JP2014146754A - Laminated through capacitor - Google Patents

Laminated through capacitor Download PDF

Info

Publication number
JP2014146754A
JP2014146754A JP2013015660A JP2013015660A JP2014146754A JP 2014146754 A JP2014146754 A JP 2014146754A JP 2013015660 A JP2013015660 A JP 2013015660A JP 2013015660 A JP2013015660 A JP 2013015660A JP 2014146754 A JP2014146754 A JP 2014146754A
Authority
JP
Japan
Prior art keywords
electrode
grounding
main
width
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013015660A
Other languages
Japanese (ja)
Other versions
JP6273672B2 (en
Inventor
Daisuke Miyazaki
大資 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013015660A priority Critical patent/JP6273672B2/en
Publication of JP2014146754A publication Critical patent/JP2014146754A/en
Application granted granted Critical
Publication of JP6273672B2 publication Critical patent/JP6273672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laminated through capacitor that allows reducing DC resistance while maintaining desired electrostatic capacitance.SOLUTION: A laminated through capacitor includes: an element body L; first and second terminal electrodes 1 and 2 for signals disposed on first and second side surfaces Lc and Ld of the element body L; first and second terminal electrodes 3 and 4 for ground connection disposed on third and fourth side surfaces Le and Lf of the element body L; and a plurality of internal electrodes 11 for signals and a plurality of internal electrodes 13 for ground connection alternately disposed in the element body L in the opposite direction of first and second primary surfaces. The internal electrodes 11 for signals are connected to the first and second terminal electrodes 1 and 2 for signals. The internal electrodes 13 for ground connection are connected to the first and second terminal electrodes 3 and 4 for ground connection, and a width w1 in the opposite direction of the first and second side surfaces Lc and Ld is narrower than a width w2 in the opposite direction of the first and second side surfaces Lc and Ld of the terminal electrode 3 for ground connection.

Description

本発明は、積層貫通コンデンサに関する。   The present invention relates to a multilayer feedthrough capacitor.

積層貫通コンデンサとして、素体と、素体の外表面に配置された複数の信号用端子電極と、素体の外表面に配置された接地用端子電極と、素体内に交互に配置された、それぞれ複数の信号用内部電極及び接地用内部電極と、を備えたものが知られている(たとえば、特許文献1参照)。   As a multilayer feedthrough capacitor, an element body, a plurality of signal terminal electrodes arranged on the outer surface of the element body, a ground terminal electrode arranged on the outer surface of the element body, and alternately arranged in the element body, A device having a plurality of signal internal electrodes and a ground internal electrode is known (for example, see Patent Document 1).

特開平01−206615号公報Japanese Patent Laid-Open No. 01-206615

本発明は、所望の静電容量を確保した上で、直流抵抗の低減を図ることが可能な積層貫通コンデンサを提供することを目的とする。   An object of the present invention is to provide a multilayer feedthrough capacitor capable of reducing a direct current resistance while securing a desired capacitance.

本発明に係る積層貫通コンデンサは、互いに対向する略矩形状の第一及び第二主面と、第一及び第二主面間を連結するように第一及び第二主面の第一辺方向に延び且つ互いに対向する第一及び第二側面と、第一及び第二主面間を連結するように第一辺方向に直交する第二辺方向に延び且つ互いに対向する第三及び第四側面と、を有する素体と、素体の第一及び第二側面側に配置された複数の信号用端子電極と、素体の第三及び第四側面側のうち少なくとも一方に配置された接地用端子電極と、素体内に第一及び第二主面の対向方向に交互に配置された、それぞれ複数の信号用内部電極及び接地用内部電極と、を備え、各信号用内部電極は、複数の信号用端子電極に接続され、各接地用内部電極は、接地用端子電極に接続されると共に、第一及び第二側面の対向方向での幅が接地用端子電極の第一及び第二側面の対向方向での幅よりも狭いことを特徴とする。   The multilayer feedthrough capacitor according to the present invention includes a substantially rectangular first and second main surfaces facing each other and a first side direction of the first and second main surfaces so as to connect the first and second main surfaces. First and second side surfaces that extend in the direction opposite to each other, and third and fourth side surfaces that extend in the second side direction orthogonal to the first side direction so as to connect the first and second main surfaces and face each other. A plurality of signal terminal electrodes disposed on the first and second side surfaces of the element body, and for grounding disposed on at least one of the third and fourth side surfaces of the element body A terminal electrode and a plurality of signal internal electrodes and grounding internal electrodes, which are alternately arranged in the opposing direction of the first and second main surfaces in the element body, and each signal internal electrode includes a plurality of signal internal electrodes. Each grounding internal electrode is connected to the grounding terminal electrode and connected to the signal terminal electrode. Width in the opposing direction of the second side being narrower than the width in the opposing direction of the first and second side surfaces of the grounding terminal electrodes.

本発明に係る積層貫通コンデンサでは、各接地用内部電極の第一及び第二側面の対向方向での幅が接地用端子電極の第一及び第二側面の対向方向での幅よりも狭いため、一つの信号用内部電極と一つの接地用内部電極とで形成される静電容量は比較的小さい。したがって、所望の静電容量を確保するためには、信号用内部電極と接地用内部電極との積層数を増やす必要がある。このように、信号用内部電極の積層数が増やされることにより、直流抵抗の低減が図られることとなる。   In the multilayer feedthrough capacitor according to the present invention, the width in the facing direction of the first and second side surfaces of each grounding inner electrode is narrower than the width in the facing direction of the first and second side surfaces of the grounding terminal electrode, The capacitance formed by one signal internal electrode and one ground internal electrode is relatively small. Therefore, in order to secure a desired capacitance, it is necessary to increase the number of laminated layers of the signal internal electrode and the ground internal electrode. Thus, the DC resistance can be reduced by increasing the number of laminated signal internal electrodes.

本発明では、各接地用内部電極の第一及び第二側面の対向方向での幅が狭いため、積層ずれに起因して信号用内部電極と接地用内部電極との位置がずれた場合でも、信号用内部電極と接地用内部電極とが重なり合う面積が変化し難い。したがって、静電容量のばらつきを低減することができる。   In the present invention, since the width in the opposing direction of the first and second side surfaces of each grounding internal electrode is narrow, even when the position of the signal internal electrode and the grounding internal electrode is shifted due to stacking shift, The area where the signal internal electrode and the ground internal electrode overlap is unlikely to change. Therefore, variation in capacitance can be reduced.

接地用内部電極の第一及び第二側面の対向方向での幅は、接地用端子電極の第一及び第二側面の対向方向での幅の半分以下であってもよい。この場合、積層ずれに起因して各接地用内部電極の位置がずれた場合でも、接地用端子電極の第一及び第二側面の対向方向での幅から接地用内部電極がはみ出して露出するのを防ぐことができる。   The width in the opposing direction of the first and second side surfaces of the grounding internal electrode may be less than or equal to half the width in the opposing direction of the first and second side surfaces of the grounding terminal electrode. In this case, even when the position of each grounding internal electrode is shifted due to the stacking deviation, the grounding internal electrode protrudes from the width in the opposing direction of the first and second side surfaces of the grounding terminal electrode and is exposed. Can be prevented.

接地用内部電極は、信号用内部電極と対向する主電極部と、主電極部から延びて接地用端子電極に接続される引出電極部と、を有し、主電極部の第一及び第二側面の対向方向での幅は、引出電極部の第一及び第二側面の対向方向での幅よりも狭くてもよい。この場合、主電極部の第一及び第二側面の対向方向での幅が、引出電極部の第一及び第二側面の対向方向での幅よりも狭いため、一つの信号用内部電極と一つの接地用内部電極とで形成される静電容量はより一層小さい。したがって、所望の静電容量を確保するためには、信号用内部電極と接地用内部電極との積層数を更に増やす必要があり、信号用内部電極の積層数が更に増やされることにより、直流抵抗の低減がより一層図られることとなる。引出電極部の第一及び第二側面の対向方向での幅は、主電極部の第一及び第二側面の対向方向での幅よりも広いため、接地用内部電極と接地用端子電極との接続性は確保できる。   The grounding internal electrode has a main electrode part facing the signal internal electrode, and an extraction electrode part extending from the main electrode part and connected to the grounding terminal electrode, and the first and second main electrode parts The width in the facing direction of the side surfaces may be narrower than the width in the facing direction of the first and second side surfaces of the extraction electrode portion. In this case, the width in the opposing direction of the first and second side surfaces of the main electrode portion is narrower than the width in the opposing direction of the first and second side surfaces of the extraction electrode portion. The capacitance formed by the two grounding inner electrodes is even smaller. Therefore, in order to secure a desired capacitance, it is necessary to further increase the number of laminated signal internal electrodes and grounding internal electrodes. By further increasing the number of laminated signal internal electrodes, the DC resistance This will be further reduced. Since the width in the opposing direction of the first and second side surfaces of the extraction electrode portion is wider than the width in the opposing direction of the first and second side surfaces of the main electrode portion, the ground electrode and the ground terminal electrode Connectivity can be secured.

主電極部は、第三及び第四側面の対向方向に延びる電極部分を有し、各接地用内部電極における主電極部の電極部分は、第一及び第二主面の対向方向から見て、互いに重ならないように位置していてもよい。この場合、主電極部の電極部分の厚みにより生じる段差が分散されて、素体の変形を抑制することができる。したがって、内部構造欠陥の発生を抑制することができる。   The main electrode portion has an electrode portion extending in the opposing direction of the third and fourth side surfaces, and the electrode portion of the main electrode portion in each grounding internal electrode is viewed from the opposing direction of the first and second main surfaces, You may position so that it may not mutually overlap. In this case, the level difference caused by the thickness of the electrode portion of the main electrode portion is dispersed, and deformation of the element body can be suppressed. Therefore, generation of internal structural defects can be suppressed.

主電極部は、同一面内において複数に分岐された電極部分を有していてもよい。この場合、いずれかの電極部分が断線したとしても、残りの電極部分にて導通状態を確保することができる。   The main electrode part may have an electrode part branched into a plurality in the same plane. In this case, even if any one of the electrode portions is disconnected, a conductive state can be secured in the remaining electrode portions.

各接地用内部電極と同一面に、接地用内部電極を第一及び第二側面の対向方向で挟み且つ接地用内部電極から離間するように配置された複数のダミー電極を更に備え、各ダミー電極は、対応する信号用端子電極に接続されていてもよい。この場合、素体と信号用端子電極との密着性を高めることができる。   Each dummy electrode further includes a plurality of dummy electrodes arranged on the same surface as each grounding internal electrode so as to sandwich the grounding internal electrode in the opposing direction of the first and second side surfaces and to be separated from the grounding internal electrode. May be connected to a corresponding signal terminal electrode. In this case, the adhesion between the element body and the signal terminal electrode can be improved.

複数のダミー電極の第一及び第二側面の対向方向での間隔は、接地用端子電極の第一及び第二側面の対向方向での幅よりも狭くてもよい。この場合、接地用内部電極の厚みによる段差の発生が抑制されて、素体の変形を抑制することができる。したがって、内部構造欠陥の発生を抑制することができる。   The interval in the opposing direction of the first and second side surfaces of the plurality of dummy electrodes may be narrower than the width in the opposing direction of the first and second side surfaces of the ground terminal electrode. In this case, generation of a step due to the thickness of the grounding internal electrode is suppressed, and deformation of the element body can be suppressed. Therefore, generation of internal structural defects can be suppressed.

接地用内部電極は、信号用内部電極と対向する主電極部と、主電極部から延びて接地用端子電極に接続される引出電極部と、を有し、主電極部の第一及び第二側面の対向方向での幅は、引出電極部の第一及び第二側面の対向方向での幅よりも狭く、複数のダミー電極の第一及び第二側面の対向方向での間隔は、引出電極部の第一及び第二側面の対向方向での幅よりも狭くてもよい。この場合、主電極部の第一及び第二側面の対向方向での幅が、引出電極部の第一及び第二側面の対向方向での幅よりも狭いため、一つの信号用内部電極と一つの接地用内部電極とで形成される静電容量はより一層小さい。したがって、所望の静電容量を確保するためには、信号用内部電極と接地用内部電極との積層数を更に増やす必要があり、信号用内部電極の積層数が更に増やされることにより、直流抵抗の低減がより一層図られることとなる。また、接地用内部電極(主電極部)の厚みによる段差の発生がより一層抑制されて、素体の変形を更に抑制することができる。   The grounding internal electrode has a main electrode part facing the signal internal electrode, and an extraction electrode part extending from the main electrode part and connected to the grounding terminal electrode, and the first and second main electrode parts The width in the opposing direction of the side surface is narrower than the width in the opposing direction of the first and second side surfaces of the extraction electrode portion, and the interval in the opposing direction of the first and second side surfaces of the plurality of dummy electrodes is the extraction electrode It may be narrower than the width in the opposing direction of the first and second side surfaces of the part. In this case, the width in the opposing direction of the first and second side surfaces of the main electrode portion is narrower than the width in the opposing direction of the first and second side surfaces of the extraction electrode portion. The capacitance formed by the two grounding inner electrodes is even smaller. Therefore, in order to secure a desired capacitance, it is necessary to further increase the number of laminated signal internal electrodes and grounding internal electrodes. By further increasing the number of laminated signal internal electrodes, the DC resistance This will be further reduced. Further, the occurrence of a step due to the thickness of the grounding internal electrode (main electrode portion) is further suppressed, and the deformation of the element body can be further suppressed.

第一及び第二主面は、第一辺を長辺とし且つ第二辺を短辺とした略長方形状を呈しており、各信号用内部電極は、第三及び第四側面の対向方向での幅が第一及び第二側面の対向方向での幅よりも広くてもよい。この場合、信号用内部電極一つあたり直流抵抗が低くなり、積層貫通コンデンサ全体での直流抵抗をより一層低減することができる。   The first and second main surfaces have a substantially rectangular shape with the first side as the long side and the second side as the short side, and each signal internal electrode is in the opposing direction of the third and fourth side surfaces. May be wider than the width in the opposing direction of the first and second side surfaces. In this case, the DC resistance per signal internal electrode is lowered, and the DC resistance of the entire multilayer feedthrough capacitor can be further reduced.

第一側面側と第二側面側とに、それぞれ複数の信号用端子電極が配置され、同一面内に、複数の信号用内部電極が配置されており、同一平面内に位置する各信号用内部電極は、第一側面側と第二側面側とにおいて、異なる信号用端子電極に接続されていてもよい。この場合、所望の静電容量が確保された上で、直流抵抗の低減が図られた積層貫通コンデンサアレイを実現することができる。   A plurality of signal terminal electrodes are disposed on the first side surface side and the second side surface side, respectively, and a plurality of signal internal electrodes are disposed on the same plane, and each signal interior located in the same plane The electrodes may be connected to different signal terminal electrodes on the first side surface side and the second side surface side. In this case, it is possible to realize a multilayer feedthrough capacitor array in which a desired capacitance is ensured and a direct current resistance is reduced.

各接地用内部電極は、第一及び第二主面の対向方向から見て、信号用内部電極と重ならない領域が残りの領域よりも第一及び第二側面の対向方向において幅広とされていてもよい。この場合、信号用内部電極の厚みによる段差の発生が抑制されて、素体の変形を抑制することができる。したがって、内部構造欠陥の発生を抑制することができる。   Each grounding internal electrode has a region that does not overlap with the signal internal electrode wider in the opposing direction of the first and second side surfaces than the remaining region when viewed from the opposing direction of the first and second main surfaces. Also good. In this case, generation of a step due to the thickness of the signal internal electrode is suppressed, and deformation of the element body can be suppressed. Therefore, generation of internal structural defects can be suppressed.

本発明によれば、所望の静電容量を確保した上で、直流抵抗の低減を図ることが可能な積層貫通コンデンサを提供することができる。   According to the present invention, it is possible to provide a multilayer feedthrough capacitor capable of reducing a direct current resistance while ensuring a desired capacitance.

本実施形態に係る積層貫通コンデンサを示す斜視図である。1 is a perspective view showing a multilayer feedthrough capacitor according to an embodiment. 素体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of an element body. 信号用内部電極及び接地用内部電極を示す平面図である。It is a top view which shows the signal internal electrode and the ground internal electrode. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the grounding internal electrode. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the internal electrode for grounding. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the grounding internal electrode. 本実施形態の変形例に係る積層貫通コンデンサにおける、素体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the element body in the multilayer feedthrough capacitor which concerns on the modification of this embodiment. 接地用内部電極及びダミー電極を示す平面図である。It is a top view which shows the internal electrode for grounding, and a dummy electrode. 接地用内部電極及びダミー電極の変形例を示す平面図である。It is a top view which shows the modification of a grounding internal electrode and a dummy electrode. 本実施形態の変形例に係る積層貫通コンデンサを示す斜視図である。It is a perspective view which shows the multilayer feedthrough capacitor which concerns on the modification of this embodiment. 素体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of an element body. 信号用内部電極及び接地用内部電極を示す平面図である。It is a top view which shows the signal internal electrode and the ground internal electrode. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the internal electrode for grounding. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the internal electrode for grounding. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the grounding internal electrode. 本実施形態の変形例に係る積層貫通コンデンサにおける、素体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the element body in the multilayer feedthrough capacitor which concerns on the modification of this embodiment. 接地用内部電極及びダミー電極を示す平面図である。It is a top view which shows the internal electrode for grounding, and a dummy electrode. 接地用内部電極及びダミー電極の変形例を示す平面図である。It is a top view which shows the modification of a grounding internal electrode and a dummy electrode. 本実施形態の変形例に係る積層貫通コンデンサアレイを示す斜視図である。It is a perspective view which shows the multilayer feedthrough capacitor array which concerns on the modification of this embodiment. 素体の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of an element body. 信号用内部電極及び接地用内部電極を示す平面図である。It is a top view which shows the signal internal electrode and the ground internal electrode. 接地用内部電極の変形例を示す平面図である。It is a top view which shows the modification of the internal electrode for grounding.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

まず、図1及び図2を参照して、本実施形態に係る積層貫通コンデンサC1の構成を説明する。図1は、本実施形態に係る積層貫通コンデンサを示す斜視図である。図2は、素体の構成を示す分解斜視図である。   First, the structure of the multilayer feedthrough capacitor C1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a perspective view showing a multilayer feedthrough capacitor according to this embodiment. FIG. 2 is an exploded perspective view showing the configuration of the element body.

図1に示されるように、積層貫通コンデンサC1は、誘電特性を有する素体Lと、素体Lの外表面に配置される第一及び第二信号用端子電極1,2と、素体Lの外表面に配置される第一及び第二接地用端子電極3,4と、を備えている。   As shown in FIG. 1, the multilayer feedthrough capacitor C1 includes an element body L having dielectric characteristics, first and second signal terminal electrodes 1 and 2 disposed on the outer surface of the element body L, and an element body L. First and second ground terminal electrodes 3 and 4 disposed on the outer surface of the first and second ground terminals.

素体Lは、図1に示されるように、略直方体形状であり、その外表面として、対向する略長方形状の第一及び第二主面La,Lbと、対向する第一及び第二側面Lc,Ldと、対向する第三及び第四側面Le,Lfと、を有する。第一及び第二側面Lc,Ldは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの短辺方向に伸びている。第三及び第四側面Le,Lfは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの長辺方向に伸びている。   As shown in FIG. 1, the element body L has a substantially rectangular parallelepiped shape, and has substantially rectangular first and second main surfaces La and Lb facing each other as outer surfaces thereof, and first and second side surfaces facing each other. Lc, Ld and opposing third and fourth side surfaces Le, Lf. The first and second side surfaces Lc, Ld extend in the short side direction of the first and second main surfaces La, Lb so as to connect the first and second main surfaces La, Lb. The third and fourth side surfaces Le and Lf extend in the long side direction of the first and second main surfaces La and Lb so as to connect the first and second main surfaces La and Lb.

第一信号用端子電極1は、素体Lの第一側面Lc側に配置されている。第一信号用端子電極1は、第一側面Lc全面を覆うように、第一及び第二主面La,Lb並びに第三及び第四側面Le,Lfの端部(第一側面Lc側の端部)に亘って形成されている。第二信号用端子電極2は、素体Lの第二側面Ld側に配置されている。第二信号用端子電極2は、第二側面Ld全面を覆うように、第一及び第二主面La,Lb並びに第三及び第四側面Le,Lfの端部(第二側面Ld側の端部)に亘って形成されている。第一及び第二信号用端子電極1,2は、第一及び第二側面Lc,Ldの対向方向に対向している。   The first signal terminal electrode 1 is disposed on the first side face Lc side of the element body L. The first signal terminal electrode 1 covers the entire surface of the first side face Lc, and ends of the first and second main faces La and Lb and the third and fourth side faces Le and Lf (ends on the first side face Lc side). Part). The second signal terminal electrode 2 is disposed on the second side face Ld side of the element body L. The second signal terminal electrode 2 covers the entire surface of the second side face Ld, and ends of the first and second main faces La, Lb and the third and fourth side faces Le, Lf (ends on the second side face Ld side). Part). The first and second signal terminal electrodes 1 and 2 face each other in the facing direction of the first and second side faces Lc and Ld.

第一接地用端子電極3は、素体Lの第三側面Le側に配置されている。第一接地用端子電極3は、第三側面Leの第一及び第二側面Lc,Ldの対向方向の略中央を、第一及び第二主面La,Lbの対向方向に沿って横断するように覆っている。第一接地用端子電極3は、さらに第一及び第二主面La,Lbの第三側面Le側の端部の一部も覆っている。   The first ground terminal electrode 3 is disposed on the third side face Le side of the element body L. The first ground terminal electrode 3 traverses substantially the center in the facing direction of the first and second side faces Lc, Ld of the third side face Le along the facing direction of the first and second main faces La, Lb. Covered. The first grounding terminal electrode 3 further covers part of the end portions on the third side face Le side of the first and second main faces La and Lb.

第二接地用端子電極4は、素体Lの第四側面Lf側に配置されている。第二接地用端子電極4は、第四側面Lfの第一及び第二側面Lc,Ldの対向方向の略中央を、第一及び第二主面La,Lbの対向方向に沿って横断するように覆っている。第二接地用端子電極4は、さらに第一及び第二主面La,Lbの第四側面Lf側の端部の一部も覆っている。第一及び第二接地用端子電極3,4は、第三及び第四側面Le,Lfの対向方向に対向している。   The second ground terminal electrode 4 is disposed on the fourth side face Lf side of the element body L. The second ground terminal electrode 4 traverses substantially the center in the facing direction of the first and second side faces Lc, Ld of the fourth side face Lf along the facing direction of the first and second main faces La, Lb. Covered. The second grounding terminal electrode 4 further covers part of the end portions on the fourth side face Lf side of the first and second main faces La and Lb. The first and second grounding terminal electrodes 3 and 4 face each other in the facing direction of the third and fourth side faces Le and Lf.

第一及び第二信号用端子電極1,2と第一及び第二接地用端子電極3,4とは、たとえば導電性金属粉末及びガラスフリットを含む導電性ペーストを素体Lの外表面に付与し、焼き付けることによって形成される。必要に応じて、焼き付けられた端子電極の上にめっき層が形成されることもある。信号用端子電極1,2及び接地用端子電極3,4は、素体Lの外表面上においては互いに電気的に絶縁されて形成されている。   The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 apply, for example, a conductive paste containing conductive metal powder and glass frit to the outer surface of the element body L. And then baking. If necessary, a plating layer may be formed on the baked terminal electrode. The signal terminal electrodes 1 and 2 and the ground terminal electrodes 3 and 4 are formed on the outer surface of the element body L so as to be electrically insulated from each other.

積層貫通コンデンサC1では、第一主面La又は第二主面Lbを、電子機器(たとえば、回路基板や電子部品など)に対する実装面として電子機器に実装することが好ましい。素体Lの第二主面Lbが回路基板と対向するように積層貫通コンデンサC1を実装する場合、第一及び第二信号用端子電極1,2を、基板上に形成され信号配線に接続されたランド電極に接続し、第一及び第二接地用端子電極3,4を、基板上に形成されグランド配線に接続されたグランド電極に接続する。   In the multilayer feedthrough capacitor C1, the first main surface La or the second main surface Lb is preferably mounted on the electronic device as a mounting surface for the electronic device (for example, a circuit board, an electronic component, etc.). When the multilayer feedthrough capacitor C1 is mounted so that the second main surface Lb of the element body L faces the circuit board, the first and second signal terminal electrodes 1 and 2 are formed on the board and connected to the signal wiring. The first and second grounding terminal electrodes 3 and 4 are connected to the ground electrode formed on the substrate and connected to the ground wiring.

素体Lは、図2に示されるように、第一及び第二主面La,Lbの対向方向に複数の絶縁体層10が積層されて構成されている。すなわち、素体Lでは、第一及び第二主面La,Lbの対向方向が、複数の絶縁体層10の積層方向と一致する。各絶縁体層10は、例えば誘電体セラミック(BaTiO系、Ba(Ti,Zr)O系、又は(Ba,Ca)TiO系等の誘電体セラミック)を含むセラミックグリーンシートの焼結体から構成される。実際の素体Lでは、各絶縁体層10の間の境界が視認できない程度に一体化されている。 As shown in FIG. 2, the element body L is configured by laminating a plurality of insulator layers 10 in the facing direction of the first and second main surfaces La and Lb. That is, in the element body L, the opposing direction of the first and second main surfaces La and Lb coincides with the stacking direction of the plurality of insulator layers 10. Each insulator layer 10 is a sintered body of a ceramic green sheet containing, for example, dielectric ceramic (dielectric ceramic such as BaTiO 3 series, Ba (Ti, Zr) O 3 series, or (Ba, Ca) TiO 3 series). Consists of In the actual element body L, it is integrated so that the boundary between each insulator layer 10 cannot be visually recognized.

積層貫通コンデンサC1は、図2に示されるように、複数の内部電極として、複数の信号用内部電極11と、複数の接地用内部電極13と、を備えている。信号用内部電極11及び接地用内部電極13は、積層型の電気素子の内部電極として通常用いられる導電性材料(たとえば、Ni又はCuなど)からなる。信号用内部電極11及び接地用内部電極13は、上記導電性材料を含む導電性ペーストの焼結体として構成される。   As shown in FIG. 2, the multilayer feedthrough capacitor C1 includes a plurality of signal internal electrodes 11 and a plurality of ground internal electrodes 13 as a plurality of internal electrodes. The signal internal electrode 11 and the ground internal electrode 13 are made of a conductive material (for example, Ni or Cu) that is normally used as an internal electrode of a laminated electric element. The signal internal electrode 11 and the ground internal electrode 13 are configured as a sintered body of a conductive paste containing the conductive material.

信号用内部電極11と接地用内部電極13とは、第一及び第二主面La,Lbの対向方向(複数の絶縁体層10の積層方向)において異なる位置(層)に配置されている。すなわち、信号用内部電極11と接地用内部電極13とは、素体L内において、第一及び第二主面La,Lbの対向方向に間隔を有して対向するように交互に配置されている。本実施形態では、たとえば、信号用内部電極11の数(積層数)は、5〜50層程度とされ、接地用内部電極13の数(積層数)は、5〜50層程度とされる。   The signal internal electrode 11 and the ground internal electrode 13 are arranged at different positions (layers) in the facing direction of the first and second main surfaces La and Lb (the stacking direction of the plurality of insulator layers 10). That is, the signal internal electrode 11 and the ground internal electrode 13 are alternately arranged in the element body L so as to face each other with a gap in the facing direction of the first and second main faces La and Lb. Yes. In the present embodiment, for example, the number of signal internal electrodes 11 (the number of stacked layers) is about 5 to 50 layers, and the number of ground internal electrodes 13 (the number of stacked layers) is about 5 to 50 layers.

図3(a)にも示されるように、信号用内部電極11は、主電極部11aと、一対の引出電極部11b,11cと、を有している。引出電極部11bは、主電極部11aから第一側面Lcに露出するように延びている。引出電極部11cは、主電極部11aから第二側面Ldに露出するように延びている。主電極部11aと、引出電極部11b,11cとは、一体的に形成されている。   As shown in FIG. 3A, the signal internal electrode 11 has a main electrode portion 11a and a pair of lead electrode portions 11b and 11c. The lead electrode portion 11b extends from the main electrode portion 11a so as to be exposed at the first side face Lc. The extraction electrode part 11c extends from the main electrode part 11a so as to be exposed at the second side face Ld. The main electrode portion 11a and the extraction electrode portions 11b and 11c are integrally formed.

主電極部11aは、第一及び第二側面Lc,Ldの対向方向を長辺方向とし、第三及び第四側面Le,Lfの対向方向を短辺方向とする矩形形状を呈している。引出電極部11bは、主電極部11aの第一側面Lc側の端部から主電極部11aと同じ幅で第一側面Lcまで延びている。引出電極部11bは、その端が第一側面Lcに露出し、当該露出した端部で第一信号用端子電極1に接続されている。引出電極部11cは、主電極部11aの第二側面Ld側の端部から主電極部11aと同じ幅で第二側面Ldまで延びている。引出電極部11cは、その端が第二側面Ldに露出し、当該露出した端部で第二信号用端子電極2に接続されている。   The main electrode portion 11a has a rectangular shape in which the opposing direction of the first and second side faces Lc, Ld is the long side direction and the opposing direction of the third and fourth side faces Le, Lf is the short side direction. The lead electrode portion 11b extends from the end portion on the first side face Lc side of the main electrode portion 11a to the first side face Lc with the same width as the main electrode portion 11a. The lead electrode portion 11b has an end exposed at the first side face Lc, and is connected to the first signal terminal electrode 1 at the exposed end. The extraction electrode part 11c extends from the end part on the second side face Ld side of the main electrode part 11a to the second side face Ld with the same width as the main electrode part 11a. The lead electrode portion 11c has an end exposed at the second side face Ld and is connected to the second signal terminal electrode 2 at the exposed end.

第一信号用端子電極1は、引出電極部11bの第一側面Lcに露出した部分もすべて覆うように形成されており、引出電極部11bは、第一信号用端子電極1に物理的且つ電気的に接続される。これにより、各信号用内部電極11は、第一信号用端子電極1に接続されることとなる。第二信号用端子電極2は、引出電極部11cの第二側面Ldに露出した部分もすべて覆うように形成されており、引出電極部11cは、第二信号用端子電極2に物理的且つ電気的に接続される。これにより、各信号用内部電極11は、第二信号用端子電極2に接続されることとなる。   The first signal terminal electrode 1 is formed so as to cover all the portions exposed to the first side face Lc of the extraction electrode portion 11b, and the extraction electrode portion 11b is physically and electrically connected to the first signal terminal electrode 1. Connected. As a result, each signal internal electrode 11 is connected to the first signal terminal electrode 1. The second signal terminal electrode 2 is formed so as to cover all the portions exposed to the second side face Ld of the extraction electrode portion 11c, and the extraction electrode portion 11c is physically and electrically connected to the second signal terminal electrode 2. Connected. Thereby, each signal internal electrode 11 is connected to the second signal terminal electrode 2.

図3(b)にも示されるように、接地用内部電極13は、主電極部13aと、一対の引出電極部13b,13cと、を有している。引出電極部13bは、主電極部13aから第三側面Leに露出するように延びている。引出電極部13cは、主電極部13aから第四側面Lfに露出するように延びている。主電極部13aと、引出電極部13b,13cとは、一体的に形成されている。主電極部13aは、信号用内部電極11(主電極部11a)と対向している。   As shown in FIG. 3B, the grounding internal electrode 13 has a main electrode portion 13a and a pair of lead electrode portions 13b and 13c. The extraction electrode portion 13b extends from the main electrode portion 13a so as to be exposed at the third side face Le. The extraction electrode portion 13c extends from the main electrode portion 13a so as to be exposed at the fourth side face Lf. The main electrode portion 13a and the extraction electrode portions 13b and 13c are integrally formed. The main electrode portion 13a faces the signal internal electrode 11 (main electrode portion 11a).

主電極部13aは、第三及び第四側面Le,Lfの対向方向を長辺方向とし、第一及び第二側面Lc,Ldの対向方向を短辺方向とする矩形形状を呈している。引出電極部13bは、主電極部13aの第三側面Le側の端部から主電極部13aと同じ幅で第三側面Leまで延びている。引出電極部13bは、その端が第三側面Leに露出し、当該露出した端部で第一接地用端子電極3に接続されている。引出電極部13cは、主電極部13aの第四側面Lf側の端部から主電極部13aと同じ幅で第四側面Lfまで延びている。引出電極部13cは、その端が第四側面Lfに露出し、当該露出した端部で第二接地用端子電極4に接続されている。   The main electrode portion 13a has a rectangular shape in which the opposing direction of the third and fourth side faces Le and Lf is the long side direction and the opposing direction of the first and second side faces Lc and Ld is the short side direction. The extraction electrode portion 13b extends from the end portion of the main electrode portion 13a on the third side surface Le side to the third side surface Le with the same width as the main electrode portion 13a. The lead electrode part 13b has an end exposed at the third side face Le, and is connected to the first ground terminal electrode 3 at the exposed end. The lead electrode portion 13c extends from the end portion on the fourth side face Lf side of the main electrode portion 13a to the fourth side face Lf with the same width as the main electrode portion 13a. The lead electrode portion 13c has an end exposed at the fourth side face Lf, and is connected to the second grounding terminal electrode 4 at the exposed end portion.

第一接地用端子電極3は、引出電極部13bの第三側面Leに露出した部分もすべて覆うように形成されており、引出電極部13bは、第一接地用端子電極3に物理的且つ電気的に接続される。これにより、各接地用内部電極13は、第一接地用端子電極3に接続されることとなる。第二接地用端子電極4は、引出電極部13cの第四側面Lfに露出した部分もすべて覆うように形成されており、引出電極部13cは、第二接地用端子電極4に物理的且つ電気的に接続される。これにより、各接地用内部電極13は、第二接地用端子電極4に接続されることとなる。   The first ground terminal electrode 3 is formed so as to cover all the exposed portions of the third side surface Le of the lead electrode portion 13b. The lead electrode portion 13b is physically and electrically connected to the first ground terminal electrode 3. Connected. As a result, each grounding internal electrode 13 is connected to the first grounding terminal electrode 3. The second grounding terminal electrode 4 is formed so as to cover all the portions exposed to the fourth side face Lf of the extraction electrode portion 13c. The extraction electrode portion 13c is physically and electrically connected to the second grounding terminal electrode 4. Connected. As a result, each grounding internal electrode 13 is connected to the second grounding terminal electrode 4.

各接地用内部電極13は、第一及び第二側面Lc,Ldの対向方向での幅w1が第一及び第二接地用端子電極3,4の第一及び第二側面Lc,Ldの対向方向での幅w2よりも狭く設定されている。本実施形態では、幅w1は、幅w2の半分以下に設定されている。積層貫通コンデンサC1のチップサイズが「1005」タイプである場合、たとえば、幅w2は100〜300μm程度に設定され、幅w1は50〜150μm程度に設定される。積層貫通コンデンサC1のチップサイズが「1608」タイプである場合、たとえば、幅w2は100〜450μm程度に設定され、幅w1は50〜200μm程度に設定される。   Each grounding inner electrode 13 has a width w1 in the facing direction of the first and second side faces Lc, Ld and the facing direction of the first and second side faces Lc, Ld of the first and second grounding terminal electrodes 3, 4. It is set narrower than the width w2. In the present embodiment, the width w1 is set to be equal to or less than half of the width w2. When the chip size of the multilayer feedthrough capacitor C1 is “1005” type, for example, the width w2 is set to about 100 to 300 μm, and the width w1 is set to about 50 to 150 μm. When the chip size of the multilayer feedthrough capacitor C1 is a “1608” type, for example, the width w2 is set to about 100 to 450 μm, and the width w1 is set to about 50 to 200 μm.

以上のように、本実施形態では、各接地用内部電極13の幅w1が第一及び第二接地用端子電極3,4の幅w2よりも狭いため、一つの信号用内部電極11と一つの接地用内部電極13とで形成される静電容量は比較的小さい。したがって、積層貫通コンデンサC1では、所望の静電容量を確保するために、信号用内部電極11と接地用内部電極13との積層数を増やす必要がある。このように、信号用内部電極11の積層数が増やされることにより、積層貫通コンデンサC1において、直流抵抗の低減が図られることとなる。   As described above, in this embodiment, since the width w1 of each grounding internal electrode 13 is narrower than the width w2 of the first and second grounding terminal electrodes 3 and 4, one signal internal electrode 11 and one signal internal electrode 11 The capacitance formed with the grounding internal electrode 13 is relatively small. Therefore, in the multilayer feedthrough capacitor C1, it is necessary to increase the number of layers of the signal internal electrode 11 and the ground internal electrode 13 in order to ensure a desired capacitance. Thus, by increasing the number of stacked signal internal electrodes 11, the direct current resistance can be reduced in the multilayer feedthrough capacitor C1.

積層貫通コンデンサC1では、接地用内部電極13の幅w1が狭いため、積層ずれに起因して信号用内部電極11と接地用内部電極13との位置がずれた場合でも、信号用内部電極11と接地用内部電極13とが重なり合う面積が変化し難い。したがって、積層貫通コンデンサC1において、静電容量のばらつきを低減することができる。   In the multilayer feedthrough capacitor C1, since the width w1 of the grounding internal electrode 13 is narrow, even if the position of the signal internal electrode 11 and the grounding internal electrode 13 is shifted due to the stacking shift, the signal internal electrode 11 The area where the grounding internal electrode 13 overlaps is difficult to change. Therefore, in the multilayer feedthrough capacitor C1, variations in capacitance can be reduced.

各接地用内部電極13の幅w1が、第一及び第二接地用端子電極3,4の幅w2の半分以下に設定されていると、積層ずれに起因して各接地用内部電極13の位置がずれた場合でも、第一及び第二接地用端子電極3,4の幅w2から接地用内部電極13がはみ出して露出するのを防ぐことができる。   If the width w1 of each grounding internal electrode 13 is set to be less than or equal to half the width w2 of the first and second grounding terminal electrodes 3 and 4, the position of each grounding internal electrode 13 due to stacking deviation. Even in the case of misalignment, it is possible to prevent the grounding internal electrode 13 from protruding from the width w2 of the first and second grounding terminal electrodes 3 and 4 to be exposed.

次に、図4を参照して、接地用内部電極13の変形例の構成を説明する。図4は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 4, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 4 is a plan view showing a modification of the grounding internal electrode.

本変形例では、主電極部13aの第一及び第二側面Lc,Ldの対向方向での幅w1aは、引出電極部13b,13cの第一及び第二側面Lc,Ldの対向方向での幅w1bよりも狭く設定されている。主電極部13aの幅w1a及び引出電極部13b,13cの幅w1bは、第一及び第二接地用端子電極3,4の幅w2よりも狭く設定されている。本変形例では、幅w1a,w1bは、幅w2の半分以下に設定されている。   In this modification, the width w1a of the main electrode portion 13a in the facing direction of the first and second side surfaces Lc, Ld is the width of the extraction electrode portions 13b, 13c in the facing direction of the first and second side surfaces Lc, Ld. It is set narrower than w1b. The width w1a of the main electrode portion 13a and the width w1b of the extraction electrode portions 13b and 13c are set narrower than the width w2 of the first and second ground terminal electrodes 3 and 4. In this modification, the widths w1a and w1b are set to be equal to or less than half of the width w2.

主電極部13aの幅w1aが、引出電極部13b,13cの幅w1bよりも狭いため、一つの信号用内部電極11と一つの接地用内部電極13とで形成される静電容量はより一層小さい。したがって、所望の静電容量を確保するためには、信号用内部電極11と接地用内部電極13との積層数を更に増やす必要があり、信号用内部電極11の積層数が更に増やされることにより、直流抵抗の低減がより一層図られることとなる。引出電極部13b,13cの幅w1bは、主電極部13aの幅w1aよりも広いため、接地用内部電極13と第一及び第二接地用端子電極3,4との接続性は確保できる。   Since the width w1a of the main electrode portion 13a is narrower than the width w1b of the extraction electrode portions 13b and 13c, the capacitance formed by one signal internal electrode 11 and one ground internal electrode 13 is much smaller. . Therefore, in order to secure a desired capacitance, it is necessary to further increase the number of laminations of the signal internal electrode 11 and the grounding internal electrode 13, and the number of laminations of the signal internal electrode 11 is further increased. Thus, the direct current resistance can be further reduced. Since the width w1b of the extraction electrode portions 13b and 13c is wider than the width w1a of the main electrode portion 13a, the connectivity between the grounding internal electrode 13 and the first and second grounding terminal electrodes 3 and 4 can be ensured.

次に、図5を参照して、接地用内部電極13の変形例の構成を説明する。図5は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 5, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 5 is a plan view showing a modification of the grounding internal electrode.

本変形例では、複数の接地用内部電極13として、図3(b)に示された接地用内部電極13(図5(a)参照)だけでなく、主電極部13aが、第三及び第四側面Le,Lfの対向方向に延びる電極部分13aと、電極部分13aと引出電極部13b,13cとを接続する電極部分13aと、を有している複数の接地用内部電極13(図5(b)〜(e)参照)が備えられている。電極部分13aは、第一及び第二側面Lc,Ldの対向方向に延びている。 In the present modification, not only the grounding internal electrode 13 (see FIG. 5A) shown in FIG. 3B but also the main electrode portion 13a includes the third and third grounding internal electrodes 13 as shown in FIG. A plurality of grounding internal electrodes 13 having electrode portions 13a 1 extending in the opposing direction of the four side surfaces Le and Lf, and electrode portions 13a 2 connecting the electrode portions 13a 1 and the extraction electrode portions 13b and 13c ( 5 (b) to 5 (e) are provided. The electrode portion 13a 2 extends in the opposing direction of the first and second side faces Lc, Ld.

各接地用内部電極13における主電極部13aの電極部分13aは、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。各接地用内部電極13における主電極部13aの電極部分13aは、電極部分13aと電極部分13aとを有さない接地用内部電極13の主電極部13aとも、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。 Electrode portion 13a 1 of the main electrode portion 13a of each ground internal electrodes 13, first and second major surface La, viewed from the opposing direction of Lb, are positioned so as not to overlap each other. The electrode portion 13a 1 of the main electrode portion 13a in each grounding internal electrode 13 is the first and second main electrodes 13a 1 of the grounding internal electrode 13 that does not have the electrode portion 13a 1 and the electrode portion 13a 2. They are positioned so as not to overlap each other when viewed from the opposing direction of the surfaces La and Lb.

主電極部13aの電極部分13aは、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置しているので、電極部分13aの厚みにより生じる段差が分散されて、素体Lの変形を抑制することができる。したがって、内部構造欠陥の発生を抑制することができる。電極部分13aは、電極部分13aと電極部分13aとを有さない接地用内部電極13の主電極部13aとも、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置しているので、主電極部13aと電極部分13aの厚みにより生じる段差がより一層分散されて、素体Lの変形を更に抑制することができる。 Since the electrode portion 13a 1 of the main electrode portion 13a is positioned so as not to overlap each other when viewed from the opposing direction of the first and second main surfaces La and Lb, the level difference caused by the thickness of the electrode portion 13a 1 is dispersed. Thus, deformation of the element body L can be suppressed. Therefore, generation of internal structural defects can be suppressed. The electrode portion 13a 1 is the same as the main electrode portion 13a of the grounding internal electrode 13 that does not have the electrode portion 13a 1 and the electrode portion 13a 2 as viewed from the opposing direction of the first and second main surfaces La and Lb. since is positioned so as not to overlap, the step formed by the main electrode portion 13a and the electrode portions 13a 1 of the thickness is more further dispersed, it is possible to further suppress deformation of the body L.

次に、図6を参照して、接地用内部電極13の変形例の構成を説明する。図6は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 6, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 6 is a plan view showing a modification of the grounding internal electrode.

本変形例では、複数の接地用内部電極13として、図3(b)に示された接地用内部電極13(図6(a)参照)だけでなく、主電極部13aが、同一面内において複数に分岐された複数の接地用内部電極13(図6(b)〜(d)参照)が備えられている。主電極部13aが分岐された各接地用内部電極13は、第三及び第四側面Le,Lfの対向方向に延びる複数の電極部分13aと、各電極部分13aと引出電極部13b,13cとを接続する電極部分13aと、を有している。 In the present modification, not only the grounding internal electrode 13 shown in FIG. 3B (see FIG. 6A) but also the main electrode portion 13a are arranged on the same plane as the plurality of grounding internal electrodes 13. A plurality of grounding internal electrodes 13 (see FIGS. 6B to 6D) branched into a plurality are provided. Each grounding inner electrode 13 the main electrode portion 13a is branched, the third and fourth side Le, the plurality of electrode portions 13a 1 extending in the opposing direction of Lf, the electrode portions 13a 1 and the extraction electrode portion 13b, 13c And an electrode portion 13a2 for connecting the two .

各接地用内部電極13における主電極部13aの電極部分13aは、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。各接地用内部電極13における主電極部13aの電極部分13aは、電極部分13aと電極部分13aとを有さない接地用内部電極13の主電極部13aとも、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。 Electrode portion 13a 1 of the main electrode portion 13a of each ground internal electrodes 13, first and second major surface La, viewed from the opposing direction of Lb, are positioned so as not to overlap each other. The electrode portion 13a 1 of the main electrode portion 13a in each grounding internal electrode 13 is the first and second main electrodes 13a 1 of the grounding internal electrode 13 that does not have the electrode portion 13a 1 and the electrode portion 13a 2. They are positioned so as not to overlap each other when viewed from the opposing direction of the surfaces La and Lb.

主電極部13aが、同一面内において複数に分岐さされているので、各接地用内部電極13において、いずれかの電極部分13aが断線したとしても、残りの電極部分13aにて導通状態を確保することができる。したがって、静電容量が所望の値からずれるのを防ぐことができる。 The main electrode portion 13a, because it is split into a plurality in the same plane, at each ground internal electrodes 13, as one of the electrode portions 13a 1 is disconnected, the conductive state at the remaining electrode portions 13a 1 Can be secured. Therefore, it is possible to prevent the capacitance from deviating from a desired value.

次に、図7及び図8を参照して、本実施形態の変形例に係る積層貫通コンデンサの構成を説明する。図7は、本実施形態の変形例に係る積層貫通コンデンサにおける、素体の構成を示す分解斜視図である。図8は、接地用内部電極及びダミー電極を示す平面図である。   Next, the configuration of the multilayer feedthrough capacitor according to the modification of the present embodiment will be described with reference to FIGS. FIG. 7 is an exploded perspective view showing the configuration of the element body in the multilayer feedthrough capacitor according to the modification of the present embodiment. FIG. 8 is a plan view showing the grounding internal electrode and the dummy electrode.

本変形例に係る積層貫通コンデンサは、上述した実施形態の積層貫通コンデンサC1と同じく、素体Lと、素体Lの外表面に配置される第一及び第二信号用端子電極(図示省略)並びに第一及び第二接地用端子電極(図示省略)と、を備えている。   The multilayer feedthrough capacitor according to this modification is similar to the multilayer feedthrough capacitor C1 of the embodiment described above, and the element body L, and first and second signal terminal electrodes (not shown) disposed on the outer surface of the element body L. And first and second grounding terminal electrodes (not shown).

本変形例の積層貫通コンデンサは、図7に示されるように、複数のダミー電極15,16を備えている。ダミー電極15,16は、図8にも示されるように、各接地用内部電極13と同一面に、接地用内部電極13を第一及び第二側面Lc,Ldの対向方向で挟み且つ接地用内部電極13から離間するように配置されている。ダミー電極15,16は、信号用内部電極11及び接地用内部電極13と同じく、積層型の電気素子の内部電極として通常用いられる導電性材料(たとえば、Ni又はCuなど)からなる。ダミー電極15,16は、上記導電性材料を含む導電性ペーストの焼結体として構成される。   The multilayer feedthrough capacitor of this modification includes a plurality of dummy electrodes 15 and 16 as shown in FIG. As shown in FIG. 8, the dummy electrodes 15 and 16 sandwich the grounding internal electrode 13 on the same surface as each grounding internal electrode 13 in the facing direction of the first and second side faces Lc and Ld, and are used for grounding. It is arranged so as to be separated from the internal electrode 13. The dummy electrodes 15 and 16 are made of a conductive material (for example, Ni or Cu) that is normally used as an internal electrode of a laminated electric element, like the signal internal electrode 11 and the ground internal electrode 13. The dummy electrodes 15 and 16 are configured as a sintered body of a conductive paste containing the conductive material.

ダミー電極15は、一端が第一側面Lcに露出している。ダミー電極15の他端は、接地用内部電極13の主電極部13aから第一及び第二側面Lc,Ldの対向方向で離間している。第一信号用端子電極1は、ダミー電極15の第一側面Lcに露出した部分もすべて覆うように形成されており、ダミー電極15は、第一信号用端子電極1に接続されている。   One end of the dummy electrode 15 is exposed to the first side face Lc. The other end of the dummy electrode 15 is separated from the main electrode portion 13a of the grounding internal electrode 13 in the opposing direction of the first and second side faces Lc and Ld. The first signal terminal electrode 1 is formed so as to cover all portions exposed to the first side face Lc of the dummy electrode 15, and the dummy electrode 15 is connected to the first signal terminal electrode 1.

ダミー電極16は、一端が第二側面Ldに露出している。ダミー電極16の他端は、接地用内部電極13の主電極部13aから第一及び第二側面Lc,Ldの対向方向で離間している。第二信号用端子電極2は、ダミー電極16の第二側面Ldに露出した部分もすべて覆うように形成されており、ダミー電極16は、第二信号用端子電極2に接続されている。   One end of the dummy electrode 16 is exposed to the second side face Ld. The other end of the dummy electrode 16 is separated from the main electrode portion 13a of the grounding internal electrode 13 in the facing direction of the first and second side faces Lc and Ld. The second signal terminal electrode 2 is formed so as to cover all portions exposed to the second side face Ld of the dummy electrode 16, and the dummy electrode 16 is connected to the second signal terminal electrode 2.

ダミー電極15とダミー電極16との、第一及び第二側面Lc,Ldの対向方向での間隔D1、すなわちダミー電極15の他端とダミー電極16と他端との第一及び第二側面Lc,Ldの対向方向での間隔は、第一及び第二接地用端子電極3,4の幅w2よりも狭く設定されている。これにより、接地用内部電極13の厚みによる段差の発生が抑制されて、素体Lの変形を抑制することができる。したがって、本変形例の積層貫通コンデンサでは、内部構造欠陥の発生を抑制することができる。   The distance D1 between the dummy electrode 15 and the dummy electrode 16 in the opposing direction of the first and second side faces Lc, Ld, that is, the first and second side faces Lc between the other end of the dummy electrode 15 and the dummy electrode 16 and the other end. , Ld in the facing direction is set to be narrower than the width w2 of the first and second ground terminal electrodes 3, 4. Thereby, generation | occurrence | production of the level | step difference by the thickness of the internal electrode 13 for grounding is suppressed, and the deformation | transformation of the element | base_body L can be suppressed. Therefore, in the multilayer feedthrough capacitor of this modification, the occurrence of internal structural defects can be suppressed.

本変形例では、信号用内部電極11だけでなく、ダミー電極15も、第一信号用端子電極1に接続されている。したがって、素体Lと第一信号用端子電極1との密着性を高めることができる。信号用内部電極11だけでなく、ダミー電極16も、第二信号用端子電極2に接続されている。したがって、素体Lと第二信号用端子電極2との密着性を高めることができる。   In this modification, not only the signal internal electrode 11 but also the dummy electrode 15 is connected to the first signal terminal electrode 1. Therefore, the adhesion between the element body L and the first signal terminal electrode 1 can be improved. Not only the signal internal electrode 11 but also the dummy electrode 16 is connected to the second signal terminal electrode 2. Therefore, the adhesion between the element body L and the second signal terminal electrode 2 can be improved.

次に、図9を参照して、接地用内部電極13及びダミー電極15,16の変形例の構成を説明する。図9は、接地用内部電極及びダミー電極の変形例を示す平面図である。   Next, with reference to FIG. 9, the structure of the modification of the grounding internal electrode 13 and the dummy electrodes 15 and 16 is demonstrated. FIG. 9 is a plan view showing a modification of the grounding internal electrode and the dummy electrode.

接地用内部電極13は、図4に示された変形例と同じく、主電極部13aの幅w1aが、引出電極部13b,13cの幅w1bよりも狭く設定されている。本変形例でも、幅w1a,w1bは、幅w2の半分以下に設定されている。ダミー電極15とダミー電極16との間隔D1は、引出電極部13b,13cの幅w1bよりも狭く設定されている。   In the grounding internal electrode 13, the width w1a of the main electrode portion 13a is set narrower than the width w1b of the extraction electrode portions 13b and 13c, as in the modification shown in FIG. Also in this modification, the widths w1a and w1b are set to be equal to or less than half of the width w2. The distance D1 between the dummy electrode 15 and the dummy electrode 16 is set to be narrower than the width w1b of the extraction electrode portions 13b and 13c.

本変形例では、図4に示された変形例と同じく、接地用内部電極13と第一及び第二接地用端子電極3,4との接続性が確保された上で、直流抵抗の低減がより一層図られることとなる。また、接地用内部電極13(主電極部13a)の厚みによる段差の発生がより一層抑制されて、素体Lの変形を更に抑制することができる。   In the present modification, as in the modification shown in FIG. 4, the connectivity between the grounding internal electrode 13 and the first and second grounding terminal electrodes 3 and 4 is secured, and the DC resistance is reduced. It will be further planned. Further, the occurrence of a step due to the thickness of the grounding internal electrode 13 (main electrode portion 13a) is further suppressed, and the deformation of the element body L can be further suppressed.

次に、図10及び図11を参照して、本実施形態の変形例に係る積層貫通コンデンサC2の構成を説明する。図10は、本実施形態の変形例に係る積層貫通コンデンサを示す斜視図である。図11は、素体の構成を示す分解斜視図である。   Next, the configuration of the multilayer feedthrough capacitor C2 according to the modification of the present embodiment will be described with reference to FIGS. FIG. 10 is a perspective view showing a multilayer feedthrough capacitor according to a modification of the present embodiment. FIG. 11 is an exploded perspective view showing the configuration of the element body.

本変形例に係る積層貫通コンデンサC2は、上述した積層貫通コンデンサC1と同様に、素体Lと、第一及び第二信号用端子電極1,2と、第一及び第二接地用端子電極3,4と、を備えている。素体Lにおいて、第一及び第二側面Lc,Ldは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの長辺方向に伸びている。第三及び第四側面Le,Lfは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの短辺方向に伸びている。   The multilayer feedthrough capacitor C2 according to this modification is similar to the multilayer feedthrough capacitor C1 described above, the element body L, the first and second signal terminal electrodes 1 and 2, and the first and second ground terminal electrodes 3. , 4 are provided. In the element body L, the first and second side surfaces Lc, Ld extend in the long side direction of the first and second main surfaces La, Lb so as to connect the first and second main surfaces La, Lb. . The third and fourth side surfaces Le and Lf extend in the short side direction of the first and second main surfaces La and Lb so as to connect the first and second main surfaces La and Lb.

図12(a)にも示されるように、信号用内部電極11は、主電極部11aと、一対の引出電極部11b,11cと、を有している。主電極部11aは、第一及び第二側面Lc,Ldの対向方向を短辺方向とし、第三及び第四側面Le,Lfの対向方向を長辺方向とする矩形形状を呈している。したがって、信号用内部電極11は、第三及び第四側面Le,Lfの対向方向での幅が第一及び第二側面Lc,Ldの対向方向での幅よりも広く設定されている。   As shown in FIG. 12A, the signal internal electrode 11 includes a main electrode portion 11a and a pair of lead electrode portions 11b and 11c. The main electrode portion 11a has a rectangular shape in which the opposing direction of the first and second side faces Lc, Ld is the short side direction and the opposing direction of the third and fourth side faces Le, Lf is the long side direction. Accordingly, the signal internal electrode 11 is set such that the width in the facing direction of the third and fourth side faces Le and Lf is wider than the width in the facing direction of the first and second side faces Lc and Ld.

図12(b)にも示されるように、接地用内部電極13は、主電極部13aと、一対の引出電極部13b,13cと、を有している。主電極部13aは、第三及び第四側面Le,Lfの対向方向を長辺方向とし、第一及び第二側面Lc,Ldの対向方向を短辺方向とする矩形形状を呈している。   As shown in FIG. 12B, the grounding internal electrode 13 has a main electrode portion 13a and a pair of lead electrode portions 13b and 13c. The main electrode portion 13a has a rectangular shape in which the opposing direction of the third and fourth side faces Le and Lf is the long side direction and the opposing direction of the first and second side faces Lc and Ld is the short side direction.

本変形例では、信号用内部電極11一つあたり直流抵抗が低くなり、積層貫通コンデンサC2全体での直流抵抗をより一層低減することができる。   In the present modification, the DC resistance per signal internal electrode 11 is lowered, and the DC resistance of the entire multilayer feedthrough capacitor C2 can be further reduced.

次に、図13を参照して、接地用内部電極13の変形例の構成を説明する。図13は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 13, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 13 is a plan view showing a modification of the grounding internal electrode.

本変形例における接地用内部電極13では、図4に示された接地用内部電極13と同じく、主電極部13aの幅w1aは、引出電極部13b,13cの幅w1bよりも狭く設定されている。主電極部13aの幅w1a及び引出電極部13b,13cの幅w1bは、第一及び第二接地用端子電極3,4の幅w2よりも狭く設定されている。   In the grounding internal electrode 13 in this modification, the width w1a of the main electrode portion 13a is set to be narrower than the width w1b of the extraction electrode portions 13b and 13c, as in the case of the grounding internal electrode 13 shown in FIG. . The width w1a of the main electrode portion 13a and the width w1b of the extraction electrode portions 13b and 13c are set narrower than the width w2 of the first and second ground terminal electrodes 3 and 4.

本変形例でも、図4に示された変形例と同様に、接地用内部電極13と第一及び第二接地用端子電極3,4との接続性が確保された上で、直流抵抗の低減がより一層図られることとなる。   In this modified example, as in the modified example shown in FIG. 4, the connectivity between the grounding internal electrode 13 and the first and second grounding terminal electrodes 3 and 4 is ensured, and the DC resistance is reduced. Will be further promoted.

次に、図14を参照して、接地用内部電極13の変形例の構成を説明する。図14は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 14, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 14 is a plan view showing a modification of the grounding internal electrode.

本変形例では、図5に示された変形例と同様に、複数の接地用内部電極13として、図12(b)に示された接地用内部電極13(図14(a)参照)だけでなく、主電極部13aが、電極部分13aと、電極部分13aと、を有している複数の接地用内部電極13(図14(b)〜(e)参照)が備えられている。各接地用内部電極13における電極部分13aは、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。各接地用内部電極13における電極部分13aは、電極部分13aと電極部分13aとを有さない接地用内部電極13の主電極部13aとも、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。 In the present modification, as in the modification shown in FIG. 5, only the grounding internal electrodes 13 (see FIG. 14A) shown in FIG. no main electrode portion 13a, the electrode portions 13a 1, and the electrode portions 13a 2, a plurality of grounding internal electrode 13 has a (see FIG. 14 (b) ~ (e) ) are provided. Electrode portion 13a 1 of each ground internal electrodes 13, first and second major surface La, viewed from the opposing direction of Lb, are positioned so as not to overlap each other. Electrode portion 13a 1 of each ground internal electrodes 13, with the main electrode portion 13a of the grounding inner electrode 13 having no electrode portions 13a 1 and the electrode portion 13a 2, first and second major surface La, the Lb They are positioned so as not to overlap each other when viewed from the opposite direction.

本変形例でも、図5に示された変形例と同様に、電極部分13aの厚みにより生じる段差が分散されて、素体Lの変形を抑制することができ、内部構造欠陥の発生を抑制することができる。また、主電極部13aと電極部分13aの厚みにより生じる段差がより一層分散されて、素体Lの変形を更に抑制することができる。 Also in this modified example, as in the modified example shown in FIG. 5, the level difference caused by the thickness of the electrode portion 13 a 1 is dispersed, so that the deformation of the element body L can be suppressed and the occurrence of internal structural defects is suppressed. can do. Also, step formed by the main electrode portion 13a and the electrode portions 13a 1 of the thickness is more further dispersed, it is possible to further suppress deformation of the body L.

次に、図15を参照して、接地用内部電極13の変形例の構成を説明する。図15は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 15, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 15 is a plan view showing a modification of the grounding internal electrode.

本変形例では、図5に示された変形例と同様に、複数の接地用内部電極13として、図12(b)に示された接地用内部電極13(図15(a)参照)だけでなく、主電極部13aが、同一面内において複数に分岐された複数の接地用内部電極13(図15(b)〜(d)参照)が備えられている。   In the present modification, as in the modification shown in FIG. 5, only the grounding internal electrodes 13 (see FIG. 15A) shown in FIG. Instead, the main electrode portion 13a is provided with a plurality of grounding internal electrodes 13 (see FIGS. 15B to 15D) that are branched into a plurality of portions in the same plane.

主電極部13aが分岐された各接地用内部電極13は、複数の電極部分13aと、電極部分13aと、を有している。各接地用内部電極13における電極部分13aは、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。各接地用内部電極13における電極部分13aは、電極部分13aと電極部分13aとを有さない接地用内部電極13の主電極部13aとも、第一及び第二主面La,Lbの対向方向から見て、互いに重ならないように位置している。 Each grounding inner electrode 13 the main electrode portion 13a is branched includes a plurality of electrode portions 13a 1, and the electrode portions 13a 2, a. Electrode portion 13a 1 of each ground internal electrodes 13, first and second major surface La, viewed from the opposing direction of Lb, are positioned so as not to overlap each other. Electrode portion 13a 1 of each ground internal electrodes 13, with the main electrode portion 13a of the grounding inner electrode 13 having no electrode portions 13a 1 and the electrode portion 13a 2, first and second major surface La, the Lb They are positioned so as not to overlap each other when viewed from the opposite direction.

本変形例でも、図6に示された変形例と同様に、各接地用内部電極13において、いずれかの電極部分13aが断線したとしても、残りの電極部分13aにて導通状態を確保することができる。したがって、静電容量が所望の値からずれるのを防ぐことができる。 Also in this modified example, as in the modified example shown in FIG. 6, even if any electrode portion 13 a 1 is disconnected in each grounding internal electrode 13, a conductive state is secured in the remaining electrode portion 13 a 1 . can do. Therefore, it is possible to prevent the capacitance from deviating from a desired value.

次に、図16及び図17を参照して、本実施形態の変形例に係る積層貫通コンデンサの構成を説明する。図16は、本実施形態の変形例に係る積層貫通コンデンサにおける、素体の構成を示す分解斜視図である。図17は、接地用内部電極及びダミー電極を示す平面図である。   Next, the configuration of the multilayer feedthrough capacitor according to the modification of the present embodiment will be described with reference to FIGS. FIG. 16 is an exploded perspective view showing the configuration of the element body in the multilayer feedthrough capacitor according to the modification of the present embodiment. FIG. 17 is a plan view showing the grounding internal electrode and the dummy electrode.

本変形例に係る積層貫通コンデンサは、上述した実施形態の積層貫通コンデンサC2と同じく、素体Lと、素体Lの外表面に配置される第一及び第二信号用端子電極(図示省略)並びに第一及び第二接地用端子電極(図示省略)と、を備えている。   The multilayer feedthrough capacitor according to this modification is similar to the multilayer feedthrough capacitor C2 of the above-described embodiment, and the element body L and first and second signal terminal electrodes (not shown) arranged on the outer surface of the element body L. And first and second grounding terminal electrodes (not shown).

本変形例の積層貫通コンデンサは、図16に示されるように、複数のダミー電極15,16を備えている。ダミー電極15,16は、図17にも示されるように、図8に示されたダミー電極15,16と同じく、各接地用内部電極13と同一面に、接地用内部電極13を第一及び第二側面Lc,Ldの対向方向で挟み且つ接地用内部電極13から離間するように配置されている。   The multilayer feedthrough capacitor of this modification includes a plurality of dummy electrodes 15 and 16, as shown in FIG. As shown in FIG. 17, the dummy electrodes 15 and 16 are arranged on the same surface as the grounding internal electrodes 13 in the same manner as the dummy electrodes 15 and 16 shown in FIG. The second side surfaces Lc and Ld are disposed so as to be opposed to each other and separated from the grounding internal electrode 13.

本変形例でも、図7及び図8に示された変形例と同様に、ダミー電極15とダミー電極16との間隔D1は、第一及び第二接地用端子電極3,4の幅w2よりも狭く設定されているので、接地用内部電極13の厚みによる段差の発生が抑制されて、素体Lの変形を抑制することができる。したがって、本変形例の積層貫通コンデンサでは、内部構造欠陥の発生を抑制することができる。また、素体Lと第一信号用端子電極1との密着性を高めることができると共に、素体Lと第二信号用端子電極2との密着性を高めることができる。   Also in this modified example, the distance D1 between the dummy electrode 15 and the dummy electrode 16 is larger than the width w2 of the first and second grounding terminal electrodes 3 and 4 as in the modified example shown in FIGS. Since it is set narrowly, the generation | occurrence | production of the level | step difference by the thickness of the internal electrode 13 for grounding is suppressed, and a deformation | transformation of the element | base_body L can be suppressed. Therefore, in the multilayer feedthrough capacitor of this modification, the occurrence of internal structural defects can be suppressed. In addition, the adhesion between the element body L and the first signal terminal electrode 1 can be enhanced, and the adhesion between the element body L and the second signal terminal electrode 2 can be enhanced.

次に、図18を参照して、接地用内部電極13及びダミー電極15,16の変形例の構成を説明する。図18は、接地用内部電極及びダミー電極の変形例を示す平面図である。   Next, with reference to FIG. 18, the structure of the modification of the grounding internal electrode 13 and the dummy electrodes 15 and 16 is demonstrated. FIG. 18 is a plan view showing a modification of the grounding internal electrode and the dummy electrode.

ダミー電極15とダミー電極16との間隔D1は、図9に示された変形例と同様に、引出電極部13b,13cの幅w1bよりも狭く設定されている。したがって、接地用内部電極13と第一及び第二接地用端子電極3,4との接続性が確保された上で、直流抵抗の低減がより一層図られることとなる。また、接地用内部電極13(主電極部13a)の厚みによる段差の発生がより一層抑制されて、素体Lの変形を更に抑制することができる。   The distance D1 between the dummy electrode 15 and the dummy electrode 16 is set narrower than the width w1b of the extraction electrode portions 13b and 13c, as in the modification shown in FIG. Therefore, the DC resistance can be further reduced while the connectivity between the grounding internal electrode 13 and the first and second grounding terminal electrodes 3 and 4 is ensured. Further, the occurrence of a step due to the thickness of the grounding internal electrode 13 (main electrode portion 13a) is further suppressed, and the deformation of the element body L can be further suppressed.

次に、図19及び図20を参照して、本実施形態の変形例に係る積層貫通コンデンサアレイC3の構成を説明する。図19は、本実施形態の変形例に係る積層貫通コンデンサアレイを示す斜視図である。図20は、素体の構成を示す分解斜視図である。   Next, the configuration of the multilayer feedthrough capacitor array C3 according to the modification of the present embodiment will be described with reference to FIGS. FIG. 19 is a perspective view showing a multilayer feedthrough capacitor array according to a modification of the present embodiment. FIG. 20 is an exploded perspective view showing the configuration of the element body.

本変形例に係る積層貫通コンデンサアレイC3は、素体Lと、それぞれ複数の第一及び第二信号用端子電極1,2と、第一及び第二接地用端子電極3,4と、を備えている。素体Lにおいて、第一及び第二側面Lc,Ldは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの長辺方向に伸びている。第三及び第四側面Le,Lfは、第一及び第二主面La,Lb間を連結するように第一及び第二主面La,Lbの短辺方向に伸びている。本変形例では、積層貫通コンデンサアレイC3は、それぞれ二つの第一及び第二信号用端子電極1,2を備えている。   The multilayer feedthrough capacitor array C3 according to this modification includes an element body L, a plurality of first and second signal terminal electrodes 1 and 2, and first and second ground terminal electrodes 3 and 4, respectively. ing. In the element body L, the first and second side surfaces Lc, Ld extend in the long side direction of the first and second main surfaces La, Lb so as to connect the first and second main surfaces La, Lb. . The third and fourth side surfaces Le and Lf extend in the short side direction of the first and second main surfaces La and Lb so as to connect the first and second main surfaces La and Lb. In this modification, the multilayer feedthrough capacitor array C3 includes two first and second signal terminal electrodes 1 and 2, respectively.

各第一信号用端子電極1は、素体Lの第一側面Lc側に配置されている。各第一信号用端子電極1は、第一側面Lcの一部を第一及び第二主面La,Lbの対向方向に沿って覆うように、第一及び第二主面La,Lbにわたって形成されている。二つの第一信号用端子電極1は、第三及び第四側面Le,Lfの対向方向で互いに離間するように位置している。   Each first signal terminal electrode 1 is arranged on the first side face Lc side of the element body L. Each first signal terminal electrode 1 is formed over the first and second main surfaces La and Lb so as to cover a part of the first side surface Lc along the opposing direction of the first and second main surfaces La and Lb. Has been. The two first signal terminal electrodes 1 are positioned so as to be separated from each other in the facing direction of the third and fourth side faces Le and Lf.

各第二信号用端子電極2は、素体Lの第二側面Ld側に配置されている。各第二信号用端子電極2は、第二側面Ldの一部を第一及び第二主面La,Lbの対向方向に沿って覆うように、第一及び第二主面La,Lbにわたって形成されている。二つの第二信号用端子電極2は、第三及び第四側面Le,Lfの対向方向で互いに離間するように位置している。   Each of the second signal terminal electrodes 2 is disposed on the second side face Ld side of the element body L. Each of the second signal terminal electrodes 2 is formed over the first and second main faces La and Lb so as to cover a part of the second side face Ld along the opposing direction of the first and second main faces La and Lb. Has been. The two second signal terminal electrodes 2 are positioned so as to be separated from each other in the facing direction of the third and fourth side faces Le and Lf.

積層貫通コンデンサアレイC3は、図21(a)にも示されるように、同一面内に、複数の信号用内部電極11を備えている。本変形例では、積層貫通コンデンサアレイC3は、第一及び第二信号用端子電極1,2のそれぞれの数に対応して、同一面内に、二つの信号用内部電極11を備えている。信号用内部電極11は、主電極部11aと、一対の引出電極部11b,11cと、を有している。主電極部11aは、第一及び第二側面Lc,Ldの対向方向を長辺方向とし、第三及び第四側面Le,Lfの対向方向を短辺方向とする矩形形状を呈している。主電極部11aの第三及び第四側面Le,Lfの対向方向での幅は、引出電極部11b,11cの第三及び第四側面Le,Lfの対向方向での幅よりも広く設定されている。   The multilayer feedthrough capacitor array C3 includes a plurality of signal internal electrodes 11 on the same plane as shown in FIG. In this modification, the multilayer feedthrough capacitor array C3 includes two signal internal electrodes 11 in the same plane corresponding to the number of first and second signal terminal electrodes 1 and 2, respectively. The signal internal electrode 11 has a main electrode portion 11a and a pair of lead electrode portions 11b and 11c. The main electrode portion 11a has a rectangular shape in which the opposing direction of the first and second side faces Lc, Ld is the long side direction and the opposing direction of the third and fourth side faces Le, Lf is the short side direction. The width of the main electrode portion 11a in the opposing direction of the third and fourth side surfaces Le and Lf is set wider than the width of the extraction electrode portions 11b and 11c in the opposing direction of the third and fourth side surfaces Le and Lf. Yes.

図21(b)にも示されるように、接地用内部電極13は、複数の主電極部13aと、一対の引出電極部13b,13cと、接続部13dと、を有している。本変形例では、接地用内部電極13は、同一面内に位置する信号用内部電極11の数に対応して、二つの主電極部13aを有している。主電極部13aは、第三及び第四側面Le,Lfの対向方向を長辺方向とし、第一及び第二側面Lc,Ldの対向方向を短辺方向とする矩形形状を呈している。接続部13dは、第三及び第四側面Le,Lfの対向方向で隣り合う二つの主電極部13aにそれぞれ接続されている。   As shown in FIG. 21B, the grounding internal electrode 13 has a plurality of main electrode portions 13a, a pair of lead electrode portions 13b and 13c, and a connection portion 13d. In this modification, the grounding internal electrode 13 has two main electrode portions 13a corresponding to the number of signal internal electrodes 11 located in the same plane. The main electrode portion 13a has a rectangular shape in which the opposing direction of the third and fourth side faces Le and Lf is the long side direction and the opposing direction of the first and second side faces Lc and Ld is the short side direction. The connecting portion 13d is connected to two main electrode portions 13a that are adjacent to each other in the facing direction of the third and fourth side surfaces Le and Lf.

本変形例でも、上述した実施形態と同様に、積層貫通コンデンサアレイC3において、直流抵抗の低減が図られることとなる。   Also in this modified example, the DC resistance is reduced in the multilayer feedthrough capacitor array C3 as in the above-described embodiment.

次に、図22を参照して、接地用内部電極13の変形例の構成を説明する。図22は、接地用内部電極の変形例を示す平面図である。   Next, with reference to FIG. 22, the structure of the modification of the grounding internal electrode 13 is demonstrated. FIG. 22 is a plan view showing a modification of the grounding internal electrode.

図22(a)に示された変形例では、図13に示された接地用内部電極13と同じく、主電極部13aの幅w1aは、引出電極部13b,13cの幅w1bよりも狭く設定されている。主電極部13aの幅w1a及び引出電極部13b,13cの幅w1bは、第一及び第二接地用端子電極3,4の幅w2よりも狭く設定されている。本変形例では、接続部13dの第一及び第二側面Lc,Ldの対向方向での幅と、引出電極部13b,13cの一部の第一及び第二側面Lc,Ldの対向方向での幅と、が幅w1aと同等に設定されている。   In the modification shown in FIG. 22A, the width w1a of the main electrode portion 13a is set to be narrower than the width w1b of the extraction electrode portions 13b and 13c, like the grounding internal electrode 13 shown in FIG. ing. The width w1a of the main electrode portion 13a and the width w1b of the extraction electrode portions 13b and 13c are set narrower than the width w2 of the first and second ground terminal electrodes 3 and 4. In this modification, the width of the connecting portion 13d in the opposing direction of the first and second side faces Lc, Ld and the part of the extraction electrode parts 13b, 13c in the opposing direction of the first and second side faces Lc, Ld. The width is set to be equal to the width w1a.

本変形例でも、図4及び図13に示された変形例と同様に、接地用内部電極13と第一及び第二接地用端子電極3,4との接続性が確保された上で、直流抵抗の低減がより一層図られることとなる。   Also in this modified example, as in the modified example shown in FIGS. 4 and 13, the connectivity between the grounding internal electrode 13 and the first and second grounding terminal electrodes 3, 4 is secured, and then the direct current is changed. The resistance is further reduced.

図22(b)に示された変形例では、接続部13dの第一及び第二側面Lc,Ldの対向方向での幅が、幅w1bと同等に設定されている。引出電極部13b,13cは、全体にわたって、同じ幅w1bに設定されている。   In the modification shown in FIG. 22B, the width in the facing direction of the first and second side faces Lc, Ld of the connecting portion 13d is set to be equal to the width w1b. The extraction electrode portions 13b and 13c are set to the same width w1b throughout.

図22(c)に示された変形例では、接続部13dの第一及び第二側面Lc,Ldの対向方向での幅と、引出電極部13b,13cの一部の第一及び第二側面Lc,Ldの対向方向での幅と、が幅w1b以上に設定されている。本変形例では、接続部13dの第一及び第二側面Lc,Ldの対向方向での幅と、引出電極部13b,13cの一部の第一及び第二側面Lc,Ldの対向方向での幅と、は、主電極部11aの第一及び第二側面Lc,Ldの対向方向での幅と略同等に設定されている。すなわち、接地用内部電極13は、第一及び第二主面La,Lbの対向方向から見て、信号用内部電極11と重ならない領域が残りの領域よりも第一及び第二側面Lc,Ldの対向方向において幅広とされている。   In the modification shown in FIG. 22 (c), the width in the facing direction of the first and second side faces Lc, Ld of the connecting portion 13d and the first and second side faces of a part of the extraction electrode portions 13b, 13c. The width in the opposing direction of Lc and Ld is set to be equal to or greater than the width w1b. In this modification, the width of the connecting portion 13d in the opposing direction of the first and second side faces Lc, Ld and the part of the extraction electrode parts 13b, 13c in the opposing direction of the first and second side faces Lc, Ld. The width is set substantially equal to the width in the facing direction of the first and second side faces Lc and Ld of the main electrode portion 11a. That is, in the grounding internal electrode 13, the first and second side faces Lc, Ld in the region that does not overlap with the signal inner electrode 11 as viewed from the opposing direction of the first and second main surfaces La, Lb are more than the remaining regions. It is made wide in the facing direction.

本変形例によれば、信号用内部電極11の厚みによる段差の発生が抑制されて、素体Lの変形を抑制することができる。したがって、内部構造欠陥の発生を抑制することができる。   According to this modification, generation of a step due to the thickness of the signal internal electrode 11 is suppressed, and deformation of the element body L can be suppressed. Therefore, generation of internal structural defects can be suppressed.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

信号用内部電極11及び接地用内部電極13の数、すなわち積層数は、上述した数に限られることなく、所望の静電容量に対応させて、適宜設定することができる。   The number of the signal internal electrodes 11 and the ground internal electrodes 13, that is, the number of stacked layers is not limited to the above-described number, and can be set as appropriate according to the desired capacitance.

積層貫通コンデンサアレイC3における第一及び第二信号用端子電極1,2それぞれの数は、上述した数に限られることなく、3つ以上であってもよい。同一面内に位置する信号用内部電極11の数も、第一及び第二信号用端子電極1,2それぞれの数に対応させて、3つ以上であってもよい。   The number of the first and second signal terminal electrodes 1 and 2 in the multilayer feedthrough capacitor array C3 is not limited to the number described above, and may be three or more. The number of signal internal electrodes 11 located in the same plane may be three or more corresponding to the numbers of the first and second signal terminal electrodes 1 and 2.

積層貫通コンデンサC1,C2及び積層貫通コンデンサアレイC3は、二つの接地用端子電極(第一接地用端子電極3及び第二接地用端子電極4)を備えているが、接地用端子電極の数はこれに限られない。たとえば、積層貫通コンデンサC1,C2及び積層貫通コンデンサアレイC3は、接地用端子電極として、第一接地用端子電極3及び第二接地用端子電極4のうちいずれか一方のみの接地用端子電極を備えていてもよい。   The multilayer feedthrough capacitors C1 and C2 and the multilayer feedthrough capacitor array C3 include two ground terminal electrodes (first ground terminal electrode 3 and second ground terminal electrode 4). The number of ground terminal electrodes is as follows. It is not limited to this. For example, the multilayer feedthrough capacitors C1 and C2 and the multilayer feedthrough capacitor array C3 include ground terminal electrodes for only one of the first ground terminal electrode 3 and the second ground terminal electrode 4 as ground terminal electrodes. It may be.

1…第一信号用端子電極、2…第二信号用端子電極、3…第一接地用端子電極、4…第二接地用端子電極、11…信号用内部電極、11a…主電極部、11b,11c…引出電極部、13…接地用内部電極、13a…主電極部、13b,13c…引出電極部、15,16…ダミー電極、C1,C2…積層貫通コンデンサ、C3…積層貫通コンデンサアレイ、D1…複数のダミー電極の第一及び第二側面の対向方向での間隔、L…素体、La…第一主面、Lb…第二主面、Lc…第一側面、Ld…第二側面、Le…第三側面、Lf…第四側面、w1…接地用内部電極の第一及び第二側面の対向方向での幅、w1a…主電極部の第一及び第二側面の対向方向での幅、w1b…引出電極部の第一及び第二側面の対向方向での幅、w2…第一及び第二接地用端子電極の第一及び第二側面の対向方向での幅。 DESCRIPTION OF SYMBOLS 1 ... Terminal electrode for 1st signals, 2 ... Terminal electrode for 2nd signals, 3 ... Terminal electrode for 1st grounding, 4 ... Terminal electrode for 2nd grounding, 11 ... Internal electrode for signals, 11a ... Main electrode part, 11b , 11c... Extraction electrode portion, 13... Ground electrode, 13a. Main electrode portion, 13b and 13c... Extraction electrode portion, 15 and 16... Dummy electrode, C1 and C2. D1... Spacing between the first and second side faces of the plurality of dummy electrodes, L... Element body, La... First main face, Lb... Second main face, Lc ... first side face, Ld. , Le ... third side surface, Lf ... fourth side surface, w1 ... width in the opposing direction of the first and second side surfaces of the grounding internal electrode, w1a ... in the opposing direction of the first and second side surfaces of the main electrode portion. Width, w1b ... Width in the opposing direction of the first and second side surfaces of the extraction electrode part, w2 ... First and second First and width in the opposing direction of the second side of the ground terminal electrode.

Claims (11)

互いに対向する略矩形状の第一及び第二主面と、前記第一及び第二主面間を連結するように前記第一及び第二主面の第一辺方向に延び且つ互いに対向する第一及び第二側面と、前記第一及び第二主面間を連結するように前記第一辺方向に直交する第二辺方向に延び且つ互いに対向する第三及び第四側面と、を有する素体と、
前記素体の前記第一及び第二側面側に配置された複数の信号用端子電極と、
前記素体の前記第三及び第四側面側のうち少なくとも一方に配置された接地用端子電極と、
前記素体内に前記第一及び第二主面の対向方向に交互に配置された、それぞれ複数の信号用内部電極及び接地用内部電極と、を備え、
各前記信号用内部電極は、前記複数の信号用端子電極に接続され、
各前記接地用内部電極は、前記接地用端子電極に接続されると共に、前記第一及び第二側面の対向方向での幅が前記接地用端子電極の前記第一及び第二側面の対向方向での幅よりも狭いことを特徴とする積層貫通コンデンサ。
First and second main surfaces having substantially rectangular shapes opposed to each other, and first and second main surfaces extending in the first side direction of the first and second main surfaces so as to connect the first and second main surfaces and facing each other. A first and second side surface; and a third and a fourth side surface extending in a second side direction orthogonal to the first side direction so as to connect the first and second main surfaces and facing each other. Body,
A plurality of signal terminal electrodes disposed on the first and second side surfaces of the element body;
A grounding terminal electrode disposed on at least one of the third and fourth side surfaces of the element body; and
A plurality of signal internal electrodes and ground internal electrodes, which are alternately arranged in the element body in the opposing direction of the first and second main surfaces,
Each of the signal internal electrodes is connected to the plurality of signal terminal electrodes,
Each of the grounding internal electrodes is connected to the grounding terminal electrode, and the width in the facing direction of the first and second side surfaces is in the facing direction of the first and second side surfaces of the grounding terminal electrode. A multilayer feedthrough capacitor characterized by being narrower than the width of the capacitor.
前記接地用内部電極の前記第一及び第二側面の対向方向での前記幅は、前記接地用端子電極の前記第一及び第二側面の対向方向での前記幅の半分以下であることを特徴とする請求項1に記載の積層貫通コンデンサ。   The width in the opposing direction of the first and second side surfaces of the grounding internal electrode is less than or equal to half of the width in the opposing direction of the first and second side surfaces of the grounding terminal electrode. The multilayer feedthrough capacitor according to claim 1. 前記接地用内部電極は、前記信号用内部電極と対向する主電極部と、前記主電極部から延びて前記接地用端子電極に接続される引出電極部と、を有し、
前記主電極部の前記第一及び第二側面の対向方向での前記幅は、前記引出電極部の前記第一及び第二側面の対向方向での前記幅よりも狭いことを特徴とする請求項1又は2に記載の積層貫通コンデンサ。
The grounding internal electrode has a main electrode part facing the signal internal electrode, and an extraction electrode part extending from the main electrode part and connected to the grounding terminal electrode,
The width in the opposing direction of the first and second side surfaces of the main electrode portion is narrower than the width in the opposing direction of the first and second side surfaces of the extraction electrode portion. 3. A multilayer feedthrough capacitor according to 1 or 2.
前記主電極部は、前記第三及び第四側面の対向方向に延びる電極部分を有し、
各前記接地用内部電極における前記主電極部の前記電極部分は、前記第一及び第二主面の対向方向から見て、互いに重ならないように位置していることを特徴とする請求項3に記載の積層貫通コンデンサ。
The main electrode portion has an electrode portion extending in the opposing direction of the third and fourth side surfaces,
The electrode portion of the main electrode portion in each grounding internal electrode is positioned so as not to overlap each other when viewed from the opposing direction of the first and second main surfaces. The multilayer feedthrough capacitor described.
前記主電極部は、同一面内において複数に分岐された電極部分を有することを特徴とする請求項3又は4に記載の積層貫通コンデンサ。   5. The multilayer feedthrough capacitor according to claim 3, wherein the main electrode portion has an electrode portion branched into a plurality in the same plane. 各前記接地用内部電極と同一面に、前記接地用内部電極を前記第一及び第二側面の対向方向で挟み且つ前記接地用内部電極から離間するように配置された複数のダミー電極を更に備え、
各前記ダミー電極は、対応する前記信号用端子電極に接続されていることを特徴とする請求項1又は2に記載の積層貫通コンデンサ。
A plurality of dummy electrodes are further provided on the same surface as each of the grounding internal electrodes so as to sandwich the grounding internal electrode in the opposing direction of the first and second side surfaces and to be separated from the grounding internal electrode. ,
3. The multilayer feedthrough capacitor according to claim 1, wherein each of the dummy electrodes is connected to the corresponding signal terminal electrode.
前記複数のダミー電極の前記第一及び第二側面の対向方向での間隔は、前記接地用端子電極の前記第一及び第二側面の対向方向での前記幅よりも狭いことを特徴とする請求項6に記載の積層貫通コンデンサ。   An interval between the plurality of dummy electrodes in the facing direction of the first and second side surfaces is narrower than the width in the facing direction of the first and second side surfaces of the ground terminal electrode. Item 7. The multilayer feedthrough capacitor according to Item 6. 前記接地用内部電極は、前記信号用内部電極と対向する主電極部と、前記主電極部から延びて前記接地用端子電極に接続される引出電極部と、を有し、
前記主電極部の前記第一及び第二側面の対向方向での前記幅は、前記引出電極部の前記第一及び第二側面の対向方向での前記幅よりも狭く、
前記複数のダミー電極の前記第一及び第二側面の対向方向での間隔は、前記引出電極部の前記第一及び第二側面の対向方向での前記幅よりも狭いことを特徴とする請求項7に記載の積層貫通コンデンサ。
The grounding internal electrode has a main electrode part facing the signal internal electrode, and an extraction electrode part extending from the main electrode part and connected to the grounding terminal electrode,
The width in the facing direction of the first and second side surfaces of the main electrode portion is narrower than the width in the facing direction of the first and second side surfaces of the extraction electrode portion,
The interval between the first and second side surfaces of the plurality of dummy electrodes in the opposing direction is narrower than the width of the extraction electrode portion in the opposing direction of the first and second side surfaces. 8. The multilayer feedthrough capacitor according to 7.
前記第一及び第二主面は、前記第一辺を長辺とし且つ前記第二辺を短辺とした略長方形状を呈しており、
各前記信号用内部電極は、前記第三及び第四側面の対向方向での幅が前記第一及び第二側面の対向方向での幅よりも広いことを特徴とする請求項1〜8のいずれか一項に記載の積層貫通コンデンサ。
The first and second main surfaces have a substantially rectangular shape with the first side as a long side and the second side as a short side,
Each of the signal internal electrodes has a width in a facing direction of the third and fourth side surfaces wider than a width in a facing direction of the first and second side surfaces. A multilayer feedthrough capacitor according to claim 1.
前記第一側面側と第二側面側とに、それぞれ複数の前記信号用端子電極が配置され、
同一面内に、複数の前記信号用内部電極が配置されており、
同一平面内に位置する各前記信号用内部電極は、前記第一側面側と第二側面側とにおいて、異なる前記信号用端子電極に接続されていることを特徴とする請求項1〜9のいずれか一項に記載の積層貫通コンデンサ。
A plurality of the signal terminal electrodes are arranged on the first side surface side and the second side surface side, respectively.
A plurality of the signal internal electrodes are disposed in the same plane,
Each said signal internal electrode located in the same plane is connected to the said different signal terminal electrode in said 1st side surface side and 2nd side surface side, The any one of Claims 1-9 characterized by the above-mentioned. A multilayer feedthrough capacitor according to claim 1.
各前記接地用内部電極は、前記第一及び第二主面の対向方向から見て、前記信号用内部電極と重ならない領域が残りの領域よりも前記第一及び第二側面の対向方向において幅広とされていることを特徴とする請求項10に記載の積層貫通コンデンサ。   Each of the grounding internal electrodes has a region that does not overlap the signal internal electrode wider in the opposing direction of the first and second side surfaces than the remaining region when viewed from the opposing direction of the first and second main surfaces. The multilayer feedthrough capacitor according to claim 10, wherein
JP2013015660A 2013-01-30 2013-01-30 Multilayer feedthrough capacitor Active JP6273672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015660A JP6273672B2 (en) 2013-01-30 2013-01-30 Multilayer feedthrough capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015660A JP6273672B2 (en) 2013-01-30 2013-01-30 Multilayer feedthrough capacitor

Publications (2)

Publication Number Publication Date
JP2014146754A true JP2014146754A (en) 2014-08-14
JP6273672B2 JP6273672B2 (en) 2018-02-07

Family

ID=51426750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015660A Active JP6273672B2 (en) 2013-01-30 2013-01-30 Multilayer feedthrough capacitor

Country Status (1)

Country Link
JP (1) JP6273672B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086118A (en) * 2014-10-28 2016-05-19 京セラ株式会社 Multilayer capacitor
CN105895371A (en) * 2015-02-12 2016-08-24 Tdk株式会社 Multilayer Feedthrough Capacitor
US20210225590A1 (en) * 2018-10-11 2021-07-22 Murata Manufacturing Co., Ltd. Electronic component
CN114974885A (en) * 2021-02-24 2022-08-30 株式会社村田制作所 Multilayer ceramic capacitor
JP7331787B2 (en) 2020-06-15 2023-08-23 株式会社村田製作所 Multilayer ceramic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424822U (en) * 1987-07-31 1989-02-10
JPH0227721U (en) * 1988-08-11 1990-02-22
JP2000208361A (en) * 1999-01-14 2000-07-28 Murata Mfg Co Ltd Multilayer capacitor
JP2003022932A (en) * 2001-07-10 2003-01-24 Murata Mfg Co Ltd Through-type three-terminal electronic component
JP2007251010A (en) * 2006-03-17 2007-09-27 Tdk Corp Laminated ceramic capacitor
JP2009164258A (en) * 2007-12-28 2009-07-23 Tdk Corp Through-type multilayer capacitor array
JP2010098052A (en) * 2008-10-15 2010-04-30 Tdk Corp Laminated feedthrough capacitor
JP2010097994A (en) * 2008-10-14 2010-04-30 Tdk Corp Method of manufacturing laminated feedthrough capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424822U (en) * 1987-07-31 1989-02-10
JPH0227721U (en) * 1988-08-11 1990-02-22
JP2000208361A (en) * 1999-01-14 2000-07-28 Murata Mfg Co Ltd Multilayer capacitor
JP2003022932A (en) * 2001-07-10 2003-01-24 Murata Mfg Co Ltd Through-type three-terminal electronic component
JP2007251010A (en) * 2006-03-17 2007-09-27 Tdk Corp Laminated ceramic capacitor
JP2009164258A (en) * 2007-12-28 2009-07-23 Tdk Corp Through-type multilayer capacitor array
JP2010097994A (en) * 2008-10-14 2010-04-30 Tdk Corp Method of manufacturing laminated feedthrough capacitor
JP2010098052A (en) * 2008-10-15 2010-04-30 Tdk Corp Laminated feedthrough capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086118A (en) * 2014-10-28 2016-05-19 京セラ株式会社 Multilayer capacitor
CN105895371A (en) * 2015-02-12 2016-08-24 Tdk株式会社 Multilayer Feedthrough Capacitor
CN105895371B (en) * 2015-02-12 2018-05-22 Tdk株式会社 It is stacked feedthrough capacitor
US20210225590A1 (en) * 2018-10-11 2021-07-22 Murata Manufacturing Co., Ltd. Electronic component
JP7331787B2 (en) 2020-06-15 2023-08-23 株式会社村田製作所 Multilayer ceramic capacitor
CN114974885A (en) * 2021-02-24 2022-08-30 株式会社村田制作所 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP6273672B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5234135B2 (en) Feed-through multilayer capacitor
US10622146B2 (en) Multilayer capacitor and electronic component device
JP6273672B2 (en) Multilayer feedthrough capacitor
JP4513855B2 (en) Multilayer capacitor
JP6390342B2 (en) Electronic components
JP5708245B2 (en) Feed-through multilayer capacitor
JP2016149487A (en) Multilayer capacitor
JP4293561B2 (en) Mounting structure of multilayer feedthrough capacitor array
JP5120426B2 (en) Multilayer feedthrough capacitor and multilayer feedthrough capacitor mounting structure
JP4483904B2 (en) Feed-through multilayer capacitor
JP6111768B2 (en) Feedthrough capacitor
JP5817954B1 (en) Component built-in board
JP6136507B2 (en) Multilayer capacitor array
JP5861531B2 (en) Multilayer capacitor
JP5042892B2 (en) Feedthrough capacitor
JP6064362B2 (en) Multilayer capacitor
JP2016136561A (en) Multilayer capacitor
JP2015041735A (en) Capacitor element
JP6167872B2 (en) Electronic components
JP4412386B2 (en) Feed-through multilayer capacitor
JP2006128523A (en) Composite capacitor
JP2018129435A (en) Multilayer feed-through capacitor and electronic component device
JP2019062023A (en) Electronic component device
JP5857871B2 (en) Multilayer capacitor
JP6930114B2 (en) Electronic component equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150