JP2014148738A - Method of separating and recovering rare earth elements and acid from solution containing rare earth elements - Google Patents

Method of separating and recovering rare earth elements and acid from solution containing rare earth elements Download PDF

Info

Publication number
JP2014148738A
JP2014148738A JP2013030423A JP2013030423A JP2014148738A JP 2014148738 A JP2014148738 A JP 2014148738A JP 2013030423 A JP2013030423 A JP 2013030423A JP 2013030423 A JP2013030423 A JP 2013030423A JP 2014148738 A JP2014148738 A JP 2014148738A
Authority
JP
Japan
Prior art keywords
rare earth
acid
earth elements
recovering
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013030423A
Other languages
Japanese (ja)
Other versions
JP6093944B2 (en
Inventor
Takanobu Sugo
高信 須郷
Koichi Suzuki
晃一 鈴木
Kunio Fujiwara
邦夫 藤原
Kyoichi Saito
恭一 斎藤
Shoichiro Uchiyama
翔一朗 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Original Assignee
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Kankyo Joka Kenkyusyo KK filed Critical Chiba University NUC
Priority to JP2013030423A priority Critical patent/JP6093944B2/en
Publication of JP2014148738A publication Critical patent/JP2014148738A/en
Application granted granted Critical
Publication of JP6093944B2 publication Critical patent/JP6093944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem related to recovery of rare earth elements that, because conventional methods of recovering rare earth elements based on solvent extraction require complicated equipment owing to use of large amounts of solvents and an acid, possible troubles from a viewpoint of saving of resources and energy, and allow only specified large enterprises to introduce and perform them owing to expensiveness for small and medium-sized enterprises, a method of collecting rare earth elements efficiently from a solution containing rare earth elements, separating individual metal ions, with high purity, from the collected material and recovering acids used is awaited.SOLUTION: A method of separating and recovering rare earth elements and an acid comprises producing an extraction reagent supporting adsorbent material by a radiation graft polymerization method, bringing a liquid containing a plurality of rare earth elements into contact with the extraction reagent supporting adsorbent material to make the rare earth elements to be adsorbed, bringing the extraction reagent supporting adsorbent material into contact with an acid of 0.5 N or lower to elute light rare earth elements and then with an acid of 0.5 N or higher to elute heavy rare earth elements and recovering the acid in the elution by using an electrodialyzer and simultaneously recovering rare earth elements of a decreased concentration of the acid.

Description

本発明は、希土類元素を含有した製品の製造工程から発生する切削粉や屑から希土類元素を酸で溶出した液や廃製品中の希土類元素を回収するために酸処理した希土類含有溶液から希土類元素と酸を分離回収する分離回収方法に関するものである。  The present invention relates to a rare earth element from a solution obtained by acid-treating a solution in which a rare earth element is eluted with acid from cutting powder and scrap generated from the manufacturing process of the product containing the rare earth element or an acid treatment for recovering the rare earth element in the waste product. The present invention relates to a separation and recovery method for separating and recovering acid and acid.

近年、希土類磁石はHDD用やエアコン用、携帯電話等に使用される各種モーターやセンサー等に広く使用されるようになっている。  In recent years, rare earth magnets are widely used in various motors and sensors used in HDDs, air conditioners, mobile phones and the like.

原料である希土類元素は産出国が中国に偏っており、政治的な思惑を背景として価格が高騰している。そこで希土類元素使用製品の生産時に発生する磁石粉末や屑及び不良スクラップから有価物を回収リサイクルすることが強く求められている。  The price of rare earth elements, which are raw materials, is rising in China because of their political origins. Therefore, there is a strong demand for recovering and recycling valuable materials from magnet powder, scraps and defective scrap generated during the production of products using rare earth elements.

希土類元素を回収する方法として、特開昭62−83433号公報(特許文献1)には希土類元素−鉄含有合金を加熱して空気酸化した後、強酸を用いた酸溶出法により、希土類元素塩を生成して濾液中に溶解し、濾別して分離する方法が開示されている。  As a method for recovering rare earth elements, Japanese Patent Application Laid-Open No. 62-83433 (Patent Document 1) discloses a rare earth element salt obtained by heating a rare earth element-iron-containing alloy by air oxidation and then using an acid elution method using a strong acid. Is dissolved in a filtrate, and separated by filtration.

特開平01−183415号公報(特許文献2)には、希土類磁石のスクラップ等を酸(HCl)に溶解して不溶残渣を分離除去すると共に、酸化剤(HNO)を添加し、蓚酸溶液を加え、かつ所定pHに調整して希土類元素を蓚酸塩として沈殿させることが開示されている。In JP-A-01-183415 (Patent Document 2), scraps of rare earth magnets and the like are dissolved in acid (HCl) to separate and remove insoluble residues, and an oxidizing agent (HNO 3 ) is added, and an oxalic acid solution is added. In addition, it is disclosed that the rare earth element is precipitated as oxalate by adjusting to a predetermined pH.

特開平05−287405号公報(特許文献3)には、スラリーを酸化剤の存在下、pH3〜5に酸で維持して希土類元素を選択的に浸出し、得られた浸出液に炭酸アルカリあるいは炭酸水素アルカリを添加し、希土類元素を水に難溶性の塩として分離する方法が開示されている。  In Japanese Patent Application Laid-Open No. 05-287405 (Patent Document 3), a slurry is maintained with an acid at a pH of 3 to 5 in the presence of an oxidizing agent to selectively leach rare earth elements, and the resulting leachate contains alkali carbonate or carbonic acid. A method is disclosed in which a hydrogen alkali is added to separate a rare earth element as a sparingly soluble salt in water.

特開平09−217132号公報(特許文献4)には、スラリーに空気を流通させながら、硝酸希釈溶液を添加してpH5以上に保持し、希土類とコバルトとを含む金属を50℃以下で溶解させて希土類含有硝酸塩溶液とし、鉄を含む不溶解元素化合物と濾別分離する方法及びこの希土類含有硝酸塩溶液にフッ素化合物又は蓚酸を添加して希土類フッ化物又は希土類蓚酸塩を沈殿させ、コバルト含有硝酸溶液と濾別分離する方法が開示されている。  In Japanese Patent Application Laid-Open No. 09-217132 (Patent Document 4), while circulating air in a slurry, a dilute nitric acid solution is added to maintain the pH at 5 or higher, and a metal containing rare earth and cobalt is dissolved at 50 ° C. or lower. A method of separating by filtration from an insoluble element compound containing iron, and adding a fluorine compound or oxalic acid to the rare earth-containing nitrate solution to precipitate a rare earth fluoride or rare earth oxalate, and a cobalt-containing nitric acid solution And a method of separating by filtration.

特開平11−100622号公報(特許文献5)には、ネオジムやイットリウムイオンなどを含有する水溶液にpH3以上で抽出試薬ビス(2−エチルヘキシル)ホスフィン酸を含む溶媒で希土類元素イオンを分離抽出する方法が開示されている。  Japanese Patent Application Laid-Open No. 11-100522 (Patent Document 5) discloses a method for separating and extracting rare earth element ions with a solvent containing an extraction reagent bis (2-ethylhexyl) phosphinic acid at a pH of 3 or higher in an aqueous solution containing neodymium or yttrium ions. Is disclosed.

特開2005−331510(特許文献6)は本願の発明者と同一の発明者から成る。基材に放射線グラフト重合したグラフト高分子鎖に抽出試薬担持機能をもつ官能基を導入した材料の開示があり、実施例には硝酸溶液中からイットリウムを分離する例が記載されている。  Japanese Patent Laid-Open No. 2005-331510 (Patent Document 6) is composed of the same inventors as the inventors of the present application. There is a disclosure of a material in which a functional group having a function of carrying an extraction reagent is introduced into a graft polymer chain that has been subjected to radiation graft polymerization on a base material. In the examples, an example of separating yttrium from a nitric acid solution is described.

しかし、これらの方法では、希土類元素のみを回収することに注力されている。酸やそれを中和するためのアルカリが大量に消費され、省資源・省エネルギーの観点から改良が求められていた。また、複数の希土類元素を含有する液体から希土類を分離するために用いられる溶媒抽出法においても多量の溶媒や逆抽出溶媒を消費していた。また、特許文献6は放射線グラフト重合法を利用した抽出試薬担持材料及びそれを利用したイットリウムイオン分離について開示されているが、複数の希土類イオンを吸着した抽出試薬担持材料から各金属イオンを分離することや分離に用いた酸を回収することについては開示されていない。  However, these methods are focused on recovering only rare earth elements. A large amount of acid and alkali for neutralizing it was consumed, and improvement was demanded from the viewpoint of resource saving and energy saving. In addition, a large amount of solvent and back-extraction solvent are consumed in the solvent extraction method used for separating rare earth from a liquid containing a plurality of rare earth elements. Further, Patent Document 6 discloses an extraction reagent carrying material using a radiation graft polymerization method and yttrium ion separation using the same, but each metal ion is separated from the extraction reagent carrying material adsorbing a plurality of rare earth ions. There is no disclosure about the recovery of the acid used for separation.

特開昭62−83433号公報JP-A-62-83433 特開平01−183415号公報Japanese Patent Laid-Open No. 01-183415 特開平05−287405号公報JP 05-287405 A 特開平09−217132号公報JP 09-217132 A 特開平11−100622号公報Japanese Patent Laid-Open No. 11-100522 特開2005−331510号公報JP 2005-331510 A

本発明は従来の回収方法の問題点、即ち複数種類の希土類元素を含む溶液から、希土類元素を効率よく捕集し、捕集した材料から各金属イオンを分離し、かつ溶離に使用した酸を回収し再利用できる回収方法を提供することを課題とする。  The present invention is a problem of the conventional recovery method, that is, it efficiently collects rare earth elements from a solution containing a plurality of types of rare earth elements, separates each metal ion from the collected materials, and uses the acid used for elution. It is an object to provide a collection method that can be collected and reused.

本発明者らは、上記課題の解決に向けて鋭意検討を行った結果、次の(1)〜(6)に示す特徴を有する希土類元素と酸とを分離回収する方法を見出し、本発明に到達した。  As a result of intensive studies aimed at solving the above problems, the present inventors have found a method for separating and recovering a rare earth element and an acid having the characteristics shown in the following (1) to (6), and the present invention Reached.

(1)希土類元素を含有した液体から軽希土及び重希土を含む2種類以上の希土類元素を分離回収する方法であって、希土類元素を含有する液体を抽出試薬担持吸着材料に接触させて希土類元素を吸着させる第1工程、吸着済みの吸着材に薄い酸を接触させ軽希土を溶出する第2工程、濃い酸を接触させることによって重希土を溶出する第3工程を含む2種類以上の希土類元素を含有する液体から酸と希土類元素を分離回収する方法(1) A method for separating and recovering two or more rare earth elements including light rare earth and heavy rare earth from a liquid containing rare earth elements, wherein the liquid containing the rare earth elements is brought into contact with the extraction reagent-carrying adsorbing material. Two types, including a first step of adsorbing rare earth elements, a second step of elution of light rare earth by bringing a thin acid into contact with the adsorbed adsorbent, and a third step of elution of heavy rare earth by contacting a dense acid Method for separating and recovering acid and rare earth element from a liquid containing the above rare earth element

(2) 前記、第1工程で希土類を吸着させた後の液体を酸回収装置で処理し酸を回収する第4工程、第2工程で得られた酸の溶離液を酸回収装置で処理し酸を回収すると同時に酸濃度の低下した希土類元素溶液を回収する第5工程、第3工程で得られた酸の溶離液を酸回収装置で処理し、酸を回収すると同時に酸濃度の低下した希土類溶液を回収する第6工程、を含む請求項1記載の2種類以上の希土類元素を含有する液体から酸と希土類元素を分離回収する方法(2) The liquid after the rare earth is adsorbed in the first step is treated with an acid recovery device to recover the acid, and the acid eluent obtained in the second step is processed with an acid recovery device. The acid eluent obtained in the fifth step and the third step of collecting the rare earth element solution having a reduced acid concentration simultaneously with the recovery of the acid is treated with an acid recovery device, and the rare earth having the acid concentration reduced simultaneously with the recovery of the acid. A method for separating and recovering an acid and a rare earth element from a liquid containing two or more kinds of rare earth elements according to claim 1, comprising a sixth step of recovering the solution.

(3)前記、酸回収装置は電気透析装置であり、回収された酸を前記第1工程の前段の酸溶解工程、第2工程及び第3工程より選択された工程で再利用することを含む請求項1又は2記載の2種類以上の希土類元素を含有する液体から酸と希土類元素を分離回収する方法(3) The acid recovery device is an electrodialysis device, and includes recycling the recovered acid in a step selected from the acid dissolution step, the second step, and the third step before the first step. A method for separating and recovering an acid and a rare earth element from a liquid containing two or more kinds of rare earth elements according to claim 1 or 2.

(4)前記、第2工程で使用する薄い酸が0.5規定以下、第3工程で使用する酸が0.5規定以上である請求項1、2又は3記載の2種類以上の希土類元素を含有する液体から酸と希土類元素を分離回収する方法(4) The two or more rare earth elements according to claim 1, 2 or 3, wherein the thin acid used in the second step is 0.5 N or less and the acid used in the third step is 0.5 N or more. For separating and recovering acid and rare earth elements from liquids containing oxygen

(5)前記、第2工程及び第3工程で得られた酸濃度の低下した希土類元素溶液をキレート樹脂での吸着固定、シュウ酸塩として沈殿生成、水酸化物として沈殿生成より選択された手段により減容化する請求項1、2、3又は4記載の2種類以上の希土類元素を含有する液体から希土類元素を分離回収する方法(5) Means selected from the above-described rare earth element solution having a reduced acid concentration obtained in the second step and the third step by adsorption fixing with a chelate resin, precipitation as oxalate, and precipitation as hydroxide. A method for separating and recovering rare earth elements from a liquid containing two or more kinds of rare earth elements according to claim 1, 2, 3, or 4

(6)前記抽出試薬担持材料は、
ア. 基材が高分子粒子、多孔性中空糸、膜、繊維、布帛、不織布、空隙性高分子基 材であり、
イ. 放射線グラフト重合法によって、グリシジルメタクリレート又はグリシジルア クリレート、ヒドロキシルメタクリレート,ビニルピロリドン,ジメチルアク リルアミド,エチレングリコールジメタクリレート,アルキルメタクリレート ,又はアルキルアクリレートより選択される重合性単量体がグラフト重合され 、
ウ. グラフト側鎖にアルキル基,アルカノール基、アルカノールアミノ基、アルキ ルアミノ基、エポキシ基、ジオール基より選択される抽出試薬担持機能を有す る官能基が導入され、
エ. 抽出試薬としてビス(2‐エチルヘキシル)ホスフェイト、ビス(2,4,4 ‐トリメチルペンチル)ホスフィン酸、トリオクチルメチルアンモニウムクロ ライドより選択される、抽出試薬が担持される
ことにより製造された材料である(1)、(2)、(3)、(4)又は
(5)記載の2種類以上の希土類元素を含有する液体から希土類元素を分離回収する方法
(6) The extraction reagent carrying material is
A. The substrate is a polymer particle, porous hollow fiber, membrane, fiber, fabric, non-woven fabric, porous polymer substrate,
A. A polymerizable monomer selected from glycidyl methacrylate or glycidyl acrylate, hydroxyl methacrylate, vinyl pyrrolidone, dimethyl acrylamide, ethylene glycol dimethacrylate, alkyl methacrylate, or alkyl acrylate is graft polymerized by radiation graft polymerization.
C. A functional group having an extraction reagent supporting function selected from an alkyl group, an alkanol group, an alkanolamino group, an alkylamino group, an epoxy group, and a diol group is introduced into the graft side chain,
D. A material produced by loading an extraction reagent selected from bis (2-ethylhexyl) phosphate, bis (2,4,4-trimethylpentyl) phosphinic acid, trioctylmethylammonium chloride as an extraction reagent (1), (2), (3), (4) or (5) a method for separating and recovering rare earth elements from a liquid containing two or more kinds of rare earth elements

本発明者らは放射線グラフト重合法を用いて、アンモニア、有機酸などの悪臭や水中の有害金属を除去できる材料を開発してきた。特開2005−331510に記載の抽出試薬担持材料には次のような特徴を有する材料が開示されている。  The present inventors have developed a material capable of removing malodors such as ammonia and organic acids and harmful metals in water by using a radiation graft polymerization method. A material having the following characteristics is disclosed in the extraction reagent carrying material described in JP-A-2005-331510.

繊維基材に付与したグラフト高分子鎖に抽出試薬担持機能をもつ官能基を導入した材料であって,メタクリル酸グリシジル等のグラフト高分子鎖に抽出試薬担持のためのつなぎの役割を果たす疎水性のアルキルアミン基などが結合され、さらにビス(2‐エチルヘキシル)ホスフェイト(HDEHP)など抽出試薬が担持されている。  Hydrophobic material that is a material in which a functional group having a function of carrying an extraction reagent is introduced into the graft polymer chain attached to the fiber substrate, and serves as a tie for carrying the extraction reagent on the graft polymer chain such as glycidyl methacrylate And an extraction reagent such as bis (2-ethylhexyl) phosphate (HDEHP) is supported.

本特許においても同様の材料を用いるが、希土類元素の中でも軽希土(ガドリニウムより原子番号が小さい)と重希土(ガドリニウムより原子番号が大きい)の複数種類含有する溶液を処理し、複数の希土類元素イオンを吸着させる。  The same material is used in this patent, but among rare earth elements, a solution containing a plurality of types of light rare earth (atomic number smaller than gadolinium) and heavy rare earth (atomic number larger than gadolinium) is treated. Adsorb rare earth ions.

そして、0.5規定以下の薄い酸で軽希土を溶離し、0.5規定以上の濃い酸で重希土を溶離する。抽出試薬担持材料を充填したカラムに濃淡2種類の酸を接触させることで、吸着した2種類の希土類を99%以上溶離でき、またそれぞれの金属を99%以上の純度で分離回収することができる。バッチ処理でも良いが、カラム方式が好適に適用できる。  The light rare earth is eluted with a thin acid of 0.5 N or less, and the heavy rare earth is eluted with a thick acid of 0.5 N or more. By contacting the two kinds of acids in the light and dark with the column packed with the extraction reagent-carrying material, 99% or more of the adsorbed two kinds of rare earths can be eluted, and each metal can be separated and recovered with a purity of 99% or more. . Although a batch process may be used, a column system can be suitably applied.

分かりやすく説明するため、Nd(ネオジム)及びDy(ジスプロシウム)を含有する希土類磁石の例をとり説明する。希土類磁石の製造工程から発生する切削屑や廃磁石製品から回収された廃磁石は、塩酸溶解などによりNd、Dy含有溶液として得られる。ここで、鉄は磁石の主要成分であるが、消磁工程での高温酸化処理によって酸化物を生成するため、塩酸中への溶出が抑制される。したがって、0.5規定以下の比較的低濃度の塩酸では、NdとDyは比較的容易に溶出する。  For easy understanding, an example of a rare earth magnet containing Nd (neodymium) and Dy (dysprosium) will be described. Waste magnets collected from cutting scraps and waste magnet products generated from the manufacturing process of rare earth magnets are obtained as Nd and Dy-containing solutions by dissolving hydrochloric acid or the like. Here, iron is a main component of the magnet, but since the oxide is generated by high-temperature oxidation treatment in the demagnetization process, elution into hydrochloric acid is suppressed. Therefore, Nd and Dy are eluted relatively easily with a relatively low concentration of hydrochloric acid of 0.5 N or less.

この塩酸溶液中に溶解したNdとDyはpHを調製しpH2程度の酸性にした後、HDEHP担持繊維に接触させ吸着される。そして、0.1規定から0.5規定程度の塩酸、例えば0.2規定程度の薄い酸に接触させてNdが溶離できる。0.5規定以上の塩酸、例えば1.5規定の塩酸に接触させDyが溶離する。これによって、NdとDyを分離できる。ここで、鉄が存在するとHDEHP担持繊維へ吸着するため、所定濃度以下に除去しておく必要がある。例えば、アルカリ等によってpHを調整し、鉄の水酸化物で沈殿除去するなど、先行技術を利用することができる。  Nd and Dy dissolved in the hydrochloric acid solution are adjusted to pH and acidified to about pH 2, and then contacted with HDEHP-supporting fibers and adsorbed. Then, Nd can be eluted by contacting with 0.1 N to 0.5 N hydrochloric acid, for example, 0.2 N thin acid. Dy elutes upon contact with 0.5 N hydrochloric acid or more, for example, 1.5 N hydrochloric acid. Thereby, Nd and Dy can be separated. Here, if iron is present, it is adsorbed to the HDEHP-supporting fiber, so it is necessary to remove it below a predetermined concentration. For example, the prior art can be used, such as adjusting the pH with an alkali or the like and removing the precipitate with an iron hydroxide.

Nd及びDyを含有する塩酸酸性溶液をHDEHP担持繊維に吸着させた後の酸、Ndを溶離するために使用した0.5規定以下の薄い酸及びDyを溶離するために使用した0.5規定以上の濃い酸を電気透析装置で処理し、それぞれ所定濃度の酸と酸濃度の低下したNd溶液及び酸濃度の低下したDy溶液が得られる。  Acid after hydrochloric acid solution containing Nd and Dy was adsorbed on HDEHP-supported fiber, 0.5N or less thin acid used to elute Nd and 0.5N used to elute Dy By processing the above concentrated acid with an electrodialyzer, an acid having a predetermined concentration, an Nd solution having a reduced acid concentration, and a Dy solution having a reduced acid concentration can be obtained.

回収した酸は廃磁石や切削屑の溶解に再利用できる。また、HDEHP樹脂の溶離に再利用でき、省資源が図れる。さらに、酸濃度の低下したNd溶液をアルカリで中和し水酸化物として減容固化する際にもアルカリ消費量が少なくなり省資源化が図れる。Dy溶液についても同様である。Nd及びDy溶液をシュウ酸と接触させ、シュウ酸沈殿物として次工程に移行する際にも、沈殿物の洗浄水量が少なくなり便利である。そして、Nd、Dyの溶液をイオン交換樹脂やキレート樹脂等の吸着材で処理する場合も酸濃度を低下させておくことにより、吸着容量の増加が図れる。  The recovered acid can be reused to dissolve waste magnets and cutting waste. Further, it can be reused for elution of HDEHP resin, and resource saving can be achieved. Further, when the Nd solution having a reduced acid concentration is neutralized with an alkali and reduced in volume and solidified as a hydroxide, the amount of alkali consumed is reduced, and resource saving can be achieved. The same applies to the Dy solution. When the Nd and Dy solutions are brought into contact with oxalic acid and transferred to the next step as an oxalic acid precipitate, the amount of washing water for the precipitate is reduced, which is convenient. Further, when the Nd and Dy solution is treated with an adsorbent such as an ion exchange resin or a chelate resin, the adsorption capacity can be increased by reducing the acid concentration.

図1に本発明の希土類元素と酸を回収する処理プロセスの基本フローを示した。酸としては塩酸を使用しているが他の酸でも良い。Nd、Dy含有する塩酸溶液が抽出試薬担持吸着材を充填したカラムに通液され、NdとDyが吸着除去された処理液が処理液タンクに貯留される。所定量吸着が終了すると、0.2規定程度の薄い塩酸を通液し、Ndを溶離させる。次いで、1.5規定程度の濃い塩酸を通液し、Dyを溶離させる。Ndを含む塩酸溶離液は電気透析装置で処理され、Ndの除去された塩酸と塩酸濃度の低下したNd溶液とに分離される。Dyを含む濃い塩酸溶離液も電気透析装置で処理され、Dyの除去された濃い塩酸と塩酸濃度の低下したDy溶液とに分離される。また、回収した酸を図示したフローの上流に戻し廃磁石を溶解するために利用することもできる。また、塩酸や鉄濃度が高い場合は抽出試薬担持材料で吸着させる前に電気透析装置で処理し、鉄クロロ錯体としてNdやDyから分離することもできる。  FIG. 1 shows a basic flow of a treatment process for recovering rare earth elements and acids according to the present invention. Although hydrochloric acid is used as the acid, other acids may be used. A hydrochloric acid solution containing Nd and Dy is passed through a column filled with an extraction reagent-carrying adsorbent, and the treatment liquid from which Nd and Dy have been adsorbed and removed is stored in a treatment liquid tank. When the predetermined amount of adsorption is completed, a thin hydrochloric acid of about 0.2 N is passed through to elute Nd. Then, concentrated hydrochloric acid of about 1.5 N is passed through to elute Dy. The hydrochloric acid eluent containing Nd is treated with an electrodialyzer and separated into hydrochloric acid from which Nd has been removed and Nd solution having a reduced hydrochloric acid concentration. The concentrated hydrochloric acid eluent containing Dy is also treated with an electrodialysis apparatus, and separated into concentrated hydrochloric acid from which Dy has been removed and Dy solution having a reduced hydrochloric acid concentration. Further, the recovered acid can be returned to the upstream of the illustrated flow and used to dissolve the waste magnet. In addition, when the concentration of hydrochloric acid or iron is high, it can be treated with an electrodialyzer before adsorbing with the extraction reagent-carrying material and separated from Nd and Dy as an iron chloro complex.

図2は電気透析の原理図を示すものであるが、この図の範囲に限定されるわけではない。塩酸とNd、Dyを含有する液体5が脱塩室7に入り塩素イオンは陰イオン交換膜1を通過して陽極側の濃縮室8に、Nd及びDyは陽イオン交換膜2を通過し、陰極側の濃縮室に入る。ここで、カチオン交換膜に1価イオン選択膜を利用することもできる。その場合は脱塩室の出口6からNd及びDyが回収できる。いかなるイオン交換膜を利用するかは回収する金属の種類や使用条件によって適宜決定できる。ホウ素は酸性溶液中では解離しないため、両イオン交換膜を通過せず、脱塩室出口6からでる。  FIG. 2 shows a principle diagram of electrodialysis, but is not limited to the scope of this figure. The liquid 5 containing hydrochloric acid, Nd, and Dy enters the desalting chamber 7, and the chlorine ions pass through the anion exchange membrane 1 to the concentration chamber 8 on the anode side, and Nd and Dy pass through the cation exchange membrane 2, Enter the concentration chamber on the cathode side. Here, a monovalent ion selective membrane can be used for the cation exchange membrane. In that case, Nd and Dy can be recovered from the outlet 6 of the desalting chamber. Which ion exchange membrane is used can be appropriately determined depending on the type of metal to be recovered and the use conditions. Since boron does not dissociate in an acidic solution, it does not pass through both ion exchange membranes and comes out from the desalting chamber outlet 6.

本発明の回収フローは連続式でもバッチ式でも可能であるが、希土類元素を含有する液量が多量でなければ、バッチ処理が向いている。その場合、各工程で発生する酸と金属の混合液を1台の電気透析装置で処理し、それぞれの工程に適した酸を回収することができる。もちろん、各工程それぞれに適した電気透析装置を別々に設置してもよい。図1では1台の例を示した。  The recovery flow of the present invention can be either a continuous type or a batch type, but batch processing is suitable if the amount of the liquid containing the rare earth element is not large. In that case, the acid and metal mixed solution generated in each step can be processed with one electrodialyzer, and the acid suitable for each step can be recovered. Of course, an electrodialysis apparatus suitable for each process may be installed separately. FIG. 1 shows one example.

吸着材の形状が粒子の場合は吸着塔に充填して、流通方式の処理プロセスを採用することができる。繊維状の材料も吸着塔に充填できるが、例えば繊維やスポンジ状の空隙材料では、図3に示すように吸着材を吊るし、各工程に対応する処理槽の間を移動させてもよい。  When the adsorbent is in the form of particles, it can be packed in an adsorption tower and a flow process method can be employed. Although a fibrous material can also be filled in the adsorption tower, for example, in the case of a fiber or sponge-like void material, the adsorbent may be suspended as shown in FIG. 3 and moved between treatment tanks corresponding to the respective steps.

図3においては、モール状(洗車場のブラシのようなもの)、不織布、スポンジ状、綿塊状、カット繊維などのような吸着材料をそのままか又は使用条件によって適宜容器に収納してレールを介して移動させることができる。吸着や溶離操作における撹拌操作を吸着材の上下動で兼ねることにより設備を簡素化できる。  In FIG. 3, an adsorbent material such as a molding (such as a car wash brush), non-woven fabric, sponge, cotton lump, cut fiber or the like is stored in a container as it is or depending on use conditions, and is passed through a rail. Can be moved. Equipment can be simplified by combining the adsorbent's up-and-down movement with stirring operation in adsorption and elution operations.

電気透析装置を使用して酸回収を行った後、希土類元素溶液は酸濃度が低下しているため、例えばイミノジ酢酸基やアミノリン酸基などキレート基を使用して再吸着させることができる。酸濃度が低下しているため、吸着容量が大きくなり好ましい。また、シュウ酸や水酸化ナトリウムで沈殿を生成する場合も中和や洗浄に要する薬剤を低減できる。  After performing acid recovery using an electrodialyzer, the rare earth element solution has a reduced acid concentration and can be re-adsorbed using a chelating group such as an iminodiacetic acid group or an aminophosphoric acid group. Since the acid concentration is lowered, the adsorption capacity is preferably increased. Moreover, the chemical | medical agent required for neutralization and washing | cleaning can be reduced also when producing | generating precipitation with an oxalic acid or sodium hydroxide.

本発明に利用される抽出試薬担持材料は放射線グラフト重合法により、繊維、スポンジや多孔膜のように表面積の大きな有機高分子を基材としている。また、基材内部のみでなく基材の外へグラフト鎖が成長しているため。抽出試薬の担持に有利である。  The extraction reagent-carrying material used in the present invention is based on an organic polymer having a large surface area such as a fiber, sponge or porous membrane by a radiation graft polymerization method. In addition, the graft chain grows not only inside the substrate but also outside the substrate. It is advantageous for supporting the extraction reagent.

放射線グラフト重合法とは、γ線や電子線等の電離性放射線を基材に照射し、基材表面あるいは基材内部に生成したラジカルを利用して重合性単量体(以下、「モノマー」と称する。)を重合させ、基材からグラフト鎖を成長させる方法である。放射線グラフト重合法に用いる電離性放射線としては、アルファ線、ベータ線、ガンマ線、電子線、紫外線などを用いることができるが、工業的に利用できるガンマ線や電子線が本発明に適している。  The radiation graft polymerization method is a method of irradiating a substrate with ionizing radiation such as γ-rays or electron beams and utilizing a radical generated on the surface of the substrate or inside the substrate (hereinafter referred to as “monomer”). Is a method of growing a graft chain from a substrate. As the ionizing radiation used in the radiation graft polymerization method, alpha rays, beta rays, gamma rays, electron rays, ultraviolet rays, and the like can be used. Industrially available gamma rays and electron rays are suitable for the present invention.

グラフト側鎖の長さはグラフト率にもよるが、通常エチレンユニットとして数個から数百個以上(分子量で数万以上)にもなる。また、グラフトは「接ぎ木」と訳されているように、高分子鎖の一端が主鎖に結合し、他端は自由端であるため、抽出試薬とのつなぎの役割を果たすアルキル基,アルカノール基などを導入するのに有利である。そのため、抽出試薬担持にも有利である。  Although the length of the graft side chain depends on the graft ratio, it usually ranges from several to several hundreds of ethylene units (molecular weight of several tens of thousands or more). In addition, as the graft is translated as “grafting”, one end of the polymer chain is bonded to the main chain, and the other end is a free end, so an alkyl group or alkanol group that plays a role in linking with the extraction reagent. It is advantageous to introduce etc. Therefore, it is advantageous for carrying the extraction reagent.

放射線グラフト重合法で利用できる有機高分子は様々なものから選択できる。例えば、繊維を例にとると、合成繊維の他、綿などのセルロース系繊維、動物性繊維、鉱物系繊維、若しくは再生繊維、またはそれらの混合繊維が挙げられる。合成繊維にはポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等が含まれる。セルロース系繊維には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維が含まれる。動物性繊維には、羊毛等の獣毛繊維、絹等が含まれる。再生繊維には、キチン・キトサン繊維、コラーゲン繊維などが含まれる。これら繊維素材の混紡を用いることもまた可能である。
繊維以外にも、中空糸膜、フィルム、スポンジなどの空隙材料も利用できる。
The organic polymer that can be used in the radiation graft polymerization method can be selected from various types. For example, taking fibers as an example, in addition to synthetic fibers, cellulosic fibers such as cotton, animal fibers, mineral fibers, regenerated fibers, or mixed fibers thereof may be mentioned. Synthetic fibers include polyester, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyvinyl alcohol, fluorine, and the like. Cellulosic fibers include natural cellulose fibers such as cotton and hemp, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, and semi-synthetic fibers such as acetate and diacetate. It is. Animal fibers include animal hair fibers such as wool, silk and the like. The recycled fiber includes chitin / chitosan fiber, collagen fiber and the like. It is also possible to use blends of these fiber materials.
In addition to fibers, void materials such as hollow fiber membranes, films and sponges can also be used.

基材に放射線照射を行うタイミングにより、前照射グラフト重合法と同時照射グラフト重合法があるが、どちらの重合方法も利用できる。前者は基材に放射線を照射した後、モノマーと接触させてグラフト重合を行う。後者は基材とモノマーが同時に存在する状態で放射線照射を行う。いずれの方法も採用できるが、単独重合物の生成量が少ない前照射グラフト重合法が分離材料として好ましい。  There are a pre-irradiation graft polymerization method and a simultaneous irradiation graft polymerization method depending on the timing at which the substrate is irradiated with radiation. Either polymerization method can be used. The former performs graft polymerization by irradiating a substrate with radiation and then contacting with a monomer. In the latter, irradiation is performed in a state where the substrate and the monomer are present simultaneously. Any method can be adopted, but the pre-irradiation graft polymerization method with a small amount of homopolymer is preferable as the separation material.

また、グラフト重合をモノマー液中で行う液相グラフト重合法、モノマー蒸気中で行う気相グラフト重合法、グラフト重合させたい量のモノマーを付与した後、不活性ガス中で反応させる含浸気相グラフト重合法などいずれのグラフト重合法も利用できる。  In addition, a liquid phase graft polymerization method in which the graft polymerization is performed in a monomer liquid, a gas phase graft polymerization method in which the monomer is vaporized, an impregnation gas phase grafting in which an amount of the monomer to be grafted is added and then reacted in an inert gas. Any graft polymerization method such as a polymerization method can be used.

グラフト重合用のモノマーとしては抽出試薬を担持させるためのアルキル基、アルカノール基、アルカノールアミノ基、アルキルアミノ基,エポキシ基、ジオール基、チオール基を導入しやすいものの中から選択できる。グリシジルメタクリレート又はグリシジルアクリレート、ヒドロキシルエチルメタクリレート,ビニルピロリドン,ジメチルアクリルアミド,エチレングリコールジメタクリレート,アルキルメタクリレート,又はアルキルアクリレートより選択されモノマーが好適である。特に、グリシジルメタクリレート又はグリシジルアクリレートが好適である。  The monomer for graft polymerization can be selected from those that can easily introduce an alkyl group, an alkanol group, an alkanolamino group, an alkylamino group, an epoxy group, a diol group, and a thiol group for supporting an extraction reagent. Monomers selected from glycidyl methacrylate or glycidyl acrylate, hydroxyl ethyl methacrylate, vinyl pyrrolidone, dimethyl acrylamide, ethylene glycol dimethacrylate, alkyl methacrylate, or alkyl acrylate are preferred. In particular, glycidyl methacrylate or glycidyl acrylate is suitable.

これらモノマーをグラフト重合した後、アルキル基を導入する場合、例えばアルキルアミノ基を有する薬剤が導入される。グラフトポリマーに対して導入しやすく、抽出試薬担持能力に優れたアミノ基を有する薬剤としては、エチルアミン、ブチルアミン、ペンチルアミン、ドデシルアミン、オクタデシルアミンなど直鎖アルキルアミンの他、ジメチルアミン、ジエチルアミン、トリエチルアミンなども利用できる。また、エチレンジアミン、ヘキサメチレンジアミンなどのようにアミノ基を複数有するアミンも利用できる。ピペラジン、1,4ジアザビシクロ[2.2.2]オクタンなども利用できる。さらに、ジエチレントリアミン、トリエチレントリテトラミン、ポリエチレンイミンなどのアミンを利用することができる。  When an alkyl group is introduced after graft polymerization of these monomers, for example, a drug having an alkylamino group is introduced. Agents with amino groups that are easy to introduce into the graft polymer and have excellent extraction reagent loading ability include linear amines such as ethylamine, butylamine, pentylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, and triethylamine. Etc. are also available. Also, amines having a plurality of amino groups such as ethylenediamine and hexamethylenediamine can be used. Piperazine, 1,4 diazabicyclo [2.2.2] octane and the like can also be used. Furthermore, amines such as diethylenetriamine, triethylenetritetramine, and polyethyleneimine can be used.

この中で、アルキル基の炭素数が20より大きくなると、疎水性が大きくなるため、グラフト鎖同士が相互に引き合い、抽出試薬の担持に必要な空間が保持できなくなる結果、吸着性能を十分に発揮できない。また炭素数1では、疎水部が小さいため疎水性相互作用が小さくなるのに加え、アミン臭が強く作業環境上問題である。炭素数2以上が好ましい。  Among them, when the carbon number of the alkyl group is larger than 20, the hydrophobicity increases, so that the graft chains attract each other and the space necessary for carrying the extraction reagent cannot be maintained, so that the adsorption performance is sufficiently exhibited. Can not. In addition, when the number of carbon atoms is 1, the hydrophobic portion is small, so that the hydrophobic interaction is small, and the amine odor is strong, which is a problem in the working environment. 2 or more carbon atoms are preferred.

アルカノールアミン類もアミンの場合と同様に利用することができる。モノエタノールアミンやジエタノールアミンは好適に利用できる。水酸基を有しているため、親水性が大きくなるが、沸点が非常に高く、アミン臭発生による環境問題が軽減される。  Alkanolamines can be used in the same manner as in the case of amines. Monoethanolamine and diethanolamine can be preferably used. Since it has a hydroxyl group, its hydrophilicity increases, but its boiling point is very high, and environmental problems due to the generation of amine odor are reduced.

抽出試薬とその担持機能を有する官能基の組み合わせとして,ビス(2‐エチルヘキシル)ホスフェイト(HDEHP)とオクタデシルアミノ基との組み合わせ,ビス(2‐エチルヘキシル)ホスフェイトとドデシルアミノ基との組み合わせ,ビス(2,4,4‐トリメチルペンチル)ホスフィン酸とオクタデシルアミノ基の組み合わせ,ビス(2,4,4‐トリメチルペンチル)ホスフィン酸とドデシルアミノ基の組み合わせ,トリオクチルメチルアンモニウムクロライドと6‐アミノヘキサン酸基の組み合わせ,トリオクチルメチルアンモニウムクロライドとオクタデシルアミノ基及び6‐アミノヘキサン酸基の組み合わせ,トリ−n−オクチルホスフィンオキシドとオクタデカンチオール基との組み合わせ等が挙げられる。組み合わせは、回収金属の種類、使用環境や製造条件等により、適宜選択できる。  As a combination of an extraction reagent and a functional group having a supporting function, a combination of bis (2-ethylhexyl) phosphate (HDEHP) and octadecylamino group, a combination of bis (2-ethylhexyl) phosphate and dodecylamino group, bis (2 , 4,4-Trimethylpentyl) phosphinic acid and octadecylamino group, bis (2,4,4-trimethylpentyl) phosphinic acid and dodecylamino group, trioctylmethylammonium chloride and 6-aminohexanoic acid group Combinations, combinations of trioctylmethylammonium chloride and octadecylamino groups and 6-aminohexanoic acid groups, combinations of tri-n-octylphosphine oxide and octadecanethiol groups, and the like can be mentioned. The combination can be appropriately selected depending on the type of recovered metal, usage environment, production conditions, and the like.

本発明は、放射線グラフト重合法を利用して製造した抽出試薬担持材料及びそれを利用した2種類以上の希土類元素を含有する酸性液体から酸と希土類元素を分離回収する方法であって、軽希土及び重希土の2種類の希土類元素と酸を分離回収することを特徴としている。  The present invention relates to an extraction reagent carrying material produced by using a radiation graft polymerization method and a method for separating and recovering an acid and a rare earth element from an acidic liquid containing two or more kinds of rare earth elements using the same. It is characterized by separating and collecting two kinds of rare earth elements, earth and heavy rare earth, and acid.

希土類元素に限らず、希少金属を使用した製品の製造工程から発生する工程屑や使用済みの廃製品には有用金属が含まれる。それらを回収するために、先ず物理的な処理により有用金属含有固体を粉砕し、塩酸や硝酸を利用して溶解した後、その溶液から有用金属を分離回収することが行われている。本発明はそのような箇所に適用でき、有用金属の分離効率を飛躍的に高め、薬品使用量を大幅に低減できる。廃棄物の発生量も低減することができる。  Not only rare earth elements but also process scraps and used waste products generated from the manufacturing process of products using rare metals contain useful metals. In order to recover them, first, a useful metal-containing solid is pulverized by physical treatment, dissolved using hydrochloric acid or nitric acid, and then useful metals are separated and recovered from the solution. The present invention can be applied to such places, and the separation efficiency of useful metals can be dramatically increased and the amount of chemicals used can be greatly reduced. The amount of waste generated can also be reduced.

また、各種吸着材、例えば活性炭、イオン交換樹脂、キレート樹脂、ゼオライトなどは使用後、再生するために酸を多量消費するが、そのような廃液から酸を回収し、有用金属ばかりでなく、有害金属イオンの濃縮減容化を図ることができる。省資源・省エネルギー・安全の社会的要求に合致した有用金属分離・酸回収プロセスを提供できる。  In addition, various adsorbents such as activated carbon, ion exchange resin, chelate resin, zeolite, etc. consume a large amount of acid to regenerate after use, but recover acid from such waste liquid, not only useful metals but also harmful Concentration and volume reduction of metal ions can be achieved. Provide useful metal separation and acid recovery processes that meet social requirements for resource conservation, energy conservation and safety.

本発明が提案する抽出試薬担持材料を用いれば、軽希土と重希土の複数の希土類混合酸溶液から、軽希土と重希土をほぼ完全に分離回収できるうえ、酸を回収することができる。放射線グラフト重合法は様々な形状の基材に適用できるため、使用方法も基材形状の特徴を生かすことができる。従来、希土類元素回収プロセスは溶解槽、抽出槽、ポンプ、配管類など複雑なプラントが必要であり、多額の設備投資が必要であった。本発明は要素技術である電気透析装置を中心に各処理槽間を吸着材自体が移動できるプロセスも可能となり装置費が大幅に低減できる。中小メーカ−にも導入しやすい。  By using the extraction reagent supporting material proposed by the present invention, light rare earth and heavy rare earth can be almost completely separated and recovered from a plurality of rare earth mixed acid solutions of light rare earth and heavy rare earth, and acid can be recovered. Can do. Since the radiation graft polymerization method can be applied to substrates having various shapes, the usage method can also make use of the characteristics of the substrate shape. Conventionally, the rare earth element recovery process requires a complex plant such as a dissolution tank, an extraction tank, a pump, and piping, and requires a large amount of capital investment. The present invention also enables a process in which the adsorbent itself can move between the treatment tanks, centering on the electrodialysis apparatus which is an elemental technology, and the apparatus cost can be greatly reduced. Easy to introduce to small and medium manufacturers.

本発明の放射線グラフト重合法を利用した抽出試薬担持材料の作成、その材料を使用した希土類元素溶液の吸着、酸による溶離、溶離液から酸の回収結果を実施例で示しながら詳細に説明する。本実施例は本発明のいくつかの例を示したものであって、この範囲に限定されるものではない。  The preparation of an extraction reagent carrying material using the radiation graft polymerization method of the present invention, adsorption of a rare earth element solution using the material, elution with an acid, and the results of acid recovery from the eluent will be described in detail with examples. This example shows some examples of the present invention, and is not limited to this range.

(抽出試薬担持材料1の製造)
直径約25μmのナイロン繊維の撚糸1kgを窒素雰囲気でガンマ線照射した。照射線量は30kGyであった。この繊維を予め窒素バブリングしたメタクリル酸グリシジル10%メタノール溶液に浸漬し、40℃でグラフト重合を行った。6時間後に取り出し、ジメチルホルムアミド及びアセトンの順に洗浄し、乾燥した。乾燥後の重量を測定し、重量増加率(グラフト率)を算出したところ、83%であった。グラフト重合後の繊維をドデシルアミン20%イソプロピルアルコール溶液に浸漬し、80℃で5時間反応した。重量増加率から1.5mmol/gのドデシルアミンが導入された繊維が製造された。次に、この繊維を約1cmにカットし、60℃のHDEHP20%メタノール溶液に浸漬し、3時間反応した。重量増加率からHDEHPが0.4mmol/g担持された抽出試薬担持材料が製造された。
(Manufacture of extraction reagent carrying material 1)
1 kg of twisted nylon fiber having a diameter of about 25 μm was irradiated with gamma rays in a nitrogen atmosphere. The irradiation dose was 30 kGy. This fiber was immersed in a 10% methanol solution of glycidyl methacrylate previously bubbled with nitrogen, and graft polymerization was performed at 40 ° C. After 6 hours, it was taken out, washed with dimethylformamide and acetone in this order and dried. The weight after drying was measured, and the weight increase rate (graft rate) was calculated to be 83%. The fiber after graft polymerization was immersed in a 20% isopropyl alcohol solution of dodecylamine and reacted at 80 ° C. for 5 hours. A fiber into which 1.5 mmol / g of dodecylamine was introduced was produced from the weight increase rate. Next, this fiber was cut into about 1 cm, immersed in a 60% HDEHP 20% methanol solution, and reacted for 3 hours. From the weight increase rate, an extraction reagent-carrying material on which HDEHP was carried at 0.4 mmol / g was produced.

(Nd、Dy吸着実験1)
HDEHP担持繊維2gを内径10mmに層高100mmとなるよう充填した。このカラムにNdを290mg/l、Dyを40mg/l含み、pHが2となるよう塩酸で調整した液を流速1.3ml/分で通液した。2L通液し、Nd及びDyがともに被処理液中の濃度とほぼ同一になっていることを確認した。
(Nd, Dy adsorption experiment 1)
2 g of HDEHP-supporting fibers were packed to an inner diameter of 10 mm so that the layer height was 100 mm. A liquid containing Nd 290 mg / l and Dy 40 mg / l and adjusted with hydrochloric acid so that the pH was 2 was passed through the column at a flow rate of 1.3 ml / min. After passing 2 L, it was confirmed that both Nd and Dy were almost the same as the concentration in the liquid to be treated.

(塩酸溶離1)
Nd及びDy吸着後の抽出試薬担持材料に0.2規定の塩酸溶液2000mlを通液し、次に1.5規定の塩酸溶液2000mlを通液した。所定時間ごとに溶離廃液をカラム出口からサンプリングし、NdとDyの濃度をICP発光分光分析装置(パーキンエルマー社製、OPTIMA8300DV)で測定した。Nd及びDyの溶離曲線は図5のようになり、99%以上の分離が達成できた。
(Hydrochloric acid elution 1)
After the Nd and Dy adsorption, 2000 ml of 0.2N hydrochloric acid solution was passed through the extraction reagent-carrying material, and then 2000 ml of 1.5N hydrochloric acid solution was passed. The elution waste solution was sampled from the column outlet every predetermined time, and the concentrations of Nd and Dy were measured with an ICP emission spectroscopic analyzer (manufactured by Perkin Elmer, OPTIMA 8300 DV). The elution curves for Nd and Dy are as shown in FIG. 5, and a separation of 99% or more was achieved.

(電気透析装置による酸回収1)
0.2規定の塩酸でNdを溶離した塩酸溶離廃液をマイクロアシライザーS3型((株)アストム製)で処理し、2050mlの0.2規定塩酸を回収した。次に1.5規定塩酸の溶離廃液を処理し、1.3規定の塩酸2200mlを回収した。回収された塩酸は濃度を若干調整するのみで再使用可能であった。そして、pH3程度の弱酸性Nd溶液とDy溶液が回収できた。
(Acid recovery by electrodialysis machine 1)
A hydrochloric acid elution waste solution in which Nd was eluted with 0.2 N hydrochloric acid was treated with a microacylator S3 type (manufactured by Astom Co., Ltd.) to recover 2050 ml of 0.2 N hydrochloric acid. Next, 1.5N hydrochloric acid elution waste solution was treated to recover 2200 ml of 1.3N hydrochloric acid. The recovered hydrochloric acid could be reused with only a slight adjustment in concentration. A weakly acidic Nd solution and a Dy solution having a pH of about 3 were recovered.

(抽出試薬担持材料2の製造)
実施例1においてナイロン繊維の代わりに直径15μmのポリエチレン(鞘)/ポリエチレンテレフタレート(芯)より成る目付40g/m、厚み0.3mmの熱融着不織布を用いた以外は同様の条件でHDEHP抽出試薬担持材料を製造した。この不織布は重量増加率から0.35mmol/gのHDEHPを担持していた。
(Manufacture of extraction reagent carrying material 2)
In Example 1, HDEHP extraction was performed under the same conditions except that a heat-sealed nonwoven fabric having a basis weight of 40 g / m 2 and a thickness of 0.3 mm made of polyethylene (sheath) / polyethylene terephthalate (core) having a diameter of 15 μm was used instead of nylon fiber. A reagent-carrying material was produced. This nonwoven fabric carried 0.35 mmol / g of HDEHP from the weight increase rate.

(Nd、Dy吸着実験2)
HDEHP担持不織布を10cm角に切断したもの10枚作製した。この不織布をNdを270mg/l、Dyを35mg/l含むpH2の塩酸溶液1Lに浸漬し30分間撹拌した。不織布をピンセットで取り出し液切りした。溶液中に残存したNd、Dy濃度はそれぞれ5mg/L、1mg/Lであり、97%以上が抽出試薬担持材料に吸着された。
(Nd, Dy adsorption experiment 2)
Ten pieces of HDEHP-supporting nonwoven fabric cut into 10 cm square were produced. This nonwoven fabric was immersed in 1 L of a pH 2 hydrochloric acid solution containing 270 mg / l of Nd and 35 mg / l of Dy and stirred for 30 minutes. The nonwoven fabric was taken out with tweezers and drained. The Nd and Dy concentrations remaining in the solution were 5 mg / L and 1 mg / L, respectively, and 97% or more was adsorbed on the extraction reagent supporting material.

(塩酸溶離2)
Nd及びDy吸着後、液切りした抽出試薬担持材料を0.2規定の塩酸1Lの入ったビーカに浸漬し、30分間撹拌した。30分経過後抽出試薬担持材料をピンセットで取り出し、液切りした。次いで、1.5Mの塩酸1Lの入ったビーカに抽出試薬担持材料を浸漬し、30分間撹拌した。撹拌終了後、抽出試薬担持材料をピンセットで取り出し、液切り後純水1Lに浸漬して洗浄した。0.2規定塩酸のビーカーにはNdが250mg/l、1.5規定の塩酸のビーカにはDyが33mg/L含まれており、分離ができた。
(Hydrochloric acid elution 2)
After adsorption of Nd and Dy, the extracted extraction reagent support material was immersed in a beaker containing 1 L of 0.2 N hydrochloric acid and stirred for 30 minutes. After 30 minutes, the extraction reagent-carrying material was taken out with tweezers and drained. Next, the extraction reagent supporting material was immersed in a beaker containing 1 L of 1.5 M hydrochloric acid and stirred for 30 minutes. After completion of the stirring, the extraction reagent-carrying material was taken out with tweezers, drained and immersed in 1 L of pure water for cleaning. The 0.2 N hydrochloric acid beaker contained Nd of 250 mg / l, and the 1.5 N hydrochloric acid beaker contained 33 mg / L of Dy.

(電気透析装置による酸回収2)
実施例1と同様に溶離廃液を電気透析装置で処理し、0.2規定の塩酸1Lと1.4規定の塩酸1.05Lを回収した。回収された塩酸は濃度を若干調整するのみで再使用可能であった。そして、pH3程度の弱酸性Nd溶液と弱酸性のDy溶液が回収できた。
(Acid recovery by electrodialysis machine 2)
The elution waste solution was treated with an electrodialysis apparatus in the same manner as in Example 1, and 1 L of 0.2 N hydrochloric acid and 1.05 L of 1.4 N hydrochloric acid were recovered. The recovered hydrochloric acid could be reused with only a slight adjustment in concentration. A weakly acidic Nd solution having a pH of about 3 and a weakly acidic Dy solution were recovered.

(Nd、Dy吸着用キレート繊維の作成)
実施例1のメタクリル酸グリシジルをグラフト重合したナイロン繊維に次の条件でイミノジ酢酸基を導入した。イミノジ酢酸ナトリウム/イソプロピルアルコール/水=20/40/40の液組成のイミノジ酢酸基を導入するための溶液を調製した。グラフト繊維をこの溶液に浸漬し、反応温度80℃、反応時間24時間でイミノジ酢酸基を導入した。反応後の重量増加から1.8mmol/gのイミノジ酢酸基が導入された。
(Creation of chelating fibers for Nd and Dy adsorption)
An iminodiacetic acid group was introduced into the nylon fiber graft-polymerized with glycidyl methacrylate of Example 1 under the following conditions. A solution for introducing iminodiacetic acid groups having a liquid composition of sodium iminodiacetate / isopropyl alcohol / water = 20/40/40 was prepared. The graft fiber was immersed in this solution, and iminodiacetic acid groups were introduced at a reaction temperature of 80 ° C. and a reaction time of 24 hours. From the weight increase after the reaction, 1.8 mmol / g iminodiacetic acid group was introduced.

pH3のNd溶液(濃度250mg/l)及びDy溶液(濃度33mg/l)それぞれ500mlに上記作成したイミノジ酢酸基導入繊維5gを浸漬し、1時間撹拌しNd及びDyの吸着を行った。吸着後の繊維をピンセットで取り出し、溶液に残存したNd及びDy濃度を測定したところ、Ndは3mg/l、Dyが0.2mg/lであり、キレート吸着材でさらに濃縮減容化が可能であることが示唆された。  5 g of the iminodiacetic acid group-introduced fiber prepared above was immersed in 500 ml each of a pH 3 Nd solution (concentration 250 mg / l) and a Dy solution (concentration 33 mg / l) and stirred for 1 hour to adsorb Nd and Dy. The fibers after adsorption were taken out with tweezers, and the Nd and Dy concentrations remaining in the solution were measured. As a result, Nd was 3 mg / l and Dy was 0.2 mg / l. It was suggested that there is.

:本発明の希土類元素と酸を回収する処理プロセスの基本フロー: Basic flow of the process for recovering rare earth elements and acids of the present invention :電気透析装置の原理図: Principle of electrodialysis machine :吸着材を移動させる処理プロセスを示すフロー: Flow showing the treatment process to move the adsorbent :本発明の抽出試薬担持材料の合成経路: Synthesis route of the extraction reagent carrying material of the present invention :Nd及びDyの酸による溶離曲線: Nd and Dy acid elution curves

1. アニオン交換膜
2. カチオン交換膜
3. 酸回収液
4. 金属回収液
5. 被処理液体
6. 処理液
7. 脱塩室
8. 濃縮室
9. 極室
11.抽出試薬担持材料
12.電気透析装置
13.吸着槽
14.第1溶離槽
15.第2溶離槽
16.洗浄槽
1. 1. anion exchange membrane 2. Cation exchange membrane 3. Acid recovery solution 4. Metal recovery solution 5. Liquid to be treated Treatment liquid7. Desalination chamber8. Concentration chamber 9. Polar chamber 11. Extraction reagent carrying material 12. Electrodialyzer 13. Adsorption tank 14. First elution tank 15. Second elution tank 16. Washing tank

Claims (6)

希土類元素を含有した酸性液体から軽希土及び重希土を含む2種類以上の希土類元素と酸を分離回収する方法であって、希土類元素を含有する液体を抽出試薬担持吸着材料に接触させて希土類元素を吸着させる第1工程、吸着済みの吸着材に薄い酸を通液し軽希土類元素を溶出する第2工程、濃い酸を通液することによって重希土類元素を溶出する第3工程を含む2種類以上の希土類元素を含有する酸性液体から酸と希土類元素を分離回収する方法  A method for separating and recovering two or more kinds of rare earth elements including light rare earth and heavy rare earth and an acid from an acidic liquid containing rare earth elements, wherein the liquid containing the rare earth elements is brought into contact with the extraction reagent-supporting adsorbing material. Includes a first step of adsorbing rare earth elements, a second step of eluting light rare earth elements by passing a thin acid through an adsorbed adsorbent, and a third step of eluting heavy rare earth elements by passing a thick acid. Method for separating and recovering acid and rare earth element from acidic liquid containing two or more kinds of rare earth elements 前記、第1工程で希土類元素を吸着させた後の液体を酸回収装置で処理し酸を回収する第4工程、第2工程で得られた酸の溶離液を酸回収装置で処理し酸を回収すると同時に酸濃度の低下した希土類元素溶液を回収する第5工程、第3工程で得られた酸の溶離液を酸回収装置で処理し、酸を回収すると同時に酸濃度の低下した希土類元素溶液を回収する第6工程、を含む請求項1記載の2種類以上の希土類元素を含有する酸性液体から酸と希土類元素を分離回収する方法  The acid after the rare earth element is adsorbed in the first step is treated with an acid recovery device to recover the acid, and the acid eluent obtained in the second step is treated with an acid recovery device to remove the acid. The acid eluent obtained in the fifth and third steps of collecting the rare earth element solution having a reduced acid concentration at the same time as being recovered is treated with an acid recovery device, and the acid is recovered and the rare earth element solution having a reduced acid concentration at the same time. A method for separating and recovering an acid and a rare earth element from an acidic liquid containing two or more kinds of rare earth elements according to claim 1, comprising a sixth step of recovering the acid 前記、酸回収装置は電気透析装置であり、回収された酸を前記第1工程の前段の酸溶解工程、第2工程及び第3工程より選択された工程で再利用することを含む請求項1又は2記載の2種類以上の希土類元素を含有する酸性液体から酸と希土類元素を分離回収する方法  2. The acid recovery apparatus according to claim 1, wherein the acid recovery apparatus is an electrodialysis apparatus, and the recovered acid is reused in a process selected from the acid dissolution process, the second process, and the third process preceding the first process. Or a method for separating and recovering an acid and a rare earth element from an acidic liquid containing two or more rare earth elements according to 2 前記、第2工程で使用する薄い酸が0.5規定以下、第3工程で使用する酸が0.5規定以上である請求項1、2又は3記載の2種類以上の希土類元素を含有する酸性液体から酸と希土類元素を分離回収する方法  The thin acid used in the second step is 0.5 N or less, and the acid used in the third step is 0.5 N or more, containing two or more rare earth elements according to claim 1, 2 or 3. Method for separating and recovering acid and rare earth elements from acidic liquid 前記、第2工程及び第3工程で得られた酸濃度の低下した希土類元素溶液をキレート樹脂での吸着固定、シュウ酸塩として沈殿生成、水酸化物として沈殿生成より選択された手段により減容化する請求項1、2、3又は4記載の2種類以上の希土類元素を含有する酸性液体から希土類元素を分離回収する方法  Reduced volume of the rare earth element solution with reduced acid concentration obtained in the second and third steps by means selected from adsorption fixation with chelate resin, precipitation as oxalate and precipitation as hydroxide. A method for separating and recovering a rare earth element from an acidic liquid containing two or more kinds of rare earth elements according to claim 1, 2, 3, or 4 前記抽出試薬担持材料は、
[1] 基材が多孔性中空糸膜、繊維,布帛,不織布,空隙性高分子基材であり、
[2] 放射線グラフト重合法によって、グリシジルメタクリレート又はグリシジルアクリレート、ヒドロキシルメタクリレート,ビニルピロリドン,ジメチルアクリルアミド,エチレングリコールジメタクリレート,アルキルメタクリレート,又はアルキルアクリレートより選択される重合性単量体がグラフト重合され、
[3] グラフト側鎖にアルキル基,アルカノール基、アルカノールアミノ基、アルキルアミノ基,エポキシ基、ジオール基、チオール基より選択される抽出試薬担持機能を有する官能基が導入され、
[4] 抽出試薬としてビス(2‐エチルヘキシル)ホスフェイト、ビス(2,4,4‐トリメチルペンチル)ホスフィン酸、トリオクチルメチルアンモニウムクロライドより選択される、抽出試薬が担持される
ことにより製造された材料である請求項1、2、3、4又は5記載の2種類以上の希土類元素を含有する液体から希土類元素を分離回収する方法
The extraction reagent carrying material is
[1] The substrate is a porous hollow fiber membrane, a fiber, a fabric, a nonwoven fabric, or a porous polymer substrate,
[2] A polymerizable monomer selected from glycidyl methacrylate or glycidyl acrylate, hydroxyl methacrylate, vinyl pyrrolidone, dimethylacrylamide, ethylene glycol dimethacrylate, alkyl methacrylate, or alkyl acrylate is graft-polymerized by radiation graft polymerization,
[3] A functional group having an extraction reagent carrying function selected from an alkyl group, an alkanol group, an alkanolamino group, an alkylamino group, an epoxy group, a diol group, and a thiol group is introduced into the graft side chain,
[4] Material manufactured by supporting an extraction reagent selected from bis (2-ethylhexyl) phosphate, bis (2,4,4-trimethylpentyl) phosphinic acid, and trioctylmethylammonium chloride as an extraction reagent A method for separating and recovering rare earth elements from a liquid containing two or more rare earth elements according to claim 1, 2, 3, 4, or 5.
JP2013030423A 2013-02-01 2013-02-01 Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements Expired - Fee Related JP6093944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030423A JP6093944B2 (en) 2013-02-01 2013-02-01 Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030423A JP6093944B2 (en) 2013-02-01 2013-02-01 Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements

Publications (2)

Publication Number Publication Date
JP2014148738A true JP2014148738A (en) 2014-08-21
JP6093944B2 JP6093944B2 (en) 2017-03-15

Family

ID=51571940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030423A Expired - Fee Related JP6093944B2 (en) 2013-02-01 2013-02-01 Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements

Country Status (1)

Country Link
JP (1) JP6093944B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736094B1 (en) * 2015-02-10 2015-06-17 公信 山▲崎▼ Contaminated soil purification equipment
JP5739595B1 (en) * 2015-02-13 2015-06-24 公信 山▲崎▼ Contaminated soil purification equipment
CN105177324A (en) * 2015-10-21 2015-12-23 江西理工大学 Method for recovering rare earths from vacuum-calcium-thermic-reduction rare-earth slag
WO2016047700A1 (en) * 2014-09-24 2016-03-31 日東電工株式会社 Rare earth element adsorption separation material
JP2016089117A (en) * 2014-11-10 2016-05-23 国立研究開発法人日本原子力研究開発機構 Solid composition and method for producing solid composition
CN105886761A (en) * 2016-04-15 2016-08-24 包头稀土研究院 Method for separating rare earth and zinc from stripping raffinate for reducing and extracting europium
JP2016159229A (en) * 2015-03-02 2016-09-05 新日鉄住金エンジニアリング株式会社 Method and apparatus for treating acidic waste liquid containing metal ion
JPWO2014157225A1 (en) * 2013-03-25 2017-02-16 国立研究開発法人産業技術総合研究所 Rare earth element adsorbent and recovery method thereof
CN106801153A (en) * 2016-12-30 2017-06-06 包头稀土研究院 A kind of method of low cost enrichment high-grade mixed rare earth concentrates
CN106906354A (en) * 2017-03-06 2017-06-30 桂林理工大学 A kind of enrichment method of rare-earth tailing rare earth elements
JP2019077906A (en) * 2017-10-20 2019-05-23 国立研究開発法人産業技術総合研究所 Rare earth element collection method
CN110860277A (en) * 2019-12-09 2020-03-06 天津工业大学 Method for extracting rare earth metal from aminodiacetic acid modified fiber
KR20210069831A (en) * 2019-12-04 2021-06-14 주식회사 앱스필 Surface-Modified polypropylene fabrics for removing metallic ions and method of manufacturing the same
CN113816542A (en) * 2021-10-26 2021-12-21 福建船政交通职业学院 Electrochemical system and method for recycling ammonia nitrogen and rare earth ions in low-concentration rare earth wastewater
CN114604963A (en) * 2022-03-21 2022-06-10 中国科学技术大学 Functional biological carrier, preparation method and application thereof
CN115074555A (en) * 2021-03-16 2022-09-20 有研稀土高技术有限公司 Rare earth purification method based on macroporous ion imprinting adsorption membrane
CN116121568A (en) * 2023-03-01 2023-05-16 中国科学院过程工程研究所 Method for enriching rare earth from low-concentration rare earth feed liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762465A (en) * 1993-08-24 1995-03-07 Mitsui Mining & Smelting Co Ltd Adsorbent for separating rare earth metal
JP2003215292A (en) * 2002-01-22 2003-07-30 Inst Of Research & Innovation Method for separating and recovering americium, curium, and rare-earth element
JP2004028633A (en) * 2002-06-21 2004-01-29 Inst Of Research & Innovation Separation method of americium and curium, and heavy rare earth element
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine
JP2014513212A (en) * 2011-05-04 2014-05-29 オーバイト アルミナ インコーポレイテッド Method for recovering rare earth elements from various ores

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762465A (en) * 1993-08-24 1995-03-07 Mitsui Mining & Smelting Co Ltd Adsorbent for separating rare earth metal
JP2003215292A (en) * 2002-01-22 2003-07-30 Inst Of Research & Innovation Method for separating and recovering americium, curium, and rare-earth element
JP2004028633A (en) * 2002-06-21 2004-01-29 Inst Of Research & Innovation Separation method of americium and curium, and heavy rare earth element
JP2014513212A (en) * 2011-05-04 2014-05-29 オーバイト アルミナ インコーポレイテッド Method for recovering rare earth elements from various ores
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014157225A1 (en) * 2013-03-25 2017-02-16 国立研究開発法人産業技術総合研究所 Rare earth element adsorbent and recovery method thereof
US10023937B2 (en) * 2013-03-25 2018-07-17 National Institute Of Advanced Industrial Science And Technology Adsorbent for rare earth element and method for recovering rare earth element
CN107002175A (en) * 2014-09-24 2017-08-01 日东电工株式会社 The adsorption and separation material of rare earth element
WO2016047700A1 (en) * 2014-09-24 2016-03-31 日東電工株式会社 Rare earth element adsorption separation material
JP2016065277A (en) * 2014-09-24 2016-04-28 日東電工株式会社 Adsorption separation material for rare-earth element
JP2016089117A (en) * 2014-11-10 2016-05-23 国立研究開発法人日本原子力研究開発機構 Solid composition and method for producing solid composition
JP5736094B1 (en) * 2015-02-10 2015-06-17 公信 山▲崎▼ Contaminated soil purification equipment
JP5739595B1 (en) * 2015-02-13 2015-06-24 公信 山▲崎▼ Contaminated soil purification equipment
JP2016159229A (en) * 2015-03-02 2016-09-05 新日鉄住金エンジニアリング株式会社 Method and apparatus for treating acidic waste liquid containing metal ion
CN105177324A (en) * 2015-10-21 2015-12-23 江西理工大学 Method for recovering rare earths from vacuum-calcium-thermic-reduction rare-earth slag
CN105886761A (en) * 2016-04-15 2016-08-24 包头稀土研究院 Method for separating rare earth and zinc from stripping raffinate for reducing and extracting europium
CN106801153A (en) * 2016-12-30 2017-06-06 包头稀土研究院 A kind of method of low cost enrichment high-grade mixed rare earth concentrates
CN106906354A (en) * 2017-03-06 2017-06-30 桂林理工大学 A kind of enrichment method of rare-earth tailing rare earth elements
JP7001903B2 (en) 2017-10-20 2022-01-20 国立研究開発法人産業技術総合研究所 How to recover rare earth elements
JP2019077906A (en) * 2017-10-20 2019-05-23 国立研究開発法人産業技術総合研究所 Rare earth element collection method
KR20210069831A (en) * 2019-12-04 2021-06-14 주식회사 앱스필 Surface-Modified polypropylene fabrics for removing metallic ions and method of manufacturing the same
KR102272587B1 (en) * 2019-12-04 2021-07-05 주식회사 앱스필 Surface-Modified polypropylene fabrics for removing metallic ions and method of manufacturing the same
CN110860277A (en) * 2019-12-09 2020-03-06 天津工业大学 Method for extracting rare earth metal from aminodiacetic acid modified fiber
CN115074555A (en) * 2021-03-16 2022-09-20 有研稀土高技术有限公司 Rare earth purification method based on macroporous ion imprinting adsorption membrane
CN115074555B (en) * 2021-03-16 2024-03-08 有研稀土高技术有限公司 Rare earth purification method based on macroporous ion imprinting adsorption membrane
CN113816542A (en) * 2021-10-26 2021-12-21 福建船政交通职业学院 Electrochemical system and method for recycling ammonia nitrogen and rare earth ions in low-concentration rare earth wastewater
CN114604963A (en) * 2022-03-21 2022-06-10 中国科学技术大学 Functional biological carrier, preparation method and application thereof
CN114604963B (en) * 2022-03-21 2023-04-21 中国科学技术大学 Functional biological carrier, preparation method and application thereof
CN116121568A (en) * 2023-03-01 2023-05-16 中国科学院过程工程研究所 Method for enriching rare earth from low-concentration rare earth feed liquid

Also Published As

Publication number Publication date
JP6093944B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6093944B2 (en) Method for separating and recovering rare earth elements and acids from solutions containing rare earth elements
Chen et al. Recent advances in selective separation technologies of rare earth elements: A review
Pereao et al. Rare earth elements removal techniques from water/wastewater: A review
Cheng et al. Fabrication of fungus/attapulgite composites and their removal of U (VI) from aqueous solution
Wei et al. Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution
CN106076290B (en) A kind of method and application of the quick modified acrylic fibre of microwave
CN107159128A (en) A kind of novel metal organic framework material as well as preparation method and application thereof
Wang et al. Selective adsorption of palladium (II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: Batch and column studies
JP2006026588A (en) Method for recovering and removing useful or harmful metal dissolved in hot-spring water
JP2004020546A (en) Method of separating and recovering element from radioactive waste liquid
KR20150109744A (en) Metal-Supported Anion-Exchange Resins and Method for Remediating of Toxic Anions Using the Same
Huang et al. Efficient and selective capture of uranium by polyethyleneimine-modified chitosan composite microspheres from radioactive nuclear waste
CN107519948B (en) Composite amino weakly-alkaline anion exchange resin and method for recovering rhenium from arsenic sulfide slag leachate
Fu et al. Uranium removal from waste water of the tailings with functional recycled plastic membrane
JP5733703B2 (en) Cloth-like radioactive material adsorbent and method for producing the same
CN105289543A (en) Nanometer-hydrous zirconium oxide-loading composite hydrogel having carboxyl and hydroxyl, preparation and applications thereof
CN109319891B (en) Magnetic nano material, preparation method thereof and application thereof in radioactive element treatment
KR102397358B1 (en) Method of Preparing KCuHCF Embedded Electrospun Membrane for Cesium Removal
WO1998016680A1 (en) Metal chelate forming fiber, process for preparing the same, and method of metal ion sequestration using said fiber
KR20140100093A (en) Process for synthesizing mesoporous silica having ferrocyanide
Polikarpov et al. FIBAN fibrous ion exchangers: Synthesis, modification, application
KR20190051439A (en) Hydrogel bead of removing radionuclide and method for manufacturing the same
KR101919150B1 (en) double functional adsorption material for removing contaminants including heavy metals and preventing membrane fouling
CN114225924B (en) Method for recycling bismuth by using plant polyphenol modified adsorption resin
CN113070046B (en) Preparation method of defluorination adsorbent modified by biopolymer composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6093944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees