JP2021169843A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2021169843A
JP2021169843A JP2020073360A JP2020073360A JP2021169843A JP 2021169843 A JP2021169843 A JP 2021169843A JP 2020073360 A JP2020073360 A JP 2020073360A JP 2020073360 A JP2020073360 A JP 2020073360A JP 2021169843 A JP2021169843 A JP 2021169843A
Authority
JP
Japan
Prior art keywords
rolling bearing
bearing
elastic member
outer ring
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020073360A
Other languages
Japanese (ja)
Inventor
陽三 谷口
Yozo Taniguchi
寛一 耕田
Kanichi Kouda
友之 合田
Tomoyuki Aida
淳 内藤
Atsushi Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2020073360A priority Critical patent/JP2021169843A/en
Publication of JP2021169843A publication Critical patent/JP2021169843A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Gasket Seals (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

To prevent damage of an elastic member in a rolling bearing device which prevents creep of an outer ring.SOLUTION: A rolling bearing device 50 includes a housing 80 and a rolling bearing 10. A bearing fitting part 82 of the housing 80 includes a bearing fitting surface 84 and a chamfered part 87 formed at an opening side end part. The rolling bearing 10 includes: an outer ring 11; an inner ring 12; rolling elements 13; and an annular elastic member 15. The outer ring 11 has: a bearing outer diameter surface 17; a side surface 18 extending in a radial direction at one side in an axial direction; and an annular recessed part 30 formed over an entire periphery in a portion where the side surface 18 and the bearing outer diameter surface 17 are connected. The elastic member 15 integrally has a body part 41 and a protruding part 42 protruding to one side in the axial direction. An angle β formed between a tangent line which contacts the body part 41 and the protruding part 42 at the radial outer side and a center axis is smaller than an angle α formed between a generating line of the chamfered part 87 and the center axis.SELECTED DRAWING: Figure 1

Description

本発明は、主として車両の駆動装置に使用される転がり軸受装置に関し、特に、外輪に弾性部材を固定して、ハウジングに対するクリープを防止した転がり軸受装置に関する。 The present invention relates to a rolling bearing device mainly used for a vehicle driving device, and more particularly to a rolling bearing device in which an elastic member is fixed to an outer ring to prevent creep with respect to a housing.

車両のトランスミッションやデフなどの駆動装置では、図8に示すように、ハウジング80に転がり軸受70、70が組み込まれた転がり軸受装置によって、ギア軸81が回転自在に支持されている。転がり軸受70は、中心軸mの回りで相対的に回転する外輪71と内輪72とを備えており、外輪71が、ハウジング80の軸受嵌合部82にすきまばめの状態で固定されている。しかしながら、ハウジング80はアルミニウム鋳物で製造されており、熱膨張量が鋼製の転がり軸受70より大きいので、車両が走行してハウジング80の温度が上昇すると、外輪71と軸受嵌合部82の嵌め合い面のすきまが拡大する。 In drive devices such as vehicle transmissions and differentials, as shown in FIG. 8, the gear shaft 81 is rotatably supported by a rolling bearing device in which rolling bearings 70 and 70 are incorporated in a housing 80. The rolling bearing 70 includes an outer ring 71 and an inner ring 72 that rotate relatively around the central axis m, and the outer ring 71 is fixed to the bearing fitting portion 82 of the housing 80 in a clearance-fitted state. .. However, since the housing 80 is made of cast aluminum and has a coefficient of thermal expansion larger than that of the rolling bearing 70 made of steel, when the vehicle travels and the temperature of the housing 80 rises, the outer ring 71 and the bearing fitting portion 82 are fitted. The gap between the mating surfaces expands.

通常、車両がエンジンで駆動されて走行している状態(ドライブ状態)では、ギアで伝達される動力の反力が転がり軸受70に作用しているので、外輪71は、ハウジング80に強く押し付けられており容易に回動しない。しかしながら、アクセルを緩めて、車輪がエンジンを駆動する状態(コースト状態)に切り替わるときに、転がり軸受70が無負荷状態となる。このとき、外輪71と軸受嵌合部82の嵌め合い面のすきまが大きい場合には、転がり軸受70の引きずり抵抗によって外輪71が回動するので、ハウジング80の嵌め合い面が摩耗する恐れがある。引きずり抵抗とは、内輪72が回転するときに、転がり軸受70を潤滑するオイルの粘性や転がり摩擦などによって、外輪71を回転させる力をいう。以下の説明では、このように軸受嵌合部82の内側で外輪71が回動することを「クリープ」という。 Normally, in a state in which the vehicle is driven by an engine (driving state), the reaction force of the power transmitted by the gear acts on the rolling bearing 70, so that the outer ring 71 is strongly pressed against the housing 80. It does not rotate easily. However, when the accelerator is released and the wheels switch to the state of driving the engine (coast state), the rolling bearing 70 becomes a no-load state. At this time, if the clearance between the outer ring 71 and the fitting surface of the bearing fitting portion 82 is large, the outer ring 71 rotates due to the drag resistance of the rolling bearing 70, so that the fitting surface of the housing 80 may be worn. .. The drag resistance refers to a force that rotates the outer ring 71 due to the viscosity of the oil that lubricates the rolling bearing 70, rolling friction, or the like when the inner ring 72 rotates. In the following description, the rotation of the outer ring 71 inside the bearing fitting portion 82 in this way is referred to as “creep”.

特許文献1の転がり軸受装置には、図9に示すように、ゴム製のOリング73が外輪71の外周に設けた凹部74に組み込まれて、Oリング73とハウジング80との間のすべり摩擦力によって外輪71のクリープを抑制する構成が記載されている。 In the rolling bearing device of Patent Document 1, as shown in FIG. 9, a rubber O-ring 73 is incorporated in a recess 74 provided on the outer periphery of the outer ring 71, and sliding friction between the O-ring 73 and the housing 80 is provided. A configuration is described in which the creep of the outer ring 71 is suppressed by a force.

特開平08−074845号公報Japanese Unexamined Patent Publication No. 08-074845

しかしながら、特許文献1の転がり軸受装置では凹部74が外輪71の軸方向端部に形成されているため、外輪71をハウジング80に嵌め合わせるときに、軸受嵌合部82の中心と転がり軸受70の中心とが大きく偏芯していると、軸受嵌合部82の開口側の端部がOリング73と衝突する。このため、Oリング73が、ハウジング80と外輪71とで挟まれることによって傷ついたり、あるいは切断される恐れがある。 However, in the rolling bearing device of Patent Document 1, since the recess 74 is formed at the axial end of the outer ring 71, when the outer ring 71 is fitted to the housing 80, the center of the bearing fitting portion 82 and the rolling bearing 70 If the center is largely eccentric, the end of the bearing fitting portion 82 on the opening side collides with the O-ring 73. Therefore, the O-ring 73 may be damaged or cut by being sandwiched between the housing 80 and the outer ring 71.

そこで、図10に示すように、外輪71の幅方向の中央に寄った位置にOリング73を配置して、ハウジング80の開口端とOリング73とが直接接触するのを避ける方法が考えられる。しかしながら、この場合には、Oリング73を収容する凹部74が外輪71の軌道面75に近接するので、凹部74と軌道面75との間の肉厚tが減少する。このため、転がり軸受70に大きな荷重が作用すると、肉厚tの小さいところで内部応力が増大し、外輪71が破損する恐れがある。 Therefore, as shown in FIG. 10, a method is conceivable in which the O-ring 73 is arranged at a position closer to the center in the width direction of the outer ring 71 to prevent the open end of the housing 80 and the O-ring 73 from coming into direct contact with each other. .. However, in this case, since the recess 74 accommodating the O-ring 73 is close to the raceway surface 75 of the outer ring 71, the wall thickness t between the recess 74 and the raceway surface 75 is reduced. Therefore, when a large load acts on the rolling bearing 70, the internal stress increases at a place where the wall thickness t is small, and the outer ring 71 may be damaged.

上記の事情に鑑み、本発明の目的は、外輪の外周に弾性部材を装着してハウジングに対する外輪のクリープを防いだ転がり軸受装置において、ハウジングに組付けるときに弾性部材の損傷を防止することを目的としている。 In view of the above circumstances, an object of the present invention is to prevent damage to the elastic member when it is assembled to the housing in a rolling bearing device in which an elastic member is attached to the outer periphery of the outer ring to prevent creep of the outer ring with respect to the housing. I am aiming.

本発明は、軸受嵌合部を備えたハウジングと、前記軸受嵌合部に組み込まれて軸を中心軸の周りで回転自在に支持する転がり軸受と、を備えた転がり軸受装置であって、前記軸受嵌合部は、端部に面取り部を備えた円筒形状の軸受嵌合面を有し、前記転がり軸受は、外輪と、内輪と、前記外輪と前記内輪との間に配置される複数の転動体と、中心軸を中心とする環状の弾性部材と、を有し、前記弾性部材は、中心軸方向の断面が円形状の本体部と、前記軸受嵌合面の内径より小径で前記本体部から中心軸の方向に突出する凸部と、を一体に有し、前記外輪の軸受外径面と軸方向一方の側面とがつながる部位に前記凸部を前記軸方向一方に向けて組み込まれており、中心軸を含む平面内で、前記本体部及び前記凸部と径方向外方で接する接線と中心軸との角度αは、前記面取り部の母線と中心軸との角度βより小さく、前記転がり軸受を前記ハウジングに組み込むときに、前記弾性部材と前記面取り部とが軸方向で対向する向きに組み合わされている。 The present invention is a rolling bearing device including a housing provided with a bearing fitting portion and a rolling bearing incorporated in the bearing fitting portion to rotatably support a shaft around a central shaft. The bearing fitting portion has a cylindrical bearing fitting surface having a chamfered portion at an end thereof, and the rolling bearing includes a plurality of rolling bearings arranged between an outer ring, an inner ring, and the outer ring and the inner ring. It has a rolling element and an annular elastic member centered on a central axis, and the elastic member has a main body portion having a circular cross section in the central axis direction and a main body having a diameter smaller than the inner diameter of the bearing fitting surface. A convex portion that protrudes from the portion in the direction of the central axis is integrally provided, and the convex portion is incorporated in a portion where the outer diameter surface of the bearing of the outer ring and one side surface in the axial direction are connected so that the convex portion is directed to one side in the axial direction. In the plane including the central axis, the angle α between the tangent line and the central axis that are in contact with the main body portion and the convex portion in the radial direction is smaller than the angle β between the mother line and the central axis of the chamfered portion. When the rolling bearing is incorporated into the housing, the elastic member and the chamfered portion are combined so as to face each other in the axial direction.

本発明によると、外輪の外周に弾性部材を装着してハウジングに対する外輪のクリープを防いだ転がり軸受装置において、ハウジングに組付けるときに偏芯量が大きい場合であっても、弾性部材の損傷を防止することができる。 According to the present invention, in a rolling bearing device in which an elastic member is attached to the outer periphery of the outer ring to prevent creep of the outer ring with respect to the housing, even if the amount of eccentricity is large when assembling to the housing, the elastic member is damaged. Can be prevented.

本発明の一実施形態にかかる転がり軸受装置の部分断面図である。It is a partial cross-sectional view of the rolling bearing apparatus which concerns on one Embodiment of this invention. 図1において弾性部材が組み込まれている部分の要部拡大図である。FIG. 1 is an enlarged view of a main part of a portion in which an elastic member is incorporated. 図3(a)は弾性部材の部分正面図で、図3(b)は軸方向断面図である。FIG. 3A is a partial front view of the elastic member, and FIG. 3B is an axial cross-sectional view. 転がり軸受がハウジングと同軸に組み込まれるときの弾性部材の位置を説明する説明図である。It is explanatory drawing explaining the position of the elastic member when a rolling bearing is assembled coaxially with a housing. 転がり軸受がハウジングと偏芯して組み込まれるときの弾性部材の位置を説明する説明図である。It is explanatory drawing explaining the position of the elastic member when a rolling bearing is eccentrically incorporated with a housing. 図6(a)は、他の形態の弾性部材の部分正面図で、図6(b)は軸方向断面図である。FIG. 6A is a partial front view of an elastic member of another form, and FIG. 6B is an axial cross-sectional view. 他の形態の弾性部材を組み込んだ転がり軸受の部分断面図である。It is a partial cross-sectional view of the rolling bearing which incorporated the elastic member of another form. 従来の転がり軸受装置の断面図である。It is sectional drawing of the conventional rolling bearing apparatus. 従来の転がり軸受の軸方向断面図である。It is sectional drawing in the axial direction of the conventional rolling bearing. 従来の転がり軸受の他の形態を示す軸方向断面図である。It is an axial sectional view which shows the other form of the conventional rolling bearing.

図を用いて本発明を実施するための形態を説明する。図1は、本発明の一実施形態(以下「本実施形態」という)としての転がり軸受装置50が組込まれたトランスミッションの部分断面図である。転がり軸受装置50は、ハウジング80と転がり軸受10とを備えており、転がり軸受10は、ハウジング80に組込まれてギア軸81を回転自在に支持している。図示を省略するが、ギア軸81は、従来のトランスミッション(図8参照)と同様に、軸方向の両端が転がり軸受10で回転自在に支持されている。図1は、軸方向の一方の転がり軸受10の組込状態を示している。 A mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view of a transmission in which a rolling bearing device 50 as an embodiment of the present invention (hereinafter referred to as “the present embodiment”) is incorporated. The rolling bearing device 50 includes a housing 80 and a rolling bearing 10, and the rolling bearing 10 is incorporated in the housing 80 to rotatably support the gear shaft 81. Although not shown, the gear shaft 81 is rotatably supported by rolling bearings 10 at both ends in the axial direction, similarly to a conventional transmission (see FIG. 8). FIG. 1 shows an assembled state of one rolling bearing 10 in the axial direction.

転がり軸受10は円すいころ軸受である。ギア軸81の軸方向両端の転がり軸受10、10は、それぞれの正面が互いに向き合う向きで組み込まれている。以下の説明では、転がり軸受10の回転中心である中心軸mと平行の方向を軸方向とし、中心軸mと直交する方向を径方向、中心軸mの回りを周回する方向を周方向という。また、図1の左方を軸方向一方といい、右方を軸方向他方という。 The rolling bearing 10 is a tapered roller bearing. The rolling bearings 10 and 10 at both ends of the gear shaft 81 in the axial direction are incorporated so that their front surfaces face each other. In the following description, the direction parallel to the central axis m, which is the center of rotation of the rolling bearing 10, is referred to as the axial direction, the direction orthogonal to the central axis m is referred to as the radial direction, and the direction orbiting around the central axis m is referred to as the circumferential direction. Further, the left side of FIG. 1 is referred to as one in the axial direction, and the right side is referred to as the other in the axial direction.

ハウジング80は、アルミニウム鋳物などの軽合金製である。ハウジング80は、転がり軸受10を組付ける軸受嵌合部82を備えている。
軸受嵌合部82は、ハウジング80の内周面83から軸方向一方に窪んだ有底の円筒孔である。軸受嵌合部82は、軸受嵌合面84と当接面85を備え、軸方向他方に開口している。
軸受嵌合面84は中心軸mを中心とする円筒面で、後述するように、外輪11の軸受外径面17が嵌め合わされる。当接面85は、中心軸mと直交する向きに形成され、軸受嵌合面84の軸方向一方の端部から径方向内方に延在している。当接面85は、転がり軸受10の外輪11と当接して、転がり軸受10の軸方向の位置を規制している。
軸受嵌合面84の開口側端部には面取り部としての傾斜面87が設けられている。図1(a)は、軸受嵌合面84の開口側端部を拡大した要部拡大図である。傾斜面87は、円錐面の一部であり、軸受嵌合面84とハウジング80の内周面83とをつないでいる。傾斜面87は、開口側(図の軸方向他方の側である)に向かうほど内径が拡大している。
The housing 80 is made of a light alloy such as cast aluminum. The housing 80 includes a bearing fitting portion 82 for assembling the rolling bearing 10.
The bearing fitting portion 82 is a bottomed cylindrical hole recessed in one axial direction from the inner peripheral surface 83 of the housing 80. The bearing fitting portion 82 includes a bearing fitting surface 84 and a contact surface 85, and is open to the other in the axial direction.
The bearing fitting surface 84 is a cylindrical surface centered on the central axis m, and the bearing outer diameter surface 17 of the outer ring 11 is fitted as described later. The contact surface 85 is formed in a direction orthogonal to the central axis m, and extends inward in the radial direction from one end in the axial direction of the bearing fitting surface 84. The contact surface 85 abuts on the outer ring 11 of the rolling bearing 10 to regulate the axial position of the rolling bearing 10.
An inclined surface 87 as a chamfered portion is provided at the opening side end of the bearing fitting surface 84. FIG. 1A is an enlarged view of a main part of the bearing fitting surface 84 on the opening side. The inclined surface 87 is a part of a conical surface and connects the bearing fitting surface 84 and the inner peripheral surface 83 of the housing 80. The inner diameter of the inclined surface 87 increases toward the opening side (the other side in the axial direction in the drawing).

転がり軸受10は、外輪11と、内輪12と、転動体としての複数の円すいころ13と、保持器14と、弾性部材15と、を備えている。
外輪11及び内輪12は環状であり、それぞれの中心軸が互いに一致するように組み合わされている。複数の円すいころ13は、外輪11と内輪12との間に転動自在に組み込まれており、内輪12は、外輪11の内側で中心軸mを中心として自在に回転することができる。
The rolling bearing 10 includes an outer ring 11, an inner ring 12, a plurality of tapered rollers 13 as rolling elements, a cage 14, and an elastic member 15.
The outer ring 11 and the inner ring 12 are annular and are combined so that their central axes coincide with each other. The plurality of tapered rollers 13 are rotatably incorporated between the outer ring 11 and the inner ring 12, and the inner ring 12 can freely rotate around the central axis m inside the outer ring 11.

外輪11は、SUJ2等の軸受鋼等の鋼材で製造されている。外輪11は、外側軌道面16と、軸受外径面17と、外輪大端面18と、外輪小端面19と、凹部30と、を備えている。 The outer ring 11 is made of a steel material such as a bearing steel such as SUJ2. The outer ring 11 includes an outer raceway surface 16, a bearing outer diameter surface 17, an outer ring large end surface 18, an outer ring small end surface 19, and a recess 30.

外側軌道面16は、外輪11の内周に形成され、円すいころ13が転走する軌道面である。外側軌道面16は、中心軸mを軸とする円錐面で形成されており、軸方向一方に向かうにしたがって直径が小さくなっている。
軸受外径面17は、中心軸mを中心とする円筒面である。
外輪大端面18は、外輪11の軸方向一方の側面で、中心軸mと直交する向きに形成されて径方向に延在している。外輪大端面18の径方向内方の端部は、外側軌道面16の軸方向一方の端部とつながっている。
外輪小端面19は、外輪11の軸方向他方の側面で、中心軸mと直交する向きに形成されており、軸受外径面17の軸方向他方の端部と外側軌道面16の軸方向他方の端部を径方向に繋いでいる。
The outer raceway surface 16 is a raceway surface formed on the inner circumference of the outer ring 11 and on which the tapered rollers 13 roll. The outer raceway surface 16 is formed of a conical surface centered on the central axis m, and its diameter decreases toward one side in the axial direction.
The bearing outer diameter surface 17 is a cylindrical surface centered on the central axis m.
The outer ring large end surface 18 is formed on one side surface of the outer ring 11 in the axial direction in a direction orthogonal to the central axis m and extends in the radial direction. The radial inner end of the outer ring large end surface 18 is connected to one axial end of the outer raceway surface 16.
The outer ring small end surface 19 is formed on the other side surface of the outer ring 11 in the axial direction in a direction orthogonal to the central axis m, and the other end portion in the axial direction of the bearing outer diameter surface 17 and the other end surface in the axial direction of the outer raceway surface 16. The ends of the bearings are connected in the radial direction.

図2によって、凹部30について説明する。図2は、図1における凹部30を含む領域を拡大した部分断面図である。凹部30は、外輪大端面18の外周と軸受外径面17とがつながる部位に全周にわたって環状に形成されており、溝底面31及び突出部32と、溝側面33と、で画定される。凹部30には、後述するように、弾性部材15が組付けられる。 The recess 30 will be described with reference to FIG. FIG. 2 is an enlarged partial cross-sectional view of the region including the recess 30 in FIG. The recess 30 is formed in an annular shape over the entire circumference at a portion where the outer periphery of the outer ring large end surface 18 and the bearing outer diameter surface 17 are connected, and is defined by a groove bottom surface 31, a protrusion 32, and a groove side surface 33. An elastic member 15 is assembled to the recess 30 as described later.

溝底面31は、中心軸mを中心とする円筒面であり、溝底面31の外径は、軸受外径面17の外径より小径である。
溝底面31の軸方向一方の端部に、径方向外方に突出する突出部32が形成されている。突出部32は、突出部外周面34と、軸方向両側に第1側面35及び第2側面36を備えている。突出部外周面34は、軸方向に延在する円筒面で、溝底面31の外径より大径である。第1側面35は、突出部外周面34の軸方向一方に形成されて径方向に延在しており、外輪大端面18と面一になっている。第2側面36は、突出部外周面34の軸方向他方の端と溝底面31の軸方向一方の端をつないでおり、軸方向に傾斜している。
突出部32は、弾性部材15が凹部30から脱落するのを防止している。このため、突出部32が溝底面31から径方向に突出する高さhは、弾性部材15が軸方向に動いたときに容易に乗り越えない程度であればよく、例えば、溝底面31と軸受外径面17との径方向の寸法Hの10〜20%程度に設定される。
溝側面33は、溝底面31の軸方向他方の端部から中心軸mと直交する向きに径方向外方に延在しており、軸受外径面17の軸方向一方の端部とつながっている。
The groove bottom surface 31 is a cylindrical surface centered on the central axis m, and the outer diameter of the groove bottom surface 31 is smaller than the outer diameter of the bearing outer diameter surface 17.
A protruding portion 32 that projects outward in the radial direction is formed at one end of the groove bottom surface 31 in the axial direction. The projecting portion 32 includes an outer peripheral surface 34 of the projecting portion, and a first side surface 35 and a second side surface 36 on both sides in the axial direction. The protruding portion outer peripheral surface 34 is a cylindrical surface extending in the axial direction, and has a diameter larger than the outer diameter of the groove bottom surface 31. The first side surface 35 is formed in one axial direction of the outer peripheral surface 34 of the protruding portion and extends in the radial direction, and is flush with the large end surface 18 of the outer ring. The second side surface 36 connects the other end in the axial direction of the outer peripheral surface 34 of the protruding portion and one end in the axial direction of the bottom surface 31 of the groove, and is inclined in the axial direction.
The protrusion 32 prevents the elastic member 15 from falling out of the recess 30. Therefore, the height h at which the protruding portion 32 protrudes radially from the groove bottom surface 31 may be such that it does not easily get over when the elastic member 15 moves in the axial direction. For example, the groove bottom surface 31 and the outside of the bearing. It is set to about 10 to 20% of the radial dimension H with respect to the radial surface 17.
The groove side surface 33 extends radially outward from the other end of the groove bottom surface 31 in the axial direction in a direction orthogonal to the central axis m, and is connected to one end of the bearing outer diameter surface 17 in the axial direction. There is.

こうして、凹部30は、軸受外径面17の軸方向一方の端部から径方向内方に凹み、外輪大端面18の径方向外方の端部から軸方向他方に凹むことで形成されている。こうして、凹部30は、径方向外方及び軸方向一方に向かって開放しているので、切削加工によって容易に形成することができる。 In this way, the recess 30 is formed by denting inward in the radial direction from one end in the axial direction of the outer diameter surface 17 of the bearing and denting inward in the axial direction from the outward end in the radial direction of the large end surface 18 of the outer ring. .. In this way, since the recess 30 is open outward in the radial direction and one in the axial direction, it can be easily formed by cutting.

再び図1を参照する。内輪12は,SUJ2等の軸受鋼等の鋼材で製造されている。内輪12は、内側軌道面20と、軸受内径面21と、内輪小端面22と、内輪大端面23と、を備えている。 See FIG. 1 again. The inner ring 12 is made of a steel material such as a bearing steel such as SUJ2. The inner ring 12 includes an inner raceway surface 20, a bearing inner diameter surface 21, an inner ring small end surface 22, and an inner ring large end surface 23.

内側軌道面20は、内輪12の外周に形成されており、円すいころ13が転走する軌道面である。内側軌道面20は、中心軸mを軸とする円錐面で形成されており、軸方向一方に向かうにしたがって直径が小さくなっている。内側軌道面20の軸方向一方の端部に、径方向外方に凸となった小つば24が形成されるとともに、内側軌道面20の軸方向他方の端部に、径方向外方に凸となった大つば25が形成されている。円すいころ13は、転がり軸受10が回転するときに大つば25で案内されて、周方向に転動する。
軸受内径面21は、中心軸mを中心とする円筒面である。内輪小端面22は、軸受内径面21の軸方向一方の端部から径方向に延在しており、内輪大端面23は、軸受内径面21の軸方向他方の端部から径方向に延在している。
The inner raceway surface 20 is formed on the outer circumference of the inner ring 12, and is a raceway surface on which the tapered rollers 13 roll. The inner raceway surface 20 is formed of a conical surface centered on the central axis m, and its diameter decreases toward one side in the axial direction. A small brim 24 that is convex outward in the radial direction is formed at one end of the inner raceway surface 20 in the axial direction, and is convex outward in the radial direction at the other end in the axial direction of the inner raceway surface 20. The large brim 25 is formed. The tapered roller 13 is guided by the large brim 25 when the rolling bearing 10 rotates, and rolls in the circumferential direction.
The bearing inner diameter surface 21 is a cylindrical surface centered on the central axis m. The inner ring small end surface 22 extends radially from one end of the bearing inner diameter surface 21 in the axial direction, and the inner ring large end surface 23 extends radially from the other end of the bearing inner diameter surface 21 in the axial direction. doing.

円すいころ13は、SUJ2等の軸受鋼等の鋼材で製造されている。円すいころ13は、円錐台の形状であり、外輪11の外側軌道面16と内輪12の内側軌道面20との間に複数組み込まれる。 The tapered roller 13 is made of a steel material such as a bearing steel such as SUJ2. The tapered rollers 13 have the shape of a truncated cone, and a plurality of tapered rollers 13 are incorporated between the outer raceway surface 16 of the outer ring 11 and the inner raceway surface 20 of the inner ring 12.

保持器14は、冷間圧延鋼板をプレス成形し、或いは、合成樹脂を射出成形することによって製造される。保持器14には、円すいころ13を一つずつ収容するポケットが周方向に複数形成されている。複数の円すいころ13は、保持器14によって、内輪12と外輪11との間で周方向に等しい間隔で保持されている。 The cage 14 is manufactured by press-molding a cold-rolled steel sheet or injection-molding a synthetic resin. The cage 14 is formed with a plurality of pockets for accommodating tapered rollers 13 one by one in the circumferential direction. The plurality of tapered rollers 13 are held by the cage 14 between the inner ring 12 and the outer ring 11 at equal intervals in the circumferential direction.

内輪12又は外輪11が回転すると、円すいころ13が、各軌道面16、20を転動する。各軌道面16、20が円錐面で形成されているので、転がり軸受10は、軸方向に作用する荷重(アキシアル荷重)及び径方向に作用する荷重(ラジアル荷重)を同時に支持することができる。 When the inner ring 12 or the outer ring 11 rotates, the tapered rollers 13 roll on the raceway surfaces 16 and 20, respectively. Since each of the raceway surfaces 16 and 20 is formed of a conical surface, the rolling bearing 10 can simultaneously support a load acting in the axial direction (axial load) and a load acting in the radial direction (radial load).

図2を参照しつつ、図3によって、弾性部材15について説明する。図3(a)は、弾性部材15を軸方向に見た正面図であり、図3(b)は、図3(a)のY−Yの位置における断面図である。
弾性部材15は、中心軸mを中心とする環状で、周方向に一様な太さを有している。弾性部材15は、ニトリルゴム(NBR)やアクリルゴム(ACM)などの耐油性を有するゴム材で形成されており、本体部41と凸部42とが一体に形成されている。本体部41は、軸方向断面が略円形状である。凸部42は、弾性部材15の全周にわたって本体部41の軸方向の一方に形成されており、軸方向断面が矩形形状である。
The elastic member 15 will be described with reference to FIG. FIG. 3A is a front view of the elastic member 15 viewed in the axial direction, and FIG. 3B is a cross-sectional view taken along the line YY of FIG. 3A.
The elastic member 15 has an annular shape centered on the central axis m and has a uniform thickness in the circumferential direction. The elastic member 15 is made of an oil-resistant rubber material such as nitrile rubber (NBR) or acrylic rubber (ACM), and the main body portion 41 and the convex portion 42 are integrally formed. The main body 41 has a substantially circular cross section in the axial direction. The convex portion 42 is formed in one of the axial directions of the main body portion 41 over the entire circumference of the elastic member 15, and has a rectangular cross section in the axial direction.

本体部41の外周面(以下「本体外周面43」)は、軸方向断面では、直径dを有する円の一部で形成されている。
凸部42は、凸部側面44と、凸部外周面45及び凸部内周面46を備えている。凸部側面44は、中心軸mと直交して径方向に延在している。凸部外周面45は、凸部側面44の径方向外方の端から軸方向に延在して、本体外周面43とつながる円筒面である。凸部外周面45の外径は、本体部41の外径より小さく、かつ、ハウジング80の軸受嵌合面84の内径より小径である。
The outer peripheral surface of the main body 41 (hereinafter referred to as “main body outer peripheral surface 43”) is formed by a part of a circle having a diameter d in the axial cross section.
The convex portion 42 includes a convex portion side surface 44, a convex portion outer peripheral surface 45, and a convex portion inner peripheral surface 46. The convex portion side surface 44 extends in the radial direction at right angles to the central axis m. The convex portion outer peripheral surface 45 is a cylindrical surface extending axially from the radial outer end of the convex portion side surface 44 and connecting to the main body outer peripheral surface 43. The outer diameter of the outer peripheral surface 45 of the convex portion is smaller than the outer diameter of the main body 41 and smaller than the inner diameter of the bearing fitting surface 84 of the housing 80.

こうして、弾性部材15は、外径が最大となる点(図2に点Qで示す)及び内径が最小となる点(図2に点Pで示す)が、いずれも本体部41に形成されている。弾性部材15は、自由状態において、内周の周長(点Pの位置における周方向の長さである)が、溝底面31の周長より短い。したがって、弾性部材15が凹部30に組付けられた時には、本体部41が、全周にわたって弾性をもって溝底面31に押し付けられている。 In this way, the elastic member 15 is formed with a point having the maximum outer diameter (indicated by point Q in FIG. 2) and a point having the minimum inner diameter (indicated by point P in FIG. 2) in the main body 41. There is. In the free state, the elastic member 15 has an inner peripheral peripheral length (which is the length in the circumferential direction at the position of the point P) shorter than the peripheral length of the groove bottom surface 31. Therefore, when the elastic member 15 is assembled to the recess 30, the main body 41 is elastically pressed against the groove bottom surface 31 over the entire circumference.

弾性部材15の径方向の太さw1は、外輪11における溝底面31と軸受外径面17との径方向の寸法Hより大きい。径方向の太さw1は、弾性部材15の外径と内径との差の1/2の大きさであり、本体部41の直径dと等しい。弾性部材15が凹部30に組付けられた時には、本体部41の一部が、軸受外径面17より径方向外方に突出する。図2では、本体部41が軸受外径面17より突出する高さをsで示している。 The radial thickness w1 of the elastic member 15 is larger than the radial dimension H of the groove bottom surface 31 and the bearing outer diameter surface 17 of the outer ring 11. The radial thickness w1 is halved of the difference between the outer diameter and the inner diameter of the elastic member 15, and is equal to the diameter d of the main body 41. When the elastic member 15 is assembled in the recess 30, a part of the main body 41 projects radially outward from the bearing outer diameter surface 17. In FIG. 2, the height at which the main body 41 protrudes from the bearing outer diameter surface 17 is indicated by s.

弾性部材15の軸方向の太さw2は、外輪大端面18と溝側面33との軸方向の寸法Lより小さい。軸方向の太さw2とは、軸方向他方の本体外周面43の頂点Rと凸部側面44との軸方向の寸法を意味する。弾性部材15は、凹部30に組付けられた時に、外輪大端面18より軸方向一方に突出しない。 The axial thickness w2 of the elastic member 15 is smaller than the axial dimension L of the outer ring large end surface 18 and the groove side surface 33. The axial thickness w2 means the axial dimension of the apex R and the convex side surface 44 of the other main body outer peripheral surface 43 in the axial direction. When the elastic member 15 is assembled in the recess 30, the elastic member 15 does not protrude in one axial direction from the outer ring large end surface 18.

図4及び図5によって、転がり軸受10を軸受嵌合部82に組み込むときの、ハウジング80と弾性部材15との接触状態について説明する。
図4は、転がり軸受10と軸受嵌合部82が同軸に組付けられるときの、軸受嵌合部82の開口側端部と弾性部材15とが接触する様子を示している。図5は、転がり軸受10と軸受嵌合部82が互いに偏芯して組付けられるときの、軸受嵌合部82の開口側端部と弾性部材15とが接触する様子を示している。
The contact state between the housing 80 and the elastic member 15 when the rolling bearing 10 is incorporated into the bearing fitting portion 82 will be described with reference to FIGS. 4 and 5.
FIG. 4 shows how the elastic member 15 comes into contact with the opening-side end of the bearing fitting 82 when the rolling bearing 10 and the bearing fitting 82 are coaxially assembled. FIG. 5 shows a state in which the opening side end portion of the bearing fitting portion 82 and the elastic member 15 come into contact with each other when the rolling bearing 10 and the bearing fitting portion 82 are assembled in an eccentric manner.

まず、図4によって、転がり軸受10と軸受嵌合部82が同軸に組付けられるときの、ハウジング80と弾性部材15との接触状態について説明する。
転がり軸受10は、外輪大端面18を軸方向一方に向けて軸受嵌合部82に挿入されている。軸受嵌合面84の直径は、常温では転がり軸受10の軸受外径面17の直径よりわずかに大径であり、転がり軸受10は、軸受嵌合部82にすきまばめの状態で組付けられる。
また、凹部30に組み込まれた弾性部材15は、高さsだけ、軸受外径面17より径方向外方に突出している(図2参照)。
First, the contact state between the housing 80 and the elastic member 15 when the rolling bearing 10 and the bearing fitting portion 82 are coaxially assembled will be described with reference to FIG.
The rolling bearing 10 is inserted into the bearing fitting portion 82 with the outer ring large end surface 18 facing one axial direction. The diameter of the bearing fitting surface 84 is slightly larger than the diameter of the bearing outer diameter surface 17 of the rolling bearing 10 at room temperature, and the rolling bearing 10 is assembled to the bearing fitting portion 82 in a clearance-fitted state. ..
Further, the elastic member 15 incorporated in the recess 30 projects radially outward from the bearing outer diameter surface 17 by the height s (see FIG. 2).

弾性部材15の凸部外周面45の外径は、本体部41の外径より小さく、かつ、ハウジング80の軸受嵌合面84の内径より小径である。このため、転がり軸受10が軸受嵌合部82に挿入されるときに、ハウジング80と凸部42とが接触することがなく、本体部41が、ハウジング80の傾斜面87に軸方向に当接する。その後、転がり軸受10が軸方向に移動するにしたがって本体部41が傾斜面87に沿って変位して径方向に圧縮される。このとき、径方向に圧縮される高さsが小さいので、弾性部材15は容易に径方向に圧縮変形して軸受嵌合面84の内側に組み込まれるので、損傷を受けることがない。
転がり軸受10が軸受嵌合部82に組み込まれると、弾性部材15は、軸受嵌合面84と溝底面31とで径方向に挟まれて、高さsの分だけ径方向に弾性をもって圧縮された状態で組み込まれる。
The outer diameter of the convex outer peripheral surface 45 of the elastic member 15 is smaller than the outer diameter of the main body 41 and smaller than the inner diameter of the bearing fitting surface 84 of the housing 80. Therefore, when the rolling bearing 10 is inserted into the bearing fitting portion 82, the housing 80 and the convex portion 42 do not come into contact with each other, and the main body portion 41 abuts on the inclined surface 87 of the housing 80 in the axial direction. .. After that, as the rolling bearing 10 moves in the axial direction, the main body 41 is displaced along the inclined surface 87 and compressed in the radial direction. At this time, since the height s compressed in the radial direction is small, the elastic member 15 is easily compressed and deformed in the radial direction and incorporated inside the bearing fitting surface 84, so that the elastic member 15 is not damaged.
When the rolling bearing 10 is incorporated into the bearing fitting portion 82, the elastic member 15 is sandwiched in the radial direction between the bearing fitting surface 84 and the groove bottom surface 31, and is elastically compressed in the radial direction by the height s. It is incorporated in the state of being.

転がり軸受10は、外輪大端面18が当接面85と軸方向に当接して、軸方向に位置決めされる。ギア軸81の軸方向他方においても、同様にして転がり軸受10が軸方向に位置決めして組み付けられる。こうして、ギア軸81の軸方向両端を支持する転がり軸受10、10は、互いに軸方向に予圧が付与された状態で組み込まれる。 The rolling bearing 10 is positioned in the axial direction when the outer ring large end surface 18 abuts on the contact surface 85 in the axial direction. Similarly, the rolling bearing 10 is positioned and assembled in the axial direction on the other side of the gear shaft 81 in the axial direction. In this way, the rolling bearings 10 and 10 that support both ends of the gear shaft 81 in the axial direction are incorporated in a state where preload is applied in the axial direction to each other.

なお、弾性部材15の軸方向の太さw2は、外輪大端面18と溝側面33との軸方向の寸法Lより小さく設定されているため、弾性部材15は径方向にのみ圧縮された状態となっている。これは、弾性部材15が径方向及び軸方向に圧縮されることによって凹部30の内側に充満し、転がり軸受10の軸方向の組み込み不良が生じるのを回避するためである。しかしながら、凹部30を十分に大きく設定している場合には、弾性部材15が外輪大端面18より軸方向一方に突出することを妨げない。 Since the axial thickness w2 of the elastic member 15 is set smaller than the axial dimension L of the outer ring large end surface 18 and the groove side surface 33, the elastic member 15 is compressed only in the radial direction. It has become. This is to prevent the elastic member 15 from being compressed in the radial direction and the axial direction to fill the inside of the recess 30 and causing an axial assembly failure of the rolling bearing 10. However, when the recess 30 is set sufficiently large, it does not prevent the elastic member 15 from projecting from the outer ring large end surface 18 in one axial direction.

トランスミッションの温度が上昇すると、ハウジング80、ギア軸81及び転がり軸受10が、それぞれ軸方向及び径方向に膨張する。ハウジング80はアルミニウム製であり、線膨張係数は、概ね18〜25×10−6であり、ギア軸81及び転がり軸受10は鋼製であり、線膨張係数は、概ね10〜13×10−6である。したがって、ハウジング80の軸方向の熱膨張量(一方の軸受嵌合部82と他方の軸受嵌合部82との軸方向の寸法の増加量に等しい)は、ギア軸81の軸方向の熱膨張量より大きいので、転がり軸受10の軸方向の予圧が減少する。また、軸受嵌合面84の内径の熱膨張量は、外輪11の外径の熱膨張量より大きいので、外輪11の軸受外径面17とハウジング80の軸受嵌合面84とのすきまが拡大する。軸受嵌合面84の内径の熱膨張量と軸受外径面17の外径の熱膨張量との差Δは、概ね0.1mm以下(半径では0.05mm以下)である。 When the temperature of the transmission rises, the housing 80, the gear shaft 81, and the rolling bearing 10 expand in the axial and radial directions, respectively. The housing 80 is made of aluminum and has a coefficient of linear expansion of approximately 18 to 25 × 10-6 , the gear shaft 81 and the rolling bearing 10 are made of steel, and the coefficient of linear expansion is approximately 10 to 13 × 10-6. Is. Therefore, the amount of axial thermal expansion of the housing 80 (equal to the amount of increase in the axial dimension of one bearing fitting portion 82 and the other bearing fitting portion 82) is the amount of axial thermal expansion of the gear shaft 81. Since it is larger than the amount, the preload in the axial direction of the rolling bearing 10 is reduced. Further, since the amount of thermal expansion of the inner diameter of the bearing fitting surface 84 is larger than the amount of thermal expansion of the outer diameter of the outer ring 11, the clearance between the bearing outer diameter surface 17 of the outer ring 11 and the bearing fitting surface 84 of the housing 80 is expanded. do. The difference Δ between the thermal expansion amount of the inner diameter of the bearing fitting surface 84 and the thermal expansion amount of the outer diameter of the bearing outer diameter surface 17 is approximately 0.1 mm or less (0.05 mm or less in radius).

本実施形態では、弾性部材15が径方向に高さsだけ圧縮された状態で組み込まれている。高さsは、トランスミッションの温度が上昇することによる軸受嵌合面84の内径の熱膨張量と軸受外径面17の外径の熱膨張量との差Δより大きく設定されている。このため、弾性部材15は、常に軸受嵌合面84と溝底面31との間で弾性をもって圧縮された状態を維持することができる。 In the present embodiment, the elastic member 15 is incorporated in a state of being compressed by a height s in the radial direction. The height s is set to be larger than the difference Δ between the amount of thermal expansion of the inner diameter of the bearing fitting surface 84 and the amount of thermal expansion of the outer diameter of the bearing outer diameter surface 17 due to the increase in the temperature of the transmission. Therefore, the elastic member 15 can always maintain a state of being elastically compressed between the bearing fitting surface 84 and the groove bottom surface 31.

これにより、外輪11の軸受外径面17とハウジング80の軸受嵌合面84とのすきまが拡大したとしても、常に、弾性部材15と軸受嵌合面84との間、及び、弾性部材15と溝底面31との間に滑り摩擦力が生じる。この摩擦力によって、外輪11のクリープを防止することができる。 As a result, even if the gap between the bearing outer diameter surface 17 of the outer ring 11 and the bearing fitting surface 84 of the housing 80 is widened, the gap between the elastic member 15 and the bearing fitting surface 84 and the elastic member 15 are always present. A sliding frictional force is generated between the groove bottom surface 31 and the groove bottom surface 31. This frictional force can prevent creep of the outer ring 11.

以上説明したように、転がり軸受10を軸受嵌合部82に挿入するときは、同軸に嵌め合わされるのが好ましい。しかしながら、実際に転がり軸受10を軸受嵌合面84の内周に嵌め合わせるときには、互いに径方向に位置ずれする場合がある。偏芯量δが大きい場合には、弾性部材15がハウジング80と強く接触することにより変形し、あるいは切断する恐れがある。
本実施形態では、弾性部材15に凸部42を設けることによって、転がり軸受10をハウジング80の軸受嵌合部82に組付けるときに、弾性部材15が破損するのを防止している。図5によって説明する。
As described above, when the rolling bearing 10 is inserted into the bearing fitting portion 82, it is preferably fitted coaxially. However, when the rolling bearing 10 is actually fitted to the inner circumference of the bearing fitting surface 84, the rolling bearing 10 may be displaced from each other in the radial direction. When the eccentricity amount δ is large, the elastic member 15 may be deformed or cut due to strong contact with the housing 80.
In the present embodiment, the elastic member 15 is provided with the convex portion 42 to prevent the elastic member 15 from being damaged when the rolling bearing 10 is assembled to the bearing fitting portion 82 of the housing 80. This will be described with reference to FIG.

図5に示すように、転がり軸受10と軸受嵌合部82がδだけ偏芯して組付けられるときの、ハウジング80と弾性部材15との接触状態について説明する。図5では、転がり軸受10と同軸となる軸受嵌合部82の位置を破線で示している。
本実施形態では、弾性部材15の凸部外周面45の外径は、本体部41の外径より小さく、かつ、ハウジング80の軸受嵌合面84の内径より小径である。これにより、中心軸mを含む平面において、本体部41及び凸部42と径方向外方で接する接線nと中心軸mとのなす角度αは、傾斜面87を構成する円錐面の母線と中心軸mとのなす角度βより小さく設定されている。本実施形態では、接線nは、凸部42に対して凸部側面44と凸部外周面45とがつながる角部Aに接している。
As shown in FIG. 5, the contact state between the housing 80 and the elastic member 15 when the rolling bearing 10 and the bearing fitting portion 82 are eccentrically assembled by δ will be described. In FIG. 5, the position of the bearing fitting portion 82 coaxial with the rolling bearing 10 is shown by a broken line.
In the present embodiment, the outer diameter of the convex outer peripheral surface 45 of the elastic member 15 is smaller than the outer diameter of the main body 41 and smaller than the inner diameter of the bearing fitting surface 84 of the housing 80. As a result, in the plane including the central axis m, the angle α formed by the tangent line n that is in contact with the main body portion 41 and the convex portion 42 radially outward and the central axis m is the home line and the center of the conical surface forming the inclined surface 87. It is set smaller than the angle β formed by the axis m. In the present embodiment, the tangent line n is in contact with the corner portion A connecting the convex portion side surface 44 and the convex portion outer peripheral surface 45 with respect to the convex portion 42.

このため、偏芯量δが大きい場合に、ハウジング80と弾性部材15とが接近すると、本体部41と傾斜面87とが接触する前に、必ず凸部42と傾斜面87とが接触する。この状態で転がり軸受10が更に軸方向に移動すると、凸部42が傾斜面87に沿って径方向内方に付勢され、転がり軸受10と軸受嵌合部82との偏芯量δが低減する。その後、傾斜面87と本体部41とが接触するので、本体部41と傾斜面87とが接触する力が緩和されて、弾性部材15は容易に径方向に圧縮変形して軸受嵌合面84の内側に組み込まれる。
これに対して、仮に、弾性部材15が、凸部42を設けず、軸方向断面が円形の断面を有する本体部41のみで形成されていると仮定した場合には、傾斜面87が本体部41と強く当接するので、本体部41が傾斜面87と外輪11との間で挟まれて変形したり切断したりする恐れがある。
Therefore, when the housing 80 and the elastic member 15 come close to each other when the eccentricity amount δ is large, the convex portion 42 and the inclined surface 87 always come into contact with each other before the main body portion 41 and the inclined surface 87 come into contact with each other. When the rolling bearing 10 further moves in the axial direction in this state, the convex portion 42 is urged inward in the radial direction along the inclined surface 87, and the eccentricity δ between the rolling bearing 10 and the bearing fitting portion 82 is reduced. do. After that, since the inclined surface 87 and the main body 41 come into contact with each other, the force of contact between the main body 41 and the inclined surface 87 is relaxed, and the elastic member 15 is easily compressed and deformed in the radial direction to form the bearing fitting surface 84. Incorporated inside.
On the other hand, if it is assumed that the elastic member 15 is formed only by the main body 41 having a circular cross section in the axial direction without providing the convex portion 42, the inclined surface 87 is the main body. Since it comes into strong contact with 41, the main body 41 may be sandwiched between the inclined surface 87 and the outer ring 11 and may be deformed or cut.

以上説明したように、本実施形態の転がり軸受10では、外輪11の外周に弾性部材15を装着してハウジング80に対する外輪11のクリープを防いだ転がり軸受装置50において、ハウジング80に組付けるときに偏芯量δが大きい場合であっても、弾性部材15の本体部41が、ハウジング80と外輪11との間で挟まれるのを防止して、弾性部材15の切断等の損傷を防止することができる。 As described above, in the rolling bearing 10 of the present embodiment, when the rolling bearing device 50 in which the elastic member 15 is attached to the outer periphery of the outer ring 11 to prevent the outer ring 11 from creeping with respect to the housing 80, is assembled to the housing 80. Even when the eccentricity amount δ is large, the main body 41 of the elastic member 15 is prevented from being pinched between the housing 80 and the outer ring 11, and damage such as cutting of the elastic member 15 is prevented. Can be done.

なお、本実施形態の弾性部材15では、凸部42は周方向に連続して形成されている。しかし、これに限定されるものではなく、図6に示すように、凸部42aが周方向に断続的に形成されていてもよい。図6(a)は、弾性部材15aを軸方向に見た正面図であり、図6(b)は、図6(a)のY−Yの位置における断面図である。
また、本実施形態の弾性部材15では、凸部42が本体部41の軸方向の一方にのみ形成されているが、図7に示す弾性部材15bのように、凸部42が本体部41の軸方向の両側に形成されていてもよい。図7は、弾性部材15bを組み込んだ転がり軸受10について、図2と同様の軸方向断面図である。弾性部材15bを使用すると、弾性部材15bを転がり軸受10に組付けるときに、軸方向の向きに留意する必要がないので、組付け性を向上できる。
In the elastic member 15 of the present embodiment, the convex portion 42 is continuously formed in the circumferential direction. However, the present invention is not limited to this, and as shown in FIG. 6, the convex portion 42a may be formed intermittently in the circumferential direction. FIG. 6A is a front view of the elastic member 15a viewed in the axial direction, and FIG. 6B is a cross-sectional view taken along the line YY of FIG. 6A.
Further, in the elastic member 15 of the present embodiment, the convex portion 42 is formed only in one of the axial directions of the main body portion 41, but as in the elastic member 15b shown in FIG. 7, the convex portion 42 is the main body portion 41. It may be formed on both sides in the axial direction. FIG. 7 is an axial cross-sectional view similar to that of FIG. 2 for the rolling bearing 10 incorporating the elastic member 15b. When the elastic member 15b is used, it is not necessary to pay attention to the axial direction when assembling the elastic member 15b to the rolling bearing 10, so that the assembling property can be improved.

以上、本発明の実施形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。例えば、本実施形態では、転がり軸受として、転動体が円すいころである円すいころ軸受について説明したが、転動体が玉であるアンギュラ玉軸受や複列玉軸受であってもよい。また、転がり軸受が、アルミニウム製のハウジングに組付けられる場合について説明したが、ギア軸とハウジングとを、線膨張係数の近似した素材とした場合のように、転がり軸受に対する予圧変動が起こりにくい場合でも、外輪のクリープを防止する目的のためだけに本発明の転がり軸受を利用することができる。更に、本発明の転がり軸受は、車両のトランスミッションに用いる場合のみに限定されず、種々な場所に使用できる。 Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. The present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the present invention. For example, in the present embodiment, as the rolling bearing, a tapered roller bearing in which the rolling element is a tapered roller has been described, but an angular contact ball bearing or a double row ball bearing in which the rolling element is a ball may be used. Further, the case where the rolling bearing is assembled to the aluminum housing has been described, but when the preload fluctuation with respect to the rolling bearing is unlikely to occur as in the case where the gear shaft and the housing are made of a material having an approximate linear expansion coefficient. However, the rolling bearings of the present invention can be used only for the purpose of preventing creep of the outer ring. Further, the rolling bearing of the present invention is not limited to the case where it is used for a vehicle transmission, and can be used in various places.

(本実施形態)10:転がり軸受、11:外輪、12:内輪、13:円すいころ、14:保持器、15:弾性部材、16:外側軌道面、17:軸受外径面、18:外輪大端面、19:外輪小端面、20:内側軌道面、21:軸受内径面、22:内輪小端面、23:内輪大端面、24:小つば、25:大つば、30:凹部、31:溝底面、32:突出部、33:溝側面、34:突出部外周面、35:第1側面、36:第2側面、41:本体部、42:凸部、43:本体外周面、44:凸部側面、45:凸部外周面、46:凸部内周面、50:転がり軸受装置、
(従来技術)70:転がり軸受、71:外輪、72:内輪、73:Oリング、74:凹部、75:軌道面、80:ハウジング、81:ギア軸、82:軸受嵌合部、83:内周面、84:軸受嵌合面、85:当接面、87:傾斜面
(Implementation) 10: Rolling bearing, 11: Outer ring, 12: Inner ring, 13: Tapered roller, 14: Cage, 15: Elastic member, 16: Outer raceway surface, 17: Bearing outer diameter surface, 18: Outer ring size End face, 19: Outer ring small end face, 20: Inner raceway surface, 21: Bearing inner diameter surface, 22: Inner ring small end face, 23: Inner ring large end face, 24: Small brim, 25: Large brim, 30: Recess, 31: Groove bottom surface , 32: Protruding part, 33: Groove side surface, 34: Protruding part outer peripheral surface, 35: First side surface, 36: Second side surface, 41: Main body part, 42: Convex part, 43: Main body outer peripheral surface, 44: Convex part Side surface, 45: outer peripheral surface of convex portion, 46: inner peripheral surface of convex portion, 50: rolling bearing device,
(Prior art) 70: Rolling bearing, 71: Outer ring, 72: Inner ring, 73: O-ring, 74: Recessed, 75: Track surface, 80: Housing, 81: Gear shaft, 82: Bearing fitting part, 83: Inner Peripheral surface, 84: Bearing fitting surface, 85: Contact surface, 87: Inclined surface

Claims (4)

軸受嵌合部を備えたハウジングと、前記軸受嵌合部に組み込まれて軸を中心軸の周りで回転自在に支持する転がり軸受と、を備えた転がり軸受装置であって、
前記軸受嵌合部は、端部に面取り部を備えた円筒形状の軸受嵌合面を有し、
前記転がり軸受は、外輪と、内輪と、前記外輪と前記内輪との間に配置される複数の転動体と、中心軸を中心とする環状の弾性部材と、を有し、
前記弾性部材は、中心軸方向の断面が円形状の本体部と、前記軸受嵌合面の内径より小径で前記本体部から中心軸の方向に突出する凸部と、を一体に有し、前記外輪の軸受外径面と軸方向一方の側面とがつながる部位に前記凸部を前記軸方向一方に向けて組み込まれており、
中心軸を含む平面内で、前記本体部及び前記凸部と径方向外方で接する接線と中心軸との角度αは、前記面取り部の母線と中心軸との角度βより小さく、
前記転がり軸受を前記ハウジングに組み込むときに、前記弾性部材と前記面取り部とが軸方向で対向する向きに組み合わされる転がり軸受装置。
A rolling bearing device including a housing provided with a bearing fitting portion and a rolling bearing incorporated in the bearing fitting portion to rotatably support a shaft around a central shaft.
The bearing fitting portion has a cylindrical bearing fitting surface having a chamfered portion at an end thereof.
The rolling bearing has an outer ring, an inner ring, a plurality of rolling elements arranged between the outer ring and the inner ring, and an annular elastic member centered on a central axis.
The elastic member integrally has a main body portion having a circular cross section in the central axis direction and a convex portion having a diameter smaller than the inner diameter of the bearing fitting surface and protruding from the main body portion in the direction of the central axis. The convex portion is incorporated in a portion where the outer diameter surface of the bearing of the outer ring and one side surface in the axial direction are connected so that the convex portion is directed to one side in the axial direction.
In the plane including the central axis, the angle α between the tangent line and the central axis that are in contact with the main body portion and the convex portion radially outward is smaller than the angle β between the generatrix and the central axis of the chamfered portion.
A rolling bearing device in which the elastic member and the chamfered portion are combined in an axially opposed direction when the rolling bearing is incorporated into the housing.
前記凸部は、周方向に断続して複数形成されている、請求項1の転がり軸受装置。 The rolling bearing device according to claim 1, wherein a plurality of the convex portions are formed intermittently in the circumferential direction. 前記凸部は、周方向に連続して環状に形成されている、請求項1の転がり軸受装置。 The rolling bearing device according to claim 1, wherein the convex portion is continuously formed in an annular shape in the circumferential direction. 前記凸部は、軸方向の両側に形成されている、請求項1から3のいずれかの転がり軸受装置。 The rolling bearing device according to any one of claims 1 to 3, wherein the convex portions are formed on both sides in the axial direction.
JP2020073360A 2020-04-16 2020-04-16 Rolling bearing device Pending JP2021169843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073360A JP2021169843A (en) 2020-04-16 2020-04-16 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073360A JP2021169843A (en) 2020-04-16 2020-04-16 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2021169843A true JP2021169843A (en) 2021-10-28

Family

ID=78119389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073360A Pending JP2021169843A (en) 2020-04-16 2020-04-16 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2021169843A (en)

Similar Documents

Publication Publication Date Title
US9005066B2 (en) Motor assembly with speed reducer
US20090080824A1 (en) Bearing having thermal compensating capability
CN102985710B (en) Conical roller bearing device
US7108113B2 (en) One-way clutch built-in type rotation transmission device
US8337111B2 (en) Axial retention assembly
US6749050B2 (en) One-way clutch built-in type pulley device
US5553949A (en) Rolling contact bearing
EP3076038A1 (en) Rolling bearing with sealing arrangement
JP2021167647A (en) Rolling bearing
JP2021169843A (en) Rolling bearing device
WO2020059695A1 (en) Bearing device
EP1403546A1 (en) One-way clutch built-in type rotation transmission device
US20190226535A1 (en) Clutch device
JP2000320558A (en) Synthetic resin made retainer for roller bearing
US20040011618A1 (en) Pulley apparatus with built-in roller clutch and assembly method thereof
JP2005326000A (en) One-way clutch and clutch built-in type pulley device
JP2012041969A (en) Boot for constant velocity universal joint and constant velocity universal joint
JP2008208850A (en) One-way clutch
JP4123836B2 (en) Pulley unit sealing structure
JP2021148255A (en) Rolling bearing
JP2003278777A (en) Rolling bearing device
JP2021179238A (en) Conical roller bearing and rolling bearing device
JPH11336772A (en) Rolling bearing
JPS6298025A (en) Cylindrical roller bearing
JP4470910B2 (en) Pulley device with built-in roller clutch for alternator