JP2014147200A - Gate drive signal generating device of multilevel power converter - Google Patents

Gate drive signal generating device of multilevel power converter Download PDF

Info

Publication number
JP2014147200A
JP2014147200A JP2013013910A JP2013013910A JP2014147200A JP 2014147200 A JP2014147200 A JP 2014147200A JP 2013013910 A JP2013013910 A JP 2013013910A JP 2013013910 A JP2013013910 A JP 2013013910A JP 2014147200 A JP2014147200 A JP 2014147200A
Authority
JP
Japan
Prior art keywords
gate
drive signal
command value
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013910A
Other languages
Japanese (ja)
Other versions
JP6163768B2 (en
Inventor
Toshiya Inoue
稔也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013013910A priority Critical patent/JP6163768B2/en
Publication of JP2014147200A publication Critical patent/JP2014147200A/en
Application granted granted Critical
Publication of JP6163768B2 publication Critical patent/JP6163768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress distortion of the output voltage by reducing a period for adding a dead time, in the gate drive signal generating device of a multilevel power converter.SOLUTION: In the gate drive signal generating device of a multilevel power converter generating an AC output converted from the voltage of a DC voltage source into a plurality of voltage levels, a gate output pattern determination unit 3 determines a gate output pattern Ptn depending on a voltage command value Vcmd and the direction of an output current Iout, a dead time determination unit 4 determines necessity of a dead time DT depending on the gate output pattern Ptn_0 of the previous time and the gate output pattern Ptn of this time, and a gate drive signal generation unit 5 generates a gate drive signal depending on the necessity of the gate output pattern Ptn and the dead time DT.

Description

本発明は、マルチレベル電力変換装置に係り、特にスイッチの駆動パターンに関する。   The present invention relates to a multilevel power converter, and more particularly to a switch drive pattern.

3レベル電力変換装置(インバータ)の主回路構成を図12に示す。図12に示すように、主回路は、各相ごとに3つのIGBTモジュールA,B,Cから成る。   The main circuit configuration of the three-level power converter (inverter) is shown in FIG. As shown in FIG. 12, the main circuit includes three IGBT modules A, B, and C for each phase.

次に、3レベルインバータの動作を説明する。説明のため1相分の回路構成を図13に示す。IGBTモジュールAはコンデンサC1,C2を直列接続した直流電圧源のP−N間に直列接続される。IGBTモジュールAにはスイッチS1,S2が直列接続され、IGBTモジュールB,CにはスイッチS3,S4およびS5,S6が直列接続されている。なお、スイッチS3とスイッチS5は逆向きに直列接続され、スイッチS4とスイッチS6が逆向きに直列接続される。そして、このスイッチS3〜S6は双方向S7を構成する。スイッチS1およびS2,双方向スイッチS7のスイッチングパターンを変化させることによって電圧PおよびM,Nの3種類の電圧が出力される。なお、各スイッチS1〜S6には逆並列に還流ダイオードが接続されている。   Next, the operation of the three-level inverter will be described. For explanation, the circuit configuration for one phase is shown in FIG. The IGBT module A is connected in series between PN of a DC voltage source in which capacitors C1 and C2 are connected in series. Switches S1, S2 are connected in series to the IGBT module A, and switches S3, S4 and S5, S6 are connected in series to the IGBT modules B, C. Note that the switch S3 and the switch S5 are connected in series in the reverse direction, and the switch S4 and the switch S6 are connected in series in the reverse direction. The switches S3 to S6 constitute a bidirectional S7. By changing the switching pattern of the switches S1 and S2 and the bidirectional switch S7, three types of voltages P, M, and N are output. Note that a free-wheeling diode is connected in antiparallel to each of the switches S1 to S6.

正の電圧を出力する場合は、電圧指令値とキャリア信号の比較によるPWM信号によってスイッチS1がON,双方向スイッチS7がOFFの状態とスイッチS1がOFF、双方向スイッチS7がONの状態とを切換える。負の電圧を出力する場合は、電圧指令値とキャリアの比較によるPWM信号によってスイッチS2がON,双方向スイッチS7がOFFの状態とスイッチS2がOFF、双方向スイッチS7がONの状態とを切換える。   When outputting a positive voltage, the switch S1 is turned on, the bidirectional switch S7 is turned off, the switch S1 is turned off, and the bidirectional switch S7 is turned on by a PWM signal obtained by comparing the voltage command value and the carrier signal. Switch. When a negative voltage is output, the switch S2 is turned on, the bidirectional switch S7 is turned off, the switch S2 is turned off, and the bidirectional switch S7 is turned on by a PWM signal obtained by comparing the voltage command value and the carrier. .

現在の技術におけるゲート駆動信号生成装置を図14に示す。正側および負側の2種類のキャリア信号carrier1,carrier2を用意し、それぞれのキャリア信号carrier1,carrier2と電圧指令値VcmdをPWM変調することによってゲート指令値PWM1およびPWM2が生成される。ゲート指令値PWM1およびPWM2はそれぞれデッドタイム生成部によってデッドタイムDTが付加され、スイッチS1〜S6へのゲート駆動信号が生成される。   FIG. 14 shows a gate drive signal generation device in the current technology. Two types of carrier signals carrier1 and carrier2 on the positive side and negative side are prepared, and the gate command values PWM1 and PWM2 are generated by PWM-modulating the carrier signals carrier1 and carrier2 and the voltage command value Vcmd. Each of the gate command values PWM1 and PWM2 is added with a dead time DT by a dead time generator, and a gate drive signal to the switches S1 to S6 is generated.

特開平7−123729号公報JP-A-7-123729 特開2007−28860号公報JP 2007-28860 A 特開2009−27818号公報JP 2009-27818 A

スイッチの状態遷移時はP−N間またはP−M間,N−M間が短絡しないようにデッドタイムDTを設けている。このデッドタイムDTでは任意の指令電圧を出力できないため、出力電圧波形に歪みが生じてしまう。   During switch state transition, a dead time DT is provided so as not to short-circuit between PN, PM, and NM. Since an arbitrary command voltage cannot be output in the dead time DT, the output voltage waveform is distorted.

以上示したようなことから、マルチレベル電力変換装置のゲート駆動信号生成装置において、デッドタイムを付加する期間を低減し、出力電圧の歪みを抑制することが課題となる。   As described above, in the gate drive signal generation device of the multilevel power conversion device, it is a problem to reduce a period in which a dead time is added and to suppress distortion of the output voltage.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流電圧源の電圧から複数の電圧レベルに変換した交流出力を生成するマルチ電力変換装置のゲート駆動信号生成装置であって、電圧指令値と出力電流の向きに応じてゲート出力パターンを決定するゲート駆動パターン判定部と、前回のゲート出力パターンと今回のゲート出力パターンに応じてデッドタイムの要否を判定するデッドタイム判定部と、ゲート出力パターンとデッドタイムの要否に応じてゲート駆動信号を生成するゲート駆動信号生成部と、を備えたことを特徴とする。   The present invention has been devised in view of the above-described conventional problems. One aspect of the present invention is to generate a gate drive signal for a multi-power converter that generates an AC output converted from a voltage of a DC voltage source into a plurality of voltage levels. A device that determines the gate output pattern according to the voltage command value and the direction of the output current, and determines the necessity of dead time according to the previous gate output pattern and the current gate output pattern And a gate drive signal generation unit that generates a gate drive signal in accordance with the gate output pattern and the necessity of the dead time.

また、その一態様として、前記マルチレベル電力変換装置の主回路は、直流電圧源の両端子間に接続された第1,第2スイッチと、直流電圧源の中間電位と、第1,第2スイッチの共通接続点との間に接続された双方向スイッチと、を各相に備え、第1,第2スイッチの共通接続点を交流出力端子とすることを特徴とする。   Moreover, as one aspect thereof, the main circuit of the multilevel power conversion device includes first and second switches connected between both terminals of the DC voltage source, an intermediate potential of the DC voltage source, and first and second switches. A bidirectional switch connected between a common connection point of the switches is provided for each phase, and the common connection point of the first and second switches is an AC output terminal.

本発明によれば、マルチレベル電力変換装置のゲート駆動信号生成装置において、デッドタイムを付加する期間を低減し、出力電圧の歪みを抑制することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, in the gate drive signal generator of a multilevel power converter device, it becomes possible to reduce the period which adds a dead time, and to suppress distortion of an output voltage.

双方向スイッチの例を示す回路図である。It is a circuit diagram which shows the example of a bidirectional | two-way switch. 実施形態におけるマルチレベルインバータの主回路1相分を示す回路図である。It is a circuit diagram which shows the main circuit 1 phase part of the multilevel inverter in embodiment. 実施形態におけるマルチレベルインバータのゲート駆動信号生成部を示すブロック図である。It is a block diagram which shows the gate drive signal generation part of the multilevel inverter in embodiment. 各ゲート出力パターンにおける電流経路および出力電圧を示す概略図である。It is the schematic which shows the current path and output voltage in each gate output pattern. 電圧指令値が正,出力電流が正の場合におけるゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform in case a voltage command value is positive and output current is positive. 電圧指令値が負,出力電流が負の場合におけるゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform in case voltage command value is negative and output current is negative. 電圧指令値が正,出力電流が負の場合におけるゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform in case a voltage command value is positive and output current is negative. 電圧指令値が負,出力電流が正の場合におけるゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform in case voltage command value is negative and output current is positive. 電圧指令値と出力電流が同時に正から負へと変化した場合のゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform when a voltage command value and output current change from positive to negative simultaneously. 出力電流と電圧指令値が正から負へと変化し、電圧指令値に対して出力電流が遅れている場合のゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform when an output current and a voltage command value change from positive to negative, and an output current is late with respect to a voltage command value. 出力電流と電圧指令値が正から負へと変化し、電圧指令値に対して出力電流が進んでいる場合のゲート駆動信号波形を示すタイムチャートである。It is a time chart which shows a gate drive signal waveform when an output current and a voltage command value change from positive to negative, and an output current advances with respect to a voltage command value. 従来における3レベルインバータの主回路の一例を示す回路図である。It is a circuit diagram which shows an example of the main circuit of the conventional 3 level inverter. 図12の主回路の一相分を示す回路図である。FIG. 13 is a circuit diagram showing one phase of the main circuit of FIG. 12. 従来における3レベルインバータのゲート駆動信号生成装置を示すブロック図である。It is a block diagram which shows the gate drive signal generator of the conventional 3 level inverter.

以下、本発明の実施形態におけるマルチレベル電力変換装置(インバータ)のゲート駆動信号生成装置を図面に基づいて詳細に説明する。   Hereinafter, a gate drive signal generation device of a multilevel power converter (inverter) in an embodiment of the present invention will be described in detail based on the drawings.

[実施形態]
本実施形態の主回路は図12の構成と同じであり、各スイッチの駆動方法によって前記デッドタイムDTに任意の指令電圧を出力できない問題点を解決する。
[Embodiment]
The main circuit of this embodiment is the same as the configuration of FIG. 12, and solves the problem that an arbitrary command voltage cannot be output during the dead time DT by the driving method of each switch.

なお、図13における双方向スイッチS7を図1に示すような構成とすることも可能である。図1(a)は、図12の構成と同様であり、直流電圧源の中間電位Mと交流出力点との間にスイッチS3,S5を逆向きに直列接続し、このスイッチS3,S5の直列回路に対してスイッチS4,S6を逆向きに直列接続した直列回路を並列接続している。図1(b)は、図1(a)のスイッチS3,S4をスイッチS3,S4に逆並列に接続された還流ダイオードD1,D2のみに変更したものである。図1(c)は、入力電圧の中間電位Mと交流出力点との間にスイッチS8と、このスイッチS8に対して逆向きのスイッチS9を直列接続したものである。なお、このスイッチS8,S9にも逆並列に還流ダイオードが接続されている。   Note that the bidirectional switch S7 in FIG. 13 may be configured as shown in FIG. FIG. 1A is the same as the configuration of FIG. 12, and switches S3 and S5 are connected in series in the reverse direction between the intermediate potential M of the DC voltage source and the AC output point, and the switches S3 and S5 are connected in series. A series circuit in which switches S4 and S6 are connected in series in the reverse direction is connected in parallel to the circuit. In FIG. 1B, the switches S3 and S4 in FIG. 1A are changed to only freewheeling diodes D1 and D2 connected in antiparallel to the switches S3 and S4. In FIG. 1C, a switch S8 and a switch S9 opposite to the switch S8 are connected in series between the intermediate potential M of the input voltage and the AC output point. A freewheeling diode is also connected in antiparallel to the switches S8 and S9.

図2に本実施形態における3レベルインバータの主回路1相分を示す。   FIG. 2 shows one phase of the main circuit of the three-level inverter in the present embodiment.

図2に示すように、出力電流Ioutおよびその出力電流Ioutの方向を検出する電流検出器CTUを設けている。本実施形態では電流検出器CTUを設け、電圧指令値Vcmdと出力電流Ioutの向きに応じてゲート駆動信号を生成する。   As shown in FIG. 2, a current detector CTU for detecting the output current Iout and the direction of the output current Iout is provided. In the present embodiment, a current detector CTU is provided, and a gate drive signal is generated according to the direction of the voltage command value Vcmd and the output current Iout.

本実施形態におけるゲート駆動信号生成装置を図3に示す。電圧指令値Vcmdとキャリア生成部6a,6bから出力されたキャリア信号carrier1およびcarrier2とをPWM変調器7a,7bにおいてPWM変調し、生成されたゲート指令値をそれぞれPWM1およびPWM2とする。ゲート指令値PWM1は、電圧指令値Vcmd>キャリア信号carrier1のときH、それ以外Lで、ゲート指令値PWM2は電圧指令値Vcmd<キャリア信号carrier2のときH、それ以外Lである。   FIG. 3 shows a gate drive signal generation device according to this embodiment. The voltage command value Vcmd and the carrier signals carrier1 and carrier2 output from the carrier generators 6a and 6b are PWM-modulated by the PWM modulators 7a and 7b, and the generated gate command values are set to PWM1 and PWM2, respectively. The gate command value PWM1 is H when the voltage command value Vcmd> the carrier signal carrier1, and L otherwise. The gate command value PWM2 is H when the voltage command value Vcmd <carrier signal carrier2, and L otherwise.

図3に示すように、電圧指令値Vcmdと出力電流Ioutを符号検出部1,2によって正負情報を抽出したものを符号検出値Vcmd_sおよびIout_sとする。   As shown in FIG. 3, the sign detection values Vcmd_s and Iout_s are obtained by extracting the positive / negative information from the voltage command value Vcmd and the output current Iout by the sign detection units 1 and 2.

ゲート出力パターン判定部3では、ゲート指令値PWM1,PWM2,符号検出値Vcmd_s,Iout_sに応じて5種類のゲート出力パターンPtnを表1に示すように決定する。   The gate output pattern determination unit 3 determines five types of gate output patterns Ptn as shown in Table 1 in accordance with the gate command values PWM1, PWM2, sign detection values Vcmd_s, Iout_s.

Figure 2014147200
Figure 2014147200

符号検出値Vcmd_sが正のときはゲート指令値PWM2によらずゲート指令値PWM1に応じてゲート出力パターンPtnを決定する。また、符号検出値Vcmd_sが負のときはゲート指令値PWM1によらずゲート指令値PWM2に応じてゲート出力パターンPtnを決定する。   When the sign detection value Vcmd_s is positive, the gate output pattern Ptn is determined according to the gate command value PWM1 regardless of the gate command value PWM2. When the sign detection value Vcmd_s is negative, the gate output pattern Ptn is determined according to the gate command value PWM2 regardless of the gate command value PWM1.

デッドタイム判定部4では、前回のゲート出力パターンPtn_0と今回のゲート出力パターンPtnに応じて表2に示すように、デッドタイムの要否(以下、デッドタイム判定DTと称する)を判定する。   The dead time determination unit 4 determines the necessity of dead time (hereinafter referred to as dead time determination DT) as shown in Table 2 according to the previous gate output pattern Ptn_0 and the current gate output pattern Ptn.

Figure 2014147200
Figure 2014147200

ゲート駆動信号生成部5では、表3に示すように、デッドタイム判定DTがHの場合は一定期間全スイッチがOFFとなる信号を出力する。デッドタイム判定DTがLの場合には、ゲート出力パターンPtnに応じたゲート駆動信号を生成する。   As shown in Table 3, when the dead time determination DT is H, the gate drive signal generation unit 5 outputs a signal that turns off all the switches for a certain period. When the dead time determination DT is L, a gate drive signal corresponding to the gate output pattern Ptn is generated.

Figure 2014147200
Figure 2014147200

次に、各ゲート出力パターンPtnにおける電流経路および出力電圧について図4に基づき説明する。   Next, the current path and output voltage in each gate output pattern Ptn will be described with reference to FIG.

ゲート出力パターン1の場合、図4(1)に示すように、スイッチS1とスイッチS3,S6がONしており、スイッチS1を通して電圧Pが出力される。   In the case of the gate output pattern 1, as shown in FIG. 4A, the switch S1 and the switches S3 and S6 are ON, and the voltage P is output through the switch S1.

ゲート出力パターン2の場合、図4(2)に示すように、スイッチS3,S6がONしており、スイッチS5の還流ダイオードとスイッチS3およびスイッチS6とスイッチS4の還流ダイオードを通して電圧Mが出力される。   In the case of the gate output pattern 2, as shown in FIG. 4B, the switches S3 and S6 are ON, and the voltage M is output through the free wheel diode of the switch S5, the switch S3, and the free wheel diode of the switch S6 and the switch S4. The

ゲート出力パターン3の場合、図4(3),(3)’に示すように、すべてのスイッチS1〜S6がOFFしている。出力電流Ioutが正の場合はスイッチS2の還流ダイオードを通して電圧Nが出力され、出力電流Ioutが負の場合はスイッチS1の還流ダイオードを通して電圧Pが出力される。   In the case of the gate output pattern 3, as shown in FIGS. 4 (3) and (3) ', all the switches S1 to S6 are OFF. When the output current Iout is positive, the voltage N is output through the free wheel diode of the switch S2, and when the output current Iout is negative, the voltage P is output through the free wheel diode of the switch S1.

ゲート出力パターン4の場合、図4(4)に示すように、スイッチS4,S5がONしており、スイッチS3の還流ダイオードとスイッチS5およびスイッチS4とスイッチS6の還流ダイオードを通して電圧Mが出力される。   In the case of the gate output pattern 4, as shown in FIG. 4 (4), the switches S4 and S5 are ON, and the voltage M is output through the free wheel diode of the switch S3, the switch S5, and the free wheel diode of the switch S4 and the switch S6. The

ゲート出力パターン5の場合、図4(5)に示すように、スイッチS2,S4,S5がONしており、スイッチS2を通して電圧Nが出力される。   In the case of the gate output pattern 5, as shown in FIG. 4 (5), the switches S2, S4, S5 are ON, and the voltage N is output through the switch S2.

電圧指令値Vcmdと出力電流Ioutが正の場合におけるゲート駆動信号波形を図5に示す(図4(1),(2))。本来、電圧指令値Vcmdは正弦波であるが、図5では直線部として図示している。   FIG. 5 shows the gate drive signal waveform when the voltage command value Vcmd and the output current Iout are positive (FIGS. 4 (1) and (2)). Originally, the voltage command value Vcmd is a sine wave, but is shown as a straight line portion in FIG.

従来技術では、スイッチS2をOFF,スイッチS3,S6をONにし、電圧指令値Vcmdとキャリア信号carrier1より生成されるゲート指令値PWM1に応じてスイッチS1,S4,S5をスイッチングしていた。また、スイッチング時にはP−M間の短絡防止のため、デッドタイムDTが設けられていた。   In the prior art, the switches S2, S3, and S6 are turned on, and the switches S1, S4, and S5 are switched according to the gate command value PWM1 generated from the voltage command value Vcmd and the carrier signal carrier1. Further, a dead time DT is provided at the time of switching to prevent a short circuit between PM.

本実施形態では、電圧指令値Vcmdと出力電流Ioutが正の場合、スイッチS2をOFF,スイッチS3,S6をON,スイッチS4,S5をOFFにし、電圧指令値Vcmdとキャリア信号carrier1より生成されるゲート指令値PWM1に応じてスイッチS1のみをスイッチングする。そのため、P−M間の短絡は発生しない。   In this embodiment, when the voltage command value Vcmd and the output current Iout are positive, the switch S2 is turned off, the switches S3 and S6 are turned on, the switches S4 and S5 are turned off, and the voltage command value Vcmd and the carrier signal carrier1 are generated. Only the switch S1 is switched according to the gate command value PWM1. Therefore, a short circuit between PM does not occur.

以下の説明では、スイッチS1〜S6へのゲート駆動信号に対しターンオン時間の遅れはないものとし、ターンオフ時間には遅れがあるとする。従来技術,本実施形態ともに、時刻t1で、スイッチS1はオフ信号が入っても直ぐにはオフにならず、t2の時点でオフになる。このため時刻t2まで出力電圧Voutの電位はPで、時刻t2からt3まではMとなる。   In the following description, it is assumed that there is no delay in the turn-on time with respect to the gate drive signals to the switches S1 to S6, and there is a delay in the turn-off time. In both the prior art and the present embodiment, at time t1, the switch S1 does not turn off immediately even when an off signal is input, but turns off at time t2. Therefore, the potential of the output voltage Vout is P from time t2 to M from time t2 to t3.

そして、ゲート指令値PWM2は時刻t3でLからHとなるが、時刻t3後、従来技術ではデッドタイムDTを確保するため、時刻t4までスイッチS1に対してオン信号を入れることができず、スイッチS1へのゲート駆動信号は時刻t4でONとなり、時刻t4まで出力電圧Voutの電位はMとなる。それに対し、本実施形態ではデッドタイムDTを付加する必要がないため時刻t3でスイッチS1に対するゲート駆動信号がONとなって、出力電圧Voutの電位はPとなり、t3−t4間はゲート指令値PWM1の波形どおりに出力電圧Voutを出力する。   The gate command value PWM2 changes from L to H at time t3, but after time t3, the prior art cannot secure an on signal for the switch S1 until time t4 in order to secure the dead time DT. The gate drive signal to S1 is turned ON at time t4, and the potential of the output voltage Vout becomes M until time t4. On the other hand, in this embodiment, since it is not necessary to add the dead time DT, the gate drive signal for the switch S1 is turned ON at time t3, the potential of the output voltage Vout becomes P, and the gate command value PWM1 between t3 and t4. The output voltage Vout is output according to the waveform shown in FIG.

電圧指令値Vcmdと出力電流Ioutが負の場合におけるゲート駆動信号波形を図6に示す(図4(5),(4))。   FIG. 6 shows the gate drive signal waveform when the voltage command value Vcmd and the output current Iout are negative (FIGS. 4 (5) and (4)).

従来技術では、スイッチS1をOFF,スイッチS4,S5をONにし、電圧指令値Vcmdとキャリア信号carrier2より生成されるゲート指令値PWM2に応じてスイッチS2,S3,S6をスイッチングしていた。また、スイッチング時にはM−N間の短絡防止のため、デッドタイムDTが設けられていた。   In the prior art, the switch S1, the switches S4, and S5 are turned on, and the switches S2, S3, and S6 are switched according to the gate command value PWM2 generated from the voltage command value Vcmd and the carrier signal carrier2. Further, at the time of switching, a dead time DT is provided to prevent a short circuit between MN.

本実施形態では、電圧指令値Vcmdと出力電流Ioutが負の場合、スイッチS1をOFF,スイッチS3,S6をOFF,スイッチS4,S5をONにし、電圧指令値Vcmdとキャリア信号carrier2より生成されるゲート指令値PWM2に応じてスイッチS2のみをスイッチングする。そのため、M−N間の短絡は発生しない。   In the present embodiment, when the voltage command value Vcmd and the output current Iout are negative, the switch S1 is turned off, the switches S3 and S6 are turned off, and the switches S4 and S5 are turned on, and the voltage command value Vcmd and the carrier signal carrier2 are generated. Only the switch S2 is switched according to the gate command value PWM2. Therefore, a short circuit between MN does not occur.

ゲート指令値PWM2は時刻t1でLからHとなるが、従来技術ではデッドタイムDT確保のため、時刻t2までにスイッチS2に対してオン信号を入れることができず、時刻t2まで出力電圧Voutの電位はMとなる。本実施形態ではデッドタイムDTを付加する必要がないため、時刻t1でスイッチS2にオン信号を入れることができ、ゲート指令値PWM2どおり時刻t1から出力電圧Voutの電位はNとなる。従来技術,本実施形態とも、時刻t3−t4間ではスイッチS2へのゲート駆動信号はOFFとなるが、ターンオフ時間の遅れのため出力電圧VoutはNのままとなる。そして、時刻t4後、出力電圧Voutの電位はMとなる。時刻t3−t4間は、従来技術と本実施形態における出力電圧Voutの波形は同じであるが、時刻t1−t2間において、本実施形態は電圧指令値Vcmdどおりに出力電圧Voutを出力する。   The gate command value PWM2 changes from L to H at time t1, but in the prior art, in order to secure the dead time DT, an ON signal cannot be input to the switch S2 by time t2, and the output voltage Vout of time t2 The potential is M. In this embodiment, since it is not necessary to add the dead time DT, an ON signal can be input to the switch S2 at time t1, and the potential of the output voltage Vout becomes N from time t1 as with the gate command value PWM2. In both the prior art and the present embodiment, the gate drive signal to the switch S2 is OFF between the times t3 and t4, but the output voltage Vout remains N due to the delay of the turn-off time. Then, after time t4, the potential of the output voltage Vout becomes M. During the time t3-t4, the waveform of the output voltage Vout in the prior art and the present embodiment is the same, but during the time t1-t2, the present embodiment outputs the output voltage Vout according to the voltage command value Vcmd.

電圧指令値Vcmdが正で出力電流Ioutが負の場合におけるゲート駆動信号波形を図7に示す(図4(3),(4))。   FIG. 7 shows gate drive signal waveforms when the voltage command value Vcmd is positive and the output current Iout is negative (FIGS. 4 (3) and 4 (4)).

従来技術では、電圧指令値Vcmdと出力電流Ioutが正の場合と同様に、スイッチS2をOFF,スイッチS3,S6をONにし、電圧指令値Vcmdとキャリア信号carrier1より生成されるゲート指令値PWM1に応じてスイッチS1,S4,S5をスイッチングしていた。また、スイッチング時にはP−M間の短絡防止のため、デッドタイムDTが設けられていた。   In the prior art, as in the case where the voltage command value Vcmd and the output current Iout are positive, the switch S2 is turned OFF, the switches S3 and S6 are turned ON, and the gate command value PWM1 generated from the voltage command value Vcmd and the carrier signal carrier1 is set. Accordingly, the switches S1, S4 and S5 are switched. Further, a dead time DT is provided at the time of switching to prevent a short circuit between PM.

本実施形態では、電圧指令値Vcmdが正,出力電流Ioutが負の場合、スイッチS1をOFF,スイッチS2をOFF,スイッチS3,S6をOFFにし、電圧指令値Vcmdとキャリアcarrier1より生成されるゲート指令値PWM1に応じてスイッチS4,S5のみをスイッチングする。そのため、P−M間の短絡は発生しない。   In this embodiment, when the voltage command value Vcmd is positive and the output current Iout is negative, the switch S1 is turned off, the switch S2 is turned off, the switches S3 and S6 are turned off, and the gate generated from the voltage command value Vcmd and the carrier carrier1. Only the switches S4 and S5 are switched according to the command value PWM1. Therefore, a short circuit between PM does not occur.

ゲート指令値PWM1は時刻t1でHからLとなるが、従来技術ではデッドタイムDT確保のため時刻t1でスイッチS4,S5にオン信号を入れることができず、時刻t2まで出力電圧Voutの電位はPとなる。本実施形態ではデッドタイムDTを付加する必要がないため、時刻t1でスイッチS4,S5にオン信号を入れることができ、ゲート指令値PWM1どおり時刻t1から出力電圧Voutの電位はMとなる。時刻t3−t4間では、従来技術,本実施形態ともに、スイッチS4,S5へのゲート駆動信号はOFFになるが、ターンオフ時間の遅れのため出力電圧VoutはMのままとなる。そして、時刻t4後、出力電圧Voutの電位はPとなる。時刻t3−t4間は、従来技術と本実施形態における出力電圧Voutの波形は同じであるが、時刻t1−t2間においては、本実施形態は電圧指令値Vcmdどおりに出力電圧Voutを出力する。   The gate command value PWM1 changes from H to L at time t1, but in the prior art, an ON signal cannot be input to the switches S4 and S5 at time t1 in order to secure the dead time DT, and the potential of the output voltage Vout remains at time t2. P. In this embodiment, since it is not necessary to add the dead time DT, an on signal can be input to the switches S4 and S5 at time t1, and the potential of the output voltage Vout becomes M from time t1 as in the gate command value PWM1. Between times t3 and t4, the gate drive signal to the switches S4 and S5 is turned off in both the prior art and the present embodiment, but the output voltage Vout remains M because of the delay in the turn-off time. Then, after time t4, the potential of the output voltage Vout becomes P. During the time t3-t4, the waveform of the output voltage Vout in the prior art and the present embodiment is the same, but during the time t1-t2, the present embodiment outputs the output voltage Vout according to the voltage command value Vcmd.

電圧指令値Vcmdが負で出力電流Ioutが正の場合におけるゲート駆動信号波形を図8に示す(図4(3)’,(2))。   FIG. 8 shows the waveform of the gate drive signal when the voltage command value Vcmd is negative and the output current Iout is positive (FIG. 4 (3) ', (2)).

従来技術では電圧指令値Vcmdと出力電流Ioutが負の場合と同様に、スイッチS1をOFF,スイッチS4,S5をONにし、電圧指令Vcmdとキャリア信号carrier2より生成されるゲート指令値PWM2に応じてスイッチS2,S3,S6をスイッチングしていた。また、スイッチング時にはM−N間の短絡防止のため、デッドタイムDTが設けられていた。   In the prior art, as in the case where the voltage command value Vcmd and the output current Iout are negative, the switch S1 is turned off, the switches S4 and S5 are turned on, and the gate command value PWM2 generated from the voltage command Vcmd and the carrier signal carrier2 is determined. The switches S2, S3 and S6 were switched. Further, at the time of switching, a dead time DT is provided to prevent a short circuit between MN.

本実施形態では、電圧指令値Vcmdが負で出力電流Ioutが正の場合、スイッチS1をOFF,スイッチS2をOFF,スイッチS4,S5をOFFにし、電圧指令値Vcmdとキャリア信号carrier2より生成されるゲート指令値PWM2に応じてスイッチS3,S6のみをスイッチングする。そのため、M−N間の短絡は発生しない。   In this embodiment, when the voltage command value Vcmd is negative and the output current Iout is positive, the switch S1 is turned off, the switch S2 is turned off, the switches S4 and S5 are turned off, and the voltage command value Vcmd and the carrier signal carrier2 are generated. Only the switches S3 and S6 are switched according to the gate command value PWM2. Therefore, a short circuit between MN does not occur.

ゲート指令値PWM2は時刻t1でLからHとなり、従来技術,本実施形態ともに、スイッチS3,S6へのゲート駆動信号はOFFになるが、ターンオフ時間の遅れのため出力電圧Voutの電位は時刻t2までMとなり、時刻t2からNとなる。この時刻t3までは従来技術,本実施形態とも出力電圧Voutは同じである。そして、時刻t3で、ゲート指令値PWM2がHからLになるが、従来技術ではデッドタイムDTを確保するため時刻t4までスイッチS3,S6へのゲート駆動信号をONにすることができず、時刻t4まで出力電圧Voutの電位はNとなる。本実施形態では時刻t3から時刻t4までデッドタイムDTを設定する必要がないため、時刻t3でスイッチS3,S6へのゲート駆動信号をONにすることができ、出力電圧Voutの電位はMとなる。その結果、時刻t3−t4間は電圧指令値Vcmdの波形どおりに出力電圧Voutを出力する。   The gate command value PWM2 changes from L to H at time t1, and the gate drive signal to the switches S3 and S6 is turned OFF in both the conventional technique and this embodiment, but the potential of the output voltage Vout is at time t2 because of the delay in turn-off time. M until N, from time t2. Until this time t3, the output voltage Vout is the same in both the prior art and the present embodiment. At time t3, the gate command value PWM2 changes from H to L. However, in the prior art, the gate drive signal to the switches S3 and S6 cannot be turned on until time t4 in order to secure the dead time DT. The potential of the output voltage Vout is N until t4. In this embodiment, since it is not necessary to set the dead time DT from time t3 to time t4, the gate drive signal to the switches S3 and S6 can be turned on at time t3, and the potential of the output voltage Vout becomes M. . As a result, the output voltage Vout is output according to the waveform of the voltage command value Vcmd between times t3 and t4.

電圧指令値Vcmdと出力電流Ioutが同時に正から負へと変化した場合におけるゲート駆動波形を図9に示す。なお、本来、電圧指令値Vcmdは正弦波状で電流波形も連続的であるが、図9では説明を容易にするためステップ状に変化したものとする。   FIG. 9 shows a gate drive waveform when the voltage command value Vcmd and the output current Iout are simultaneously changed from positive to negative. Originally, the voltage command value Vcmd is sinusoidal and the current waveform is continuous, but in FIG. 9, it is assumed that the voltage command value Vcmd is changed in a step shape for easy explanation.

従来技術では電圧指令値Vcmdが正のときは、スイッチS2をOFF,スイッチS3,S6をONにし、電圧指令値Vcmdとキャリア信号carrier1より生成されるゲート指令値PWM1に応じてスイッチS1,S4,S5をスイッチングし、電圧指令値Vcmdが負のときは、スイッチS1をOFF,スイッチS4,S5をONにし、電圧指令値Vcmdとキャリア信号carrier2より生成されるゲート指令値PWM2に応じてスイッチS2,S3,S6をスイッチングしていた。また、スイッチング時にはP−M間、M−N間,P−N間の短絡防止のため、デッドタイムDTが設けられていた。   In the prior art, when the voltage command value Vcmd is positive, the switch S2 is turned off, the switches S3 and S6 are turned on, and the switches S1, S4 and S4 are switched according to the gate command value PWM1 generated from the voltage command value Vcmd and the carrier signal carrier1. When S5 is switched and the voltage command value Vcmd is negative, the switch S1 is turned OFF, the switches S4 and S5 are turned ON, and the switches S2 and S2 are switched according to the gate command value PWM2 generated from the voltage command value Vcmd and the carrier signal carrier2. S3 and S6 were switched. Further, at the time of switching, a dead time DT is provided to prevent a short circuit between PM, MN, and PN.

本実施形態では、電圧指令値Vcmdが正のときは、スイッチS2をOFF,スイッチS3,S6をON,スイッチS4,S5をOFFにし、電圧指令値Vcmdとキャリア信号carrier1より生成されるゲート指令値PWM1に応じてスイッチS1をスイッチングし、電圧指令値Vcmdが負のときは、スイッチS1をOFF,スイッチS3,S6をOFF,スイッチS4,S5をONにし、電圧指令値Vcmdとキャリアcarrier2より生成されるゲート指令値PWM2に応じてスイッチS2をスイッチングする。また、ゲート出力パターンが1から5へと切替わるときはP−N間の短絡防止のため、デッドタイムDTが設けられる。   In this embodiment, when the voltage command value Vcmd is positive, the switch S2 is turned off, the switches S3 and S6 are turned on, the switches S4 and S5 are turned off, and the gate command value generated from the voltage command value Vcmd and the carrier signal carrier1. When the switch S1 is switched according to PWM1 and the voltage command value Vcmd is negative, the switch S1 is turned off, the switches S3 and S6 are turned off, the switches S4 and S5 are turned on, and the voltage command value Vcmd and the carrier carrier2 are generated. The switch S2 is switched according to the gate command value PWM2. When the gate output pattern is switched from 1 to 5, a dead time DT is provided to prevent a short circuit between PN.

出力電流Ioutが電圧指令値Vcmdに対して遅れている状態において、電圧指令値Vcmdが正から負へと変化した場合におけるゲート駆動信号波形を図10に示す。   FIG. 10 shows a gate drive signal waveform when the voltage command value Vcmd changes from positive to negative in a state where the output current Iout is delayed with respect to the voltage command value Vcmd.

従来技術,本実施形態ともに電圧指令値Vcmdが正から負へと変化した時刻t1においてゲート駆動信号に変化はない。従来技術では出力電流Ioutが正から負へと変化してもスイッチS1〜S6へのゲート駆動信号に変化がないのに対して、本実施形態では出力電流Ioutが正から負へと変化した時刻t2においてスイッチS3,S6をオフしスイッチS4,S5をオンする。時刻t2において従来技術と本実施形態でS1〜S6へのゲート駆動信号に違いがあるが、出力電圧Voutの電位はともにMで同じである。   In both the prior art and the present embodiment, the gate drive signal does not change at time t1 when the voltage command value Vcmd changes from positive to negative. In the prior art, even when the output current Iout changes from positive to negative, the gate drive signal to the switches S1 to S6 does not change. In this embodiment, the time when the output current Iout changes from positive to negative. At t2, the switches S3 and S6 are turned off and the switches S4 and S5 are turned on. At time t2, there is a difference between the gate drive signals to S1 to S6 in the prior art and this embodiment, but the potential of the output voltage Vout is the same at M.

出力電流Ioutが電圧指令値Vcmdに対して進んでいる状態において、電圧指令値Vcmdが正から負へと変化した場合におけるゲート駆動信号波形を図11に示す。   FIG. 11 shows a gate drive signal waveform when the voltage command value Vcmd changes from positive to negative in a state where the output current Iout is advanced with respect to the voltage command value Vcmd.

従来技術では出力電流Ioutが正から負へと変化してもS1〜S6へのゲート駆動信号に変化がないのに対して、本実施形態では出力電流Ioutが正から負へと変化した時刻t1においてスイッチS3,S6をオフにし、スイッチS4,S5をオンにする。従来技術,本実施形態ともに電圧指令値Vcmdが正から負へと変化した時刻t2においてゲート駆動信号に変化はない。時刻t1において従来技術と本実施形態でスイッチS1〜S6へのゲート駆動信号に違いがあるが、出力電圧Voutの電位はともにMで同じである。   In the prior art, even if the output current Iout changes from positive to negative, the gate drive signal to S1 to S6 does not change. In this embodiment, the time t1 when the output current Iout changes from positive to negative. The switches S3 and S6 are turned off and the switches S4 and S5 are turned on. In both the prior art and the present embodiment, the gate drive signal does not change at time t2 when the voltage command value Vcmd changes from positive to negative. At time t1, there is a difference in the gate drive signal to the switches S1 to S6 in the prior art and in the present embodiment, but the potential of the output voltage Vout is the same at M.

以上示したように、本実施形態によれば、電圧指令値と出力電流の向きに応じてゲート出力パターンを決定し、前回のゲート出力パターンと今回のゲート出力パターンに応じてデッドタイムの要否を判定し、ゲート出力パターンとデッドタイムの要否に応じてゲート駆動信号を生成することにより、デッドタイム期間を設ける回数が従来の方法よりも低減できるため、出力電圧の歪みを抑制することが可能となる。   As described above, according to the present embodiment, the gate output pattern is determined according to the voltage command value and the direction of the output current, and the necessity of the dead time is determined according to the previous gate output pattern and the current gate output pattern. By generating the gate drive signal according to the gate output pattern and the necessity of dead time, the number of times of providing the dead time period can be reduced as compared with the conventional method, so that distortion of the output voltage can be suppressed. It becomes possible.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、交流出力点とM間に接続する双方向スイッチは図3に示した3つの構成全てにおいて実施可能である。   For example, the bidirectional switch connected between the AC output point and M can be implemented in all three configurations shown in FIG.

また、実施形態では3レベルインバータについて説明しているが、3レベル以外のマルチレベルインバータに対しても本願発明は適用可能であり、マルチレベルコンバータに対しても適用可能である。   Further, although the three-level inverter has been described in the embodiment, the present invention can be applied to multi-level inverters other than the three levels, and can also be applied to a multi-level converter.

Vcmd…電圧指令値
Iout…出力電流
Ptn…ゲート出力パターン
Ptn_0…前回のゲート出力パターン
3…ゲート駆動パターン判定部
4…デッドタイム判定部
5…ゲート駆動信号生成部
S1〜S6…スイッチ
S7…双方向スイッチ
M…直流電圧源の中間電位
Vcmd ... Voltage command value Iout ... Output current Ptn ... Gate output pattern Ptn_0 ... Previous gate output pattern 3 ... Gate drive pattern determination unit 4 ... Dead time determination unit 5 ... Gate drive signal generation unit S1-S6 ... Switch S7 ... Bidirectional Switch M: Intermediate potential of DC voltage source

Claims (2)

直流電圧源の電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置のゲート駆動信号生成装置であって、
電圧指令値と出力電流の向きに応じてゲート出力パターンを決定するゲート出力パターン判定部と、
前回のゲート出力パターンと今回のゲート出力パターンに応じてデッドタイムの要否を判定するデッドタイム判定部と、
ゲート出力パターンとデッドタイムの要否に応じてゲート駆動信号を生成するゲート駆動信号生成部と、を備えたことを特徴とするマルチレベル電力変換装置のゲート駆動信号生成装置。
A gate drive signal generator for a multi-level power converter that generates an AC output converted from a voltage of a DC voltage source into a plurality of voltage levels,
A gate output pattern determination unit that determines a gate output pattern according to the voltage command value and the direction of the output current;
A dead time determination unit that determines the necessity of dead time according to the previous gate output pattern and the current gate output pattern;
A gate drive signal generation device for a multi-level power conversion device, comprising: a gate drive signal generation unit that generates a gate drive signal according to the necessity of a gate output pattern and dead time.
前記マルチレベル電力変換装置の主回路は、
直流電圧源の両端子間に接続された第1,第2スイッチと、直流電圧源の中間電位と、第1,第2スイッチの共通接続点との間に接続された双方向スイッチと、を各相に備え、第1,第2スイッチの共通接続点を交流出力端子とすることを特徴とする請求項1記載のマルチレベル電力変換装置のゲート駆動信号生成装置。
The main circuit of the multilevel power converter is
A first and a second switch connected between both terminals of the DC voltage source, a bidirectional switch connected between the intermediate potential of the DC voltage source and a common connection point of the first and second switches; The gate drive signal generation device for a multilevel power converter according to claim 1, wherein the common connection point of the first and second switches is used as an AC output terminal for each phase.
JP2013013910A 2013-01-29 2013-01-29 Gate drive signal generator for multi-level power converter Expired - Fee Related JP6163768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013910A JP6163768B2 (en) 2013-01-29 2013-01-29 Gate drive signal generator for multi-level power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013910A JP6163768B2 (en) 2013-01-29 2013-01-29 Gate drive signal generator for multi-level power converter

Publications (2)

Publication Number Publication Date
JP2014147200A true JP2014147200A (en) 2014-08-14
JP6163768B2 JP6163768B2 (en) 2017-07-19

Family

ID=51427035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013910A Expired - Fee Related JP6163768B2 (en) 2013-01-29 2013-01-29 Gate drive signal generator for multi-level power converter

Country Status (1)

Country Link
JP (1) JP6163768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720834A (en) * 2014-12-18 2016-06-29 三菱电机株式会社 Semiconductor device
JP2017079571A (en) * 2015-10-22 2017-04-27 富士電機株式会社 Control method of three-level inverter and controller
US9960726B1 (en) 2017-05-25 2018-05-01 Ford Global Technologies, Llc Electric drive power converter with low distortion dead-time insertion
CN113938041A (en) * 2021-10-13 2022-01-14 中国石油大学(华东) Redundant drive pulse eliminating modulation method of high-frequency SiC MOSFET four-level half-bridge inverter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251864A (en) * 2000-03-07 2001-09-14 Yaskawa Electric Corp Gate signal output apparatus
JP2005137045A (en) * 2003-10-28 2005-05-26 Fuji Electric Holdings Co Ltd Multi-level output power converter
JP2011114963A (en) * 2009-11-27 2011-06-09 Panasonic Corp Method and processing device of inverter control
JP2013013220A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251864A (en) * 2000-03-07 2001-09-14 Yaskawa Electric Corp Gate signal output apparatus
JP2005137045A (en) * 2003-10-28 2005-05-26 Fuji Electric Holdings Co Ltd Multi-level output power converter
JP2011114963A (en) * 2009-11-27 2011-06-09 Panasonic Corp Method and processing device of inverter control
JP2013013220A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720834A (en) * 2014-12-18 2016-06-29 三菱电机株式会社 Semiconductor device
US9577627B2 (en) 2014-12-18 2017-02-21 Mitsubishi Electric Corporation Semiconductor device
JP2017079571A (en) * 2015-10-22 2017-04-27 富士電機株式会社 Control method of three-level inverter and controller
US9960726B1 (en) 2017-05-25 2018-05-01 Ford Global Technologies, Llc Electric drive power converter with low distortion dead-time insertion
CN113938041A (en) * 2021-10-13 2022-01-14 中国石油大学(华东) Redundant drive pulse eliminating modulation method of high-frequency SiC MOSFET four-level half-bridge inverter
CN113938041B (en) * 2021-10-13 2024-01-12 中国石油大学(华东) Redundant driving pulse rejection modulation of high-frequency SiC MOSFET four-level half-bridge inverter

Also Published As

Publication number Publication date
JP6163768B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
EP2747269B1 (en) A flying capacitor multilevel converter system with a pre-charge unit and method to precharge capacitors in a multilevel converter system
JP5457449B2 (en) Power converter
US9654036B2 (en) Power conversion device and power conversion method
JP2020530756A (en) Conversion circuits, control methods, and power devices
US20150155770A1 (en) Five-level rectifier
Mohamad et al. A new cascaded multilevel inverter topology with minimum number of conducting switches
US10581342B2 (en) Three-level two-stage decoupled active NPC converter
Ge et al. Multiphase-leg coupling current balancer for parallel operation of multiple MW power modules
US9531298B2 (en) Inverter device
US20190280615A1 (en) Modulation method and apparatus based on three-phase neutral point clamped inverter
JP6136011B2 (en) Semiconductor device and power conversion device
JP6163768B2 (en) Gate drive signal generator for multi-level power converter
US8787055B2 (en) Inverter device
US20150180368A1 (en) Power converter, and inverter device including the power converter
Gao et al. Topological design and modulation strategy for buck–boost three-level inverters
CN104081645A (en) Power conversion device
Sanjeev et al. Analysis of conduction and switching losses in two level inverter for low power applications
CN108471247B (en) Control method, device and system of three-level inverter
Laali et al. A new basic unit for cascaded multilevel inverters with the capability of reducing the number of switches
JP3326790B2 (en) Control device for power converter
KR20130088606A (en) Apparatus for controlling three-level inverter, and power supplying device and motor driver having the three-level inverter
WO2020152900A1 (en) Power converter, and method for controlling same
Yadav et al. A three-phase 9-level inverter with reduced switching devices for different PWM techniques
Vinodkumar et al. Modeling of new multilevel inverter topology with reduced number of power electronic components
Sundaravel et al. A Modified Cascaded H-Bridge Multilevel Inverter topology with Reduced Number of Power Electronic Switching Components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6163768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees