JP2014149027A - Spring device and vibration insulation device - Google Patents

Spring device and vibration insulation device Download PDF

Info

Publication number
JP2014149027A
JP2014149027A JP2013017489A JP2013017489A JP2014149027A JP 2014149027 A JP2014149027 A JP 2014149027A JP 2013017489 A JP2013017489 A JP 2013017489A JP 2013017489 A JP2013017489 A JP 2013017489A JP 2014149027 A JP2014149027 A JP 2014149027A
Authority
JP
Japan
Prior art keywords
spring
vibration
leaf spring
leaf
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013017489A
Other languages
Japanese (ja)
Inventor
Tamon Yamazaki
多聞 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013017489A priority Critical patent/JP2014149027A/en
Publication of JP2014149027A publication Critical patent/JP2014149027A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated leaf spring capable of easily adjusting a surging frequency.SOLUTION: A laminated leaf spring comprises a plurality of leaf springs 1 connected in parallel. The leaf spring 1 has a distorted part 11 deformed by receiving a load. Between respective distorted parts 11 of adjacent leaf springs 1, a clearance 5 is formed. The leaf springs 1 comprise a plurality of kinds of leaf springs 1 whose eigen frequencies are different from each other. An attenuation member 6 injected to the clearance 5 between the respective distorted parts 11 of adjacent leaf springs 1 is included.

Description

この発明は、振動源から対象物への振動の伝達を抑制するばね装置および振動絶縁装置に関する。   The present invention relates to a spring device and a vibration isolation device that suppress transmission of vibration from a vibration source to an object.

従来、並列に接続され、板厚方向に重ねられた複数の板ばねを備えた重ね板ばねが知られている。それぞれの板ばねは、隣り合う板ばねとの間に摩擦力が発生するように、隣り合う板ばねと接触して配置されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a lap leaf spring including a plurality of leaf springs connected in parallel and stacked in a plate thickness direction is known. Each leaf spring is disposed in contact with an adjacent leaf spring so that a frictional force is generated between the leaf springs (see, for example, Patent Document 1).

特開昭58−199207号公報JP 58-199207 A

しかしながら、隣り合う板ばねが互いに接触しているので、重ね板ばねのサージング周波数を調節するためには、重ね板ばね全体で設計を行わなければならず、このため、重ね板ばねのサージング周波数の調節が困難であったという問題点があった。   However, since the adjacent leaf springs are in contact with each other, in order to adjust the surging frequency of the leaf springs, the entire leaf spring must be designed. There was a problem that adjustment was difficult.

この発明は、サージング周波数の調節を容易に行うことができるばね装置および振動絶縁装置を提供するものである。   The present invention provides a spring device and a vibration isolation device capable of easily adjusting a surging frequency.

この発明に係るばね装置は、並列に接続された複数のばね部材を備えたばね装置であって、ばね部材は、荷重を受けることによって変形する起歪部を有し、隣り合うばね部材のそれぞれの起歪部の間には、クリアランスが形成されている。   The spring device according to the present invention is a spring device including a plurality of spring members connected in parallel, and the spring member has a strain generating portion that is deformed by receiving a load, and each of the adjacent spring members. A clearance is formed between the strain generating portions.

この発明に係るばね装置によれば、隣り合うばね部材のそれぞれの起歪部の間には、クリアランスが形成されているので、それぞれのばね部材のサージング周波数がそのままばね装置のサージング周波数となる。その結果、それぞれのばね部材のサージング周波数を調節することによって、ばね装置のサージング周波数の調節を容易に行うことができる。   According to the spring device according to the present invention, since the clearance is formed between the respective strain generating portions of the adjacent spring members, the surging frequency of each spring member becomes the surging frequency of the spring device as it is. As a result, it is possible to easily adjust the surging frequency of the spring device by adjusting the surging frequency of each spring member.

この発明の実施の形態1に係る重ね板ばねを示す正面図である。It is a front view which shows the laminated leaf | plate spring which concerns on Embodiment 1 of this invention. 図1の重ね板ばねの力学モデルを示す構成図である。It is a block diagram which shows the dynamic model of the laminated leaf | plate spring of FIG. 図1の重ね板ばねの動剛性を示すグラフである。It is a graph which shows the dynamic rigidity of the laminated leaf | plate spring of FIG. この発明の実施の形態2に係る重ね板ばねを示す正面図である。It is a front view which shows the laminated leaf | plate spring which concerns on Embodiment 2 of this invention. 図4のそれぞれの板ばねの剛性値、固有振動数および枚数を示す表である。It is a table | surface which shows the rigidity value, natural frequency, and number of sheets of each leaf | plate spring of FIG. 図4の重ね板ばねの動剛性を示すグラフである。It is a graph which shows the dynamic rigidity of the laminated leaf | plate spring of FIG. この発明の実施の形態3に係る重ね板ばねを示す正面図である。It is a front view which shows the laminated leaf | plate spring which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る振動絶縁装置を示す断面図である。It is sectional drawing which shows the vibration isolator which concerns on Embodiment 4 of this invention. 図8の振動絶縁装置の振動伝達特性を示すグラフである。It is a graph which shows the vibration transmission characteristic of the vibration isolator of FIG.

以下、この発明の各実施の形態を図に基づいて説明するが、各図において、同一または相当の部材、部位については、同一符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding members and parts will be described with the same reference numerals.

実施の形態1.
振動環境下において対象物の安定化を図る技術は、防振技術、または、振動絶縁技術と呼ばれている。振動絶縁の基本原理は、振動源と対象物との間の振動伝達経路に振動絶縁装置を配置することによって、振動源から対象物への振動の伝達を低減し、対象物の振動を抑制するものである。この振動絶縁装置としては、具体的には、例えば、自動車のサスペンション、建築物の防振ダンパ、または、人工衛星の構体と観測機器との間の振動絶縁装置が挙げられる。
Embodiment 1 FIG.
A technique for stabilizing an object under a vibration environment is called a vibration isolation technique or a vibration isolation technique. The basic principle of vibration isolation is to reduce the transmission of vibration from the vibration source to the object and suppress the vibration of the object by arranging a vibration isolation device in the vibration transmission path between the vibration source and the object Is. Specific examples of the vibration isolator include a suspension for an automobile, an anti-vibration damper for a building, or a vibration isolator between a structure of an artificial satellite and an observation device.

振動絶縁装置を用いた防振系は、強制変位を発生させる振動源と対象物との間に、ばね装置およびダンパ装置で表される振動絶縁装置を配置した力学モデルで表される。振動絶縁装置の振動絶縁性能は、振動源の強制変位に対する対象物の変位振幅比で規定される振動伝達率(Transmissibility)の周波数特性(以下、振動伝達特性)で評価される。したがって、振動絶縁装置の設計においては、まず、対象物の構造特性および振動源から入力される振動特性のプロファイルを元にして、対象物の振動が要求仕様の範囲内となるための振動伝達特性を算出し、次に、この振動伝達特性を満たすばね剛性とダンパ粘性減衰係数とを解析によって算出し、最後に、これらの値を元にして、FEM解析または設計式を用いて、ばね装置およびダンパ装置の詳細設計を実施する。評価段階においては、解析結果と実機特性との性能を比較して、設計の妥当性を評価する。   A vibration isolation system using a vibration isolator is represented by a dynamic model in which a vibration isolator represented by a spring device and a damper device is disposed between a vibration source that generates a forced displacement and an object. The vibration isolation performance of the vibration isolation device is evaluated by a frequency characteristic (hereinafter referred to as vibration transmission characteristic) of a vibration transmissibility defined by a displacement amplitude ratio of the object with respect to the forced displacement of the vibration source. Therefore, in designing a vibration isolator, first, based on the structural characteristics of the object and the vibration characteristic profile input from the vibration source, the vibration transfer characteristics for the vibration of the object to be within the required specification range. Next, the spring stiffness and the damper viscous damping coefficient that satisfy this vibration transfer characteristic are calculated by analysis. Finally, based on these values, the FEM analysis or the design formula is used to determine the spring device and Detailed design of the damper device will be implemented. In the evaluation stage, the validity of the design is evaluated by comparing the performance between the analysis results and the actual machine characteristics.

しかしながら、このような手順で設計した振動絶縁装置は、理論特性と比較して振動絶縁効果が劣化することが多い。この一因としては、ばね装置のサージング現象が挙げられる。サージングとは、振動の加振周波数がばね装置の固有振動数と一致することによって現れるばね装置の共振現象である。ばね装置の固有振動数でばね剛性が増大することによって、振動伝達率が上昇(振動絶縁特性が劣化)する。これは、実際のばね装置が、理想的な力学モデルとは異なり、分布定数系で有限の質量を有することが原因である。したがって、特に大型の対象物を低剛性で支持するケースでは、ばね装置が必然的に大型化・重量化するため、サージング周波数が低下して、振動絶縁特性の劣化が顕著に現れる傾向がある。   However, the vibration isolation device designed by such a procedure often deteriorates the vibration isolation effect as compared with the theoretical characteristics. One reason for this is the surging phenomenon of the spring device. Surging is a resonance phenomenon of the spring device that appears when the excitation frequency of the vibration matches the natural frequency of the spring device. As the spring stiffness increases at the natural frequency of the spring device, the vibration transmissibility increases (vibration insulation characteristics deteriorate). This is because an actual spring device has a finite mass in a distributed parameter system, unlike an ideal dynamic model. Therefore, especially in a case where a large object is supported with low rigidity, the spring device inevitably increases in size and weight, so that the surging frequency is lowered and the vibration insulation characteristics tend to be noticeably deteriorated.

この実施の形態1では、ばね装置として重ね板ばねを例に説明する。図1はこの発明の実施の形態1に係る重ね板ばねを示す正面図である。図において、重ね板ばね(ばね装置)は、板厚方向に重ねられた48枚の板ばね(ばね部材)1と、隣り合う板ばね1の間に設けられたスペーサ2とを備えている。なお、板ばね1の枚数は、48枚に限らず、その他の枚数であってもよい。   In the first embodiment, a laminated leaf spring will be described as an example of a spring device. 1 is a front view showing a laminated leaf spring according to Embodiment 1 of the present invention. In the figure, the stacked leaf spring (spring device) includes 48 leaf springs (spring members) 1 stacked in the thickness direction, and a spacer 2 provided between the adjacent leaf springs 1. The number of leaf springs 1 is not limited to 48 and may be any other number.

それぞれの板ばね1は、スペーサ2を介して並列に接続されている。それぞれの板ばね1には、同種類のばねが用いられている。その結果、それぞれの板ばね1は、固有振動数が互いに一致している。   Each leaf spring 1 is connected in parallel via a spacer 2. The same kind of spring is used for each leaf spring 1. As a result, each leaf spring 1 has the same natural frequency.

板ばね1は、一方向両端部がスペーサ2に接続されている。これにより、それぞれの板ばね1は、一方向両端部がスペーサ2を介して拘束される。また、板ばね1は、一方向中央部に起歪部11を有している。起歪部11は、板ばね1に荷重が加えられることによって弾性変形する。ここで、板ばね1についての一方向とは、板ばね1を上方から視た場合に、対象物3に対して固定される板ばね1の部分と振動源4に対して固定される板ばね1の部分とを繋ぐ直線に沿った方向であって、さらに、板ばね1に沿った方向である。   The leaf spring 1 is connected to the spacer 2 at both ends in one direction. Thereby, each leaf | plate spring 1 is restrained via the spacer 2 at one direction both ends. Moreover, the leaf | plate spring 1 has the distortion part 11 in the one direction center part. The strain generating portion 11 is elastically deformed when a load is applied to the leaf spring 1. Here, the one direction with respect to the leaf spring 1 is a leaf spring fixed to the vibration source 4 and a portion of the leaf spring 1 fixed to the object 3 when the leaf spring 1 is viewed from above. 1 is a direction along a straight line connecting the first portion and a direction along the leaf spring 1.

それぞれの板ばね1は、重ね板ばねにおける対象物3側の端部に対して振動源4側の端部が変位するように、重ね板ばねに対して板厚方向に荷重が加えられた場合に、互いに等しく変形する。ここで、対象物3とは、重ね板ばねが設置される安定化対象物であり、振動源4とは、重ね板ばねを介して対象物3に強制変位を与える物である。   When each leaf spring 1 is loaded in the plate thickness direction with respect to the overlap leaf spring so that the end on the vibration source 4 side is displaced with respect to the end on the object 3 side in the overlap leaf spring Are equally deformed. Here, the object 3 is an object to be stabilized on which a laminated leaf spring is installed, and the vibration source 4 is an object that applies a forced displacement to the object 3 via the laminated leaf spring.

隣り合う板ばね1のそれぞれの起歪部11の間には、スペーサ2によってクリアランス5が形成されている。スペーサ2の厚み方向の寸法は、それぞれの板ばね1に荷重が加えられた場合に、隣り合う起歪部11が互いに接触しない程度の寸法となっている。これにより、起歪部11が弾性変形する場合に、隣り合う板ばね1のそれぞれの起歪部11が互いに接触することが防止される。言い換えれば、隣り合う板ばね1のそれぞれの起歪部11の間には、起歪部11が弾性変形する場合に隣り合う板ばね1のそれぞれの起歪部11が互いに接触しないように、クリアランス5が形成されている。   A clearance 5 is formed by the spacer 2 between the strain-generating portions 11 of the adjacent leaf springs 1. The dimension in the thickness direction of the spacer 2 is such that adjacent strain-generating portions 11 do not contact each other when a load is applied to each leaf spring 1. Accordingly, when the strain generating portions 11 are elastically deformed, the strain generating portions 11 of the adjacent leaf springs 1 are prevented from contacting each other. In other words, the clearance between the strain generating portions 11 of the adjacent leaf springs 1 is such that the strain generating portions 11 of the adjacent leaf springs 1 do not contact each other when the strain generating portion 11 is elastically deformed. 5 is formed.

図2は図1の重ね板ばねの力学モデルを示す構成図である。重ね板ばねは、起歪部11(図1)が弾性変形する場合に隣り合う板ばね1のそれぞれの起歪部11が互いに接触しないので、振動源4が複数の板ばね1によって並列に支持される力学モデルで表すことができる。   FIG. 2 is a block diagram showing a dynamic model of the laminated leaf spring of FIG. In the stacked leaf spring, when the strain generating portion 11 (FIG. 1) is elastically deformed, the strain generating portions 11 of the adjacent leaf springs 1 do not contact each other, so that the vibration source 4 is supported in parallel by the plurality of leaf springs 1. Can be represented by a dynamic model.

図3は図1の重ね板ばねの動剛性を示すグラフである。図3では、重ね板ばねの動剛性(剛性の周波数特性)を実線で示し、一枚の板ばね1の動剛性を破線で示している。また、図3では、横軸が周波数の値を表し、縦軸が剛性値を表している。板ばね1の剛性値は、低周波側では、約1000N/mに漸近し、高周波側では、周波数依存性を有している。特に、板ばね1の剛性値は、70Hzに反共振が現れ、200Hzに共振が現れている。   FIG. 3 is a graph showing the dynamic rigidity of the laminated leaf spring of FIG. In FIG. 3, the dynamic rigidity (frequency characteristic of rigidity) of the laminated leaf spring is indicated by a solid line, and the dynamic rigidity of one leaf spring 1 is indicated by a broken line. In FIG. 3, the horizontal axis represents the frequency value, and the vertical axis represents the stiffness value. The stiffness value of the leaf spring 1 asymptotically approaches about 1000 N / m on the low frequency side, and has frequency dependence on the high frequency side. In particular, the stiffness value of the leaf spring 1 exhibits anti-resonance at 70 Hz and resonance at 200 Hz.

一方、重ね板ばねの剛性値は、それぞれの板ばね1の剛性値の合計値となっており、さらに、板ばね1の剛性値と同様にして、70Hzに反共振が現れ、200Hzに共振が現れている。つまり、重ね板ばねは、板ばね1の固有振動数、つまり、板ばね1のサージング周波数がサージング周波数となる。したがって、板ばね1の固有振動数を調節することによって、重ね板ばねのサージング周波数を容易に調節することができる。   On the other hand, the stiffness value of the laminated leaf spring is the total value of the stiffness values of the leaf springs 1 and, similarly to the stiffness value of the leaf spring 1, anti-resonance appears at 70 Hz and resonance occurs at 200 Hz. Appears. That is, in the laminated leaf spring, the natural frequency of the leaf spring 1, that is, the surging frequency of the leaf spring 1 becomes the surging frequency. Therefore, by adjusting the natural frequency of the leaf spring 1, the surging frequency of the laminated leaf spring can be easily adjusted.

以上説明したように、この発明の実施の形態1に係る重ね板ばねによれば、隣り合う板ばね1のそれぞれの起歪部11の間には、クリアランス5が形成されているので、それぞれの板ばね1のサージング周波数がそのまま重ね板ばねのサージング周波数となる。その結果、例えば、重ね板ばねに入力される振動特性のプロファイルが予め把握されている場合には、板ばね1の固有振動数と振動源4による加振周波数が分離されるように、板ばね1を設計するだけでよく、重ね板ばねのサージング周波数の調節を容易に行うことができる。その結果、重ね板ばねの全体における解析が不要となるため、設計負荷を大きく低減させることができる。   As described above, according to the laminated leaf spring according to Embodiment 1 of the present invention, the clearances 5 are formed between the strain-generating portions 11 of the adjacent leaf springs 1. The surging frequency of the leaf spring 1 becomes the surging frequency of the laminated leaf spring as it is. As a result, for example, when the profile of the vibration characteristics input to the laminated leaf spring is known in advance, the leaf spring is separated so that the natural frequency of the leaf spring 1 and the excitation frequency by the vibration source 4 are separated. It is only necessary to design 1 and the surging frequency of the laminated leaf spring can be easily adjusted. As a result, since the analysis of the whole laminated leaf spring becomes unnecessary, the design load can be greatly reduced.

実施の形態2.
図4はこの発明の実施の形態2に係る重ね板ばねを示す正面図、図5は図4のそれぞれの板ばね1の剛性値、固有振動数および枚数を示す表である。図において、重ね板ばねは、固有振動数が互いに異なる6種類の板ばね1を備えている。また、重ね板ばねは、同種類の板ばね1を8枚ずつ備えている。したがって、重ね板ばねは、48枚の板ばね1を備えている。図5では、ばね番号が同一である板ばね1は、互いに同一の剛性値、固有振動数(一次固有振動数)を有している。なお、板ばね1の種類は、6種類に限らず、その他の数の種類であってもよい。また、同種類の板ばね1の枚数は、8枚に限らず、その他の枚数であってもよい。したがって、板ばね1の総枚数は、48枚に限らず、その他の枚数であってもよい。また、全ての板ばね1の種類が互いに異なる重ね板ばねであってもよい。
Embodiment 2. FIG.
FIG. 4 is a front view showing a laminated leaf spring according to Embodiment 2 of the present invention, and FIG. 5 is a table showing the rigidity value, natural frequency and number of each leaf spring 1 of FIG. In the figure, the laminated leaf spring includes six types of leaf springs 1 having different natural frequencies. In addition, the laminated leaf spring includes eight leaf springs 1 of the same type. Therefore, the laminated leaf spring includes 48 leaf springs 1. In FIG. 5, leaf springs 1 having the same spring number have the same stiffness value and natural frequency (primary natural frequency). In addition, the kind of leaf | plate spring 1 is not restricted to six types, Other number of types may be sufficient. Further, the number of leaf springs 1 of the same type is not limited to 8 and may be other numbers. Therefore, the total number of leaf springs 1 is not limited to 48, and may be any other number. Further, the leaf springs 1 may be different leaf springs.

この例では、重ね板ばねは、隣り合う板ばね1の固有振動数が互いに異なる固有振動数となるように板ばね1が並べられた構成となっている。なお、重ね板ばねは、固有振動数が同一の板ばね1が隣り合うように板ばね1が並べられた構成であってもよい。   In this example, the leaf springs are configured such that the leaf springs 1 are arranged so that the natural frequencies of the adjacent leaf springs 1 are different from each other. The laminated leaf spring may have a configuration in which the leaf springs 1 are arranged so that the leaf springs 1 having the same natural frequency are adjacent to each other.

図6は図4の重ね板ばねの動剛性を示すグラフである。図6では、実施の形態2に係る重ね板ばねの動剛性を実線で示し、実施の形態1に係る重ね板ばねの動剛性を破線で示している。実施の形態1に係る重ね板ばねは、それぞれの板ばね1の剛性を約1000N/mとし、固有振動数を200Hzとすることによって、約50000N/mの静剛性を有している。一方、実施の形態2に係る重ね板ばねは、約50000N/mの静剛性を有するように、固有振動数が互いに異なる6種類の板ばね1から構成されている。   FIG. 6 is a graph showing the dynamic rigidity of the laminated leaf spring of FIG. In FIG. 6, the dynamic rigidity of the laminated leaf spring according to the second embodiment is indicated by a solid line, and the dynamic rigidity of the laminated leaf spring according to the first embodiment is indicated by a broken line. The laminated leaf spring according to Embodiment 1 has a static stiffness of about 50000 N / m by setting the rigidity of each leaf spring 1 to about 1000 N / m and the natural frequency to 200 Hz. On the other hand, the laminated leaf spring according to the second embodiment is composed of six kinds of leaf springs 1 having different natural frequencies so as to have a static rigidity of about 50000 N / m.

実施の形態2に係る重ね板ばねは、固有振動数が互いに異なる6種類の板ばね1を備えているので、板ばね1の種類の数に対応する数のサージング周波数を有する。しかしながら、実施の形態2に係る重ね板ばねは、実施の形態1に係る重ね板ばねと比較して、同種類の板ばね1の数が少ないので、それぞれのサージング周波数におけるサージングピークが低下する。言い換えれば、実施の形態2に係る重ね板ばねは、実施の形態1に係る重ね板ばねと比較して、サージングに対する見かけ上の減衰効果を得ることができる。その他の構成は、実施の形態1と同様である。   Since the laminated leaf spring according to the second embodiment includes six types of leaf springs 1 having different natural frequencies, the number of surging frequencies corresponds to the number of types of leaf springs 1. However, since the number of leaf springs 1 of the same type is smaller in the laminated leaf spring according to the second embodiment than in the laminated leaf spring according to the first embodiment, the surging peak at each surging frequency is lowered. In other words, the laminated leaf spring according to the second embodiment can obtain an apparent damping effect against surging as compared with the laminated leaf spring according to the first embodiment. Other configurations are the same as those in the first embodiment.

以上説明したように、この発明の実施の形態2に係る重ね板ばねによれば、固有振動数が互いに異なる複数種類のばね板1を備えているので、実施の形態1に係る重ね板ばねと比較して、サージングを抑制することができる。   As described above, according to the laminated leaf spring according to the second embodiment of the present invention, since the plurality of types of spring plates 1 having different natural frequencies are provided, the laminated leaf spring according to the first embodiment and In comparison, surging can be suppressed.

また、この重ね板ばねは、サージングを抑制するためにコイルばねに粘弾性部材を貼り付けるばね装置(例えば、特開平08−210439号公報参照)と比較して、外部温度環境や経年劣化によって特性が変動する粘弾性部材を用いていないので、外部温度環境や使用期間によってサージングの抑制効果が変動することが抑制される。   In addition, this laminated leaf spring is characterized by an external temperature environment and aging deterioration as compared with a spring device (see, for example, JP-A-08-210439) in which a viscoelastic member is attached to a coil spring to suppress surging. Since a viscoelastic member that fluctuates is not used, fluctuations in the suppression effect of surging depending on the external temperature environment and usage period are suppressed.

また、この重ね板ばねは、サージングを抑制するためにコイルばねに弾性を有する金属製の塊状物を接触させて摩擦を発生させるばね装置(例えば、特開2005−291424号公報)と比較して、隣り合う板ばね1のそれぞれの起歪部11が互いに接触することなくサージングを抑制するので、振動レベルが小さい場合であってもサージングの抑制効果を得ることができる。   Further, this laminated leaf spring is compared with a spring device (for example, Japanese Patent Application Laid-Open No. 2005-291424) that generates friction by bringing an elastic metal block into contact with the coil spring to suppress surging. In addition, since the surging portions 11 of the adjacent leaf springs 1 suppress surging without contacting each other, the effect of suppressing surging can be obtained even when the vibration level is small.

実施の形態3.
図7はこの発明の実施の形態3に係る重ね板ばねを示す正面図である。図において、重ね板ばねは、隣り合う板ばね1のそれぞれの起歪部11の間のクリアランス5に充填された減衰部材6をさらに備えている。減衰部材6は、粘弾性体から構成されている。減衰部材6としては、ゴム状やゲル状のものが使用されている。
Embodiment 3 FIG.
FIG. 7 is a front view showing a laminated leaf spring according to Embodiment 3 of the present invention. In the figure, the laminated leaf spring further includes a damping member 6 filled in a clearance 5 between each strain-generating portion 11 of the adjacent leaf springs 1. The damping member 6 is composed of a viscoelastic body. As the damping member 6, a rubber-like or gel-like one is used.

この例では、それぞれの板ばね1は、隣り合う板ばね1の固有振動数が互いに異なる固有振動数となるように形成されている。減衰部材6は、特に、せん断歪に対して大きな減衰効果を有するので、特定のサージング周波数において隣り合う板ばね1が同相で振動することによって減衰部材6のせん断変形が現れないことを回避することができる。つまり、減衰部材6にせん断変形が現れることによって、板ばね1の振動を減衰させることができる。その他の構成は、実施の形態2と同様である。   In this example, each leaf spring 1 is formed such that the natural frequencies of the adjacent leaf springs 1 are different from each other. In particular, the damping member 6 has a great damping effect on the shear strain. Therefore, avoiding the occurrence of shear deformation of the damping member 6 due to the adjacent leaf springs 1 vibrating in the same phase at a specific surging frequency. Can do. That is, when the shearing deformation appears in the damping member 6, the vibration of the leaf spring 1 can be attenuated. Other configurations are the same as those of the second embodiment.

以上説明したように、この発明の実施の形態3に係る重ね板ばねによれば、隣り合う板ばね1のそれぞれの起歪部11の間のクリアランス5に充填された減衰部材6をさらに備えているので、サージングピークのさらなる抑制効果を得ることができる。   As described above, according to the laminated leaf spring according to Embodiment 3 of the present invention, the damping member 6 filled in the clearance 5 between the respective strain-generating portions 11 of the adjacent leaf springs 1 is further provided. Therefore, the further suppression effect of a surging peak can be acquired.

実施の形態4.
図8はこの発明の実施の形態4に係る振動絶縁装置を示す断面図、図9は図8の振動絶縁装置の振動伝達特性を示すグラフである。図において、振動絶縁装置は、複数の重ね板ばね7と、重ね板ばね7と並列に接続されたダンパ装置8とを備えている。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view showing a vibration isolator according to Embodiment 4 of the present invention, and FIG. 9 is a graph showing the vibration transfer characteristics of the vibration isolator of FIG. In the figure, the vibration isolator includes a plurality of overlapping leaf springs 7 and a damper device 8 connected in parallel with the overlapping leaf springs 7.

重ね板ばね7は、実施の形態3に記載の重ね板ばねと同様である。ダンパ装置8は、振動源4から伝達される振動を減衰する。   The laminated leaf spring 7 is the same as the laminated leaf spring described in the third embodiment. The damper device 8 attenuates the vibration transmitted from the vibration source 4.

振動絶縁装置を用いた場合の防振系の運動方程式は、下記の式(1)で表すことができる。   The equation of motion of the vibration isolation system when the vibration isolator is used can be expressed by the following equation (1).

Figure 2014149027
Figure 2014149027

ここで、m、c、k、x、xは、対象物3の質量、振動絶縁装置の粘性減衰係数、振動絶縁装置の剛性、対象物の応答変位、振動源4の強制変位を表している。これを、下記の式(2)のもとラプラス変換すると、振動源4の強制変位から安定化させる対象である対象物3の応答変位までの伝達関数T(s)は、下記の式(3)で表すことができる。 Here, m, c, k, x P and x B represent the mass of the object 3, the viscosity damping coefficient of the vibration isolator, the rigidity of the vibration isolator, the response displacement of the object, and the forced displacement of the vibration source 4. ing. When this is Laplace transformed under the following equation (2), the transfer function T (s) from the forced displacement of the vibration source 4 to the response displacement of the object 3 to be stabilized is expressed by the following equation (3) ).

Figure 2014149027
Figure 2014149027

このとき、防振系の振動伝達率は、|T(jω)|で定義され、その周波数特性は、図9のボード線図で表すことができる。理想的な重ね板ばね7を想定した場合(ばね剛性が周波数特性を持たずに一定であり、サージングが発生しない場合)、振動伝達特性は、図9における点線が示す特性となる。すなわち、振動伝達率が1を上回る共振点を迎えたのち、高周波域において、振動伝達率が1を下回る振動絶縁領域が現れ、その後は、一定のロールオフ特性を維持しながら振動伝達率が低下する。   At this time, the vibration transmissibility of the vibration isolation system is defined by | T (jω) |, and the frequency characteristic can be represented by the Bode diagram of FIG. When an ideal laminated leaf spring 7 is assumed (when the spring stiffness is constant without frequency characteristics and surging does not occur), the vibration transmission characteristics are the characteristics indicated by the dotted lines in FIG. That is, after reaching the resonance point where the vibration transmissibility exceeds 1, a vibration insulation region where the vibration transmissibility is less than 1 appears in the high frequency range, and thereafter the vibration transmissibility decreases while maintaining a certain roll-off characteristic. To do.

しかしながら、実際の重ね板ばね7は、サージングが発生するので、ばね剛性が周波数特性を有する。これにより、このような理想的な振動伝達特性が振動絶縁装置の実機において得られることはまれである。実際の振動伝達特性は、上記の式(3)の中の剛性の値に対して周波数特性を考慮した動剛性の値を代入することで得られる。例えば、実施の形態1の重ね板ばねを用いた振動絶縁装置の場合には、図9における破線が示すような振動伝達特性が算出される。すなわち、重ね板ばねのサージング周波数において振動伝達率が1付近まで増大し、振動絶縁効果が大きく劣化する。   However, since the surplus leaf spring 7 generates surging, the spring stiffness has frequency characteristics. As a result, such an ideal vibration transmission characteristic is rarely obtained in an actual vibration isolator. The actual vibration transfer characteristic can be obtained by substituting the value of dynamic rigidity considering the frequency characteristic for the value of rigidity in the above equation (3). For example, in the case of the vibration isolator using the laminated leaf spring of the first embodiment, the vibration transfer characteristic as indicated by the broken line in FIG. 9 is calculated. That is, the vibration transmissibility increases to near 1 at the surging frequency of the laminated leaf spring, and the vibration insulation effect is greatly degraded.

一方、実施の形態4に重ね板ばね7を用いた振動絶縁装置の場合には、実施の形態1の重ね板ばねを用いた振動絶縁装置の場合には200Hz付近において1倍程度であった振動伝達率が、図9における実線が示すように、サージピークが170Hz〜220Hzの帯域に分散することによって、−30dB程度に低下している。つまり、実施の形態4に係る振動絶縁装置では、従来において高周波域において問題となっていたサージングによる振動伝達率の上昇を抑制することができる。   On the other hand, in the case of the vibration isolator using the laminated leaf spring 7 in the fourth embodiment, in the case of the vibration isolator using the laminated leaf spring of the first embodiment, the vibration was about 1 time around 200 Hz. As indicated by the solid line in FIG. 9, the transmission rate is reduced to about −30 dB by dispersing the surge peak in a band of 170 Hz to 220 Hz. That is, in the vibration isolator according to Embodiment 4, it is possible to suppress an increase in vibration transmissibility due to surging, which has been a problem in the high frequency range in the past.

以上説明したように、この発明の実施の形態4に係る振動絶縁装置によれば、並列に接続された複数の板ばね1を有した重ね板ばね7を備え、板ばね1は、荷重を受けることによって変形する起歪部11を有し、隣り合う板ばね1のそれぞれの起歪部11の間には、クリアランス5が形成され、複数の板ばね1は、固有振動数が互いに異なる複数種類の板ばね1から構成され、重ね板ばね7は、振動源4からの振動伝達を遮断するので、サージングによる振動伝達率の上昇を抑制することができる。   As described above, according to the vibration isolator according to Embodiment 4 of the present invention, the leaf spring 1 having the plurality of leaf springs 1 connected in parallel is provided, and the leaf spring 1 receives a load. And a plurality of types of leaf springs 1 having different natural frequencies. The clearances 5 are formed between the respective straining portions 11 of the adjacent leaf springs 1. Since the leaf spring 1 is configured to block vibration transmission from the vibration source 4, an increase in vibration transmission rate due to surging can be suppressed.

なお、上記実施の形態4では、重ね板ばね7とダンパ装置8とが並列に接続された振動絶縁装置の構成について説明したが、これに限らず、例えば、ダンパ装置8を備えず重ね板ばね7のみの振動絶縁装置、または、ダンパ装置8にばね装置が直列に接続されるなどのダンパ装置8が複雑に組み上げられた振動絶縁装置であってもよい。   In the fourth embodiment, the configuration of the vibration isolation device in which the laminated leaf spring 7 and the damper device 8 are connected in parallel has been described. However, the configuration is not limited to this, and for example, the laminated leaf spring without the damper device 8 is provided. 7 may be a vibration isolating device in which the damper device 8 is assembled in a complicated manner, such as a vibration isolating device having only 7 or a spring device connected in series to the damper device 8.

また、上記実施の形態4では、重ね板ばね7が実施の形態3に記載の重ね板ばねと同様である振動絶縁装置の構成について説明したが、重ね板ばね7が実施の形態1に記載の重ね板ばね、または、実施の形態2に記載の重ね板ばねと同様である振動絶縁装置の構成であってもよい。   In the fourth embodiment, the configuration of the vibration isolator in which the laminated leaf spring 7 is the same as the laminated leaf spring described in the third embodiment has been described. However, the laminated leaf spring 7 is described in the first embodiment. The structure of the vibration insulation apparatus which is the same as the laminated leaf spring or the laminated leaf spring described in the second embodiment may be used.

また、各上記実施の形態では、ばね部材として、板ばね1を例に説明したが、これに限らず、例えば、コイルばねなど、その他のばね部材であってもよい。   Moreover, in each said embodiment, although the leaf | plate spring 1 was demonstrated as an example as a spring member, it is not restricted to this, For example, other spring members, such as a coil spring, may be sufficient.

また、各上記実施の形態では、ばね装置として、重ね板ばね7を例に説明したが、これに限らず、その他のばね装置であってもよい。   Moreover, in each said embodiment, although the laminated leaf | plate spring 7 was demonstrated as an example as a spring apparatus, not only this but another spring apparatus may be sufficient.

1 板ばね(ばね部材)、2 スペーサ、3 対象物、4 振動源、5 クリアランス、6 減衰部材、7 重ね板ばね(ばね装置)、8 ダンパ装置、11 起歪部。   DESCRIPTION OF SYMBOLS 1 Leaf spring (spring member), 2 Spacer, 3 Object, 4 Vibration source, 5 Clearance, 6 Damping member, 7 Lap leaf spring (Spring device), 8 Damper device, 11 Strain part

Claims (4)

並列に接続された複数のばね部材を備えたばね装置であって、
前記ばね部材は、荷重を受けることによって変形する起歪部を有し、
隣り合う前記ばね部材のそれぞれの前記起歪部の間には、クリアランスが形成されていることを特徴とするばね装置。
A spring device comprising a plurality of spring members connected in parallel,
The spring member has a strain generating portion that is deformed by receiving a load,
A spring device characterized in that a clearance is formed between the strain generating portions of the adjacent spring members.
固有振動数が互いに異なる複数種類の前記ばね部材を備えていることを特徴とする請求項1に記載のばね装置。   The spring device according to claim 1, comprising a plurality of types of the spring members having different natural frequencies. 隣り合う前記ばね部材のそれぞれの前記起歪部の間の前記クリアランスに充填された減衰部材をさらに備えたことを特徴とする請求項1または請求項2に記載のばね装置。   The spring device according to claim 1, further comprising a damping member filled in the clearance between the strain-generating portions of the adjacent spring members. 請求項1ないし請求項3の何れか一項に記載のばね装置を備え、
前記ばね装置は、振動源からの振動伝達を遮断することを特徴とする振動絶縁装置。
A spring device according to any one of claims 1 to 3 is provided,
The said spring apparatus interrupts | blocks the vibration transmission from a vibration source, The vibration insulation apparatus characterized by the above-mentioned.
JP2013017489A 2013-01-31 2013-01-31 Spring device and vibration insulation device Pending JP2014149027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017489A JP2014149027A (en) 2013-01-31 2013-01-31 Spring device and vibration insulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017489A JP2014149027A (en) 2013-01-31 2013-01-31 Spring device and vibration insulation device

Publications (1)

Publication Number Publication Date
JP2014149027A true JP2014149027A (en) 2014-08-21

Family

ID=51572164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017489A Pending JP2014149027A (en) 2013-01-31 2013-01-31 Spring device and vibration insulation device

Country Status (1)

Country Link
JP (1) JP2014149027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101940B1 (en) * 2019-03-25 2020-04-20 한국전력기술 주식회사 Dynamic Load Reduction Device through displacement limitation
CN112445075A (en) * 2019-08-30 2021-03-05 上海微电子装备(集团)股份有限公司 Flat reed, micro-motion device and photoetching machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850336A (en) * 1981-09-17 1983-03-24 Matsushita Electric Ind Co Ltd Movable body holder
JPS62127534A (en) * 1985-11-28 1987-06-09 Horikiri Bane Seisakusho:Kk Leaf
JPH04140530A (en) * 1990-09-28 1992-05-14 Kobe Steel Ltd Vibration damping device for structure
JPH04307141A (en) * 1990-10-25 1992-10-29 Hutchinson Sa Mount of elasticity
JP2010014166A (en) * 2008-07-02 2010-01-21 Nhk Spring Co Ltd Tensioner
WO2011125488A1 (en) * 2010-04-06 2011-10-13 株式会社松田技術研究所 Spherical suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850336A (en) * 1981-09-17 1983-03-24 Matsushita Electric Ind Co Ltd Movable body holder
JPS62127534A (en) * 1985-11-28 1987-06-09 Horikiri Bane Seisakusho:Kk Leaf
JPH04140530A (en) * 1990-09-28 1992-05-14 Kobe Steel Ltd Vibration damping device for structure
JPH04307141A (en) * 1990-10-25 1992-10-29 Hutchinson Sa Mount of elasticity
JP2010014166A (en) * 2008-07-02 2010-01-21 Nhk Spring Co Ltd Tensioner
WO2011125488A1 (en) * 2010-04-06 2011-10-13 株式会社松田技術研究所 Spherical suspension

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101940B1 (en) * 2019-03-25 2020-04-20 한국전력기술 주식회사 Dynamic Load Reduction Device through displacement limitation
CN112445075A (en) * 2019-08-30 2021-03-05 上海微电子装备(集团)股份有限公司 Flat reed, micro-motion device and photoetching machine
CN112445075B (en) * 2019-08-30 2023-12-29 上海微电子装备(集团)股份有限公司 Flat reed, micro-motion device and photoetching machine

Similar Documents

Publication Publication Date Title
Carrella et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness
Zhang et al. Optimal configurations for a linear vibration suppression device in a multi‐storey building
US10655699B2 (en) Self-tuned mass damper and system comprising the same
CN111336210B (en) Hybrid vibration control device and method based on negative stiffness and variable damping and application
JP6584680B2 (en) Vibration isolator
Yilmaz et al. Analysis and design of passive low-pass filter-type vibration isolators considering stiffness and mass limitations
Abbasi et al. Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
EP3467339B1 (en) Magnetic systems and tuned dampers for the use of inductance(s) in the insulation of a skyhook magnetic damper
JP2014149027A (en) Spring device and vibration insulation device
JP6463247B2 (en) Bellows damper, vibration isolator, and bellows damper design method
US10556710B2 (en) Lightweight passive attenuator for spacecraft
Du Plooy et al. The development of a tunable vibration absorbing isolator
JP4708747B2 (en) Design method of multiple dynamic vibration absorber
WO2019064669A1 (en) Vibration propagation suppression device
US11841060B1 (en) Isolation system and method
Li et al. Effect of negative stiffness nonlinearity on the vibration control effectiveness of tuned negative stiffness inerter damper
JP2006002559A (en) Base-isolation structure
JP2017218857A (en) Installation structure for rotary mass damper
JP2005330799A (en) Base isolation structure
RU2666020C2 (en) Double vibration isolation system
Hosseinloo et al. A new passive vibration isolator design for random base excitations in zero and non-zero G-loading situations
RU137068U1 (en) ELASTIC SUPPORT
JP3252736B2 (en) Adjusting the spring characteristics of the buffer spring
Dai et al. Nonlinear vibration isolation performance enhancement using elastic constraint and linkage mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202