ50mmの例では3〜4mm(サイズにより異なる)ずれたところで停止する。逆に言うと変位しながら荷重がゼロから徐々に増えて行くと云うプロセスで、この僅か3〜4mmの変位は接触面間に保持された油の粘性変形のずり変位、とディンプル穴からのスクイズアウトで出来るスクイズ流体膜に浮上して位置がずれる作動範囲に収まる。ここでクラッチの軸方向変位量はクラッチの円すい面の角度と内輪の肉厚と外輪の肉厚による剛性で決まるので、変位量がこの範囲に収まる様に剛性のある肉厚と、円すい角度を大きくする。例えばスプラインでの受圧面の面圧は、負荷トルクが20kg−mでスプライン歯が6枚のPCDがφ50mm、で受圧面の面積が75mmの場合では、最大面圧1.7kg/mmで、油膜強度は充分に耐えるしスプラインの歯数を増やせば更に下がる。The relational operation between the spline load and the sliding distance of the clutch will be described. As shown in FIG. 6, as the load 48 due to torque input increases, the amount of displacement also gradually increases with arrows 24 and 25. Finally, in the example where the PCD of the spline is φ50 mm, it is shifted by 3 to 4 mm (depending on the size). Stop. Conversely, in the process of gradually increasing the load from zero while displacing, this displacement of only 3-4 mm is the shear displacement of the viscous deformation of the oil held between the contact surfaces, and the squeeze from the dimple hole The squeeze fluid film can be lifted out of the squeeze fluid film and fall within the operating range. Here, the amount of axial displacement of the clutch is determined by the angle of the conical surface of the clutch and the rigidity due to the wall thickness of the inner ring and the wall of the outer ring, so the rigid wall thickness and the cone angle must be set so that the displacement is within this range. Enlarge. For example, when the load torque is 20 kg-m, the PCD with 6 spline teeth is φ50 mm, and the area of the pressure receiving surface is 75 mm 2 , the surface pressure of the pressure receiving surface at the spline is 1.7 kg / mm 2 maximum. The oil film strength can withstand sufficiently and can be further reduced by increasing the number of spline teeth.

クラッチの動作はトルクが入力される初期段階で前述の摺接面の張り付き固着を解くことから開始させる。そのため図3の軌道輪6、のスプライン歯8の側面エッジ(角部)に設けたカム斜面13、と側板9の斜面12、とに初期トルク入力段階で当接させることで図4の符号49の如く拡大された強い軸力49を発生させる。その軸力の試算例では、斜面の角度を回転軸の直角断面に対して5°にするとトルクの11.5倍の推力(軸力)になる。当クラッチでは予めばねで軽く付勢されているのでローラは常時噛み合い状態にあるのでトルクは初期段階で発生する。例えば初期の0.1kg−mのトルクが作用しても斜面部の位置が軸心からの距離が16mmであれば、斜面の当接位置での回転方向には6.25kgが発生する。この切線力はカムの5°の斜面で軸力として11.5倍に増幅されて70kgfに達する。当該カム斜面は軸力を発生させるだけが目的で斜面は曲面でもローラーピンの外径またはボールでも良く更にはテコの機構でもよい。(図省略)。The operation of the clutch is started by releasing the sticking and sticking of the sliding contact surface at an initial stage where torque is inputted. Therefore, the reference numeral 49 in FIG. 4 is brought into contact with the cam slope 13 provided on the side edge (corner) of the spline teeth 8 of the raceway ring 6 in FIG. 3 and the slope 12 of the side plate 9 in the initial torque input stage. A strong axial force 49 expanded as shown in FIG. In the trial calculation example of the axial force, if the angle of the inclined surface is set to 5 ° with respect to the cross section perpendicular to the rotation axis, the thrust (axial force) is 11.5 times the torque. Since the clutch is lightly biased by a spring in advance, the roller is always in meshing state, so that torque is generated in the initial stage. For example, even if the initial torque of 0.1 kg-m is applied, if the position of the slope portion is 16 mm from the axis, 6.25 kg is generated in the rotation direction at the contact position of the slope. This severing force is amplified 11.5 times as axial force on the 5 ° slope of the cam and reaches 70 kgf. The cam slope is only for generating an axial force, and the slope may be a curved surface, an outer diameter of a roller pin or a ball, or a lever mechanism. (Not shown).

また図6の前記のずり変位矢印24、25を促進するためスプラインの受圧面間に油分を包含した図8の板材30を介装させる。その油分保持には図6の30、のようにばね鋼を波形に成型し表面に図13のディンプル穴28、を一面に設けて該穴内に溜まった油分43がトルク負荷48、で図6拡大図の矢印42のスクイズ流体膜が出来て結果ずり変位とスクイズ油膜との混合で一定間隔3〜4mmだけ浮いた状態で変位する。介在する波板バネ30に二硫化モリブデンを被覆すると層状潤滑でずり変位の粘性係数μは、μ=0.001(実験値)以下になる。ずり変位を促進するために板材にフッ素樹脂、DLC処理などの低μ材のコーティングしてもよく、(図省略)更に図12の30、の如く積層すると一層の効果がある。
更なる信頼性の確保手段に、当該摺接部のみずり変位に有効な高粘度の潤滑剤を封入したグリース密封形シール付きの独立ユニットにして周辺の潤滑剤と隔離する。これによって有害な異物の混入、酸素の侵入によるフレッティング▲錆▼、結露による▲錆▼も防げる。(図省略)
Further, in order to promote the shear displacement arrows 24 and 25 of FIG. 6, the plate member 30 of FIG. 8 including oil is interposed between the pressure receiving surfaces of the splines. In order to maintain the oil content, spring steel is formed into a corrugated shape as shown at 30 in FIG. 6, and the dimple hole 28 in FIG. 13 is provided on the entire surface, and the oil content 43 accumulated in the hole is enlarged by the torque load 48 in FIG. The squeeze fluid film indicated by the arrow 42 in the figure is formed, and as a result, the squeeze fluid film is displaced in a state where it floats by a fixed distance of 3 to 4 mm by mixing the shear displacement and the squeeze oil film. When the intervening corrugated spring 30 is coated with molybdenum disulfide, the viscosity coefficient μ of shear displacement due to layered lubrication becomes μ = 0.001 (experimental value) or less. In order to promote shear displacement, the plate material may be coated with a low-μ material such as fluororesin or DLC treatment (not shown), and further laminated as shown at 30 in FIG.
As a means for ensuring further reliability, an independent unit with a grease-sealed seal in which a high-viscosity lubricant effective for shear displacement is included only in the sliding contact portion is isolated from the surrounding lubricant. This prevents fouling due to the entry of harmful foreign matter, oxygen penetration, and rust caused by condensation. (Not shown)

上述を実施した場合の弊害有無について述べる。
初期の斜面のクサビ作用による軌道輪の軸方向変位距離は図4の49、のように約1mm以下でありフルトルクの変位量3〜4ミリより遥かに小さくローラーの接触面圧の増加にはならない。
A description will be given of the presence or absence of harmful effects when the above is implemented.
The axial displacement distance of the race ring due to the wedge action of the initial slope is about 1 mm or less as shown by 49 in FIG. 4 and is far less than the full torque displacement of 3 to 4 mm and does not increase the contact surface pressure of the roller. .

また当該クラッチではもともと回転方向に極めてソフトな捻れ弾性変位の約120°の角度変位を伴うことと、図8の板材30又は図10のバネ20の介在でもって打音になるガタは生じない。In addition, the clutch does not cause rattling noise due to the fact that the rotational displacement is accompanied by an extremely soft torsional elastic displacement of about 120 ° and the presence of the plate member 30 in FIG. 8 or the spring 20 in FIG.

次に図9の外輪6、の回転軸と直角の断面の側面に等配に3箇所にV溝34、とこれに対抗する(図8の側板9に相当する)側板50にも溝斜面を設けそのV溝間に転がり媒体のボール32を保持器33で介在させる。側板50、は出力部材図3の符号2の側面に設けたネジ11と長穴10とでV溝の周方向の位置を合わせてボールに当接させて置く。図9によれば円周方向の変位量46(バックラッシュ)に対してボールが斜面に乗り上げて軸方向変位量45で軸力は拡大される。Next, V grooves 34 are equally spaced on the side surface of the outer ring 6 perpendicular to the rotation axis of FIG. 9 and the groove slopes are also formed on the side plate 50 (which corresponds to the side plate 9 of FIG. 8). A rolling medium ball 32 is interposed between the V grooves by a cage 33. The side plate 50 is placed with the screw 11 and the elongated hole 10 provided on the side surface of the output member 2 in FIG. According to FIG. 9, the ball rides on the slope with respect to the circumferential displacement 46 (backlash), and the axial force is increased by the axial displacement 45.

本発明は冒頭に述べた背景技術に対して以下の進歩性と効果がある。
即ち、単純な円すい面を有する軸と外輪軌道の間に、保持器でスキュウさせたローラーを装填するだけで、軌道面上に超高圧の閉じ込め油膜が生じて、そのせん断抵抗と、塑性変形抵抗とで強大なトルクが伝達できる。使用ローラー全てがトルク伝達に参加するので巨大なトルク容量を有する。さらに自己保持形クラッチなので電磁、空圧、油圧などの付勢エネルギーを全く要せず省エネである。また結合時には入力と出力軸間の回転差、衝撃を吸収する。接続後は、入力側のトルク変動、トルク振動を転動体のヘルツ弾性、軌道輪の膨張弾性で吸収して出力側に伝えない。
The present invention has the following inventive steps and effects over the background art described at the beginning.
In other words, just by loading a roller that is squeezed by a cage between a shaft having a simple conical surface and an outer ring raceway, an ultrahigh-pressure confined oil film is formed on the raceway surface, and its shear resistance and plastic deformation resistance Can transmit a powerful torque. Since all the rollers used participate in torque transmission, it has a huge torque capacity. Furthermore, since it is a self-holding clutch, it does not require any energizing energy such as electromagnetic, pneumatic, hydraulic, etc., and it saves energy. Also, when coupled, it absorbs rotational differences and impacts between the input and output shafts. After the connection, torque fluctuation and torque vibration on the input side are absorbed by the Hertz elasticity of the rolling element and the expansion elasticity of the raceway and are not transmitted to the output side.

また、許容回転速度においても予圧のバネ圧が最小にできるので常時噛み合いの空転でも差動すべりの抵抗は軽微で済む。また軌道面をゆるい球面に近いフルクラウニングを施せば常時噛み合いで空転速度は高速の1万rpmをも可能になる。仮にスプライン等の摺接部位が長期停止による発▲錆▼、凍結で固着しても確実に機能する。Further, since the spring pressure of the preload can be minimized even at the permissible rotational speed, the resistance of the differential slip is negligible even when the meshing is always idle. Also, if the raceway surface is full-crowned close to a loose spherical surface, it is always meshed and the idling speed can be as high as 10,000 rpm. Even if the sliding contact part such as a spline is stuck due to rust or freezing due to a long-term stop, it functions reliably.

は、従来の特開平05−149352の実施例。These are examples of the conventional Japanese Patent Laid-Open No. 05-149352. は、請求項1、の実施例を示す外観略視図。These are the external appearance schematic views which show the Example of Claim 1. は、図2の拡大説明図。FIG. 3 is an enlarged explanatory view of FIG. 2. , は、スプラインの内歯と外歯の軸力発生の動きの説明図。These are explanatory drawings of the movement of the axial force generation of the internal teeth and external teeth of the spline. は、ディンプルと油剤のスクイズ流体膜形成模式図。FIG. 2 is a schematic diagram of forming a squeeze fluid film of dimples and oil. は、スプライのスキマの配置断面説明図。These are the arrangement | positioning cross-section explanatory drawing of the clearance of a splice. は、ずり変位促進板バネの配置説明略視図。These are the arrangement | positioning explanatory schematic perspective views of a shear displacement promotion leaf | plate spring. は、V溝にボールを介在して軸力発生の説明図。These are explanatory drawings of axial force generation by interposing a ball in a V groove. は、スプラインのスキマ拡張ばねの装着説明図。Fig. 4 is a mounting explanatory view of a spline clearance extension spring. は、軸力発生と吸い込みの作用のダイアグラムIs a diagram of the action of axial force generation and suction は、スプラインの歯の間にずり変位促進材を積層した配置図。FIG. 4 is a layout view in which shear displacement promoting materials are stacked between spline teeth. は、ずり変位促進部材のディンプル成型の実施例。These are the examples of the dimple molding of the shear displacement promoting member.

代表的実施例を図2に沿って説明する。図2の内外輪1、6及びローラー5、は軸受鋼SUJ−2を焼入れ焼戻し硬さHRC62〜65に硬化する。軌道表面は研削加工で粗さ0.2Raにする。軌道は回転双曲面を基本とするが、内外輪が膨張、収縮の弾性変形を伴うことと、ローラーがトルク負荷によって軌道と線接触さえすれば足りるので、それに見合った形状で良い。
保持器18は帯板鋼をプレス成型、または帯板にポケット穴を穿孔し丸めて溶接で環状にする。更には樹脂の成型品でもよく転がり軸受の保持器に準ずる。
出力部材2、は炭素鋼で同じく熱処理硬化を施す。スプラインの隙間に介装するすべり促進の板材、図3の30、はバネ鋼にディンプルをコイニング成型し、両端をそれぞれ逆方向に折り曲げてスプライン部材から外れなくする。表面粗さはバレル研磨を施して平滑にする。同板材にはフッ素樹脂、DLC、二硫化モリブデン、グラファイト等の低μ材をコーティングしてもよい。また前記板材を図11のように積層することでずり変位を安定させる効果がある。
当該クラッチは相対変位する距離が3〜4ミリと限られているので、その伸縮摺接にはスプラインの形式に限定されるものでなく、内外輪の側面にドッグクラッチのように軸方向に突き出た凹凸の歯の嵌合、又はピンと穴の系合でもよい。(図省略)実施例の代表に図2を示したが、ローラーが接触する相手部材が中空軸の外径、ギヤの内径など何でも良く(図省略)ローラーと保持器が収容され、内外軌道が滑らかに相対変位すれば良い。
A representative embodiment will be described with reference to FIG. The inner and outer rings 1 and 6 and the roller 5 in FIG. 2 harden the bearing steel SUJ-2 to a quenching and tempering hardness HRC62 to 65. The surface of the track is ground to a roughness of 0.2 Ra. The track is basically a rotating hyperboloid, but it is sufficient that the inner and outer rings are elastically deformed by expansion and contraction, and the roller only needs to be in line contact with the track by a torque load.
The cage 18 is formed by press-molding the strip steel, or punching a pocket hole in the strip and rounding it to form an annular shape by welding. Further, it may be a resin molded product, and it conforms to the rolling bearing cage.
The output member 2 is carbon steel and is similarly heat-treated. A slip-promoting plate material 30 in FIG. 3 interposed between the spline gaps is formed by coining dimples on spring steel, and both ends are bent in opposite directions so that they do not come off the spline member. The surface roughness is smoothed by barrel polishing. The plate material may be coated with a low-μ material such as fluororesin, DLC, molybdenum disulfide, or graphite. Also, the plate material is laminated as shown in FIG. 11 to stabilize the shear displacement.
Since the distance of the relative displacement of the clutch is limited to 3 to 4 mm, the expansion / contraction sliding contact is not limited to the spline type, but protrudes in the axial direction like a dog clutch on the side surface of the inner and outer rings. The fitting of uneven teeth or the combination of pins and holes may be used. FIG. 2 is shown as a representative of the embodiment. However, the mating member with which the roller contacts may be anything such as the outer diameter of the hollow shaft, the inner diameter of the gear (not shown). The relative displacement may be smoothly performed.

実施例を図2、図6、図5、図8、図9、図12、図13に示す。Examples are shown in FIG. 2, FIG. 6, FIG. 5, FIG. 8, FIG. 9, FIG.

当クラッチの機能は、常時噛み合いで高速のオーバラニングが可能なワンウエイクラッチ、トルクリミッター、ショック吸収のトーショナルダンパー、更には衝撃吸収付きシンクナイズドクラッチで、補助手段の油圧空圧、電磁力を要しない自己保持形クラッチであって極めて高い信頼性を得る。また潤滑剤を適宜選択することで、速度可変の粘性流体継手にもなる。例えばヘリコプターのオートローテーションのクラッチを当該発明品に置き換えると、信頼性が向上する。又ハイブリッド車の動力配分装置、並びに4WD車の差動制限装置、速度可変の粘性流体継手、ドアクローザ、緩降機などに用いる。  The functions of this clutch are a one-way clutch that is always engaged and capable of high-speed overrunning, a torque limiter, a torsional damper for shock absorption, and a synchronized clutch with shock absorption, which requires hydraulic pneumatic pressure and electromagnetic force as auxiliary means. It is a self-holding clutch that does not, and has extremely high reliability. In addition, by appropriately selecting a lubricant, it can be a viscous fluid coupling with variable speed. For example, if the helicopter auto-rotation clutch is replaced with the invention, the reliability is improved. It is also used in power distribution devices for hybrid vehicles, differential limiting devices for 4WD vehicles, viscous fluid joints with variable speed, door closers, slow-down machines, etc.

1・・入力側内輪
2・・出力ハウジング
3・・出力部材連結ねじ穴
4・・・軸受
5・・ローラー
6・・外輪
7・・保持器
9・・側板カム
10・・長穴
11・・止めねじ
12・・側輪のカム斜面
13・・スプライン歯の先端カム斜面
14・・出力部材のメススプライン歯
15・・内輪一葉回転双曲面
18・・保持器
20・・クリップばね
21・・スプラインリード角
22・・付勢皿バネ
23・・スナップリング
24、25・・吸い込み変位方向
27・・スクイズ流体の流出方向
28・・ディンプル
29・・スクイズ流体膜
30・・変位促進板材
31・・外輪
33・・スラストボール保持器
34・・外輪側面のボールカム斜面
35・・負荷トルク
36・・吸い込み力
37・・ボールによる軸力終点
38・・クラッチの噛み合いによる吸い込み力
39・・クランチ噛み合い締結終点
40・・バックラッシュ範囲の変位量
41・・予圧ばねの付勢力
45・・ボールの転動による軸方向変位距離
46・・バックラッシュ範囲のボール転動による周方向変位距離
47・・カムの初期位置
1 ..Input side inner ring 2 ..Output housing 3 ..Output member connecting screw hole 4... Bearing 5 ..Roller 6 ..Outer ring 7 .. Retainer 9 .. Side plate cam 10. Set screw 12 ··· Cam slope 13 of side wheel · · Cam slope 14 of tip of spline teeth · · Female spline tooth 15 of output member · · Inner ring single leaf rotating hyperboloid 18 · · Cage 20 · · Clip spring 21 · · Spline · Lead angle 22 · · Biasing spring 23 · · Snap rings 24 and 25 · · Displacement direction 27 · · Flow direction 28 of squeeze fluid · · Dimple 29 · · Squeeze fluid film 30 · Displacement promoting plate 31 · · Outer ring 33 ·· Thrust ball cage 34 · Ball cam slope 35 on the outer ring side · Load torque 36 · Suction force 37 · Axial force end point 38 by ball · Suction force 3 by clutch engagement ·· Crunch engagement end point 40 · · Backlash range displacement 41 · · Preload spring biasing force · · 45 Axial displacement distance due to ball rolling · · Circumferential displacement distance due to ball rolling in the backlash range 47 .. Initial position of cam

Claims (3)

内輪外径の円すい面と外輪内径の円すい面の間に保持器でスキュウした転動ローラーを複数個介装して成るクラッチ装置において、内輪又は外輪の側面に回転軸と直角の平面対して角度を成す斜面を設けて、該斜面が当接することで生ずる軸力で軸方向の相対変位を始動させるローラークラッチ装置。  In a clutch device comprising a plurality of rolling rollers squeezed by a cage between a conical surface of the inner ring outer diameter and a conical surface of the outer ring inner diameter, an angle with respect to a plane perpendicular to the rotation axis on the side surface of the inner ring or outer ring A roller clutch device that has an inclined surface that starts the relative displacement in the axial direction by an axial force generated by the contact of the inclined surface. 内輪外径の円すい面と外輪内径の円すい面の間に保持器でスキュウした転動ローラーを複数個介装して成るクラッチ装置において、クラッチの相対変位摺接面の隙間が復元するばね弾性部材を具備したことを特徴としたローラークラッチ装置。A spring elastic member that restores the clearance of the relative displacement sliding surface of the clutch in a clutch device in which a plurality of rolling rollers squeezed by a cage are interposed between the conical surface of the inner ring outer diameter and the conical surface of the outer ring inner diameter A roller clutch device comprising: 内輪外径の円すい面と外輪内径の円すい面の間に保持器でスキュウした転動ローラーを複数個介装して成るクラッチ装置において、トルク負荷による内輪と外輪の相対変位摺接距離が、トルクの作用面と受圧面の間に有する油のずり変位と、該油がトルクの作用で排出される際に生ずるスクイズ流体膜に浮上して変位出来る範囲内に設定されるとともに、前記の二面間に樹脂、二硫化モリブデン、グラファイト、ダイアモンドライクカーボンなどの低摩擦係数材を皮膜した板部材を介装することを特徴としたローラークラッチ装置。In a clutch device in which a plurality of rolling rollers squeezed by a cage are interposed between a conical surface of the inner ring outer diameter and a conical surface of the outer ring inner diameter, the relative displacement sliding distance between the inner ring and the outer ring due to torque load is the torque The above-mentioned two surfaces are set within a range in which the displacement of the oil between the acting surface and the pressure-receiving surface and the squeeze fluid film generated when the oil is discharged by the action of the torque can be lifted and displaced. A roller clutch device having a plate member coated with a low coefficient of friction material such as resin, molybdenum disulfide, graphite, diamond-like carbon or the like interposed therebetween.
JP2013030430A 2013-01-31 2013-01-31 Roller clutch device Pending JP2014149075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030430A JP2014149075A (en) 2013-01-31 2013-01-31 Roller clutch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030430A JP2014149075A (en) 2013-01-31 2013-01-31 Roller clutch device

Publications (1)

Publication Number Publication Date
JP2014149075A true JP2014149075A (en) 2014-08-21

Family

ID=51572200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030430A Pending JP2014149075A (en) 2013-01-31 2013-01-31 Roller clutch device

Country Status (1)

Country Link
JP (1) JP2014149075A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103821A (en) * 2017-07-05 2017-08-29 石河子大学 A kind of one-dimensional Reynolds equation experimental provision of fluid and its experimental method
US9828089B2 (en) 2016-01-29 2017-11-28 Sikorsky Aircraft Corporation Rotor drive systems for rotorcraft
US10407166B2 (en) 2018-01-08 2019-09-10 Sikorsky Aircraft Corporation Yaw moment supplement for directional control
US10577090B2 (en) 2017-02-16 2020-03-03 Sikorsky Aircraft Corporation Electric propulsion system with overrunning clutch for a rotary-wing aircraft
US10676182B2 (en) 2017-07-20 2020-06-09 Sikorsky Aircraft Corporation Tilting coaxial rotor for a rotary wing aircraft
US10752343B2 (en) 2016-10-18 2020-08-25 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft
US10974824B2 (en) 2017-07-20 2021-04-13 Sikorsky Aircraft Corporation Electric powered direct drive rotor motor
US11186363B2 (en) 2015-10-21 2021-11-30 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186363B2 (en) 2015-10-21 2021-11-30 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft
US9828089B2 (en) 2016-01-29 2017-11-28 Sikorsky Aircraft Corporation Rotor drive systems for rotorcraft
US10752343B2 (en) 2016-10-18 2020-08-25 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft
US10577090B2 (en) 2017-02-16 2020-03-03 Sikorsky Aircraft Corporation Electric propulsion system with overrunning clutch for a rotary-wing aircraft
CN107103821A (en) * 2017-07-05 2017-08-29 石河子大学 A kind of one-dimensional Reynolds equation experimental provision of fluid and its experimental method
US10676182B2 (en) 2017-07-20 2020-06-09 Sikorsky Aircraft Corporation Tilting coaxial rotor for a rotary wing aircraft
US10974824B2 (en) 2017-07-20 2021-04-13 Sikorsky Aircraft Corporation Electric powered direct drive rotor motor
US10407166B2 (en) 2018-01-08 2019-09-10 Sikorsky Aircraft Corporation Yaw moment supplement for directional control

Similar Documents

Publication Publication Date Title
JP2014149075A (en) Roller clutch device
CN101900170B (en) Clutch for a transmission
US20080053778A1 (en) Engine Start Roller Clutch-Housed Type Rotation Transmission Device
EP3026298A1 (en) Pulley device with embedded unidirectional clutch
US7886885B2 (en) Clutch for a transmission
US20140162826A1 (en) Motor assembly with speed reducer
WO2010050408A1 (en) Pulley unit
EA028209B1 (en) Backstopping clutch with torque transmission through radial surface of outer race
JP2903325B2 (en) Fluid friction transmission force limiting device
JP2010127294A (en) Pulley unit
JP4614167B2 (en) Fluid friction transmission force limiter
JP2013019517A (en) Sliding bearing
JP5816895B2 (en) Fluid friction transmission force limiter
JP5352769B2 (en) Roller clutch
JP4569470B2 (en) Roller bearing for belt type continuously variable transmission
JP2011144918A5 (en)
JP6167398B2 (en) Roller clutch
US3058556A (en) Transmission
JP2004100914A (en) Power transmission
JP5877404B2 (en) Roller clutch device
JP2015172433A (en) Roller clutch with seal
JP6786329B2 (en) Reverse input cutoff device
JP7096038B2 (en) One-way clutch
JP2021169843A (en) Rolling bearing device
CN107636336B (en) Synchronizing body