JP2014148880A - Truss structure - Google Patents

Truss structure Download PDF

Info

Publication number
JP2014148880A
JP2014148880A JP2013019682A JP2013019682A JP2014148880A JP 2014148880 A JP2014148880 A JP 2014148880A JP 2013019682 A JP2013019682 A JP 2013019682A JP 2013019682 A JP2013019682 A JP 2013019682A JP 2014148880 A JP2014148880 A JP 2014148880A
Authority
JP
Japan
Prior art keywords
truss
triangular
support point
triangle
trusses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013019682A
Other languages
Japanese (ja)
Inventor
Kazunori Itakura
和則 板倉
Morihito Okuno
守人 奥野
Akihiro Takahashi
明宏 高橋
Maki Minami
真紀 南
Akira Samejima
亮 鮫島
Takayuki Iwamoto
貴幸 岩元
Ryo Hidaka
遼 日高
Daisuke Sugitomi
大祐 杉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2013019682A priority Critical patent/JP2014148880A/en
Publication of JP2014148880A publication Critical patent/JP2014148880A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a truss structure in which chord materials are combined in favorable balance by optimum lengths and numbers.SOLUTION: A truss structure comprises: a plurality of triangular trusses 1a, 1b-1 to 1c-3 which are aligned so that triangular faces which are obliquely erected are substantially parallel with one another; two upper chord materials 2b, 2c which connect opposite vertexes 5b-1 to 5b-3 of a plurality of the triangular trusses 1b-1 to 1c-3 with an opposite vertex 5a of a bottom side of the largest triangle truss 1a as a starting point; and two pairs of two lower chord materials 2b, 3c, 4b, 4c which connect both ends of bottom sides of a plurality of the triangular trusses 1b-1 to 1c-3 with both ends of the bottom side of the largest triangular truss 1a as starting points, respectively. By considering that the two upper chord materials 2b, 2c, the two pairs of the two lower chord materials 2b, 3c, 4b, 4c, and the largest triangular truss 1a as plane trusses which use one chord material, respectively, the opposite vertexes 5a, 5b-1 to 5b-3 of triangular bottom sides of a plurality of the triangular trusses 1a, 1b-1 to 1c-3 are inclined to the side of a support point A.

Description

本発明は、橋梁などに用いられる片持ち支持構造体のトラス構造に関する。   The present invention relates to a truss structure of a cantilever support structure used for a bridge or the like.

トラスを用いた構造体の荷重支持機構としては、土木では橋梁(トラス橋)、建築では小屋組みや三次元的なトラスによるドーム、機械ではタワークレーン等がある。片持ち支持構造体の荷重支持機構に用いられるトラス構造は、一般的にはトラス型クレーン等で示されるように、荷重が懸かる部分(荷重端)の荷重を、構造体の部材の軸力だけで支えることにある。なお、トラス型クレーンでは、部材の軸力の引張材の部分は主にワイヤーで支え、圧縮材の部分は主に鉄骨でトラスを組んで支えている。   As a load support mechanism of a structure using a truss, there are a bridge (truss bridge) in civil engineering, a dome with a hut and a three-dimensional truss in architecture, and a tower crane in machinery. The truss structure used for the load support mechanism of the cantilevered support structure is generally the same as the truss type crane etc. There is to support in. In the truss type crane, the tensile material portion of the axial force of the member is mainly supported by a wire, and the compression material portion is mainly supported by a truss assembled with a steel frame.

このような片持ち支持構造体の荷重支持機構に用いられるトラスで一番問題となるのは、圧縮材の座屈である。例えば、トラス型クレーンは、圧縮材の座屈を防ぐためにトラスを組むことにより、構造的座屈(全体座屈)および局部的座屈(部材の座屈)を防いでいる。すなわち、トラスは、極めて簡単に構成することが可能な上に、梁やラーメンが曲げや剪断で荷重を支持するのに対して、軸力で荷重を支持するので、非常に大きな荷重を支持することができる。なお、トラスには、一般的に平面トラスおよび立体トラスがあり、実用的にはクレーンなどのような建設機械や橋梁などに利用されている。   In the truss used for the load support mechanism of such a cantilever support structure, the most serious problem is buckling of the compressed material. For example, a truss type crane prevents structural buckling (overall buckling) and local buckling (member buckling) by assembling a truss to prevent buckling of a compressed material. In other words, the truss can be configured very easily, and the beam and the ramen support the load by bending and shearing, whereas the truss supports the load by an axial force, so it supports a very large load. be able to. The truss generally includes a flat truss and a solid truss, and is practically used for construction machines such as cranes and bridges.

この種のトラス構造に関して、様々な先行技術が開示されている。例えば、特許文献1には、木製の種々の荷重支持機構に用いられるトラス構造が開示されている。しかしながら、特許文献1では、木材の利用についてのみ説明されており、他の材質の利用については説明されていない。また、構造上各部材にかかる軸力が違うため、軸力を強く受ける部材があり、これによる座屈などの破損対策が考慮されていない。   Various prior arts have been disclosed for this type of truss structure. For example, Patent Document 1 discloses a truss structure used for various wooden load support mechanisms. However, Patent Document 1 describes only the use of wood, and does not describe the use of other materials. In addition, since the axial force applied to each member is structurally different, there is a member that receives a strong axial force, and measures against damage such as buckling due to this are not considered.

また、特許文献2には、梁・スラブ等の建材の撓みによって発生する曲げモーメントを解消し、建材を支える柱材・壁材等の鉛直方向部材の負担を軽減するために、自重・積載荷重等による建材の撓み方向とは逆方向に自体をわずかに湾曲状に形成させておき、かつ当該建材の内部にプレストレスによる緊張力を付加させるよう湾曲方向に沿って張力筋材を配することにより、建材の撓み変形によって発生する曲げモーメントを軽減する状態に補正させることを特徴とした建築構造建材における重力撓み補正方法が開示されている。   In addition, Patent Document 2 discloses that its own weight / loading load is applied to eliminate bending moments caused by bending of building materials such as beams and slabs, and to reduce the burden on vertical members such as columns and walls that support the building materials. In the direction opposite to the direction in which the building material bends due to, etc., it is formed in a slightly curved shape, and tension reinforcing material is arranged along the bending direction so as to add tension due to pre-stress inside the building material. Thus, there is disclosed a gravity deflection correction method for building structure building materials, characterized in that the bending moment generated by the bending deformation of the building materials is corrected.

また、特許文献3には、片持ち構造および引張構造を用いた吊り橋構造が開示されている。この吊り橋構造は、上部工と、橋脚および橋台からなる下部工とで構築される橋梁構造において、上部工は、主桁となる並行に複数本配置される高張力鋼のネジフシ鋼棒を引張して形成されたテンション構造部と、水平方向に延びる鋼製の片持ち桁と、水平方向に延びる両端変断面の片持ち箱桁とからなる対向する両岸に設けられた一対の片持ち箱桁部と、ネジフシ鋼棒を鋼コンクリート複合橋台に固定する定着部とからなるとともに、下部工が、鋼コンクリート複合橋台と、片持ち箱桁を支持する橋脚とからなる。   Patent Document 3 discloses a suspension bridge structure using a cantilever structure and a tension structure. This suspension bridge structure is a bridge structure constructed with superstructures and substructures consisting of piers and abutments, and the superstructure pulls high-tensile steel threaded steel bars that are arranged in parallel as the main girder. A pair of cantilever box girder provided on opposite sides of a tension structure formed in a horizontal direction, a steel cantilever girder extending in the horizontal direction, and a cantilever box girder extending in both ends in the horizontal direction. And a fixing part for fixing the screw-fushi steel bar to the steel-concrete composite abutment, and the substructure consists of a steel-concrete composite abutment and a pier that supports the cantilever box girder.

特表2002−531731号公報JP 2002-531731 A 特開2001−214563号公報JP 2001-214563 A 特開2011−6944号公報JP 2011-6944 A

本発明は、弦材を最適な長さと数でバランス良く組合せたトラス構造を提供することを目的とする。   An object of the present invention is to provide a truss structure in which chord members are combined with an optimal length and number in a well-balanced manner.

本発明のトラス構造は、底辺を略水平として斜めに立ち上げた三角形の各辺にそれぞれ弦材を配置して形成した三角トラスであって、最も大きな三角トラスを略中心としてその両側に向かって徐々に小さくした三角トラスを、三角形の面が略平行となるように並べて配置した複数の三角トラスと、最も大きな三角トラスの三角形の底辺の対頂点を起点として、その両側の複数の三角トラスのそれぞれの三角形の底辺の対頂点をそれぞれ結ぶ2つの上弦材と、最も大きな三角トラスの三角形の底辺の両端をそれぞれ起点として、その両側の複数の三角トラスのそれぞれの三角形の底辺の両端をそれぞれ結ぶ2組のそれぞれ2つの下弦材とを有し、2つの上弦材、2組のそれぞれ2つの下弦材および最も大きな三角トラスを、それぞれ1つの弦材とする平面トラスとみなして、上弦材および下弦材の一方の交点を支持点A、他方の交点を載荷点C、最も大きな三角トラスの三角形の底辺を支持点Bとし、複数の三角トラスの三角形の底辺の対頂点を支持点A側に傾斜させたものである。   The truss structure of the present invention is a triangular truss formed by arranging a chord material on each side of a triangle raised obliquely with the bottom side being substantially horizontal, with the largest triangular truss being approximately centered toward both sides thereof Starting from the triangle trusses with the triangle trusses that are gradually made smaller and arranged so that the planes of the triangles are approximately parallel to each other, and the bases of the triangles of the triangle of the largest triangle truss, Starting from the two upper chords that connect the opposite vertices of the base of each triangle and the ends of the base of the triangle of the largest triangular truss, the ends of the triangles of each of the triangular trusses on both sides are connected Two sets of two lower chords, two upper chords, two sets of two lower chords and the largest triangular truss, one chord As a plane truss, the intersection of one of the upper chord material and the lower chord material is a support point A, the other intersection is a loading point C, and the base of the triangle of the largest triangular truss is the support point B. In this example, the bottom vertex is inclined toward the support point A.

図1は本発明のトラス構造を模式化した斜視図、図2は図1のトラス構造を平面トラスとみなした平面図である。図1に示すように、本発明のトラス構造は、底辺を略水平として斜めに立ち上げた三角形の各辺にそれぞれ弦材を配置して形成した複数の三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…を有する。なお、これらの三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…は、最も大きな三角トラス1aを略中心としてその両側に向かって徐々に小さくした三角トラス1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…を、三角形の面が略平行となるように並べて配置したものである。   FIG. 1 is a perspective view schematically showing the truss structure of the present invention, and FIG. 2 is a plan view in which the truss structure of FIG. 1 is regarded as a flat truss. As shown in FIG. 1, the truss structure of the present invention has a plurality of triangular trusses 1a, 1b-1, 1b- formed by arranging a chord material on each side of a triangle raised obliquely with the bottom side being substantially horizontal. 2, 1b-3, ..., 1c-1, 1c-2, 1c-3, .... These triangular trusses 1a, 1b-1, 1b-2, 1b-3,..., 1c-1, 1c-2, 1c-3,. , Truss truss 1b-1, 1b-2, 1b-3,..., 1c-1, 1c-2, 1c-3,... Arranged side by side so that their triangular faces are substantially parallel. It is.

また、本発明のトラス構造は、最も大きな三角トラス1aの三角形の底辺の対頂点5aを起点として、その両側の複数の三角トラス1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…のそれぞれの三角形の底辺の対頂点5b−1,5b−2,5b−3,…,5c−1,5c−2,5c−3,…をそれぞれ結ぶ2つの上弦材2b,2cと、最も大きな三角トラス1aの三角形の底辺の両端をそれぞれ起点として、その両側の複数の三角トラス1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…のそれぞれの三角形の底辺の両端をそれぞれ結ぶ2組のそれぞれ2つの下弦材3b,3cおよび下弦材4b,4cとを有する。   Further, the truss structure of the present invention has a triangular base truss 1a of the largest triangular truss 1a as a starting point and a plurality of triangular trusses 1b-1, 1b-2, 1b-3,. , 1c-2, 1c-3,..., 5c-1, 5c-2, 5c-3,. The upper chords 2b, 2c and the ends of the base of the triangle of the largest triangular truss 1a are used as starting points, and a plurality of triangular trusses 1b-1, 1b-2, 1b-3,. .., 2c-3,... Have two sets of two lower chord members 3b and 3c and lower chord members 4b and 4c that respectively connect both ends of the bases of the triangles.

そして、本発明のトラス構造は、最も大きな三角トラス1a、2つの上弦材2b,2c、および、2組のそれぞれ2つの下弦材3b,3cならびに下弦材4b,4cを、図2に示すように、それぞれ1つの弦材11,12,13,14,15とする平面トラスとみなして、上弦材2b,2cおよび下弦材3b,4b,3c,4cの一方の交点(上弦材2b,3b,4bの交点、すなわち弦材12,14の交点)を支持点A、他方の交点(上弦材2c,3c,4cの交点、すなわち弦材13,15の交点)を載荷点C、最も大きな三角トラス1aの三角形の底辺B−B’を支持点Bとする。なお、図2における頂点Dは、最も大きな三角トラス1aの三角形の底辺の対頂点5a、すなわち、弦材11,12,13の交点である。   In the truss structure of the present invention, the largest triangular truss 1a, two upper chord members 2b and 2c, and two sets of two lower chord members 3b and 3c and lower chord members 4b and 4c, as shown in FIG. Are regarded as flat trusses having one chord member 11, 12, 13, 14, 15 respectively, and one intersection of the upper chord member 2b, 2c and the lower chord member 3b, 4b, 3c, 4c (upper chord member 2b, 3b, 4b Is the support point A, the other intersection (the intersection of the upper chords 2c, 3c, 4c, ie, the intersection of the chords 13, 15) is the loading point C, and the largest triangular truss 1a. The base BB ′ of the triangle is a support point B. Note that the vertex D in FIG. 2 is the paired vertex 5a of the triangle base of the largest triangular truss 1a, that is, the intersection of the chords 11, 12, and 13.

また、図2に示すように、頂点Dは、弦材15を水平に置いたとき、支持点Bの鉛直上方よりも支持点A側にずれており、弦材11は支持点A側に傾斜している。したがって、図1に示すトラス構造においても、三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…は、それぞれの三角形の底辺の対頂点5a,5b−1,5b−2,5b−3,…,5c−1,5c−2,5c−3,…を支持点A側に傾斜させたものとなっている。   Further, as shown in FIG. 2, when the chord material 15 is placed horizontally, the vertex D is shifted to the support point A side from the vertical upper side of the support point B, and the chord material 11 is inclined to the support point A side. doing. Therefore, also in the truss structure shown in FIG. 1, the triangular trusses 1a, 1b-1, 1b-2, 1b-3,..., 1c-1, 1c-2, 1c-3,. 5a, 5b-1, 5b-2, 5b-3,..., 5c-1, 5c-2, 5c-3,.

上記構成により、本発明のトラス構造では、平面トラスとみなしたときに、弦材12,13には引張力が、弦材11,14,15には圧縮力が作用する。そして、圧縮力が作用する弦材14,15について、弦材11を支持点A側に傾斜させることで、弦材14,15に加わる軸力をバランスさせ、弦材14,15の座屈を防ぐことができる。   With the above structure, when the truss structure of the present invention is regarded as a flat truss, a tensile force acts on the chord members 12, 13 and a compressive force acts on the chord members 11, 14, 15. Then, with respect to the chord members 14 and 15 on which the compressive force acts, the chord member 11 is tilted toward the support point A, thereby balancing the axial force applied to the chord members 14 and 15 and buckling the chord members 14 and 15. Can be prevented.

すなわち、本発明のトラス構造では、上弦材2b,2cには引張力が、下弦材3b,3c,4b,4cおよび三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…には圧縮力が作用する。そして、圧縮力が作用する下弦材3b,3c,4b,4cについて、三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…を支持点A側に傾斜させることで、下弦材3b,3c,4b,4cに加わる軸力をバランスさせ、下弦材3b,3c,4b,4cの座屈を防ぐことができる。   That is, in the truss structure of the present invention, the upper chord members 2b and 2c have a tensile force, and the lower chord members 3b, 3c, 4b and 4c and the triangular trusses 1a, 1b-1, 1b-2, 1b-3,. A compressive force acts on 1, 1c-2, 1c-3,. Then, triangular truss 1a, 1b-1, 1b-2, 1b-3, ..., 1c-1, 1c-2, 1c-3, ... are applied to the lower chord members 3b, 3c, 4b, 4c on which the compressive force acts. By inclining toward the support point A, the axial force applied to the lower chord members 3b, 3c, 4b, 4c can be balanced, and buckling of the lower chord members 3b, 3c, 4b, 4c can be prevented.

また、本発明のトラス構造では、圧縮力が作用する下弦材3b,3c,4b,4cは2組とし、複数の三角トラス1a,1b−1,1b−2,1b−3,…,1c−1,1c−2,1c−3,…を平行に配置して、上弦材2b,2cと連結することにより、下弦材3b,3c,4b,4cの座屈を上弦材2b,2cで防ぐことができる。また、三角トラスの斜辺の弦材を帯板材とした場合には、平面トラスを面として考えることができ、より下弦材3b,3c,4b,4cの座屈を防ぐことができる。   Further, in the truss structure of the present invention, the lower chord members 3b, 3c, 4b, 4c on which the compressive force acts are set in two sets, and a plurality of triangular trusses 1a, 1b-1, 1b-2, 1b-3,. 1, 1c-2, 1c-3,... Are arranged in parallel and connected to the upper chord members 2b, 2c to prevent buckling of the lower chord members 3b, 3c, 4b, 4c with the upper chord members 2b, 2c. Can do. Further, in the case where the chord material on the hypotenuse of the triangular truss is a band plate material, the flat truss can be considered as a surface, and buckling of the lower chord materials 3b, 3c, 4b, 4c can be prevented.

本発明のトラス構造によれば、圧縮力が作用する下弦材および三角トラスにより下弦材に加わる軸力をバランスさせ、下弦材の座屈を防ぐことができるため、弦材を最適な長さと数でバランス良く組み合わせたトラス構造を得ることができる。また、引張材である上弦材が少なくて済むため、接合部および部材を減らすことができ、経済的に優れたトラス構造を得ることができる。   According to the truss structure of the present invention, it is possible to balance the axial force applied to the lower chord material by the lower chord material on which the compressive force acts and the triangular truss, and to prevent buckling of the lower chord material. A truss structure with a well-balanced combination can be obtained. Further, since the upper chord material which is a tensile material can be reduced, the number of joints and members can be reduced, and an economically excellent truss structure can be obtained.

本発明のトラス構造を模式化した斜視図である。It is the perspective view which modeled the truss structure of this invention. 図1のトラス構造を平面トラスとみなした平面図である。It is the top view which considered the truss structure of FIG. 1 as a plane truss. 本発明の実施の形態におけるトラス構造を平面トラスとみなした平面図である。It is the top view which considered the truss structure in embodiment of this invention as a plane truss. 頂点Dのずらし距離LXの算出条件を示す説明図である。Is an explanatory view showing the condition of calculating the shift distance L X of the vertex D. 本発明の実施例におけるトラス構造を用いた橋梁の模型写真である。It is a model photograph of the bridge using the truss structure in the Example of this invention.

図3は本発明の実施の形態におけるトラス構造を平面トラスとみなした平面図である。図3に示す平面トラスは、図1および図2で説明した本発明のトラス構造およびその平面トラスの一実施形態を示すものであり、共通する構成部分については同一符号を付している。   FIG. 3 is a plan view in which the truss structure in the embodiment of the present invention is regarded as a plane truss. The flat truss shown in FIG. 3 shows an embodiment of the truss structure of the present invention and the flat truss described with reference to FIGS. 1 and 2, and the same reference numerals are given to common components.

本実施形態における平面トラスを設計する場合は、図3に示すように、長さLの長辺を水平に、長さHの短辺を鉛直にして描いた長方形の下辺の角に、荷重が掛かる載荷点Cを設け、支持点Bを下辺の載荷点CからL1の位置(載荷点Cから支持点Bまでの長さL1)に、支持点Aを短辺のH1の高さ位置(支持点Aから支持点Bと載荷点Cとを結ぶ直線まで下ろした垂線の長さH1)に、頂点Dを上辺の中央から右にLXずらした位置にそれぞれ設けて、弦材11〜15を配置する。 When designing the plane truss in the present embodiment, as shown in FIG. 3, the load is applied to the corner of the lower side of the rectangle drawn with the long side of the length L being horizontal and the short side of the length H being vertical. The loading point C to be applied is provided, the supporting point B is located at the position L 1 from the lower loading point C (the length L 1 from the loading point C to the supporting point B), and the supporting point A is the height of H 1 on the short side. At each position (length H 1 of the vertical line extending from the support point A to the straight line connecting the support point B and the loading point C), the vertex D is shifted L X from the center of the upper side to the right. 11 to 15 are arranged.

この平面トラスにおいて、載荷点Cに荷重がかかるとき、支持点Aは下から上方に向けて鉛直に、支持点Bは上から下方に向け鉛直にそれぞれ平面トラスを支えており、支持点A―頂点D間の弦材12、および、載荷点C―頂点D間の弦材13にはそれぞれ引張力が作用する。また、載荷点C―支持点B間の弦材15と、支持点B―支持点A間の弦材14と、支持点B―頂点D間の弦材11とには圧縮力が作用する。   In this plane truss, when a load is applied to the loading point C, the support point A supports the plane truss vertically from the bottom to the top, and the support point B vertically supports from the top to the bottom. Tensile force acts on the chord material 12 between the apexes D and the chord material 13 between the loading point C and the apex D, respectively. Further, a compressive force acts on the chord material 15 between the loading point C and the support point B, the chord material 14 between the support point B and the support point A, and the chord material 11 between the support point B and the apex D.

頂点Dは、支持点Bから鉛直上方に伸ばした線と長方形の上辺との交点をずらし距離LX右側に移動させて設定しているが、これは載荷点C―支持点B間を結ぶ弦材15と支持点A―支持点B間を結ぶ弦材14に加わる圧縮力をバランスさせるためである。すなわち、中央の弦材11を斜めにすることで、弦材11の長さがやや長くなり、載荷点C―支持点B間の弦材15と支持点B―支持点A間の弦材14の軸力をバランスさせ、座屈の危険性を低減させている。 The vertex D is set by shifting the intersection of the line extending vertically upward from the support point B and the upper side of the rectangle to the right side of the distance L X , which is a string connecting the loading point C and the support point B. This is to balance the compressive force applied to the chord 14 connecting the material 15 and the support point A to the support point B. That is, by making the central chord material 11 diagonal, the chord material 11 is slightly lengthened, and the chord material 15 between the loading point C and the support point B and the chord material 14 between the support point B and the support point A are shown. This balances the axial force and reduces the risk of buckling.

なお、本実施形態においては、頂点Dのずらし距離LXは、弦材14,15が同時に座屈を起こすことを条件として、以下のように求めている。 In the present embodiment, the shift distance L X of the vertex D is obtained as follows on the condition that the chord members 14 and 15 simultaneously buckle.

図3の弦材14,15に同じ部材(断面、材料)を用いた場合、弦材15,14のそれぞれの線形座屈荷重PCR1,PCR2は、
CR1(弦材15)=π2EI/(L12 …(1)
CR2(弦材14)=π2EI/{(L22+(H12} …(2)
但し、奥行き方向の長さは小さいとして考慮していない。
When the same member (cross section, material) is used for the chord members 14 and 15 in FIG. 3, the linear buckling loads P CR1 and P CR2 of the chord members 15 and 14 are
P CR1 (string material 15) = π 2 EI / (L 1 ) 2 (1)
P CR2 (string material 14) = π 2 EI / {(L 2 ) 2 + (H 1 ) 2 } (2)
However, this is not considered because the length in the depth direction is small.

ここで、弦材14,15が同時に座屈を起こすためには、
π2EI=PCR1(L12=PCR2{(L22+(H12} …(3)
が成り立てば良い。
Here, in order for the string members 14 and 15 to buckle at the same time,
π 2 EI = P CR1 (L 1 ) 2 = P CR2 {(L 2 ) 2 + (H 1 ) 2 } (3)
Should be established.

なお、トラスの解法の1つであるクレモナ法の示力図(図4参照。)によると、
CR1(弦材15)=PL2(L1+LX)/(LH) …(4)
CR2(弦材14)=PL1(LX−L2){(L22+(H121/2/{L(H1X−HL2)} …(5)
となる。
According to the Cremona method (see Fig. 4), which is one of the truss solutions,
P CR1 (string material 15) = PL 2 (L 1 + L X ) / (LH) (4)
P CR2 (string material 14) = PL 1 (L X −L 2 ) {(L 2 ) 2 + (H 1 ) 2 } 1/2 / {L (H 1 L X −HL 2 )} (5)
It becomes.

(4),(5)式を(3)式に代入すると、
{PL2(L1+LX)/(LH)}(L12
=[PL1(LX−L2){(L22+(H121/2/{L(H1X−HL2)}]{(L22+(H12} …(6)
Substituting equations (4) and (5) into equation (3),
{PL 2 (L 1 + L X ) / (LH)} (L 1 ) 2
= [PL 1 (L X −L 2 ) {(L 2 ) 2 + (H 1 ) 2 } 1/2 / {L (H 1 L X −HL 2 )}] {(L 2 ) 2 + (H 1 ) 2 } (6)

(6)式を約分すると、
12(L1+LX)/H−(LX−L2){(L22+(H123/2/(H1X−HL2)=0 …(7)
When the equation (6) is reduced,
L 1 L 2 (L 1 + L X ) / H− (L X −L 2 ) {(L 2 ) 2 + (H 1 ) 2 } 3/2 / (H 1 L X −HL 2 ) = 0. 7)

ゆえに、
F=L12(L1+LX)/H−(LX−L2){(L22+(H123/2/(H1X−HL2)=0
となるLXを算出する。
therefore,
F = L 1 L 2 (L 1 + L X ) / H− (L X −L 2 ) {(L 2 ) 2 + (H 1 ) 2 } 3/2 / (H 1 L X −HL 2 ) = 0
L X is calculated.

なお、LXの算出は、(8)式に(H1X−HL2)を掛けてLXに関する2次方程式を解いても良いし、Fの+,−の符号が変わるときのLXを求めても良い。なお、上で説明した頂点Dのずらし距離LXの算出方法は、弦材14,15が同時に座屈を起こすことを条件とした場合の一つの例であり、ずらし距離LXは他の条件を勘案して適宜変更されうる。 The calculation of L X may be solved quadratic equation for L X by multiplying the (8) formula (H 1 L X -HL 2) , + the F, - L when the code is changed You may ask for X. Note that the calculation method of the shift distance L X of the vertex D described above is one example when the chord members 14 and 15 are simultaneously buckled, and the shift distance L X is determined based on other conditions. Can be changed as appropriate.

図5は本発明の実施例におけるトラス構造を用いた片持ち支持構造体としての橋梁の模型写真である。図5に示す橋梁20は、図3で説明した長方形の長辺の長さLを1000mm、短辺Hの長さを300mmとし、頂点Dのずらし距離LXを50mmとした平面トラスを設定し、頂点D−支持点Bに平行に複数の三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4を配置したものである。 FIG. 5 is a model photograph of a bridge as a cantilever support structure using a truss structure in an embodiment of the present invention. The bridge 20 shown in FIG. 5 is a flat truss with the long side length L of the rectangle described in FIG. 3 set to 1000 mm, the short side H set to 300 mm, and the shift distance L X of the vertex D is set to 50 mm. A plurality of triangular trusses 21a, 21b-1, 21b-2, 21b-3, 21c-1, 21c-2, 21c-3, 21c-4 are arranged in parallel to the vertex D-support point B.

上記構成の橋梁20では、載荷点C−頂点D間を結ぶ上弦材22および支持点A−頂点D間を結ぶ上弦材23には引張力が作用する。また、載荷点C−支持点B間を結ぶ下弦材24,25、支持点B−支持点A間を結ぶ下弦材26,27、および、三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4には圧縮力が作用する。そして、このトラス構造では、三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4が支持点A側に傾斜しているため、載荷点C−頂点D間を結ぶ上弦材22の長さが支持点A−頂点D間を結ぶ上弦材23の長さよりもやや長くなり、支持点B−支持点A間を結ぶ下弦材26,27に加わる圧縮力が、載荷点C−支持点B間を結ぶ下弦材24,25に加わる圧縮力よりも軽減される。   In the bridge 20 having the above configuration, a tensile force acts on the upper chord member 22 connecting the loading point C and the apex D and the upper chord member 23 connecting the support point A and the apex D. Further, lower chord members 24, 25 connecting the loading point C and the support point B, lower chord members 26, 27 connecting the support point B and the support point A, and triangular trusses 21a, 21b-1, 21b-2, 21b- A compression force acts on 3, 21c-1, 21c-2, 21c-3, and 21c-4. In this truss structure, the triangular trusses 21a, 21b-1, 21b-2, 21b-3, 21c-1, 21c-2, 21c-3, 21c-4 are inclined toward the support point A side. The length of the upper chord member 22 connecting the loading point C and the apex D is slightly longer than the length of the upper chord member 23 connecting the support point A and the apex D, and the lower chord member 26 connecting the support point B and the support point A, The compression force applied to 27 is reduced more than the compression force applied to the lower chord members 24 and 25 connecting the loading point C and the support point B.

すなわち、三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4を支持点A側に傾斜させることで、下弦材24,25,26,27に加わる軸力がバランスし、下弦材24,25,26,27の座屈が防止される。このように、本実施例における橋梁20は、圧縮材(下弦材24,25,26,27)を最適な長さと数でバランス良く組み合わせたものとなる。   That is, by tilting the triangular trusses 21a, 21b-1, 21b-2, 21b-3, 21c-1, 21c-2, 21c-3, 21c-4 to the support point A side, the lower chord members 24, 25, The axial force applied to 26, 27 is balanced, and buckling of the lower chord members 24, 25, 26, 27 is prevented. Thus, the bridge 20 in the present embodiment is a combination of compression materials (lower chord materials 24, 25, 26, and 27) with an optimal length and number in a well-balanced manner.

また、本実施例における橋梁20では、圧縮力が作用する下弦材24,25,26,27は2組とし、複数の三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4を平行に配置して、上弦材22,23と連結することにより、下弦材24,25,26,27の座屈を上弦材22,23で防いでおり、引張材である上弦材22,23が少なくて済むため、接合部および部材を減らすことができ、経済的に優れたものとなる。特に、材料として木材を使用する場合、木材は引張の方が圧縮よりも強いため、引張材である上弦材22,23は圧縮材である下弦材24,25,26,27よりも少なくかつ断面を小さくできるので、構造体を軽量化することができる。   Further, in the bridge 20 in this embodiment, the lower chord members 24, 25, 26, and 27 on which the compressive force acts are set in two sets, and a plurality of triangular trusses 21a, 21b-1, 21b-2, 21b-3, 21c-1 , 21c-2, 21c-3, 21c-4 are arranged in parallel and connected to the upper chord members 22, 23, so that the lower chord members 24, 25, 26, 27 are prevented from buckling by the upper chord members 22, 23. In addition, since the upper chord members 22 and 23, which are tensile materials, can be reduced, the number of joints and members can be reduced, which is economically excellent. In particular, when wood is used as a material, the tension of the wood is stronger than the compression, so that the upper chord members 22 and 23 which are tensile materials are smaller than the lower chord members 24, 25, 26 and 27 which are compressive materials and have a cross section. The structure can be reduced in weight.

また、図5に示す橋梁20では、三角トラス21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4の斜辺の弦材を帯板材としており、図3の平面トラスを面として考えることができるため、より下弦材24,25,26,27の座屈を防ぐことが可能となっている。   Moreover, in the bridge 20 shown in FIG. 5, the chord material of the hypotenuse of the triangular trusses 21a, 21b-1, 21b-2, 21b-3, 21c-1, 21c-2, 21c-3, 21c-4 is used as the strip plate material. Since the plane truss of FIG. 3 can be considered as a plane, it is possible to prevent buckling of the lower chord members 24, 25, 26, and 27.

なお、本実施例では、L:Hは1:0.3としているが、0<H1/H<1,0<L1/L<1の範囲で任意に変更することが可能である。但し、圧縮力が掛かる弦材11,14,15のバランスを考えた場合、L:Hは1:0.888程度までとするのが好ましい。 In this embodiment, L: H is 1: 0.3, but can be arbitrarily changed in the range of 0 <H 1 / H <1, 0 <L 1 / L <1. However, when considering the balance of the chord members 11, 14, and 15 to which the compressive force is applied, it is preferable that L: H is up to about 1: 0.888.

本発明のトラス構造は、橋梁などの片持ち支持構造体のトラス構造として有用である。   The truss structure of the present invention is useful as a truss structure of a cantilever support structure such as a bridge.

A,B 支持点
C 載荷点
D 頂点
1a,1b−1,1b−2,1b−3,1c−1,1c−2,1c−3 三角トラス
2b,2c 上弦材
3b,3c,4b,4c 下弦材
11,12,13,14,15 弦材
5a,5b−1,5b−2,5b−3,5c−1,5c−2,5c−3 三角形の底辺の対頂点
20 橋梁
21a,21b−1,21b−2,21b−3,21c−1,21c−2,21c−3,21c−4 三角トラス
22,23 上弦材
24,25,26,27 下弦材
A, B Support point C Loading point D Vertex 1a, 1b-1, 1b-2, 1b-3, 1c-1, 1c-2, 1c-3 Triangular truss 2b, 2c Upper chord material 3b, 3c, 4b, 4c Lower chord Material 11, 12, 13, 14, 15 String material 5a, 5b-1, 5b-2, 5b-3, 5c-1, 5c-2, 5c-3 Vertex of the base of the triangle 20 Bridge 21a, 21b-1 , 21b-2, 21b-3, 21c-1, 21c-2, 21c-3, 21c-4 Triangular truss 22, 23 Upper chord material 24, 25, 26, 27 Lower chord material

Claims (3)

底辺を略水平として斜めに立ち上げた三角形の各辺にそれぞれ弦材を配置して形成した三角トラスであって、最も大きな三角トラスを略中心としてその両側に向かって徐々に小さくした三角トラスを、前記三角形の面が略平行となるように並べて配置した複数の三角トラスと、
前記最も大きな三角トラスの三角形の底辺の対頂点を起点として、その両側の前記複数の三角トラスのそれぞれの三角形の底辺の対頂点をそれぞれ結ぶ2つの上弦材と、
前記最も大きな三角トラスの三角形の底辺の両端をそれぞれ起点として、その両側の前記複数の三角トラスのそれぞれの三角形の底辺の両端をそれぞれ結ぶ2組のそれぞれ2つの下弦材とを有し、
前記2つの上弦材、前記2組のそれぞれ2つの下弦材および前記最も大きな三角トラスを、それぞれ1つの弦材とする平面トラスとみなして、前記上弦材および下弦材の一方の交点を支持点A、他方の交点を載荷点C、前記最も大きな三角トラスの三角形の底辺を支持点Bとし、前記複数の三角トラスの三角形の底辺の対頂点を前記支持点A側に傾斜させたトラス構造。
Triangular trusses that are formed by placing chords on each side of a triangle that rises diagonally with the bottom side approximately horizontal, and the triangular trusses that gradually become smaller toward both sides of the largest triangular truss. A plurality of triangular trusses arranged side by side so that the triangular surfaces are substantially parallel;
Two upper chord members each connecting the pair of apexes of the triangles of each of the plurality of triangle trusses on both sides thereof, starting from the pair of apexes of the triangle base of the largest triangle truss;
Two lower chord members each having two sets of two lower chord members respectively connecting both ends of the triangle bases of the plurality of triangular trusses on both sides thereof, starting from both ends of the triangle base of the largest triangular truss,
The two upper chord members, the two sets of the two lower chord members, and the largest triangular truss are regarded as a plane truss each having one chord member, and one intersection of the upper chord member and the lower chord member is a support point A. A truss structure in which the other intersection is a loading point C, the base of the triangle of the largest triangular truss is a support point B, and the vertexes of the triangle bases of the plurality of triangular trusses are inclined toward the support point A.
前記三角トラスの斜辺の弦材が、帯板材である請求項1記載のトラス構造。   The truss structure according to claim 1, wherein the chord material on the hypotenuse of the triangular truss is a strip plate material. 前記平面トラスの前記支持点Bと前記載荷点Cとを結ぶ弦材を長辺上に置いて前記平面トラスを囲む長方形の長辺の長さをL、前記載荷点Cから前記支持点Bまでの長さをL1、短辺の長さをH、前記支持点Aから前記支持点Bと前記載荷点Cとを結ぶ直線まで下ろした垂線の長さをH1としたとき、
0<H1/H<1, 0<L1/L<1
である請求項1または2に記載のトラス構造。
The length of the long side of the rectangle surrounding the plane truss is set to L from the chord material connecting the support point B of the plane truss and the load point C described above on the long side, from the load point C to the support point B described above. the length L 1, when the length of the short side H, the length of the perpendicular drawn from the support point a to the straight line connecting the said loading point C and the support point B and the H 1,
0 <H 1 / H <1, 0 <L 1 / L <1
The truss structure according to claim 1 or 2.
JP2013019682A 2013-02-04 2013-02-04 Truss structure Pending JP2014148880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019682A JP2014148880A (en) 2013-02-04 2013-02-04 Truss structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019682A JP2014148880A (en) 2013-02-04 2013-02-04 Truss structure

Publications (1)

Publication Number Publication Date
JP2014148880A true JP2014148880A (en) 2014-08-21

Family

ID=51572058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019682A Pending JP2014148880A (en) 2013-02-04 2013-02-04 Truss structure

Country Status (1)

Country Link
JP (1) JP2014148880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105755945A (en) * 2016-04-06 2016-07-13 广州市市政工程设计研究总院 Y-shaped triangular steel truss beam bridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105755945A (en) * 2016-04-06 2016-07-13 广州市市政工程设计研究总院 Y-shaped triangular steel truss beam bridge

Similar Documents

Publication Publication Date Title
KR100989586B1 (en) Girder for rahmen structure, the making method and bridge construction method using girder for rahmen structure
CN101936054B (en) Steel truss web combined PC beam and construction method thereof
KR101065633B1 (en) Prestressed steel tubular truss beam by external prestressing method
KR101714018B1 (en) Composite corrugated deck unified inverted triangle truss and distributing bar
JP2015098683A (en) Temporary frame and construction method for structure
JP4899011B2 (en) Three-dimensional frame truss structure
JP2013155514A (en) Pre-stressed concrete truss structure and method for manufacturing the same and form device
CN109763415B (en) Wave-lifting box beam
KR101814754B1 (en) Built-Up Beam
KR101272278B1 (en) Truss-arch type composite bridge
JP2014148880A (en) Truss structure
KR101536659B1 (en) Prestressed steel composite structure
JP2002266317A (en) Continuous girder for bridge
CN212802262U (en) Combined beam structure for building and building
JP4053946B2 (en) Steel plate girder
CN210032338U (en) Spandrel girder structure is built in room
KR101938375B1 (en) Prestressed bridge structure for reaction-force restraint using rahmen structure
CN209114654U (en) The initial layer structure of skyscraper
CN100537953C (en) A kind of structure bearing type template member
CN212688662U (en) Box girder construction that bearing strength is high
Kim et al. Experiments on a continuous composite truss bridge with concrete-filled lower chords
CN211899263U (en) Assembled roof beam
KR101714019B1 (en) Flat deck unified inverted triangle truss and distributing bar
RU2383692C1 (en) Butt joint of monolithic slab with column
KR101180988B1 (en) Hollow type girder using a couple of i-beam and bridge with the same