JP2014145839A - Optical system, phase plate employing optical system and optical system manufacturing method - Google Patents

Optical system, phase plate employing optical system and optical system manufacturing method Download PDF

Info

Publication number
JP2014145839A
JP2014145839A JP2013013255A JP2013013255A JP2014145839A JP 2014145839 A JP2014145839 A JP 2014145839A JP 2013013255 A JP2013013255 A JP 2013013255A JP 2013013255 A JP2013013255 A JP 2013013255A JP 2014145839 A JP2014145839 A JP 2014145839A
Authority
JP
Japan
Prior art keywords
region
light
phase difference
optical system
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013255A
Other languages
Japanese (ja)
Other versions
JP6095382B2 (en
Inventor
Yutaka Suenaga
豊 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA LEADING DESIGN CO Ltd
Original Assignee
YOKOHAMA LEADING DESIGN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA LEADING DESIGN CO Ltd filed Critical YOKOHAMA LEADING DESIGN CO Ltd
Priority to JP2013013255A priority Critical patent/JP6095382B2/en
Priority to PCT/JP2014/051681 priority patent/WO2014115871A1/en
Publication of JP2014145839A publication Critical patent/JP2014145839A/en
Application granted granted Critical
Publication of JP6095382B2 publication Critical patent/JP6095382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters

Abstract

PROBLEM TO BE SOLVED: To provide an optical system that can obtain a three-dimensional observation image less in deterioration by a color of high resolution without requiring an expensive optical element for a differential interference microscope.SOLUTION: An optical system is configured to: arrange an aperture diaphragm limiting direct light (0-order diffraction light) incident to an image-formation system at a position conjugate with a light source in an illumination system illuminating an object with light from the light as parallel light; and have a structure in which an A area where total 0-order diffraction light passes through, a B area where first-order diffraction light passes through, and a C area where negative first-order diffraction light passes through are arranged at a position (a pupil position) of the aperture diaphragm in the image-formation system allowing light from an object to be image-formed at a predetermined magnification, the B area and the C area have an axially symmetric relation with respect to a symmetric axis including a cross point of the pupil surface and an optical axis, the B area or the C area allows the A area to generate a predetermined phase difference, and the B area and the C area have no area in common with the A area.

Description

本発明は、結像する物体の境界のコントラストを強調させる光学系に関する。   The present invention relates to an optical system that enhances the contrast of the boundary of an object to be imaged.

<ノマルスキー型微分干渉顕微鏡>
従来のノマルスキー型の微分干渉顕微鏡は、位相差顕微鏡のハローを無くしたい場合や、厚みのあるサンプルや多層的構造のサンプルを観察する場合に、物体のわずかな段差や屈折率の差を強調して、物体を立体的に観察するために用いられる。ノマルスキー型微分干渉顕微鏡では、ノマルスキープリズムによって規定される2つの偏光による像のシフト量(シアー量)が、どんな標本を観察するときも一定である。従って、偏光により像をシフトさせるためにノマルスキープリズムを使う微分干渉顕微鏡では、位相差顕微鏡で使用される位相板は用いられていない。
<Nomarski differential interference microscope>
The conventional Nomarski-type differential interference microscope emphasizes slight differences in the level of objects and differences in refractive index when it is desired to eliminate the halo of a phase contrast microscope, or when observing a thick sample or a sample with a multilayer structure. Used to observe an object in three dimensions. In a Nomarski type differential interference microscope, the amount of image shift (shear amount) due to two polarized lights defined by the Nomarski prism is constant when any specimen is observed. Therefore, in a differential interference microscope that uses a Nomarski prism to shift an image by polarization, a phase plate used in a phase contrast microscope is not used.

<明視野観察用顕微鏡:光学系の一例>
従来の明視野観察用の顕微鏡では、無色透明に近い生体細胞等の標本(サンプル)の明確な観察は困難であった。そのため、標本に染色等を行って着色してから観察が行われていた。しかし、染色すると生体細胞など死滅してしまい、生きたままの生体細胞等の観察は難しかった。
<Bright-field observation microscope: an example of an optical system>
With conventional microscopes for bright field observation, it has been difficult to clearly observe specimens (samples) such as biological cells that are nearly colorless and transparent. For this reason, observation has been performed after the sample is stained and colored. However, when stained, the living cells are killed, and it is difficult to observe living cells and the like that are alive.

<位相差顕微鏡:光学系の別の例>
無色透明な生体細胞等に染色等を実施しないで観察するために位相差顕微鏡が用いられるようになった。位相差顕微鏡は、例えば、顕微鏡のコンデンサレンズと光源の間に、リング状に開いた絞り(リングスリット)を配置し、さらにリング状絞りの実像ができる位置(例えば対物レンズの瞳面)にリングスリットのスリット部分と共役なリング形状の位相膜を備えた位相板を加えるように構成されている。この構成により位相差顕微鏡は、減衰させた所定位相の直接光と、試料によって回折されて位相が異なる回折光とを干渉させ、その各位相の位相差を明暗に変えることで、観察像のコントラストを増加させる。この従来の位相差顕微鏡は、薄いサンプルであれば、無染色でも内部構造まで明暗の相違として観察できる、という機能を有しているが、サンプルの周囲の境界線部分にハロー(明るい縁取り)を発生させるという問題があった。
<Phase contrast microscope: another example of optical system>
A phase contrast microscope has come to be used for observing colorless and transparent living cells without staining or the like. In a phase contrast microscope, for example, an aperture (ring slit) opened in a ring shape is placed between the condenser lens and the light source of the microscope, and the ring is positioned at a position where a real image of the ring aperture can be obtained (for example, the pupil plane of the objective lens). A phase plate having a ring-shaped phase film conjugate with the slit portion of the slit is added. With this configuration, the phase-contrast microscope causes the attenuated direct light to interfere with the diffracted light that is diffracted by the sample and has a different phase, and changes the phase difference of each phase to bright and dark, thereby contrasting the observed image. Increase. This conventional phase-contrast microscope has the function that even if it is a thin sample, it can be observed as a difference in brightness up to the internal structure even without staining, but it has a halo (bright border) around the border of the sample. There was a problem of generating.

また、位相差顕微鏡は、無色透明に近いサンプルを無染色で観察するために、標本のわずかな屈折率の差や境界での回折を、明暗のコントラストに変換することで強調する。より詳しい位相差顕微鏡の原理としては、サンプル中を透過して直進する直接光(0次回折光)と、サンプルで回折した回折光(1次回折光、−1次回折光等)との間に位相のズレ(位相差)を持たせ、直接光と回折光とを一つに重ねて結像する際に干渉による明暗のコントラストを発生させるというものであった。そのために、従来の位相差顕微鏡では、直接光(0次回折光)の位相のみを位相板で変化させていた。   In addition, the phase contrast microscope emphasizes a slight difference in refractive index of a specimen and diffraction at a boundary by converting it into a contrast of light and darkness in order to observe a sample that is almost colorless and transparent without staining. As a more detailed principle of the phase-contrast microscope, there is a phase difference between direct light (0th order diffracted light) that passes straight through the sample and diffracted light (first order diffracted light, −1st order diffracted light, etc.) diffracted by the sample. When the direct light and the diffracted light are overlapped to form an image, a contrast of light and dark due to interference is generated. Therefore, in the conventional phase contrast microscope, only the phase of the direct light (0th order diffracted light) is changed by the phase plate.

また、位相差顕微鏡では、直接光と回折光との位相差を得るために、位相板上に開口絞りの開口領域と相似形の位相膜の領域が形成される。開口絞りを通過することで照射範囲が限定された照明光がサンプルに照射される。照明光はサンプルを透過する際に、直進する直接光と、角度が変わって進む回折光に分かれる。サンプルから出射した直接光は、位相板の位相膜領域に到達し、一方、サンプルから出射した回折光は位相板の位相膜以外の領域に到達する。   Further, in the phase contrast microscope, in order to obtain the phase difference between the direct light and the diffracted light, a phase film region similar to the aperture region of the aperture stop is formed on the phase plate. The sample is irradiated with illumination light having a limited irradiation range by passing through the aperture stop. When the illumination light passes through the sample, it is divided into direct light traveling straight and diffracted light traveling at different angles. The direct light emitted from the sample reaches the phase film region of the phase plate, while the diffracted light emitted from the sample reaches the region other than the phase film of the phase plate.

また、位相膜は、所定の物質の薄膜によって形成され、分散現象があるので入射する光の全てを4分の1だけ位相を進めたり遅らせたりさせることができるわけではない。そのため、波長を4分の1だけずらすことができる所定の波長のみを選択して透過するようにフィルタを照明光学系中に用いるのが一般的である(例えば、特許文献1参照)。   Further, the phase film is formed of a thin film of a predetermined substance and has a dispersion phenomenon, so that not all incident light can be advanced or delayed in phase by a quarter. Therefore, a filter is generally used in the illumination optical system so that only a predetermined wavelength that can shift the wavelength by a quarter is selected and transmitted (see, for example, Patent Document 1).

<ホフマン型モジュレーションコントラスト法:光学系のさらに別の例>
ノマルスキー型微分干渉顕微鏡のように偏光を使わないで透明に近い物質を観察する顕鏡法としてホフマン型モジュレーションコントラスト法が知られている。この方法は、結像光学系の瞳位置に3種類の強度変換フィルター設置することで強度変調を行い、物体の境界を強調する発明である。この方法は、照明光を斜めから入射させることで物体を立体的に見せる効果がある(例えば、特許文献2参照)。
<Hoffman modulation contrast method: yet another example of optical system>
The Hoffman modulation contrast method is known as a microscopic method for observing a material that is nearly transparent without using polarized light like a Nomarski type differential interference microscope. This method is an invention in which intensity modulation is performed by installing three types of intensity conversion filters at the pupil position of the imaging optical system to emphasize the boundary of an object. This method has an effect of making an object appear stereoscopically by making illumination light incident obliquely (see, for example, Patent Document 2).

<位相差顕微鏡で用いられる位相板>
また、従来の位相差顕微鏡の位相板は、位相膜を用いているが、その位相膜を構成する物質に分散現象があることから、波長が異なる複数の照明光に対して位相を同じ比率(例えば1/4波長)でシフトさせることが難しかった。そのため可視光の全帯域のような広帯域の波長の照明光でサンプルを観察する場合、コントラストが低下していた。これを避けるため従来の位相板は、シフトする波長の比率がばらつかないように、ほとんど単色(モノクロ)の所定帯域幅の波長の光のみを透過するフィルタを用いていた。しかし、これにより従来の位相板では、サンプルの色に関する情報が欠落してしまうため、サンプルをモノクロの濃淡のみの像としてしか観察できなくなるという問題があった。
<Phase plate used in phase contrast microscope>
In addition, the phase plate of the conventional phase contrast microscope uses a phase film, but because the substance constituting the phase film has a dispersion phenomenon, the phase is the same for a plurality of illumination lights having different wavelengths ( For example, it was difficult to shift by 1/4 wavelength). Therefore, when the sample is observed with illumination light having a broad wavelength such as the entire visible light band, the contrast is lowered. In order to avoid this, the conventional phase plate uses a filter that transmits only light of a predetermined bandwidth of monochromatic (monochrome) so that the ratio of the wavelength to shift does not vary. However, since the conventional phase plate loses information on the color of the sample, there is a problem that the sample can be observed only as a monochrome shade image.

また、本発明の発明者は、第1の光学媒質の層と屈折率のことなる第2の光学媒質の層とが積層された位相板であって、その基材部となる第1の光学媒質の厚みと、第1の光学媒質の層上に部分的に積層される第2の光学媒質の層の厚みを制御することで、広帯域の波長の光でサンプルを観察する場合でもコントラストが低下せず、複数色または広帯域な波長(例えばF線(485nm)〜C線(636nm)等)で観察できる位相板を提案している(例えば、特許文献3参照)。   The inventor of the present invention is a phase plate in which a layer of a first optical medium and a layer of a second optical medium having a refractive index are stacked, and the first optical medium serving as a base portion thereof By controlling the thickness of the medium and the thickness of the second optical medium layer partially stacked on the first optical medium layer, the contrast is reduced even when the sample is observed with light having a broad wavelength. In addition, a phase plate that can be observed with a plurality of colors or broadband wavelengths (for example, F-line (485 nm) to C-line (636 nm)) has been proposed (for example, see Patent Document 3).

特開平9−230247号公報Japanese Patent Laid-Open No. 9-230247 特開昭51−29149号公報JP 51-29149 A 特開2009−211010号公報JP 2009-2111010 A

しかし、従来のノマルスキー型微分干渉顕微鏡は、光を2つの偏光に分ける際に使用するノマルスキープリズムの分散によって波長によって得られる像が著しく異なるため、物体が現実の透過物体として通常観察される色バランスとは異なった色に見えるという問題を有していた。   However, in the conventional Nomarski differential interference microscope, the image obtained by the wavelength is significantly different due to the dispersion of the Nomarski prism used to divide the light into two polarized light, so that the color balance in which the object is normally observed as an actual transmission object Had the problem of appearing different colors.

また、ノマルスキー型微分干渉顕微鏡は、2つの直交する直線偏光を使う為、ノマルスキープリズム偏光子など特殊で高価な光学素子を必要とする上に、使用する対物レンズも偏光に対して敏感になるため、内部に光学的歪みのない特殊で高価な対物レンズを使用しなければならないという問題があった。また、樹脂製の容器に入った被見物を観察すると、樹脂に残存する内部歪みのために明確な観察が出来ない等の問題があった。   In addition, since the Nomarski differential interference microscope uses two orthogonal linearly polarized light, a special and expensive optical element such as a Nomarski prism polarizer is required, and the objective lens used is also sensitive to polarization. There is a problem that a special and expensive objective lens without optical distortion inside must be used. Further, when observing an object in a resin container, there is a problem that clear observation cannot be performed due to internal distortion remaining in the resin.

また、従来の位相差顕微鏡による位相差観察法は、上記したようにハローを発生させるため、厚みのあるサンプルや屈折率の異なるサンプルが積み重なる多層的構造のサンプルでは、直接光が位相板で変化する前にサンプル内部で位相差を発生させ、ハローが強くなりすぎて、観察対象物の像のコントラストが著しく低下して見えなくなるという問題を有していた。   In addition, the conventional phase-contrast observation method using a phase-contrast microscope generates halo as described above, so that direct light changes on the phase plate in samples with a multilayer structure in which thick samples or samples with different refractive indexes are stacked. Before starting, a phase difference is generated inside the sample, the halo becomes too strong, and the contrast of the image of the object to be observed is significantly lowered and cannot be seen.

また、ホフマン型モジュレーションコントラスト法では、立体像を得るための手段が単なる強度変換フィルターであり、立体的な像を形成するために瞳の中の多くの光量をフィルターで減衰させる必要があり、元の明視野像と比較すると像の強度が大きく低下するという問題があった。   In the Hoffman modulation contrast method, the means for obtaining a three-dimensional image is simply an intensity conversion filter, and in order to form a three-dimensional image, it is necessary to attenuate a large amount of light in the pupil with the filter. There is a problem that the intensity of the image is greatly reduced as compared with the bright field image of the above.

本発明は、上述の課題に鑑みてなされたものであり、その目的とするところは、微分干渉顕微鏡用の対物レンズやノマルスキープリズム偏光子などの高価な光学素子を用いない比較的シンプルな構成で、立体的で劣化が少ない観察画像を、高い解像度の広帯域な波長(例えばF線(485nm)〜C線(636nm)等)で得られる光学系、及びそれに使用される位相板とその製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and the object thereof is a relatively simple configuration that does not use expensive optical elements such as an objective lens for a differential interference microscope and a Nomarski prism polarizer. , An optical system for obtaining a three-dimensional observation image with little deterioration in a wide wavelength range (for example, F-line (485 nm) to C-line (636 nm)) with high resolution, and a phase plate used in the optical system and its manufacturing method It is to provide.

(1)上述の課題を解決するために本発明の光学系の一実施態様では、光源からの光を平行光として物体を照明する照明系と、物体からの光を所定倍率で結像させる結像系とを有する光学系において、照明系中の光源と共役な位置に、結像系に入射する直接光(0次回折光)を制限する開口絞りと、結像系中の開口絞りの位置(瞳位置)に、全ての0次回折光が透過するA領域と、1次回折光が透過するB領域と、−1次回折光が透過するC領域とを有し、瞳面と光軸との交点を含む対称軸に関して、B領域とC領域が軸対像の関係にあり、B領域またはC領域は、A領域に対して所定位相差を発生させる構造を有し、B領域、C領域は、A領域と共通な領域が存在しない位相板とを含む。   (1) In order to solve the above-mentioned problem, in one embodiment of the optical system of the present invention, an illumination system that illuminates an object using light from a light source as parallel light, and a result of imaging light from the object at a predetermined magnification. In an optical system having an image system, an aperture stop that restricts direct light (0th-order diffracted light) incident on the imaging system at a position conjugate with a light source in the illumination system, and an aperture stop position in the imaging system ( (A pupil position) has an A region through which all 0th-order diffracted light is transmitted, a B region through which 1st-order diffracted light is transmitted, and a C region through which -1st-order diffracted light is transmitted. Regarding the symmetry axis to be included, the B region and the C region are in an axial-to-image relationship, and the B region or the C region has a structure that generates a predetermined phase difference with respect to the A region. And a phase plate having no common area.

以下に、例えば、B領域のみに位相膜が付与されており、C領域及びA領域には位相膜が無い場合について説明する。   Hereinafter, for example, a case where the phase film is provided only in the B region and the phase film is not present in the C region and the A region will be described.

瞳位置のB領域とC領域の両領域を透過した光は、各々、A領域を透過した0次光が干渉することにより干渉光となる。B領域のみが位相差を与えられる場合を例にとって説明するとB領域を透過した一方の干渉光(B領域透過分)は、位相膜(所定位相差を発生させる構造)を透過するため、微小量横にシフトする。それに対して、C領域を透過した他方の干渉光(C領域透過分)は、位相膜を透過しないため、シフトしない。その結果、微小に横シフトした(B領域透過分)像と、シフトしていない干渉光(C領域透過分)像の2つの像が対物レンズ像面で重ね合わされることで、特に像の明暗部の境界のコントラストが強調された像になる。   The light that has passed through both the B region and the C region at the pupil position becomes interference light by interference of the 0th-order light that has passed through the A region. A case where only the B region can be given a phase difference will be described as an example. One interference light (a portion transmitted through the B region) transmitted through the B region passes through the phase film (a structure that generates a predetermined phase difference). Shift sideways. On the other hand, the other interference light transmitted through the C region (the C region transmission) does not pass through the phase film and thus does not shift. As a result, the two images of the slightly laterally shifted image (B region transmission) and the non-shifted interference light (C region transmission) image are superimposed on the objective lens image plane, so that the brightness of the image is particularly high. The image has an enhanced contrast at the boundary of the part.

従って、本実施態様では、従来のノマルスキー型微分干渉顕微鏡のようにノマルスキープリズムを使わないので、高価な部品を必要としない比較的シンプルな構成にでき、また、プリズムの分散により像の色バランスが実際の物体と異なることを抑制できる。さらに、樹脂製の容器の様に残存する内部歪みがある物体を通して物体を観察する場合も、偏光を使用しないため、歪みの影響を受けにくく被見物を明確に観察することができる。   Therefore, in this embodiment, since the Nomarski prism is not used unlike the conventional Nomarski type differential interference microscope, a relatively simple configuration that does not require expensive parts can be achieved, and the color balance of the image can be achieved by the dispersion of the prism. It is possible to suppress the difference from the actual object. Furthermore, even when an object is observed through an object having an internal distortion that remains, such as a resin container, since polarized light is not used, the object to be seen can be clearly observed without being affected by the distortion.

また、本実施態様では、従来の位相差観察法のようにハローを発生させないので、観察対象物の像のコントラストを低下させて見えづらくなることを抑制できる。   Further, in the present embodiment, unlike the conventional phase difference observation method, no halo is generated, so that the contrast of the image of the observation object can be prevented from being lowered and difficult to see.

また、本実施態様では、ホフマン型モジュレーションコントラスト法のように立体像を得るために強度変換を行っておらず、従って光量の減衰が少なく、元の明視野像からの像の強度の低下が抑制される。   Further, in this embodiment, intensity conversion is not performed to obtain a stereoscopic image unlike the Hoffman modulation contrast method, and therefore, the attenuation of the light intensity is small and the decrease in the intensity of the image from the original bright-field image is suppressed. Is done.

(2)また、本発明の光学系の一実施態様では、A領域に対するB領域またはA領域に対するC領域の位相差をΔとすると、
Δは、以下の数式(数1)の条件を満足するようにしてもよい。
(2) In one embodiment of the optical system of the present invention, when the phase difference of the B region with respect to the A region or the C region with respect to the A region is Δ,
Δ may satisfy the condition of the following formula (Equation 1).

本実施態様の光学系では、数式(数1)の|Δ|の範囲は、例えば、第1の光学材料のみのC光から結像した像と、位相差発生層(所定位相差を発生させる構造、例えば位相膜)を含むB光から結像した像の位相差の上限と下限のシフト量を規定する。シフト量が下限値0.05πより下側の値の場合は、像のシフト量が少なすぎる場合であり、合成した場合の干渉の発生も少なくなり、明視野観察とほぼ同等な像となる。逆に、シフト量が上限値0.95πを上回る値の場合は、シフトした像の明暗がほぼ逆転するため、合成した2つの像の光の強度がほぼ0となってしまい、干渉も発生せず、位相差を発生させる意味がなくなる。   In the optical system of this embodiment, the range of | Δ | in the mathematical formula (Equation 1) is, for example, an image formed from the C light of only the first optical material and a phase difference generation layer (which generates a predetermined phase difference). An upper limit and a lower limit shift amount of an image formed from B light including a structure (for example, a phase film) are defined. When the shift amount is a value lower than the lower limit value 0.05π, the image shift amount is too small, and the occurrence of interference when combined is reduced, resulting in an image substantially equivalent to bright field observation. On the contrary, when the shift amount is a value exceeding the upper limit value 0.95π, the brightness of the shifted image is almost reversed, so that the intensity of the light of the two combined images becomes almost zero and interference occurs. Therefore, it makes no sense to generate a phase difference.

(3)また、本発明の光学系の一実施態様では、A領域に対するB領域またはA領域に対するC領域の位相差をΔとすると、
Δは、以下の数式(数2)の条件を満足するようにしてもよい。
(3) In one embodiment of the optical system of the present invention, when the phase difference of the B region with respect to the A region or the C region with respect to the A region is Δ,
Δ may satisfy the condition of the following mathematical formula (Formula 2).

本実施態様の光学系では、数式(数2)の|Δ|の範囲は、例えば、数式(数1)の範囲に対して、さらに2つの像の位相差のシフト量の最適値についての上限値0.5πと下限値0.25πの範囲を規定する、数式(2)より、微少な像ずれ量の最適値で、周期構造をもつ物体における下限値はシフト量で1/8ピッチ、上限値はシフト量で1/4ピッチに対応している。   In the optical system of the present embodiment, the range of | Δ | in Equation (Equation 2) is, for example, an upper limit for the optimum value of the shift amount of the phase difference between two images with respect to the range of Equation (Equation 1). From Formula (2), which defines a range of 0.5π and a lower limit of 0.25π, it is the optimum value of the slight image shift amount, and the lower limit for an object having a periodic structure is the shift amount of 1/8 pitch, the upper limit The value corresponds to ¼ pitch as a shift amount.

(4)また、本発明の光学系の一実施態様では、前記0次回折光の透過するA領域は、光軸と瞳面の交点に関して点対称の形状であるようにしてもよい。   (4) In one embodiment of the optical system of the present invention, the A region through which the 0th-order diffracted light passes may have a point-symmetric shape with respect to the intersection of the optical axis and the pupil plane.

本実施態様の光学系では、上記の複数の線対称軸を有する場合の、対称軸を増加させていくと、点対称ということになる。A領域を光軸に点対称な形状で、光軸に対して点対称な位置関係となるように配置し、B領域及びC領域を光軸に点対称な位置関係となるように配置することで、従来の微分干渉顕微鏡のように立体的な画像を得ることができる。   In the optical system of this embodiment, when the number of symmetry axes is increased in the case of having the above-described plurality of line symmetry axes, point symmetry is obtained. Arrange the A area in a point-symmetrical shape with respect to the optical axis, and arrange so that the positional relationship is point-symmetric with respect to the optical axis, and arrange the B and C areas so as to have a positional relationship that is symmetrical with respect to the optical axis. Thus, a three-dimensional image can be obtained like a conventional differential interference microscope.

(5)また、本発明の光学系の一実施態様では、前記0次回折光の透過するA領域は、光軸と瞳面の交点を含む円形であるようにしてもよい。   (5) In one embodiment of the optical system of the present invention, the A region through which the 0th-order diffracted light passes may be a circle including the intersection of the optical axis and the pupil plane.

本実施態様の光学系では、A領域を円形とすることで、従来と同様に開口絞り及び位相板の設計及び製造が可能となるので、設計及び製造が容易で製造コストを低減させ、製造に必要な期間を短縮させることができる。   In the optical system of the present embodiment, since the A region is circular, the aperture stop and the phase plate can be designed and manufactured in the same manner as in the past. Therefore, the design and manufacture are easy, and the manufacturing cost is reduced. The required period can be shortened.

(6)また、本発明の光学系の一実施態様では、前記0次回折光の透過するA領域は光軸と瞳面の交点を含む矩形であるようにしてもよい。   (6) In one embodiment of the optical system of the present invention, the A region through which the 0th-order diffracted light passes may be a rectangle including the intersection of the optical axis and the pupil plane.

(7)また、本発明の光学系の一実施態様では、B領域及びC領域の持つA領域に対する位相差をそれぞれΔB、ΔCとすると、以下の数式(数3)の条件を満足するようにしてもよい。
(7) Further, in one embodiment of the optical system of the present invention, if the phase differences of the B region and the C region with respect to the A region are ΔB and ΔC, respectively, the following equation (Equation 3) is satisfied. May be.

数式(数3)を満たすことで、A領域とB領域を通過して干渉した像と、A領域とC領域を通過して干渉した像は、それぞれもとの像より反対方向に微小に同量シフトした像となる。結果としては、A領域、B領域、又はC領域以外の領域を通過したもとの像と、それぞれ微小量反対方向にシフトした像が重なった像が像面上に生成され、一定の空間周波数の構造だけが強調された像が形成される。   By satisfying Equation (Equation 3), the image that has interfered through the A and B regions and the image that has interfered through the A and C regions are slightly the same in the opposite direction from the original image. The image is shifted by an amount. As a result, an image in which an original image that has passed through an area other than the A area, the B area, or the C area and an image that is shifted in a direction opposite to each other by a small amount are generated on the image plane, and has a constant spatial frequency. An image in which only the structure is emphasized is formed.

本実施態様の光学系における位相板の応用範囲は顕微鏡に限らず、投影光学系等に応用できる。例えば、投影光学系の場合には、投影される像に歪み等が無いこと、例えば、図2,6〜8中の横方向をx軸とした場合のx軸方向の対称性が確保されている必要が有る。そのために、(aa)A領域に対するB領域の位相差と、(bb)A領域に対するC領域の位相差は、同じ値であることが望ましく、上記数式(数3)を位相差発生層の材質及び厚みを選択することにより満足することが望ましい。
これは、回折光がB領域を通った後に0次回折光と干渉して得られる像のシフト量と、回折光がC領域を通った後に0次回折光と干渉して得られる像のシフト量の絶対値が同じで、符号が逆であることを意味し、x軸方向の対称性が確保されていることを意味する。
The application range of the phase plate in the optical system of this embodiment is not limited to a microscope, but can be applied to a projection optical system and the like. For example, in the case of a projection optical system, there is no distortion or the like in the projected image, for example, the symmetry in the x-axis direction is secured when the horizontal direction in FIGS. There is a need to be. Therefore, it is desirable that (aa) the phase difference of the B region with respect to the A region and (bb) the phase difference of the C region with respect to the A region have the same value. And it is desirable to be satisfied by selecting the thickness.
This is because of the shift amount of the image obtained by interference with the 0th order diffracted light after the diffracted light passes through the B region, and the shift amount of the image obtained by interference with the 0th order diffracted light after the diffracted light passes through the C region. This means that the absolute values are the same and the signs are reversed, and that symmetry in the x-axis direction is ensured.

(8)また、本発明の光学系の一実施態様では、B領域またはC領域は、光を減衰させる構造を持ち、その透過率をTとすると以下の数式(数4)の条件を満足するようにしてもよい。
(8) In one embodiment of the optical system of the present invention, the B region or the C region has a structure for attenuating light, and when the transmittance is T, the following equation (Equation 4) is satisfied. You may do it.

本実施態様の光学系では、数式(数4)の透過率Tは、第1の光学材料のみの領域を透過した光から結像した像と、位相差発生層を含む領域を透過した光から結像した像とが合成した場合の、像の立体感を強調させる範囲を規定している。合成されて重なり合う2つの像が干渉することで得られる像の立体感を強調させるため、2つの像のいづれかの光の強度を、透過率Tの値を若干減少させるように変えることで影をつけ、従来の微分干渉型顕微鏡による観察像よりも、さらに立体感を強調することが可能である。透過率Tの値が上記の範囲の下限値を下回ると、1方の像の光の強度が低すくなりすぎるため、他方の像によって通常の明視野像に近づき、合成および干渉させる意味がなくなる。また、透過率Tの値が上記の範囲の上限値を上回ると、2つの像の強度はほぼ等しくなるので、従来の微分干渉の観察像に極めて近い像となり、従来の微分干渉型顕微鏡に対するさらなる効果が弱くなる。   In the optical system of this embodiment, the transmittance T in Equation (4) is determined from the image formed from the light transmitted through the region of only the first optical material and the light transmitted through the region including the phase difference generation layer. It defines a range in which the stereoscopic effect of the image is enhanced when the formed image is combined. In order to enhance the stereoscopic effect of the images obtained by the interference between the two images that are combined and overlapped, the light intensity of either of the two images is changed so that the value of the transmittance T is slightly reduced. In addition, it is possible to enhance the stereoscopic effect more than the observation image obtained by a conventional differential interference microscope. If the value of the transmittance T is below the lower limit of the above range, the intensity of the light of one image becomes too low, and the other image approaches the normal bright-field image, making it meaningless to combine and interfere with it. . Further, when the value of the transmittance T exceeds the upper limit of the above range, the intensity of the two images becomes substantially equal, so that the images are very close to the conventional differential interference observation image, and further to the conventional differential interference microscope. The effect is weakened.

(9)また、本発明の光学系の一実施態様では、所定位相差を発生させる構造は、2以上の波長に対して一定の位相差Δを与える位相膜であり、その位相差Δは、比較的広い波長帯域で前記Δの条件を満足するようにしてもよい。   (9) In one embodiment of the optical system of the present invention, the structure that generates a predetermined phase difference is a phase film that gives a constant phase difference Δ to two or more wavelengths, and the phase difference Δ is: The condition Δ may be satisfied in a relatively wide wavelength band.

本実施態様の光学系の位相板は、可視光などの比較的広い波長帯域の光について効果を得ることができるが、例えば、可視光の2以上の波長に対して、略一定の位相差Δを与えるように材質及び厚みを選択した場合、現実の物質が持つ色あいを忠実に再現した状態で、立体感のある画像で観察、従来は微分干渉型の顕微鏡でした得られなかった立体的な画像の観察が、プリズム等を有していない位相差顕微鏡に類似する構成で可能となる。しかも、従来のノマルスキー型微分干渉顕微鏡では観察に不向きとされていた染色された細胞や、多彩な色を持つ物質を観察する際にも、物体の持つ色を忠実に再現した上で、微分干渉型顕微鏡と同様な画像を得ることが可能になる。また、比較的広い波長とは、例えば、可視光でC線(636nm)とF線(486nm)等の異なる2以上の波長を含む広さであることであり、本実施態様ではその広い波長に対して本発明の位相差Δの条件が満足される。   The phase plate of the optical system according to the present embodiment can obtain an effect with respect to light having a relatively wide wavelength band such as visible light. For example, a substantially constant phase difference Δ with respect to two or more wavelengths of visible light. When the material and thickness are selected so as to give a solid, the color tone of the real substance is faithfully reproduced, and the image is observed with a stereoscopic effect. Image observation is possible with a configuration similar to a phase contrast microscope that does not have a prism or the like. In addition, when observing stained cells and materials with various colors that were not suitable for observation with conventional Nomarski-type differential interference microscopes, differential interference is achieved after faithfully reproducing the colors of the object. It is possible to obtain an image similar to that of a type microscope. Moreover, a comparatively wide wavelength is a width including two or more different wavelengths such as C line (636 nm) and F line (486 nm) in visible light, and in this embodiment, the wide wavelength is used. On the other hand, the condition of the phase difference Δ of the present invention is satisfied.

(10)また、本発明の光学系の一実施態様では、所定位相差を発生させる構造は、使用する光に対して透明であり、かつ、0次回折光と1次光の位相差を発生させる箇所は、光の進む光軸方向には単一な物質からなる層構造を有するようにしてもよい。   (10) In one embodiment of the optical system of the present invention, the structure that generates the predetermined phase difference is transparent to the light used, and generates the phase difference between the 0th-order diffracted light and the first-order light. The portion may have a layer structure made of a single substance in the direction of the optical axis along which light travels.

本実施態様の光学系では、位相差発生層を、光源から出射する所定波長の照明光(例えば可視光)に対して、上記したような透過可能な材料(少なくとも一部の光が透過する材料)から透明な材料にすることで、位相差の発生が明確になり、最終的な位相差が発生した回折光と位相差が発生していない回折光(B光とC光)との合成時の干渉現象を明確に結像画像に反映させ、解像度の高い画像を得ることができる。   In the optical system of the present embodiment, the phase difference generating layer is made of a material that can be transmitted as described above with respect to illumination light (for example, visible light) having a predetermined wavelength emitted from the light source (a material that transmits at least part of the light). ) From a transparent material, the generation of the phase difference becomes clear, and the diffracted light with the final phase difference and the diffracted light without the phase difference (B light and C light) are combined. This interference phenomenon can be clearly reflected in the formed image, and an image with high resolution can be obtained.

(11)また、本発明の光学系の一実施態様では、B領域とC領域は、A領域の矩形の対向する一組の辺の外側であり、対称軸に関して線対称の弓形であるようにしてもよい。   (11) In one embodiment of the optical system of the present invention, the B region and the C region are outside a pair of opposing sides of the rectangle of the A region and are arcuate with line symmetry with respect to the symmetry axis. May be.

本実施態様の光学系では、位相差が付いている干渉光(B領域透過分)の像と、位相差の付いていない干渉光(C領域透過分)の像という2つの像を良好に形成でき、良好に境界のコントラストが強調された像を得ることができる。   In the optical system of the present embodiment, two images, an image of interference light with a phase difference (B region transmission) and an image of interference light with no phase difference (C region transmission) are formed satisfactorily. It is possible to obtain an image in which the boundary contrast is well enhanced.

本発明では、微分干渉顕微鏡用の高価な光学素子を必要としないで、立体的で劣化が少ない観察画像を、高い解像度で広帯域な波長帯域で得られる光学系、それに使用される位相板、及びその製造方法を提供することができる。   In the present invention, an optical system that does not require an expensive optical element for a differential interference microscope, and can obtain an observation image that is three-dimensional and has little deterioration in a wide wavelength band with a high resolution, a phase plate used therefor, and A manufacturing method thereof can be provided.

本発明の第1の実施形態の光学系の一例としての新微分干渉型顕微鏡における光学系の概略の構成と照明光の光路を示す図である。It is a figure which shows the schematic structure of the optical system in the new differential interference type | mold microscope as an example of the optical system of the 1st Embodiment of this invention, and the optical path of illumination light. 第1の実施形態の一例としての位相板の概要を示す平面図であり、(a)が位相板の各領域を示す平面図であり、(b)が(a)の位相板のA−A断面図であり、(c)が応用例の(a)の位相板のA−A断面図である。It is a top view which shows the outline | summary of the phase plate as an example of 1st Embodiment, (a) is a top view which shows each area | region of a phase plate, (b) is AA of the phase plate of (a). It is sectional drawing, (c) is AA sectional drawing of the phase plate of (a) of an application example. (a)が第1の実施形態の新微分干渉型顕微鏡により観察した珪藻の画像を撮影したものであり、(b)が比較例として通常の明視野の顕微鏡により観察した珪藻の画像を撮影したものである。(A) is an image of a diatom observed with the new differential interference microscope of the first embodiment, and (b) is an image of a diatom observed with a normal bright-field microscope as a comparative example. Is. 本発明の第2の実施形態の一例としての位相板の概要を示す平面図であり、(a)が位相板の各領域を示す平面図であり、(b)が(a)の位相板のB−B断面図である。It is a top view which shows the outline | summary of the phase plate as an example of the 2nd Embodiment of this invention, (a) is a top view which shows each area | region of a phase plate, (b) is a phase plate of (a). It is BB sectional drawing. 本発明の第3の実施形態の一例としての位相板の概要を示す平面図であり、(a)が位相板の各領域を示す平面図であり、(b)が(a)の位相板のC−C断面図である。It is a top view which shows the outline | summary of the phase plate as an example of the 3rd Embodiment of this invention, (a) is a top view which shows each area | region of a phase plate, (b) is a phase plate of (a). It is CC sectional drawing. 本発明の第4の実施形態の一例としての位相板の概要を示す平面図であり、(a)が位相板の各領域を示す平面図であり、(b)が(a)の位相板のD−D断面図である。It is a top view which shows the outline | summary of the phase plate as an example of the 4th Embodiment of this invention, (a) is a top view which shows each area | region of a phase plate, (b) is a phase plate of (a). It is DD sectional drawing. 本発明の第5の実施形態の光学系の一例としての新落射型微分干渉型顕微鏡における光学系の概略の構成と照明光の光路を示す図である。It is a figure which shows the general | schematic structure of the optical system in the new epi-illumination type differential interference microscope as an example of the optical system of the 5th Embodiment of this invention, and the optical path of illumination light. 本発明の第6の実施形態の光学系の一例としての投影露光装置における光学系の概略の構成と照明光の光路を示す図である。It is a figure which shows the schematic structure of the optical system in the projection exposure apparatus as an example of the optical system of the 6th Embodiment of this invention, and the optical path of illumination light.

<<<第1の実施形態>>>
本発明の第1実施形態の光学系の一例としての新微分干渉型顕微鏡1について、以下に図1及び図2を参照して概要を説明する。
本発明の第1実施形態の新微分干渉型顕微鏡1は、図1に示したように概略的に、光軸100に沿って、光源5、照明光学系10、結像光学系40、物体面51、対物レンズ像面71を有している。照明光学系10の光路中には、光源5側の対物レンズ射出瞳と共役な位置(以下、照明光学系中射出瞳共役位置と記載する)21に、光源5から出射された照明光の一部を透過させる開口絞り22が配置されている。光源5から出射される照明光は、例えば可視光の波長である。また、照明光学系10には、開口絞り22よりも光源5側のレンズ11と、開口絞り22よりも対物レンズ41側のレンズ12と、照明光を物体面51に合焦させるコンデンサレンズ13が含まれる。
<<<< first embodiment >>>>
An outline of the new differential interference microscope 1 as an example of the optical system according to the first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
The new differential interference microscope 1 according to the first embodiment of the present invention includes a light source 5, an illumination optical system 10, an imaging optical system 40, an object plane, schematically along the optical axis 100 as shown in FIG. 51 and an objective lens image plane 71. In the optical path of the illumination optical system 10, one of the illumination lights emitted from the light source 5 is positioned at a position 21 conjugated with the objective lens exit pupil on the light source 5 side (hereinafter referred to as an exit pupil conjugate position in the illumination optical system) 21. An aperture stop 22 that transmits the part is disposed. The illumination light emitted from the light source 5 is, for example, the wavelength of visible light. The illumination optical system 10 includes a lens 11 closer to the light source 5 than the aperture stop 22, a lens 12 closer to the objective lens 41 than the aperture stop 22, and a condenser lens 13 that focuses the illumination light on the object plane 51. included.

また、開口絞り22には、照明光の光路領域を画定(又は光束の太さを規定)する透光領域が形成される。この透光領域は、開口形状及び切り欠き形状を含む形状の限定領域であり、照明光の光をその限定領域中に限定して透光させることができる。透光領域を透過することで限定された照明光は、コンデンサレンズ13に向けて出射され、コンデンサレンズ13により物体面51の被観察試料61に合焦される。   The aperture stop 22 is formed with a light-transmitting region that demarcates the optical path region of the illumination light (or defines the thickness of the light beam). This light-transmitting region is a limited region having a shape including an opening shape and a notch shape, and the light of the illumination light can be limited to the limited region and transmitted. Illumination light limited by being transmitted through the light transmitting region is emitted toward the condenser lens 13, and is focused on the sample 61 to be observed on the object plane 51 by the condenser lens 13.

結像光学系40には、対物レンズ41、本実施形態の一例としての位相板43と、結像レンズ49を有している。対物レンズ41は、被観察試料61又は物体面51からの透過光が図1の下面から入射され、上面から透過光を位相板43に向けて出射する。位相板43については、図2も共に参照して後述する。結像レンズ49は、透過光を対物レンズ像面71に結像させる。   The imaging optical system 40 includes an objective lens 41, a phase plate 43 as an example of this embodiment, and an imaging lens 49. In the objective lens 41, transmitted light from the observed sample 61 or the object surface 51 is incident from the lower surface of FIG. 1, and the transmitted light is emitted from the upper surface toward the phase plate 43. The phase plate 43 will be described later with reference to FIG. The imaging lens 49 images the transmitted light on the objective lens image surface 71.

位相板43は、対物レンズ41の射出瞳共役位置42に配置される。位相板43の基材部48は、光源5から出射する所定波長の照明光が透過可能な第1の光学材料で形成される。好ましくは、第1の光学材料は、その所定波長に対して可能な限り透明、すなわち、減衰が少ない材料である。そして、光源5から出射する所定波長の照明光が透過可能な材料であって、さらに、第1の光学材料を透過する光とは位相が異なるように位相差を発生させる位相差発生層(所定位相差を発生させる構造、例えば位相膜)が、B領域45又はC領域47の何れか一方にのみに配置される。本実施形態の位相板43では、A領域44には位相差発生層が配置されず、B領域45又はC領域47の何れか一方のみに、位相差発生層が配置される。この構成により、例えばB領域45に位相差発生層が配置された場合、A光500とB光501とによる位相差が顕著な光と、A光500とC光502とによる位相差が顕著ではない光の双方を出射することになる。   The phase plate 43 is disposed at the exit pupil conjugate position 42 of the objective lens 41. The base 48 of the phase plate 43 is formed of a first optical material that can transmit illumination light having a predetermined wavelength emitted from the light source 5. Preferably, the first optical material is a material that is as transparent as possible with respect to the predetermined wavelength, that is, a material that is less attenuated. The phase difference generating layer (place) is a material capable of transmitting illumination light having a predetermined wavelength emitted from the light source 5 and further generating a phase difference so that the phase is different from that of the light transmitted through the first optical material. A structure that generates a constant phase difference (for example, a phase film) is disposed only in one of the B region 45 and the C region 47. In the phase plate 43 of this embodiment, the phase difference generation layer is not disposed in the A region 44, and the phase difference generation layer is disposed only in either the B region 45 or the C region 47. With this configuration, for example, when a phase difference generation layer is disposed in the B region 45, the phase difference between the A light 500 and the B light 501 is not significant, and the phase difference between the A light 500 and the C light 502 is not significant. Both light will be emitted.

なお、図1及び図2に示したA領域44、B領域45及びC領域47の形状及び配置は、本実施形態の位相板の一例であって、これに限定されるものではなく、他の形状及び配置であってもよい。例えば、像面上に(1)A領域とB領域を通過して干渉することでもとの像より微小にシフトした像と、(2)A領域とC領域を通過して干渉することでもとの像よりA領域とB領域の場合とは反対方向に微小に同量シフトした像と、(3)A領域、B領域、又はC領域以外の領域を通過したもとの像と、が重なる形状及び配置であって、さらに一定の空間周波数の構造だけが強調された像が生成される形状及び配置であれば、A領域、B領域及びC領域は他の形状及び配置であっても良い。   The shape and arrangement of the A region 44, the B region 45, and the C region 47 shown in FIGS. 1 and 2 are examples of the phase plate according to the present embodiment, and are not limited thereto. It may be in shape and arrangement. For example, (1) an image slightly shifted from the original image by interfering with the A region and the B region on the image plane, and (2) interference with passing through the A region and the C region. The image slightly shifted by the same amount in the opposite direction to the case of the A region and the B region from the image of (3) overlaps with the original image that has passed through the region other than the A region, the B region, or the C region. The A region, the B region, and the C region may have other shapes and arrangements as long as the shape and the arrangement are such that an image in which only a certain spatial frequency structure is emphasized is generated. .

本実施形態の位相板43には、入射された直接光である0次回折光(A光)500の形状(開口絞り22の第1透光領域23で限定された形状)をそのままの形状でA光500として透過させて出力するA領域(又は112)と、入射された1次回折光(B光)501が透過するB領域45(又は114)、入射された−1次の拡散光である−1次回折光(C光)502が透過するC領域47(又は116)が設定される。また、B領域45とC領域47の何れか一方のみに、第1の光学材料を透過する光とは位相を異ならせる位相差発生層が配置される。本実施形態では、位相差発生層をB領域45内の上面に配置した場合を示している。また、A領域44と、B領域45又はC領域47との間の、直接光も回折光も透過しない領域を、非透光領域118とする。   In the phase plate 43 of the present embodiment, the shape of the 0th-order diffracted light (A light) 500 that is incident direct light (the shape limited by the first light-transmitting region 23 of the aperture stop 22) is left as it is. A region (or 112) that is transmitted and output as light 500, B region 45 (or 114) through which incident first-order diffracted light (B light) 501 is transmitted, and incident minus first-order diffused light − A C region 47 (or 116) through which the first-order diffracted light (C light) 502 is transmitted is set. In addition, a phase difference generation layer that has a phase different from that of the light transmitted through the first optical material is disposed only in one of the B region 45 and the C region 47. In this embodiment, the case where the phase difference generation layer is arranged on the upper surface in the B region 45 is shown. Further, a region between the A region 44 and the B region 45 or the C region 47 that transmits neither direct light nor diffracted light is referred to as a non-translucent region 118.

つまり、本実施形態の位相板43では、光軸100を通過する線対称軸102に対して線対称の位置となるB領域45のみに位相差発生層が配置され、C領域47には位相差発生層が配置されず第1の光学材料のみである。これにより、A光500との位相差が発生したB光501と、A光500との位相差が発生していないC光502とが合成される際に干渉を発生させることができ、微分干渉顕微鏡のような立体的な画像を得ることができる。この場合の回折光は、B光501とC光502であり、一方のB光501にA光500との位相差が発生し、他方のC光502にはA光500との位相差が発生していないものである。   That is, in the phase plate 43 of the present embodiment, the phase difference generation layer is disposed only in the B region 45 that is in a line symmetry position with respect to the line symmetry axis 102 that passes through the optical axis 100, and the phase difference is present in the C region 47. The generation layer is not disposed, and only the first optical material is used. Thereby, interference can be generated when the B light 501 in which the phase difference from the A light 500 is generated and the C light 502 in which the phase difference from the A light 500 is not generated, and differential interference can be generated. A stereoscopic image like a microscope can be obtained. The diffracted light in this case is B light 501 and C light 502, one B light 501 has a phase difference with A light 500, and the other C light 502 has a phase difference with A light 500. It is not.

また、位相板43の位相差発生層は、光源5から出射する所定波長の照明光が透過可能な材料(少なくとも一部の光が透過する材料)、言い換えれば照明光に対して透光性を有する材料であり、好ましくは照明光に対して透明な材料である。   Further, the phase difference generation layer of the phase plate 43 is made of a material that can transmit illumination light having a predetermined wavelength emitted from the light source 5 (a material that transmits at least a part of light), in other words, has a light-transmitting property with respect to the illumination light. The material is preferably a material that is transparent to illumination light.

このように位相差発生層を、光源5から出射する所定波長の照明光(例えば可視光)に対して、上記したような透過可能な材料(少なくとも一部の光が透過する材料)から透明な材料にすることで、位相差の発生が明確になり、位相差が発生したB光501と位相差が発生していないC光502との合成時の干渉現象を明確に結像画像に反映させ、解像度の高い画像を得ることができる。   In this way, the phase difference generation layer is transparent from the above-described material (a material through which at least a part of light is transmitted) with respect to illumination light (for example, visible light) having a predetermined wavelength emitted from the light source 5. By using the material, the occurrence of the phase difference becomes clear, and the interference phenomenon at the time of combining the B light 501 in which the phase difference has occurred with the C light 502 in which the phase difference has not occurred is clearly reflected in the formed image. A high resolution image can be obtained.

位相板43では、従来の位相差顕微鏡のように薄膜の位相膜を形成してもよいが、選択肢として図2(b)のように位相差を発生させるように光軸100方向に所定厚みで層状に形成された位相差発生層を基材部48に配置するか、図2(c)のように接着剤、樹脂などの位相差発生層を基材部48上に硬化後に所定厚となる量と厚みで層状に形成することで、製造を容易にして、薄膜等に比較してコストを低減することができる。   In the phase plate 43, a thin phase film may be formed as in a conventional phase contrast microscope. However, as an option, the phase plate 43 has a predetermined thickness in the direction of the optical axis 100 so as to generate a phase difference as shown in FIG. The phase difference generating layer formed in a layer shape is disposed on the base material portion 48, or the phase difference generating layer such as an adhesive or resin is cured on the base material portion 48 as shown in FIG. By forming a layer with the amount and thickness, the manufacturing can be facilitated and the cost can be reduced as compared with a thin film or the like.

つまり、位相板43では、A光500が透過するA領域44には、位相差発生層が配置されていない。また、C領域47にも位相差発生層が配置されておらず、B領域45のみに、位相差発生層が配置されている。それに対して従来の位相差顕微鏡では、A領域44に対して位相膜(本発明における位相差発生層に相当)が配置され、B領域45又はC領域47のような回折光の領域には位相膜が配置されていなかった。つまり、本実施形態の新微分干渉型顕微鏡1では、位相差を発生させる材料の配置を、従来の位相差顕微鏡の位相板における領域44とは異なり、B領域45又はC領域47の何れか一方のみに配置していることが異なっている。   That is, in the phase plate 43, the phase difference generation layer is not disposed in the A region 44 through which the A light 500 is transmitted. Further, the phase difference generation layer is not disposed also in the C region 47, and the phase difference generation layer is disposed only in the B region 45. On the other hand, in the conventional phase contrast microscope, a phase film (corresponding to the phase difference generation layer in the present invention) is arranged with respect to the A region 44, and the phase of the diffracted light region such as the B region 45 or the C region 47 is phase. The membrane was not placed. That is, in the new differential interference microscope 1 of the present embodiment, the arrangement of the material generating the phase difference is different from the region 44 in the phase plate of the conventional phase contrast microscope, and either the B region 45 or the C region 47 is used. The only thing that is different is the arrangement.

このように、位相板43では、A領域44を光軸100に近い中心部に配置することで、B領域45とC領域47を透過する光(B光501とC光502)に位相差を発生させるためのA領域(A領域44)を共通にしており、各領域の配置を効率化及び容易化することができる。また、位相板43では、A領域44を、線対称軸102に対して線対称な形状で、かつ、線対称軸102に対して線対称に配置することで、A領域44からの光(A光500)を、B領域45とC領域47の光に対して位相差を発生させるために均等の配分で影響させることで、従来の微分干渉顕微鏡のように立体的な画像を良好に得ることができる。また、本実施形態で位相差発生層が配置されるB領域45と、位相差発生層が配置されないC領域47とは、光軸100を通過する線対称軸102で分割された両側に軸対称な領域として形成され、さらにA領域44よりも外周側の位置に配置される。   As described above, in the phase plate 43, the A region 44 is arranged at the center near the optical axis 100, so that the phase difference between the light transmitted through the B region 45 and the C region 47 (B light 501 and C light 502) is obtained. The A region (A region 44) for generation is made common, and the arrangement of each region can be made efficient and easy. Further, in the phase plate 43, the A region 44 is arranged in a line symmetric shape with respect to the line symmetric axis 102 and line symmetric with respect to the line symmetric axis 102, whereby light from the A region 44 (A By causing the light 500) to have an even distribution in order to generate a phase difference with respect to the light in the B region 45 and the C region 47, a three-dimensional image can be obtained satisfactorily like a conventional differential interference microscope. Can do. Further, in the present embodiment, the B region 45 where the phase difference generation layer is disposed and the C region 47 where the phase difference generation layer is not disposed are axially symmetric on both sides divided by the line symmetry axis 102 passing through the optical axis 100. Further, it is formed as a large area and is arranged at a position on the outer peripheral side with respect to the A area 44.

本実施形態の位相板43においては、A光500が透過するA領域44と、B領域45と、C領域47とは、位相板43上において各々が重複しないように装置設計上で配置される。本実施形態のA領域44は、線対称軸102に対して線対称な矩形の形状であり、線対称軸102に対して線対称な位置関係となるように配置される。このことから、図2のA領域44の瞳形状は、縦線に対しての微分干渉効果があり縦線が強調されるタイプとなる。さらに好ましくは、A領域44は、光軸100に近い位相板43の中心部で、線対称軸102に近接する位置に配置され、光軸100を含んで光軸100に点対称な矩形の形状であるか、あるいは、光軸100に対して点対称な位置関係となるように配置される。   In the phase plate 43 of the present embodiment, the A region 44, the B region 45, and the C region 47 through which the A light 500 is transmitted are arranged on the phase plate 43 so as not to overlap each other. . The A region 44 of the present embodiment has a rectangular shape that is line-symmetric with respect to the line symmetry axis 102, and is disposed so as to have a line-symmetric positional relationship with respect to the line symmetry axis 102. From this, the pupil shape of the A region 44 in FIG. 2 has a differential interference effect with respect to the vertical line and the vertical line is emphasized. More preferably, the A region 44 is disposed at a position close to the line symmetry axis 102 at the center of the phase plate 43 close to the optical axis 100, and has a rectangular shape that is point-symmetric to the optical axis 100 including the optical axis 100. Or arranged so as to have a point-symmetrical positional relationship with respect to the optical axis 100.

位相板43のA領域44を矩形とすることにより、線対称に配置されたB領域45とC領域47の中心部からA領域44までの最短距離と、B領域45とC領域47の端部からA領域44までの最短距離の差が減り、領域全体での効果が得られるので、位相差の発生及び合成時の干渉する作用が良好になり、従来の微分干渉顕微鏡のように立体的な画像を良好に得ることができる。   By making the A region 44 of the phase plate 43 rectangular, the shortest distance from the center of the B region 45 and the C region 47 arranged in line symmetry to the A region 44 and the end portions of the B region 45 and the C region 47. Since the difference in the shortest distance from the region A to the region A is reduced and the effect in the entire region is obtained, the action of interfering at the time of generation of the phase difference and the synthesis is improved, and it is three-dimensional like a conventional differential interference microscope. An image can be obtained satisfactorily.

また、本発明の微分干渉型顕鏡法の原理は、本実施形態の新微分干渉型顕微鏡1を用いた立体的な観察画像は、B領域45を透過する1次B光501)とA領域44を透過する0次回折光(A光500)との干渉で得られる像と、C領域47を透過した−1次C光502とA領域44を透過する0次回折光(A光500)との干渉で得られる像とを重ねることで、立体的な画像を得るということである。従って、B領域45とC領域47は、結像系の瞳上で、0次回折光(A光500)の透過するA領域44に対して対称の関係にあるときが、常にシフトした2つの像が重ねて観察されることから、最もコントラストが高くなる。そのため、逆にB領域45とC領域47が、A領域44に対して非対称の関係にある場合、B領域45とC領域47の重なり合わない部分に相当する領域を透過するB光501とC光502)と0次回折光(A光500)とによって生成される像の部分では、2つの像が重なり合うことがないので、コントラストが低減する。   In addition, the principle of the differential interference microscope method of the present invention is that a three-dimensional observation image using the new differential interference microscope 1 of the present embodiment is the primary B light 501) that transmits the B region 45 and the A region. The image obtained by the interference with the 0th-order diffracted light (A light 500) transmitted through 44, the −1st-order C light 502 transmitted through the C region 47, and the 0th-order diffracted light (A light 500) transmitted through the A region 44. This means that a three-dimensional image is obtained by superimposing the image obtained by interference. Therefore, when the B region 45 and the C region 47 are in a symmetric relationship with respect to the A region 44 through which the 0th-order diffracted light (A light 500) is transmitted on the pupil of the imaging system, the two images always shifted. Are observed in a superimposed manner, so that the contrast becomes the highest. Therefore, conversely, when the B region 45 and the C region 47 are in an asymmetric relationship with respect to the A region 44, the B light 501 and C that pass through the region corresponding to the portion where the B region 45 and the C region 47 do not overlap each other. In the portion of the image generated by the light 502) and the 0th-order diffracted light (A light 500), the two images do not overlap, so the contrast is reduced.

また、瞳の形状を、本実施形態の図2に示したA領域44のような矩形の形状にし、B領域45とC領域47を、図2に示したように矩形の長辺と平行な線で分離して、位相板43の円形の周辺との間で定義した場合には、位相膜のあるB領域45あるいはC領域47の境界線を、光軸100に垂直な方向に移動させることでその領域面積を自在に変更できる構造にすることができる。その場合、コントラストを強調する空間周波数の下限を任意に変更することが可能である。   Also, the shape of the pupil is a rectangular shape like the A region 44 shown in FIG. 2 of the present embodiment, and the B region 45 and the C region 47 are parallel to the long side of the rectangle as shown in FIG. When the line is separated and defined between the phase plate 43 and the circular periphery, the boundary line of the B region 45 or C region 47 with the phase film is moved in a direction perpendicular to the optical axis 100. Thus, the area of the region can be changed freely. In that case, it is possible to arbitrarily change the lower limit of the spatial frequency for enhancing the contrast.

さらに、A領域44は光軸100に対して点対称な図形にすることができる。A領域44を光軸100に対して点対称な形状とし、B領域45及びC領域47を光軸100に対して点対称な位置関係となるように配置することができる。このようにして、位相差顕微鏡に類似する構成で、従来の微分干渉顕微鏡のように立体的な画像を得ることができる。   Further, the A region 44 can be a figure that is point-symmetric with respect to the optical axis 100. The A region 44 may have a point-symmetric shape with respect to the optical axis 100, and the B region 45 and the C region 47 may be disposed so as to have a point-symmetric positional relationship with respect to the optical axis 100. In this way, a three-dimensional image can be obtained as in a conventional differential interference microscope with a configuration similar to a phase contrast microscope.

位相差発生層が一例として配置されるB領域45には、基材部48の全体の厚みt2よりも少ない厚みt1で、位相差発生層を配置するための凹部が形成され、その凹部に位相差発生層が配置される。この場合、凹部を形成することで、第1の光学材料で形成される基材部48における凹部と、それ以外の部分では、第1の光学材料による位相差が発生するので、そこにさらに位相差発生層による位相差に追加することで、位相差を増大させることができる。   In the B region 45 where the retardation generation layer is arranged as an example, a recess for arranging the retardation generation layer is formed with a thickness t1 smaller than the total thickness t2 of the base material portion 48, and the recess is positioned in the recess. A phase difference generating layer is disposed. In this case, by forming the concave portion, a phase difference due to the first optical material is generated in the concave portion in the base material portion 48 formed of the first optical material and in the other portions. By adding to the phase difference caused by the phase difference generation layer, the phase difference can be increased.

また、この位相板43に凹部を設ける加工は、従来の加工技術で実施可能であり、従来の位相差顕微鏡と同様に容易に製造が可能であり、製造コストの上昇も最小限ですみ、立体的な観察画像を得る場合の従来の微分干渉型の顕微鏡よりも非常にコストダウンできる。   In addition, the processing for forming the recesses in the phase plate 43 can be performed by a conventional processing technique, and can be easily manufactured in the same manner as a conventional phase-contrast microscope. The cost can be greatly reduced as compared with a conventional differential interference microscope for obtaining a typical observation image.

また図2(c)に示したように位相板43の表面を保護するために位相板43と略同形状のカバーガラス117を用いる場合には、基材部48上に、厚みt1で、位相差発生層を配置するための凹部を形成した後、硬化後に特性を有する接着剤を、硬化後に所定の厚みとなるように基材部上の全面に塗布し、その上を位相板43と略同形状のカバーガラス117で覆うことで、最終的に、位相板43上の凹部を含む全表面とカバーガラス117との間に、特性を有する接着剤層を形成してもよい。この場合、凹部を形成するのみで、容易にB領域45及びC領域47を得ることができ、そこに位相差発生層を配置することで、製造時の位相板43の基材部48上への配置作業を容易にできる。   Further, as shown in FIG. 2C, when a cover glass 117 having substantially the same shape as the phase plate 43 is used to protect the surface of the phase plate 43, the thickness t1 is formed on the base material portion 48. After forming the recesses for disposing the phase difference generating layer, an adhesive having characteristics after curing is applied to the entire surface of the base material portion so as to have a predetermined thickness after curing, and the top is substantially the same as the phase plate 43. By covering with the cover glass 117 having the same shape, an adhesive layer having characteristics may be finally formed between the entire surface including the recesses on the phase plate 43 and the cover glass 117. In this case, the B region 45 and the C region 47 can be easily obtained only by forming the recesses, and the phase difference generation layer is disposed on the B region 45 and the C region 47, so that the substrate 48 of the phase plate 43 at the time of manufacture is formed. Can be easily arranged.

位相板43では、上記した構成により、B光501(位相差発生層が配置された領域を透過した光)の、A光500に対する位相差は、入射光がA領域44を形成する第1の光学材料の層を透過するときに変化した位相と、入射光が層(、又は、第1の光学材料と位相差発生層との積層構成)を透過するときに変化した位相と、の差から得られる。一方、位相差発生層が配置されないC領域47は、A領域44と同様に、第1の光学材料のみで形成された層構成になっており、その透過光(C光502)には位相差発生層による位相差は発生しない。   In the phase plate 43, the phase difference of the B light 501 (light transmitted through the region where the phase difference generation layer is disposed) with respect to the A light 500 is the first difference that the incident light forms the A region 44 by the configuration described above. From the difference between the phase that has changed when passing through the layer of optical material and the phase that has changed when incident light has passed through the layer (or the laminated structure of the first optical material and the phase difference generating layer) can get. On the other hand, the C region 47 in which the phase difference generation layer is not disposed has a layer configuration formed of only the first optical material, similarly to the A region 44, and the transmitted light (C light 502) has a phase difference. There is no phase difference due to the generation layer.

以上から、新微分干渉型顕微鏡1では、位相板43の層によりA光500との位相差が発生したB光501と、層によるA光500との位相差が発生していないC光502と、を合成することで干渉させるので、増加的干渉が発生した部分は明るく、減殺的干渉が発生した部分は暗くなり、従来の微分干渉顕微鏡のように立体的な画像を得ることを可能にしている。   From the above, in the new differential interference microscope 1, the B light 501 in which the phase difference between the A light 500 is generated by the layer of the phase plate 43 and the C light 502 in which the phase difference between the A light 500 due to the layer is not generated Therefore, the part where incremental interference occurs is bright and the part where destructive interference occurs is dark, making it possible to obtain a three-dimensional image like a conventional differential interference microscope. Yes.

従来の立体的な画像の観察に必要となる微分干渉型の顕微鏡は、高価なプリズム等を有するため高価であったが、本発明では、プリズム等を有していない位相差顕微鏡の構成で立体的な画像の観察が可能となる。しかも、従来のノマルスキー型微分干渉顕微鏡では観察に不向きとされていた染色された細胞や、多彩な色を持つ物質を観察する際にも、物体の持つ色を忠実に再現した上で、ノマルスキー型微分干渉顕微鏡と同様な画像を得ることが可能になる。   A conventional differential interference microscope required for observing a stereoscopic image has been expensive because it has an expensive prism or the like. However, in the present invention, a stereoscopic microscope has a configuration of a phase contrast microscope that does not have a prism or the like. Image can be observed. Moreover, when observing stained cells and materials with various colors that were not suitable for observation with conventional Nomarski differential interference microscopes, the colors of the object were faithfully reproduced. An image similar to that of a differential interference microscope can be obtained.

また、新微分干渉型顕微鏡1では、位相板43における位相差を発生させる光学材料(位相差発生層、位相膜)の配置を、従来の直接光部分から、拡散光部分の所定位置に変更するような構成上の配置変更のみで効果を得ている。新微分干渉型顕微鏡1の効果としては、位相差観察につきもののハローを減少させることができ、さらに、プリズム等を用いなくても、厚みのあるサンプルや、多層構造のサンプルに対しても微分干渉観察法のように、サンプルの厚さの違う部分に明暗のコントラストを付けて、従来の微分干渉顕微鏡のように立体感のある観察画像を得ることができる。   Further, in the new differential interference microscope 1, the arrangement of the optical material (phase difference generation layer, phase film) for generating the phase difference in the phase plate 43 is changed from the conventional direct light portion to a predetermined position in the diffused light portion. The effect is obtained only by such a configurational change. As an effect of the new differential interference microscope 1, the halo inherent in phase difference observation can be reduced, and further, differential interference can be applied to a thick sample or a multilayer sample without using a prism or the like. Like the observation method, bright and dark contrasts can be given to the portions with different thicknesses of the sample, and an observation image with a three-dimensional effect can be obtained like a conventional differential interference microscope.

<<本発明の原理説明>>
ここで本発明を、アッベの提唱した再回折理論を用いて説明する。
あるピッチPを持つ正弦波状の振幅透過率を持つ縞状の物体は、次の数式(数5)のように表される。(xは物体面上の座標)

(参考文献:「光機器の光学II、早水良定(はやみずよしさだ)著、社団法人日本オプトメカトロニクス協会発行、2000年」による。また、以下の数式(数6)、(数7)、(数8)も同参考文献による)
<< Description of Principle of Present Invention >>
The present invention will now be described using the re-diffraction theory proposed by Abbe.
A striped object having a sinusoidal amplitude transmittance having a certain pitch P is expressed by the following equation (Equation 5). (X is the coordinate on the object surface)

(Reference: “Optical equipment optics II, written by Yoshimasa Hayami, published by the Japan Opto-Mechatronics Association, 2000”. Also, the following formulas (Equation 6), (Equation 7 ), (Equation 8) is also based on the same reference)

この物体を像として投影する光学系の倍率をβとし、この物体のフーリエ変換面(即ち瞳面)の1次回折光が透過する領域のみに、光に対して位相差Δを与える媒質が存在したとき、光学系の像面での像U‘は、次の数式(数6)のように表される。
The medium that gives the phase difference Δ to the light exists only in the region where the first-order diffracted light of the Fourier transform plane (that is, the pupil plane) of this object is transmitted. At this time, the image U ′ on the image plane of the optical system is expressed by the following equation (Equation 6).

よって、瞳面に位相差Δを生じる物体がある場合、そこを1次回折光が透過することで、正弦波状の物体は、像側で、光軸よりx軸方向に次の数式(数7)だけシフトした像となる。
Therefore, when there is an object that causes a phase difference Δ on the pupil plane, the first-order diffracted light is transmitted therethrough, so that the sinusoidal object is on the image side in the x-axis direction from the optical axis (Expression 7) Only shifted image.

例えば、位相差Δ=π/2の場合には、像側でのシフト量x0‘は、次の数式(数8)のように表される。

この数式(数8)からは、パターンが1/4ピッチx方向にずれることが判る。
For example, when the phase difference Δ = π / 2, the shift amount x0 ′ on the image side is expressed by the following equation (Equation 8).

From this equation (Equation 8), it can be seen that the pattern shifts in the 1/4 pitch x direction.

他方、同じ瞳面に位相差を生じない領域があり、そこを1次回折光が透過しても、なんら像のシフトは起こらない。この場合の像U”は、次の数式(数9)のように表される。
On the other hand, there is a region where no phase difference occurs on the same pupil plane, and even if the first-order diffracted light is transmitted there, no image shift occurs. The image U ″ in this case is expressed as the following formula (Equation 9).

従って、本発明の新微分干渉型顕微鏡の像は、像面上で、微小量のズレを持つU’と、ズレのないU”の像とが重なる。このため、本発明の新微分干渉型顕微鏡の像は、従来のノマルスキー型微分干渉顕微鏡の像と非常によく似た像となる。   Therefore, in the image of the new differential interference microscope of the present invention, U ′ having a slight amount of deviation and an image of U ″ having no deviation overlap on the image plane. The image of the microscope is very similar to the image of a conventional Nomarski differential interference microscope.

しかし、ここで注意しなければならないのは、従来のノマルスキー型微分干渉顕微鏡は、光を2つの偏光に分ける際に使用するノマルスキープリズムの分散によって、波長によって得られる像の色バランスが著しく異なることである。従って、従来のノマルスキー型微分干渉顕微鏡では、物体の色が、明視野顕微鏡により光が透過した現実の物体から通常観察される色バランスとは異なった色に見える。   However, it should be noted here that the conventional Nomarski differential interference microscope has a remarkably different color balance of the image obtained depending on the wavelength due to the dispersion of the Nomarski prism used to divide the light into two polarizations. It is. Therefore, in the conventional Nomarski type differential interference microscope, the color of the object looks different from the color balance normally observed from an actual object through which light is transmitted by the bright field microscope.

それに対して、本発明の新微分干渉型顕微鏡では、上記数式(数7)に示したように、像シフト量は、位相差Δが波長によって変化しなければ、波長によって一定にできることを示唆している。   On the other hand, in the new differential interference microscope of the present invention, as shown in the above equation (Equation 7), it is suggested that the image shift amount can be made constant according to the wavelength unless the phase difference Δ changes with the wavelength. ing.

また、従来のノマルスキー型微分干渉顕微鏡では、ノマルスキープリズムによって規定される2つの偏光による像のシフト量(シアー量)が、どんな標本を観察するときも一定であった。   Further, in the conventional Nomarski type differential interference microscope, the shift amount (shear amount) of the image due to the two polarized lights defined by the Nomarski prism is constant when observing any specimen.

それに対しても、本発明の新微分干渉型顕微鏡では、上記数式(数7)に示したように、標本の微細構造(空間周波数)によってシフト量も自動的に変化するので、従来のノマルスキー型微分干渉顕微鏡と比較しても、より尖鋭な像を観察することができる。   On the other hand, in the new differential interference microscope of the present invention, the shift amount automatically changes depending on the fine structure (spatial frequency) of the sample, as shown in the above formula (Equation 7). Compared with a differential interference microscope, a sharper image can be observed.

<<材質及び厚みの選択方法1>>
また、位相板43では、位相差発生層は、位相差発生層により発生される位相差をΔとした場合に、当該位相差Δが、以下の数式(数1)を満足するように材質及び厚みを選択することができる。
<< Material and thickness selection method 1 >>
Further, in the phase plate 43, the phase difference generating layer is made of a material and a material such that the phase difference Δ satisfies the following formula (Equation 1), where Δ is the phase difference generated by the phase difference generating layer. The thickness can be selected.

この場合の数式(数1)の|Δ|の範囲は、例えば、第1の光学材料のみのC領域47を透過した光から結像した像と、位相差発生層を含むB領域45を透過した光から結像した像の位相差の上限と下限のシフト量を規定する。言い換えれば、数式(数1)は、数式(数7)により生成される2つの像の位相差の相対的なシフト量を規定するものである。
シフト量が数式(数1)の下限値0.05πより下側の値の場合は、像のシフト量が少なすぎる場合になり、合成した場合の干渉の発生も少なくなり、明視野観察とほぼ同等な像となる。逆に、シフト量が数式(数1)の上限値0.95πを上回る値の場合は、シフトした像の明暗がほぼ逆転するため、合成した2つの像の光の強度がほぼ0となってしまい、干渉も発生せず、位相差を発生させる意味がなくなる。
In this case, the range of | Δ | in the expression (Equation 1) is, for example, an image formed from light transmitted through the C region 47 of only the first optical material and the B region 45 including the phase difference generation layer. An upper limit and a lower limit shift amount of the phase difference of the image formed from the reflected light are defined. In other words, the equation (Equation 1) defines the relative shift amount of the phase difference between the two images generated by the equation (Equation 7).
When the shift amount is a value lower than the lower limit value 0.05π of the mathematical formula (Equation 1), the shift amount of the image is too small, and the occurrence of interference when combined is reduced. Equivalent image. On the contrary, when the shift amount is a value exceeding the upper limit value 0.95π of the mathematical formula (Equation 1), the brightness of the shifted image is almost reversed, so that the intensity of the light of the two synthesized images becomes almost zero. Thus, no interference occurs and the meaning of generating a phase difference is lost.

<<材質及び厚みの選択方法2>>
また、位相板43では、位相差発生層により発生される位相差Δが、以下の数式(数2)を満足するように材質及び厚みを選択することができる。
<< Material and thickness selection method 2 >>
Further, in the phase plate 43, the material and thickness can be selected so that the phase difference Δ generated by the phase difference generating layer satisfies the following mathematical formula (Formula 2).

この場合の数式(数2)の|Δ|の範囲は、例えば、数式(数1)の範囲に対して、さらに2つの像の位相差のシフト量の最適値を与える条件として、上限値0.5πと下限値0.25πの範囲を規定する。また数式(数7)より、最適値の下限値はシフト量で1/8ピッチ、上限値はシフト量で1/4ピッチに対応している。   In this case, the range of | Δ | in the equation (Equation 2) is, for example, an upper limit value 0 as a condition for giving an optimum value of the shift amount of the phase difference between the two images to the range of the equation (Equation 1). The range of 0.5π and the lower limit of 0.25π is specified. From the mathematical formula (Equation 7), the lower limit value of the optimum value corresponds to 1/8 pitch of the shift amount, and the upper limit value corresponds to 1/4 pitch of the shift amount.

<<材質及び厚みの選択方法3>>
また、位相板43では、A領域44を透過した光の位相に対して、第2の光学材料を有するB領域45を透過する光の位相との位相差を位相差ΔB、A領域44を透過する光の位相に対して第2の光学材料のC領域47の位相差を位相差ΔCとした場合、位相差ΔB及び位相差ΔCが、以下の数式(数3)を満足するように材質及び厚みを選択することができる。
<< Material and thickness selection method 3 >>
Further, in the phase plate 43, the phase difference between the phase of the light transmitted through the A region 44 and the phase of the light transmitted through the B region 45 having the second optical material is a phase difference ΔB, and the light transmitted through the A region 44. When the phase difference of the C region 47 of the second optical material is the phase difference ΔC with respect to the phase of the light to be transmitted, the material and the phase difference ΔB and the phase difference ΔC satisfy the following formula (Equation 3): The thickness can be selected.

また、新微分干渉型顕微鏡1の像に歪み等が無いこと、例えば、図2、4〜6中の横方向をx軸とした場合のx軸方向の対称性が要求される場合がある。その場合には、(aa)A領域44に対する第2の光学材料を有するB領域45の位相差と、(bb)A領域44に対する第2の光学材料のC領域47の位相差は、同じ値であることが望ましい。   Moreover, there is a case where the image of the new differential interference microscope 1 has no distortion or the like, for example, symmetry in the x-axis direction when the horizontal direction in FIGS. In that case, (aa) the phase difference of the B region 45 having the second optical material with respect to the A region 44 and (bb) the phase difference of the C region 47 of the second optical material with respect to the A region 44 are the same value. It is desirable that

そのため、上記数式(数3)を満足するように材質及び厚みを選択することで、x軸方向の対称性を得ることができる。つまり、上記数式(数3)は、回折光が第2の光学材料を有するB領域(本実施形態のB領域45)を通った後に0次回折光と干渉して得られる像のシフト量と、回折光が第2の光学材料のC領域(本実施形態のC領域47)を通った後に0次回折光と干渉して得られる像のシフト量は、絶対値が同じで、符号が逆であることを意味し、その式を満足するように材質及び厚みを選択することにより、x軸方向の対称性が確保されることになる。   Therefore, the symmetry in the x-axis direction can be obtained by selecting the material and thickness so as to satisfy the above mathematical formula (Equation 3). That is, the above mathematical formula (Equation 3) is obtained by the following equation. The shift amount of the image obtained by interference with the 0th-order diffracted light after the diffracted light passes through the B region (B region 45 of the present embodiment) having the second optical material, The shift amount of the image obtained by interference with the 0th-order diffracted light after the diffracted light passes through the C region (C region 47 of the present embodiment) of the second optical material has the same absolute value and the opposite sign. This means that the symmetry in the x-axis direction is ensured by selecting the material and thickness so as to satisfy the equation.

特に、後述する第6の実施形態のような投影光学系では、投影される像のx軸方向の対称性を得るために、領域Bの領域Aに対する位相差と、領域Cの領域Aに対する位相差とは、同じ値であることが望ましいので数式(数3)を満足することが望ましい。   In particular, in the projection optical system as in the sixth embodiment to be described later, in order to obtain the symmetry of the projected image in the x-axis direction, the phase difference of the region B with respect to the region A and the position of the region C with respect to the region A are determined. Since it is desirable that the phase difference is the same value, it is desirable that the mathematical formula (Equation 3) is satisfied.

<<材質及び厚みの選択方法4>>
また、位相板43では、位相差発生層は、2以上の光の波長に対して、略一定の位相差Δを与えるように材質及び厚みを選択することができる。
<< Material and thickness selection method 4 >>
In the phase plate 43, the material and thickness of the phase difference generating layer can be selected so as to give a substantially constant phase difference Δ for two or more wavelengths of light.

位相板43は、可視光などの比較的広い波長帯域の光について効果を得ることができるが、例えば、後述する<<位相板の第1の光学材料と厚みの決定方法>>で説明するように可視光の2以上の波長に対して、略一定の位相差Δを与えるように材質及び厚みを選択することができる。後述する方法で位相板を形成する場合、現実の物質が持つ色あいを忠実に再現した状態で観察することができる。   The phase plate 43 can obtain an effect with respect to light having a relatively wide wavelength band such as visible light. For example, the phase plate 43 will be described later in <<<< First optical material and thickness determination method >> of the phase plate >>. The material and thickness can be selected so as to give a substantially constant phase difference Δ to two or more wavelengths of visible light. When the phase plate is formed by a method to be described later, it is possible to observe in a state where the color tone of an actual substance is faithfully reproduced.

<<材質及び厚みの選択方法5>>
また、位相板43では、B領域45には、当該領域の透過率をTとした場合に、以下の数式(数4)を満足するように光の透過率を減衰させるように、材質及び厚みを選択することができる。
<< Material and thickness selection method 5 >>
In the phase plate 43, the material and thickness of the B region 45 are set so that the light transmittance is attenuated so as to satisfy the following formula (Equation 4), where T is the transmittance of the region. Can be selected.

この場合の数式(数4)の透過率Tは、第1の光学材料のみのC領域47を透過したC光502から結像した像と、位相差発生層を含むB領域45を透過したB光501から結像した像とを合成した場合の、像の立体感を強調させる範囲を規定している。   In this case, the transmittance T in Expression (4) is the image formed from the C light 502 transmitted through the C region 47 of only the first optical material, and B transmitted through the B region 45 including the phase difference generation layer. A range in which the stereoscopic effect of the image is emphasized when the image formed from the light 501 is combined is defined.

数式(数4)の透過率Tは、合成されて重なり合う2つの像のいづれかの光の透過率Tの値を若干減少させるように用いられる。これにより、2つの像のいづれかの光の強度が減少して、その強度差により合成像に影をつくように干渉させることができ、従って、得られる像の立体感を強調することができる。この場合の立体感の強調する程度は、従来のノマルスキー型微分干渉顕微鏡による観察像よりも、さらに立体感を強調することが可能である。   The transmittance T in Equation (4) is used so as to slightly reduce the value of the light transmittance T of one of the two images that are combined and overlapped. As a result, the intensity of the light of one of the two images is reduced, and the composite image can be caused to interfere with the shadow due to the difference in intensity, thus enhancing the stereoscopic effect of the obtained image. The degree of emphasis of the three-dimensional effect in this case can further enhance the three-dimensional effect than the observation image obtained by the conventional Nomarski type differential interference microscope.

なお、透過率Tの値が上記の範囲の下限値を下回る場合には、1方の像の光の強度が低くなりすぎるため、他方の像によって通常の明視野像に近づいてしまい、本発明の方式で合成および干渉させる意味がなくなる。また、透過率Tの値が上記の範囲の上限値を上回る場合には、2つの像の強度はほぼ等しくなるので、従来の微分干渉の観察像に極めて近い像となり、従来のノマルスキー型微分干渉顕微鏡に対して本発明の方式で合成および干渉させたことによって、さらに立体感を強調することができるという効果は低減する。   When the transmittance T is below the lower limit of the above range, the intensity of the light of one image is too low, and the other image approaches a normal bright field image. This makes it meaningless to combine and interfere. Further, when the value of the transmittance T exceeds the upper limit of the above range, the intensity of the two images becomes almost equal, so that the images are very close to the observation image of the conventional differential interference, and the conventional Nomarski type differential interference is obtained. By combining and interfering with the microscope according to the method of the present invention, the effect of further enhancing the stereoscopic effect is reduced.

また、上記した新微分干渉型顕微鏡1の位相板43を製造する場合には、まず基材部48を、光源5から出射する所定波長の照明光が透過可能な材料である第1の光学材料で形成し、その後に、B領域45又はC領域47の何れか一方にのみに、光源5から出射する所定波長の照明光が透過可能な材料であって、第1の光学材料を透過する光とは位相が異なるように位相差を発生させる位相差発生層を配置する工程を含む。   When the phase plate 43 of the new differential interference microscope 1 described above is manufactured, first, the first optical material, which is a material through which the illumination light having a predetermined wavelength emitted from the light source 5 can pass through the base member 48. After that, the light that is transmitted through the first optical material and that is capable of transmitting illumination light having a predetermined wavelength emitted from the light source 5 only in one of the B region 45 and the C region 47 Includes a step of arranging a phase difference generating layer for generating a phase difference so that the phases are different.

その際には、例えば、位相差発生層を配置する前に、位相板43の基材部48における位相差発生層が配置される透光領域(B領域45)に、位相差発生層を配置するために、形状に適合する形状の凹部を形成する。そして、その凹部に位相差発生層を配置する。   In that case, for example, before the phase difference generation layer is arranged, the phase difference generation layer is arranged in the light transmitting region (B region 45) where the phase difference generation layer in the base material portion 48 of the phase plate 43 is arranged. In order to achieve this, a recess having a shape that matches the shape is formed. Then, a retardation generation layer is disposed in the recess.

位相板43の基材部48に凹部を形成した後に、少なくともその凹部に位相差発生層を配置する。位相差発生層が固体である場合、B領域45に適合させて凹部と位相差発生層が形成され、凹部に位相差発生層が配置される。   After forming a recess in the base material portion 48 of the phase plate 43, a phase difference generating layer is disposed at least in the recess. When the phase difference generating layer is solid, the concave portion and the phase difference generating layer are formed in conformity with the B region 45, and the phase difference generating layer is disposed in the concave portion.

また、位相板43の表面を保護するためのカバーガラス117を使用する場合に、例えば、位相差発生層として、硬化後に特性を有する接着剤を用いることができる。その場合、接着剤を、位相板43の凹部を含む全表面に、硬化後に所定厚みとなるように塗布する。そして、それにより位相板43の凹部を含む全表面とカバーガラス117との間に、位相差発生層である接着剤層を形成する。   Moreover, when using the cover glass 117 for protecting the surface of the phase plate 43, for example, an adhesive having characteristics after curing can be used as the retardation generation layer. In that case, the adhesive is applied to the entire surface including the recesses of the phase plate 43 so as to have a predetermined thickness after curing. Then, an adhesive layer that is a phase difference generating layer is formed between the entire surface including the concave portion of the phase plate 43 and the cover glass 117.

上記した新微分干渉型顕微鏡1の製造方法では、立体的な観察画像が得るために、従来の微分干渉型の顕微鏡のようにプリズムを必要としないので、顕微鏡の製造コスト及び観察に必要なコストを下げることができる。これにより配置や位置出しが容易になり、製造時間、製造コストを低減させることができる。   In the manufacturing method of the new differential interference microscope 1 described above, since a three-dimensional observation image is obtained, a prism is not required unlike a conventional differential interference microscope, so that the manufacturing cost of the microscope and the cost required for observation are reduced. Can be lowered. Thereby, arrangement and positioning are facilitated, and manufacturing time and manufacturing cost can be reduced.

<<位相板の第1の光学材料と厚みの決定方法>>
以下は、一例として2つの波長の照明光が入射される場合である。(なお、以下の内容については、本発明と同じ発明者により特願2008−056783号として出願されている。)位相板の各材料と、その厚みを、次の3つの数式(数10)、数式(数11)、数式(数12)が成り立つように決定することができる。なお、本実施形態では各光学材料は1層ずつであるが、各数式は、各々の層が複数層になる場合も考慮している。
<< First Optical Material and Thickness Determination Method of Phase Plate >>
The following is a case where two wavelengths of illumination light are incident as an example. (The following contents have been filed as Japanese Patent Application No. 2008-056783 by the same inventor as the present invention.) Each material of the phase plate and its thickness are expressed by the following three formulas (Equation 10), It is possible to determine so that the mathematical formula (Formula 11) and the mathematical formula (Formula 12) hold. In the present embodiment, each optical material has one layer, but each numerical formula also takes into account the case where each layer has a plurality of layers.


但し:
:第1の光学材料の厚み、
:厚み、
1i:第1の光学材料のi番目の層の厚さ、
λ1:入射される照明光の第1の光(可視光)の波長、
λ2:入射される照明光の第2の光(可視光)の波長、
(i、1):波長λ1の光に対する屈折率、
(i、2):波長λ2の光に対する屈折率、
2j:j番目の層の厚さ、
(j、1):波長λ1の光に対する屈折率、
(j、2):波長λ2の光に対する屈折率、
C1:第1の光学材料の波長によらない定数である。
C2:波長によらない定数である。

However:
t 1 : thickness of the first optical material,
t 2 : thickness,
t 1i : the thickness of the i-th layer of the first optical material,
λ1: wavelength of first light (visible light) of incident illumination light,
λ2: wavelength of the second light (visible light) of the incident illumination light,
n 1 (i, 1): refractive index for light of wavelength λ1,
n 1 (i, 2): refractive index for light of wavelength λ2,
t 2j : the thickness of the j-th layer,
n 2 (j, 1): refractive index for light of wavelength λ 1
n 2 (j, 2): refractive index for light of wavelength λ 2
C1: A constant independent of the wavelength of the first optical material.
C2: A constant that does not depend on the wavelength.


但し、記号の説明は数式(数10)を参照。

However, for the explanation of the symbols, see the mathematical formula (Equation 10).


但し、
C1:第1の光学材料の波長によらない定数である。
C2:波長によらない定数である。

However,
C1: A constant independent of the wavelength of the first optical material.
C2: A constant that does not depend on the wavelength.

さらに、本発明の位相板の総厚みtについては、上記した数式(数12)に加えて、以下の2つの式数式(数13)、数式(数14)が成り立つように決定することができる。

但し、
(1,1):第1の光学媒質領域の第1の波長λ1に対する屈折率、
(1,1):第2の光学媒質領域の第1の波長λ1に対する屈折率。
Further, the total thickness t of the phase plate of the present invention can be determined so that the following two formulas (Formula 13) and Formula (Formula 14) are satisfied in addition to the above formula (Formula 12). .

However,
n 1 (1,1): refractive index of the first optical medium region with respect to the first wavelength λ1,
n 2 (1,1): Refractive index of the second optical medium region with respect to the first wavelength λ1.


但し、
(1,2):第1の光学媒質領域の第2の波長λ2に対する屈折率、
(1,2):第2の光学媒質領域の第2の波長λ2に対する屈折率。

However,
n 1 (1,2): refractive index of the first optical medium region with respect to the second wavelength λ2,
n 2 (1, 2): Refractive index of the second optical medium region with respect to the second wavelength λ2.

さらに、本発明位相板の総厚みについては、以下の数式(数15)が成り立つように決定することができる。

但し、記号の説明は数式(数13)数式(数14)を参照。
Further, the total thickness of the phase plate of the present invention can be determined so that the following formula (Equation 15) holds.

However, for the explanation of the symbols, see the mathematical formula (Formula 13) and the mathematical formula (Formula 14).

さらに、本発明位相板の総厚みについては、以下の数式(数16)が成り立つように決定することができる。

但し、数式(数1)0〜数式(数1)4のC1又はC2をCとし、|C|はCの絶対値を示す。
Further, the total thickness of the phase plate of the present invention can be determined so that the following formula (Equation 16) is established.

However, C1 or C2 in Equation (Equation 1) to Equation (Equation 1) 4 is C, and | C | represents the absolute value of C.

上述した数式(数10)、数式(数11)を満たすように第1の光学材料と第2の光学材料の位相差発生層を選択することによって、波長λ1の光束に対しても、波長λ2の光束に対しても、第1の光学材料から出射される光束の位相を、第2の光学媒質領域から出射される光束の位相に対して、所定の定数Cだけ進めたり遅らせたりすることができる。このように、複数の波長に対して、位相をずらすことができるので、光束の周波数情報を含めて、光束の位相を調整することができる。   By selecting the phase difference generation layer of the first optical material and the second optical material so as to satisfy the above-described formulas (Equation 10) and (Equation 11), the wavelength λ2 can be obtained even for the light flux with the wavelength λ1. The phase of the light beam emitted from the first optical material may be advanced or delayed by a predetermined constant C with respect to the phase of the light beam emitted from the second optical medium region. it can. Thus, since the phase can be shifted with respect to a plurality of wavelengths, the phase of the light beam can be adjusted including the frequency information of the light beam.

以上の本発明の内容に基づき開口絞り22及び位相板43を作成し、従来の位相差顕微鏡に組み込んで、サンプルとして珪藻《図3(a)》の画像を撮影した。また、画像の比較例として、従来の明視野顕微鏡による同じサンプル珪藻《図3(b)》の画像も撮影した。   Based on the contents of the present invention described above, the aperture stop 22 and the phase plate 43 were created and incorporated in a conventional phase contrast microscope, and an image of diatom << FIG. 3 (a) >> was taken as a sample. Moreover, the image of the same sample diatom << FIG.3 (b) >> by the conventional bright field microscope was also image | photographed as a comparative example of an image.

<<実験結果1>>
図3(a)と図3(b)の比較からわかるように、図3(a)の本発明の新微分干渉型顕微鏡による珪藻の画像では、従来の微分干渉顕微鏡のように立体的に影を有する画像であって、図3(b)の通常明視野観察画像と比較して細部の解像度が高い画像が得られている。
<< Experimental result 1 >>
As can be seen from the comparison between FIG. 3 (a) and FIG. 3 (b), the image of the diatom by the new differential interference microscope of the present invention in FIG. An image having a high resolution of details is obtained as compared with the normal bright-field observation image of FIG.

以上の実験結果から、上記した本発明の位相板を用いた光学蔵置では、上記した本発明のA領域が位相板の中心に配置され、B領域とC領域の何れか一方に位相差を発生する領域を配置する構成が、最も本発明の効果を得られる構成であることが、実験により確認された。   From the above experimental results, in the optical storage using the above-described phase plate of the present invention, the above-described A region of the present invention is arranged at the center of the phase plate, and a phase difference is generated in either the B region or the C region. It has been confirmed by experiments that the configuration in which the region to be arranged is the configuration that can obtain the effect of the present invention most.

以上のように、本実施形態の位相差版43は、従来の位相差顕鏡法のように直接光(A光500)の透過領域に位相差を発生させる第2の光学材料の位相差発生層を配置するのではなく、線対称軸で分割された両側の回折光の透過領域の一方側(本実施形態では1次回折光501の透過領域45)のみにその材料を配置して位相差を持たせる構成になっている。なお、位相差を発生させる配置は、その一方側の透過領域のさらに一部分のみでも本発明の効果を得ることは可能である。また、本実施形態とは逆に、−1次回折光502の透過領域47のみにその材料を配置して位相差を持たせる構成としてもよい。   As described above, the phase difference plate 43 of the present embodiment generates the phase difference of the second optical material that generates a phase difference in the direct light (A light 500) transmission region as in the conventional phase contrast microscope method. Rather than disposing the layer, the material is disposed only on one side of the transmission region of the diffracted light on both sides divided by the axis of line symmetry (in this embodiment, the transmission region 45 of the first-order diffracted light 501), and the phase difference is obtained. It is configured to have. Note that the arrangement for generating the phase difference can obtain the effect of the present invention even with only a part of the transmission region on one side. In contrast to the present embodiment, the material may be disposed only in the transmission region 47 of the −1st order diffracted light 502 to give a phase difference.

また、本実施形態の微分干渉型顕鏡法は、従来の微分干渉顕鏡法のように、プリズムによって規定される2つの偏光を使用しないで立体的な観察画像を得る方法である。本実施形態の新微分干渉型顕微鏡は、回折現象による1次回折光501と直接光であるA光500との干渉で得られる位相差を有する像と、回折現象による−1次回折光502とA光500との干渉で得られる位相差を有する像とを、対物レンズ像面71に重ねるように構成する顕微鏡である。本発明では、上記のように構成することで、物体を観察する場合に、物体の境界の屈折率差及び物体の境界の段差を強調して、対物レンズ像面71に像を形成することができる。   Further, the differential interference microscopic method of the present embodiment is a method for obtaining a stereoscopic observation image without using two polarized lights defined by a prism, unlike the conventional differential interference microscopic method. The new differential interference microscope of this embodiment includes an image having a phase difference obtained by the interference between the first-order diffracted light 501 due to the diffraction phenomenon and the A light 500 that is direct light, the −1st-order diffracted light 502 and the A light due to the diffraction phenomenon. 5 is a microscope configured to superimpose an image having a phase difference obtained by interference with 500 on the objective lens image plane 71. In the present invention, when the object is observed, an image can be formed on the objective lens image plane 71 by emphasizing the refractive index difference at the object boundary and the step difference at the object boundary. it can.

従って、本実施形態の新微分干渉型顕微鏡を用いることで、従来の微分干渉顕微鏡で必須の高価な対物レンズやノマルスキープリズム偏光子などの光学素子を必要としないで、立体的な観察画像が得られる。また、その立体的な観察画像は、画像変化が少なく高い解像度で、さらに実際の物体の色調に近い色彩で像を得ることができる。   Therefore, by using the new differential interference microscope of the present embodiment, a stereoscopic observation image can be obtained without using an expensive objective lens and a Nomarski prism polarizer, which are essential for the conventional differential interference microscope. It is done. Further, the stereoscopic observation image can be obtained with a high resolution with little image change and a color close to the color tone of the actual object.

また、本実施形態の新微分干渉型顕微鏡を用いた立体的な観察画像は、従来の明視野顕微鏡による明視野像と比較した場合にも、光量の減衰が少なく、像の強度の低下が少なく、観察対象物の像のコントラストの低下が少なく、標本の色に関する情報の欠落が少なく色バランスの変化が少ないという効果を得ることができる。   In addition, the stereoscopic observation image using the new differential interference microscope of the present embodiment has less attenuation of light amount and less decrease in image intensity when compared with a bright field image obtained by a conventional bright field microscope. Thus, it is possible to obtain the effects that the contrast of the image of the observation object is less lowered, the lack of information on the color of the sample is small, and the change in the color balance is small.

また、本実施形態の微分干渉型顕鏡法と、従来の位相差顕鏡法と比較した場合にも、従来の位相差顕鏡法が、A光500とその他の回折光との間に位相差を持たせるという発想であったのに対し、本発明では、回折光の一部分にのみ位相差を持たせるというまったく新しい発想である。さらに、本実施形態の微分干渉型顕鏡法による画像は、瞳上で位相差を持たせる領域をコントロールすることで、従来の明視野画像を基本として、細かい構造をもった部分だけを選択して強調する画像を得ることができるので、透明に近い物体であっても、容易に観察することができるという利点がある。   In addition, when the differential interference microscope method of the present embodiment is compared with the conventional phase contrast microscope method, the conventional phase contrast microscope method is located between the A light 500 and other diffracted light. In contrast to the idea of giving a phase difference, the present invention is a completely new idea of giving a phase difference to only a part of the diffracted light. Furthermore, the differential interference microscopic image of this embodiment selects only a portion having a fine structure based on a conventional bright-field image by controlling a region having a phase difference on the pupil. Therefore, there is an advantage that even a nearly transparent object can be easily observed.

<<<第2の実施形態>>>
図4(a)、(b)に示した本発明の第2の実施形態の一例としての位相板では、線対称軸102の両側にB領域とC領域を設ける点では、第1の実施形態と同様であるが、位相板上で直交するX軸とY軸の両方の軸に対して、第1の実施形態の「縦線に対しての微分干渉効果があり縦線が強調される」という効果を得られるようにした実施形態である。なお、図4(a)、(b)に示したA領域、B領域及びC領域の形状及び配置も、本実施形態の位相板の一例であって、これに限定されるものではなく、第1の実施形態の場合と同様にして求められる他の形状及び配置であってもよい。
<<< Second Embodiment >>>
In the phase plate as an example of the second embodiment of the present invention shown in FIGS. 4A and 4B, the first embodiment is provided in that the B region and the C region are provided on both sides of the line symmetry axis 102. In the first embodiment, “there is a differential interference effect with respect to the vertical line and the vertical line is emphasized” with respect to both the X axis and the Y axis orthogonal to each other on the phase plate. In this embodiment, the above-described effect can be obtained. The shapes and arrangements of the A region, the B region, and the C region shown in FIGS. 4A and 4B are also examples of the phase plate of the present embodiment, and are not limited thereto. Other shapes and arrangements obtained in the same manner as in the first embodiment may be used.

その目的のために第2の実施形態の位相差板120(43)では、光軸100を通過するオリジナルの線対称軸102を図面上で左回りに45度傾け、位相差板120(43)の円周辺と線対称軸102との両方の交点から、線対称軸102に対して両側に45度で、位相差板120(43)の円周辺に内接する正方形を描くように境界線を設定し、光軸100の周囲に円形にA領域122(44)を設定する。この場合、オリジナルの線対称軸102は位相板43を製造する際に有効であるが、それとは別に、第1の実施形態の「縦線に対しての微分干渉効果があり縦線が強調される」という効果を得るための線対称軸として、B−B線の位置にX軸方向の線対称軸が設定され、X軸と直交するようにY軸方向の線対称軸が設定される。   For that purpose, in the retardation plate 120 (43) of the second embodiment, the original line symmetry axis 102 passing through the optical axis 100 is inclined 45 degrees counterclockwise in the drawing, and the retardation plate 120 (43). The boundary line is set so as to draw a square inscribed around the circle of the phase difference plate 120 (43) at 45 degrees on both sides with respect to the line symmetry axis 102 from the intersection of both the circle circumference and the line symmetry axis 102 Then, the A region 122 (44) is set in a circle around the optical axis 100. In this case, the original line-symmetrical axis 102 is effective when the phase plate 43 is manufactured. However, in the first embodiment, “the differential line has an effect of differential interference with the vertical line and the vertical line is emphasized. As the line symmetry axis for obtaining the effect of “R”, the line symmetry axis in the X axis direction is set at the position of the BB line, and the line symmetry axis in the Y axis direction is set so as to be orthogonal to the X axis.

従って、第2の実施形態の新微分干渉型顕微鏡1では、位相板120(43)において、光軸100を通過する線対称軸は、光軸100を中心として所定の中心角毎に複数本(この場合はオリジナルの線対称軸102に、直角のX軸方向とY軸方向の2本が加わる)が設定され、各々の線対称軸(X軸とY軸)で分割された両側の軸対像な領域(B領域124(45)及びC領域126(47))のうちの何れか一方の透光領域(この場合はB領域124(45))内において、対応する線対称軸102+X軸+Y軸に対して他方の透光領域と線対称な位置に第2の光学材料の位相差発生層が配置されて、位相差発生領域125(46)が形成される。   Therefore, in the new differential interference microscope 1 of the second embodiment, in the phase plate 120 (43), a plurality of line symmetry axes that pass through the optical axis 100 are provided at predetermined center angles with the optical axis 100 as the center ( In this case, the original line-symmetrical axis 102 is added with two perpendicular X-axis and Y-axis directions), and the pair of axes on both sides divided by the respective line-symmetrical axes (X-axis and Y-axis) In any one of the translucent areas (in this case, the B area 124 (45)) of the image areas (B area 124 (45) and C area 126 (47)), the corresponding line symmetry axis 102 + X axis + Y The retardation generation layer 125 (46) is formed by arranging the retardation generation layer of the second optical material at a position line-symmetric with the other light transmission region with respect to the axis.

つまり、本実施形態の新微分干渉型顕微鏡1では、例えば、結像画像の平面上で直交するX軸とY軸に対応する2本の線対称軸を有する場合でも、図6のように形成し、各々の線対称軸(X軸とY軸)の両側にB領域125(45)とC領域126(47)を設定することで、従来の微分干渉顕微鏡のように立体的な画像を得ることができる。   That is, the new differential interference microscope 1 of the present embodiment is formed as shown in FIG. 6 even when it has two line symmetry axes corresponding to the X axis and Y axis orthogonal to each other on the plane of the formed image. Then, by setting the B region 125 (45) and the C region 126 (47) on both sides of each line symmetry axis (X axis and Y axis), a three-dimensional image can be obtained like a conventional differential interference microscope. be able to.

このように光軸100を通る線対称軸(X軸とY軸)は、図1に示した線対称軸102の1本に限らず、2本又はそれ以上に増加させることもできる。例えば、2本の線対称軸(X軸とY軸)を図4のように直交させて配置することもできるが、2本以上の線対称軸を光軸100の回りに等角度毎に設定することもできる。この場合、A領域122(44)は、例えば円形のように、全ての線対称軸に対して線対称な図形となる。また、B領域124(45)とC領域126(47)は、少なくとも一本の線対称軸に対して線対称な位置関係となるように配置される。   Thus, the line symmetry axis (X axis and Y axis) passing through the optical axis 100 is not limited to one of the line symmetry axes 102 shown in FIG. 1, and can be increased to two or more. For example, two line symmetry axes (X axis and Y axis) can be arranged orthogonally as shown in FIG. 4, but two or more line symmetry axes are set around the optical axis 100 at equal angles. You can also In this case, the A region 122 (44) is a line-symmetric figure with respect to all line-symmetrical axes, for example, a circle. Further, the B region 124 (45) and the C region 126 (47) are arranged so as to have a line-symmetric positional relationship with respect to at least one line-symmetric axis.

また、本実施形態の新微分干渉型顕微鏡1では、A領域122(44)は、光軸100を含む円形である。これにより、本実施形態の位相板43の瞳形状は横線(X軸)縦線(Y軸)の両方向に対して微分干渉効果を得ることができ、縦線に加えて横線も強調される画像タイプが得られる。   Further, in the new differential interference microscope 1 of the present embodiment, the A region 122 (44) is a circle including the optical axis 100. Thereby, the pupil shape of the phase plate 43 of the present embodiment can obtain a differential interference effect in both directions of the horizontal line (X axis) and the vertical line (Y axis), and the horizontal line is emphasized in addition to the vertical line. The type is obtained.

また、本実施形態の新微分干渉型顕微鏡1では、A領域122(44)を円形とすることで、従来の明視野顕微鏡と同様に円形開口絞り22及び位相板120(43)の設計及び製造が可能となるので、設計及び製造が容易で製造コストを低減させ、製造に必要な期間を短縮させることができる。   Further, in the new differential interference microscope 1 of this embodiment, the A region 122 (44) is circular, so that the circular aperture stop 22 and the phase plate 120 (43) are designed and manufactured as in the conventional bright field microscope. Therefore, design and manufacturing are easy, manufacturing costs can be reduced, and a period required for manufacturing can be shortened.

<<<第3の実施形態>>>
図5(a)、(b)に示した本発明の第3の実施形態の一例としての位相板では、線対称軸102の両側にB領域とC領域を設け、位相板上で直交するX軸とY軸の両方の軸に対して、第1の実施形態の「縦線に対しての微分干渉効果があり縦線が強調される」という効果を得られるようにした実施形態である点では、第2の実施形態と同様であるが、本実施形態では、A領域132(44)を、光軸100を中心とする輪帯形状としている。なお、図5(a)、(b)に示したA領域、B領域及びC領域の形状及び配置も、本実施形態の位相板の一例であって、これに限定されるものではなく、第1の実施形態の場合と同様にして求められる他の形状及び配置であってもよい。
<<< Third Embodiment >>>
In the phase plate as an example of the third embodiment of the present invention shown in FIGS. 5A and 5B, the B region and the C region are provided on both sides of the line symmetry axis 102, and X is orthogonal on the phase plate. A point in which the effect of “the differential interference effect with respect to the vertical line and the vertical line being emphasized” of the first embodiment can be obtained with respect to both the axis and the Y axis. Then, although it is the same as that of 2nd Embodiment, A area | region 132 (44) is made into the ring zone shape centering on the optical axis 100 in this embodiment. The shapes and arrangements of the A region, the B region, and the C region shown in FIGS. 5A and 5B are also examples of the phase plate of the present embodiment, and are not limited thereto. Other shapes and arrangements obtained in the same manner as in the first embodiment may be used.

これにより、本実施形態の位相板130(43)のA光500が透過する瞳形状のA領域132(44)は輪帯形状となる。   Thereby, the pupil-shaped A region 132 (44) through which the A light 500 of the phase plate 130 (43) of the present embodiment is transmitted has an annular shape.

本実施形態の新微分干渉型顕微鏡1では、A領域132(44)を輪帯形状とすることで、開口絞り22の形状を従来の位相顕微鏡の位相版と同様にできるので、設計及び製造が可能となるので、設計及び製造が容易で製造コストを低減させ、製造に必要な期間を短縮させることができる。   In the new differential interference microscope 1 of the present embodiment, the shape of the aperture stop 22 can be made the same as the phase plate of the conventional phase microscope by forming the A region 132 (44) in a ring shape, so that the design and manufacture can be performed. Therefore, design and manufacture are easy, the manufacturing cost can be reduced, and the period required for manufacturing can be shortened.

<<<第4の実施形態>>>
図6(a)、(b)に示した本発明の第2の実施形態の一例としての位相板では、線対称軸102の両側にB領域とC領域を設ける点では、第1の実施形態と同様であるが、A領域142(44)は円形状にし、非透光領域を無くして、A領域142(44)のすぐ外側に、(B領域)144(45)とC領域146(47)を設けている。なお、図6(a)、(b)に示したA領域、B領域及びC領域の形状及び配置も、本実施形態の位相板の一例であって、これに限定されるものではなく、第1の実施形態の場合と同様にして求められる他の形状及び配置であってもよい。
<<< Fourth Embodiment >>>
In the phase plate as an example of the second embodiment of the present invention shown in FIGS. 6A and 6B, the first embodiment is provided in that the B region and the C region are provided on both sides of the line symmetry axis 102. However, the A region 142 (44) is circular, the non-translucent region is eliminated, and the (B region) 144 (45) and the C region 146 (47) are located just outside the A region 142 (44). ). The shapes and arrangements of the A region, the B region, and the C region shown in FIGS. 6A and 6B are also examples of the phase plate of the present embodiment, and are not limited thereto. Other shapes and arrangements obtained in the same manner as in the first embodiment may be used.

本実施形態の新微分干渉型顕微鏡1は、第2実施形態や第3実施形態のように、位相板上で直交するX軸とY軸の両方の軸に対して、第1の実施形態の「縦線に対しての微分干渉効果があり縦線が強調される」という効果を得られるのではなく、光軸100を中心とするほぼすべての方向の線を線対称軸として、全方向の線対称軸に対して「縦線に対しての微分干渉効果があり縦線が強調される」という効果を得られるようにしている。   The new differential interference microscope 1 of the present embodiment is the same as that of the first embodiment with respect to both the X axis and the Y axis orthogonal to each other on the phase plate, as in the second embodiment and the third embodiment. Rather than obtaining the effect of “the differential interference effect with respect to the vertical line and the vertical line being emphasized”, a line in almost all directions with the optical axis 100 as the center is taken as the line symmetry axis, With respect to the axis of line symmetry, an effect that “there is a differential interference effect with respect to the vertical line and the vertical line is emphasized” can be obtained.

<<<第5の実施形態>>>
図7には、本発明の第5の実施形態の光学系の一例としての落射型位相差顕微鏡に本発明の位相差板を適用する場合の光学系の概略の構成と照明光の光路が示されている。
第5実施形態の落射型で新方式の位相差顕微鏡2では、第1の実施形態の新方式の位相差顕微鏡1と比較して、概略的に、落射照明光学系10、ハーフミラー31、結像光学系(対物レンズ光学系)40で異なっている。また、落射照明光学系10の光路中には、光源5側の対物レンズ射出瞳と共役な位置(以下、照明光学系中射出瞳共役位置と記載する)21に開口絞り22が配置されている。開口絞り22の透光領域23を透過した照明光は、ハーフミラー31に向けて出射される。
<<< Fifth Embodiment >>>
FIG. 7 shows a schematic configuration of an optical system and an optical path of illumination light when the retardation plate of the present invention is applied to an episcopic phase contrast microscope as an example of the optical system of the fifth embodiment of the present invention. Has been.
In the epi-illumination type new phase contrast microscope 2 of the fifth embodiment, the epi-illumination optical system 10, the half mirror 31, and the connection are roughly compared with the phase contrast microscope 1 of the new system of the first embodiment. The difference is in the image optical system (objective lens optical system) 40. Further, in the optical path of the epi-illumination optical system 10, an aperture stop 22 is disposed at a position 21 (hereinafter referred to as an exit pupil conjugate position in the illumination optical system) that is conjugate with the objective lens exit pupil on the light source 5 side. . The illumination light transmitted through the light transmitting region 23 of the aperture stop 22 is emitted toward the half mirror 31.

ハーフミラー31は、光源5から出射されて開口絞り22を透過した照明光を対物レンズ側に反射すると共に、被観察試料61からの反射光を、対物レンズ像面71側に透過させる。   The half mirror 31 reflects the illumination light emitted from the light source 5 and transmitted through the aperture stop 22 to the objective lens side, and transmits the reflected light from the observed sample 61 to the objective lens image plane 71 side.

結像光学系(対物レンズ光学系)40中の対物レンズ41では、ハーフミラー31からの照明光が上面から入射され、被観察試料61又は物体面51に向けて照明光を下面から出射すると共に、被観察試料61又は物体面51からの反射光が下面から入射され、反射光をハーフミラー31に出射する。射出瞳共役位置42には、位相板43が設けられる。また、位相板43は第1の実施形態と同様であるが、図7に示したA領域、B領域及びC領域の形状及び配置も、本実施形態の位相板の一例であって、これに限定されるものではなく、第1の実施形態の場合と同様にして求められる他の形状及び配置であってもよい。   In the objective lens 41 in the imaging optical system (objective lens optical system) 40, the illumination light from the half mirror 31 is incident from the upper surface, and the illumination light is emitted from the lower surface toward the observed sample 61 or the object surface 51. Reflected light from the observed sample 61 or the object surface 51 is incident from the lower surface, and the reflected light is emitted to the half mirror 31. A phase plate 43 is provided at the exit pupil conjugate position 42. Further, the phase plate 43 is the same as that of the first embodiment, but the shape and arrangement of the A region, the B region, and the C region shown in FIG. 7 are also examples of the phase plate of the present embodiment. It is not limited, and other shapes and arrangements obtained in the same manner as in the first embodiment may be used.

次に、対物レンズ41において、下面から入射された反射光は、対物レンズ41中を図7の下側から上側へ透光される。反射光は、位相板43に達し、位相膜領域45で位相操作されてハーフミラー31に向けて出射される。位相膜領域45では、位相膜により反射光の位相が、例えば1/4波長操作されて進められるか遅らせられて出射される(1/4波長板の場合)   Next, in the objective lens 41, the reflected light incident from the lower surface is transmitted through the objective lens 41 from the lower side to the upper side in FIG. The reflected light reaches the phase plate 43, is phase-operated in the phase film region 45, and is emitted toward the half mirror 31. In the phase film region 45, the phase of the reflected light is emitted by being advanced or delayed by, for example, a quarter wavelength operation by the phase film (in the case of a quarter wavelength plate).

このように本発明の位相差板43は、上記したような落射型の位相差顕微鏡2についても、第1〜第4の実施形態と同様に問題無く適用することができる。従って、本実施形態の落射型の位相差顕微鏡2も、第1〜第4の実施形態と同様な効果を得ることができる。   Thus, the phase difference plate 43 of the present invention can also be applied to the epi-illumination type phase contrast microscope 2 as described above without any problem as in the first to fourth embodiments. Therefore, the epi-illumination type phase contrast microscope 2 of the present embodiment can also obtain the same effects as those of the first to fourth embodiments.

<<<第6の実施形態>>>
図8には、本発明の第6の実施形態の光学系の一例としての投影露光装置に本発明の位相差板を適用する場合の光学系の概略の構成と照明光の光路が示されている。
<<< Sixth Embodiment >>>
FIG. 8 shows a schematic configuration of an optical system and an optical path of illumination light when the retardation plate of the present invention is applied to a projection exposure apparatus as an example of an optical system of a sixth embodiment of the present invention. Yes.

本発明はまた、本実施形態のようにマスクの像を投影して露光する、露光装置の光学系に使用することも可能である。より詳しくは、本発明の位相板43を含む光学系の応用範囲は、上記した第1〜第5の実施形態のように顕微鏡に限らず、露光装置等の投影光学系等に応用が可能である。また、本実施形態の位相板43は第1の実施形態と同様であるが、図8に示したA領域、B領域及びC領域の形状及び配置も、本実施形態の位相板の一例であって、これに限定されるものではなく、第1の実施形態の場合と同様にして求められる他の形状及び配置であってもよい。   The present invention can also be used in an optical system of an exposure apparatus that projects and exposes an image of a mask as in this embodiment. More specifically, the application range of the optical system including the phase plate 43 of the present invention is not limited to the microscope as in the first to fifth embodiments, and can be applied to a projection optical system such as an exposure apparatus. is there. The phase plate 43 of the present embodiment is the same as that of the first embodiment, but the shapes and arrangements of the A region, the B region, and the C region shown in FIG. 8 are also examples of the phase plate of the present embodiment. However, the present invention is not limited to this, and other shapes and arrangements obtained in the same manner as in the first embodiment may be used.

例えば、図8に示した新投影光学系3の場合には、レチクル面81を透過して投影される像面71に投影される像に歪み等が無いこと、例えば、図2及び図4〜6中の横方向をx軸とした場合のx軸方向の対称性が確保されている必要が有る。そのために、(aa)A領域44に対する第2の光学材料を有するB領域45の位相差と、(bb)A領域44に対するC領域47の位相差は、同じ値であることが望ましく、上記数式(数3)を材質及び厚みを選択することにより満足することが望ましい。
これは、回折光がB領域を通った後にA光500と干渉して得られる像のシフト量と、回折光がC領域を通った後にA光500と干渉して得られる像のシフト量の絶対値が同じで、符号が逆であることを意味し、x軸方向の対称性が確保されていることを意味する。
For example, in the case of the new projection optical system 3 shown in FIG. 8, there is no distortion or the like in the image projected on the image plane 71 that is transmitted through the reticle surface 81 and projected, for example, FIGS. It is necessary to ensure symmetry in the x-axis direction when the horizontal direction in FIG. Therefore, it is preferable that (aa) the phase difference of the B region 45 having the second optical material with respect to the A region 44 and (bb) the phase difference of the C region 47 with respect to the A region 44 have the same value. It is desirable to satisfy (Equation 3) by selecting the material and thickness.
This is because the shift amount of the image obtained by interference with the A light 500 after the diffracted light passes through the B region and the shift amount of the image obtained by interference with the A light 500 after the diffracted light passes through the C region. This means that the absolute values are the same and the signs are reversed, and that symmetry in the x-axis direction is ensured.

このように本発明の位相差板43は、上記したような投影露光装置3についても、第1〜第4の実施形態と同様に問題無く適用することができる。従って、本実施形態の新投影光学系3も、第1〜第4の実施形態と同様な効果を得ることができる。   As described above, the retardation plate 43 of the present invention can be applied to the projection exposure apparatus 3 as described above without any problem as in the first to fourth embodiments. Therefore, the new projection optical system 3 of the present embodiment can also obtain the same effects as those of the first to fourth embodiments.

上記の各実施形態に示したように本発明の光学系は、光軸に沿って、光源からの照明光の一部を透過させる開口絞りと、当該開口絞りを透過した直接光である0次回折光と、拡散光である1次回折光及び−1次回折光が透過する位相板を少なくとも有し、その位相板を透過した光が結像される光学系である。その位相板は、その基材部が光源から出射する所定波長の照明光が透過可能な材料である第1の光学材料で形成される。その位相板には、光源から出射する所定波長の照明光が透過可能な材料であって、第1の光学材料を透過する光とは位相が異なるように位相差発生層が、1次回折光が透過するB領域又は−1次回折光が透過するC領域の何れか一方にのみに配置される。   As shown in each of the above embodiments, the optical system of the present invention has an aperture stop that transmits a part of illumination light from the light source along the optical axis and direct light that is transmitted directly through the aperture stop. The optical system has at least a phase plate through which folded light, diffused light, and first-order diffracted light and −1st-order diffracted light are transmitted, and the light transmitted through the phase plate is imaged. The phase plate is formed of a first optical material that is a material that allows the base material portion to transmit illumination light having a predetermined wavelength emitted from a light source. The phase plate is made of a material that can transmit illumination light having a predetermined wavelength emitted from the light source, and the phase difference generation layer has the first-order diffracted light so that the phase is different from the light transmitted through the first optical material. It is arranged only in either the B region that transmits or the C region that transmits −1st order diffracted light.

また、本発明の位相板は、A領域と、B領域と、C領域とは、各々が重複しないように装置設計上で配置される。また、位相差発生層が配置される透光領域は、位相板上の、光軸を通過する線対称軸で分割された両側の軸対像な領域のうちの何れか一方の領域内に配置される。   In the phase plate of the present invention, the A region, the B region, and the C region are arranged on the device design so that they do not overlap each other. Further, the light-transmitting region where the phase difference generation layer is arranged is arranged in one of the two axially-paired regions divided by the line symmetry axis passing through the optical axis on the phase plate. Is done.

また、本発明の位相板は、光軸を通過する線対称軸に対して線対称の位置となるB領域又はC領域の何れか一方のみに位相差発生層が配置される。他方の領域には配置されず第1の光学材料のみである。これにより、A光との位相差が発生した回折光(1次回折光《B光》または−1次回折光《C光》の一方)と、A光との位相差が発生していない回折光(−1次回折光《C光》または1次回折光《B光》の他方)とを合成する際の干渉の効果が適切なレベルとなって、従来のノマルスキー型微分干渉顕微鏡のような立体的な画像を良好に得ることができる。   In the phase plate of the present invention, the phase difference generation layer is disposed only in one of the B region and the C region that are in a line-symmetrical position with respect to the line-symmetric axis passing through the optical axis. Only the first optical material is not disposed in the other region. Thereby, the diffracted light (one of the first-order diffracted light << B light >> or the -1st-order diffracted light << C light >>) having a phase difference with the A light and the diffracted light with no phase difference between the A light ( -1st order diffracted light << C light >> or 1st order diffracted light << B light >> and the effect of interference at the appropriate level becomes a three-dimensional image like a conventional Nomarski differential interference microscope. Can be obtained satisfactorily.

また、本発明の位相板は、A領域は、線対称軸に近接する位置に配置され、位相差発生層が配置される透光領域(B領域又はC領域)が、A領域よりも外周側の位置に配置されてもよい。また、A領域を光軸に近い中心部に配置することで、B領域とC領域を透過する光(B光とC光)に位相差を発生させるためのA領域を共通にして、各領域の配置を効率化及び容易化することができる。また、A領域は、線対称軸に対して線対称な形状であり、線対称軸に対して線対称な位置関係となるように配置されてもよい。   In the phase plate of the present invention, the A region is disposed at a position close to the line symmetry axis, and the translucent region (B region or C region) in which the phase difference generation layer is disposed is located on the outer peripheral side of the A region. It may be arranged at the position. In addition, by arranging the A region in the central part close to the optical axis, the A region for generating a phase difference in the light transmitted through the B region and the C region (B light and C light) is made common to each region. Can be made more efficient and easier. Further, the region A may have a line-symmetric shape with respect to the line symmetry axis, and may be arranged so as to have a line-symmetric positional relationship with respect to the line symmetry axis.

また、本発明の位相板は、A領域を、線対称軸に対して線対称な形状で、線対称軸に対して線対称に配置することで、A領域からの光(A光)を、B領域とC領域の光に対して位相差を発生させるために均等の配分で影響させることができる。これにより、従来のノマルスキー型微分干渉顕微鏡のように立体的な画像を良好に得ることができる。また、A領域は、光軸を中心とする輪帯形状であってもよい。また、A領域を輪帯形状とすることで、開口絞りの形状を従来の位相顕微鏡の位相版と同様にできるので、設計及び製造が可能となる。これにより、設計及び製造が容易で製造コストを低減させ、製造に必要な期間を短縮させることができる。   Moreover, the phase plate of the present invention arranges the A region in a line symmetric shape with respect to the line symmetric axis and line symmetric with respect to the line symmetric axis, so that light (A light) from the A region is In order to generate a phase difference with respect to the light in the B region and the C region, it is possible to influence with equal distribution. Thereby, a three-dimensional image can be satisfactorily obtained like a conventional Nomarski type differential interference microscope. Further, the region A may have a ring shape centered on the optical axis. Further, by making the A region into a ring shape, the shape of the aperture stop can be made the same as that of a phase plate of a conventional phase microscope, so that design and manufacture are possible. Thereby, design and manufacture are easy, manufacturing cost can be reduced, and a period required for manufacturing can be shortened.

また、本発明の位相板の基材部は、例えば、位相差発生層が配置される透光領域(B領域又はC領域)に、位相差発生層を配置するための凹部が形成され、少なくともその凹部に、位相差発生層が配置されてもよい。本発明の位相板では、その凹部を形成することで、第1の光学材料で形成される基材部における凹部と、それ以外の部分では、第1の光学材料による位相差が発生するので、ここでさらに位相差発生層による位相差に追加することで,位相差を増大させることができる。また、その凹部に位相差発生層を配置することにより、製造時の位相板の基材部上への配置作業を容易にできる。   In addition, the base part of the phase plate of the present invention has, for example, a light-transmitting region (B region or C region) in which the phase difference generating layer is disposed, and a concave portion for arranging the phase difference generating layer is formed. A retardation generation layer may be disposed in the recess. In the phase plate of the present invention, by forming the concave portion, a phase difference due to the first optical material occurs in the concave portion in the base material portion formed of the first optical material and other portions. Here, the phase difference can be increased by adding to the phase difference due to the phase difference generation layer. Moreover, the arrangement | positioning operation | work on the base-material part of the phase plate at the time of manufacture can be made easy by arrange | positioning a phase difference generation layer in the recessed part.

また、本発明の位相板は、位相板の表面を保護するために、位相板と略同形状のカバーガラスを有する場合、例えば、位相板の凹部を含む全表面とカバーガラスとの間に、硬化後に特性を有する接着剤の接着剤層が形成されてもよい。その接着剤は、硬化後に所定の厚みとなるように基材部上に塗布し、その上を位相板と略同形状のカバーガラスで覆うことで、容易にB領域及びC領域を得るようにしてもよい。   Further, in order to protect the surface of the phase plate, the phase plate of the present invention has a cover glass having substantially the same shape as the phase plate, for example, between the entire surface including the concave portion of the phase plate and the cover glass, An adhesive layer of adhesive having properties after curing may be formed. The adhesive is applied on the base material portion so as to have a predetermined thickness after curing, and is covered with a cover glass having substantially the same shape as the phase plate so that the B region and the C region can be easily obtained. May be.

また、本発明の位相板は、位相差発生層は、位相差を発生させるために、光軸方向に所定の厚みを有する層状に形成されてもよい。例えば、薄膜の位相膜を形成するのではなく、所定厚みの個体が層状に形成された位相差発生層を基材部に配置するか、接着剤等の液体またはジェル状の位相差発生層を基材部上に硬化後に所定厚となる量と厚みで塗布して層状に形成することで、製造を容易にして、薄膜等に比較してコストを低減することができる。   In the phase plate of the present invention, the phase difference generating layer may be formed in a layer shape having a predetermined thickness in the optical axis direction in order to generate a phase difference. For example, instead of forming a thin phase film, a phase difference generating layer in which a solid having a predetermined thickness is formed in a layer shape is disposed on the base material part, or a liquid such as an adhesive or a gel phase difference generating layer is provided. By coating the base material portion with a predetermined thickness and thickness so as to form a layer after curing, manufacturing can be facilitated and cost can be reduced as compared with a thin film or the like.

また、本発明の位相板は、その基材部が光源から出射する所定波長の照明光が透過可能な材料である第1の光学材料で形成され、基材部基材部における1次回折光が透過するB領域又は−1次回折光が透過するC領域の何れか一方にのみに、光源から出射する所定波長の照明光が透過可能な材料であって、第1の光学材料を透過する光とは位相が異なるように位相差発生層が配置される。つまり、位相板において0次回折光が透過するA領域には、位相差発生層が配置されず、B領域又はC領域の何れか一方のみに、位相差発生層が配置された構成になる。これにより、例えばB領域に位相差発生層が配置された場合、A光とB光とによる位相差が顕著な光と、A光とC光とによる位相差が顕著ではない光の双方を出射することができる。   Further, the phase plate of the present invention is formed of a first optical material whose material is capable of transmitting illumination light having a predetermined wavelength emitted from the light source, and the first-order diffracted light in the base material base material portion is A material that can transmit illumination light of a predetermined wavelength emitted from the light source only in one of the B region that transmits and the C region that transmits the −1st order diffracted light, and the light that transmits the first optical material; The phase difference generating layer is arranged so that the phases are different. That is, the phase difference generation layer is not disposed in the A region where the 0th-order diffracted light is transmitted through the phase plate, and the phase difference generation layer is disposed only in either the B region or the C region. Thereby, for example, when the phase difference generation layer is arranged in the B region, both the light having a remarkable phase difference between the A light and the B light and the light having no significant phase difference between the A light and the C light are emitted. can do.

また、本発明の光学系は、光軸に沿って、光源からの照明光の一部を透過させる開口絞りと、当該開口絞りを透過した直接光である0次回折光と、拡散光である1次回折光及び−1次回折光が透過する位相板を少なくとも有し、その位相板を透過した光が結像される光学系である。その位相板の製造時には、まず基材部を、光源から出射する所定波長の照明光が透過可能な材料である第1の光学材料で形成し、その後、1次回折光が透過するB領域又は−1次回折光が透過するC領域の何れか一方にのみに、光源から出射する所定波長の照明光が透過可能な材料であって、第1の光学材料を透過する光とは位相が異なるように位相差発生層を配置する工程を含む。   The optical system of the present invention is an aperture stop that transmits a part of illumination light from a light source along the optical axis, 0th-order diffracted light that is direct light that has passed through the aperture stop, and 1 that is diffused light. It is an optical system that has at least a phase plate that transmits the first-order diffracted light and the −1st-order diffracted light, and images the light that has passed through the phase plate. At the time of manufacturing the phase plate, first, the base material portion is formed of a first optical material that is a material capable of transmitting illumination light of a predetermined wavelength emitted from the light source, and then the B region or − A material capable of transmitting illumination light having a predetermined wavelength emitted from the light source only in one of the C regions through which the first-order diffracted light is transmitted, and having a phase different from that of the light transmitted through the first optical material. A step of disposing a phase difference generating layer;

また、本発明の光学系では、立体的な観察画像が得るために、従来の微分干渉型の顕微鏡のようにプリズムを必要としないので、顕微鏡の製造コスト及び観察に必要なコストを下げることができる。位相差発生層を配置する前に、例えば、位相板の基材部における位相差発生層が配置される透光領域に、位相差発生層を配置するための凹部を形成するようにしてもよい。位相板に凹部を設ける加工は、従来の加工技術で実施可能であり、従来の位相差顕微鏡と同様に容易に製造が可能であり、製造コストの上昇も最小限ですみ、立体的な観察画像を得る場合の従来の微分干渉型の顕微鏡よりも非常にコストダウンできる。   Further, in the optical system of the present invention, since a three-dimensional observation image is obtained, a prism is not required unlike a conventional differential interference microscope, so that the manufacturing cost of the microscope and the cost necessary for observation can be reduced. it can. Before arranging the phase difference generating layer, for example, a recess for arranging the phase difference generating layer may be formed in a light transmitting region where the phase difference generating layer is arranged in the base part of the phase plate. . Processing to provide a recess in the phase plate can be performed using conventional processing technology, and can be easily manufactured in the same way as conventional phase contrast microscopes, with minimal increase in manufacturing costs. The cost can be greatly reduced as compared with the conventional differential interference microscope.

また、本発明の光学系では、例えば、位相板の基材部に凹部を形成した後に、位相板における少なくとも凹部に、位相差発生層を配置してもよい。これにより、位相差発生層を配置することや位置出しが容易になり、製造時間、製造コストを低減させることができる。また、位相板の表面を保護するためのカバーガラスを有する場合には、例えば、位相差発生層として、硬化後に特性を有する接着剤を用い、位相板の凹部を含む全表面に、硬化後に所定厚みとなるように塗布し、位相板の凹部を含む全表面とカバーガラスとの間に、接着剤層を形成すてもよい。このカバーガラスとの間に接着剤層を形成する場合には、接着剤の表面を平坦にでき、またその後の表面の平坦度が悪化することをカバーガラスにより防ぐことができる。   In the optical system of the present invention, for example, after forming a concave portion in the base portion of the phase plate, a phase difference generating layer may be disposed in at least the concave portion of the phase plate. Thereby, it becomes easy to arrange | position and position a phase difference generation layer, and can reduce manufacturing time and manufacturing cost. In addition, when a cover glass for protecting the surface of the phase plate is provided, for example, an adhesive having characteristics after curing is used as the phase difference generation layer, and the entire surface including the concave portion of the phase plate is predetermined after curing. You may apply | coat so that it may become thickness and may form an adhesive bond layer between the cover glass and the whole surface including the recessed part of a phase plate. When an adhesive layer is formed between the cover glass and the cover glass, the surface of the adhesive can be flattened, and deterioration of the flatness of the subsequent surface can be prevented by the cover glass.

1 光学系(新微分干渉型顕微鏡)、
2 光学系(新落射型−微分干渉型顕微鏡)、
3 光学系(新投影光学系)、
5 光源、
10 照明光学系、
11、12、13、14 (照明光学系の)レンズ
21 照明光学系中射出瞳共役位置(照明光学系中における対物レンズの射出瞳と共役な位置)、
22 開口絞り装置(開口絞り、
23 (開口絞り装置側)透光領域、
31 ハーフミラー、
40 結像光学系、
41、46 (結像光学系の)レンズ
42 (結像光学系中の)射出瞳共役位置(対物レンズの射出瞳と共役な位置)、
43 位相板、
44、112、122、132、142 A領域、
45、114、124、134、144 B領域、
46、115、125、135、145 位相差発生領域、
47、116、126、136、146 C領域、
48 基材部、
51 物体面(対物レンズの射出瞳位置)、
61 被観察試料)、
71 対物レンズ像面、
81 レチクル面(マスク面)
100 光軸、
102 線対称軸、
104 線対称軸の第1方側、
106 線対称軸の第2方側、
117 カバーガラス、
118、128、138 非透光領域、
500 (A領域を透過する)第1透過光、
501 (B領域を透過する)第2透過光、
502 (C領域を透過する)第3透過光。
1 Optical system (new differential interference microscope),
2 Optical system (new epi-illumination-differential interference microscope),
3 Optical system (new projection optical system),
5 light source,
10 Illumination optics,
11, 12, 13, 14 Lens (of illumination optical system) 21 Exit pupil conjugate position in illumination optical system (position conjugate with exit pupil of objective lens in illumination optical system),
22 Aperture stop device (aperture stop,
23 (aperture stop device side) translucent region,
31 half mirror,
40 Imaging optics,
41, 46 lens (in the imaging optical system) 42 exit pupil conjugate position (in the imaging optical system) (position conjugate with the exit pupil of the objective lens),
43 phase plate,
44, 112, 122, 132, 142 area A,
45, 114, 124, 134, 144 B region,
46, 115, 125, 135, 145 phase difference generation region,
47, 116, 126, 136, 146 C region,
48 base material part,
51 Object plane (exit pupil position of objective lens),
61 sample to be observed),
71 Objective lens image plane,
81 Reticle surface (mask surface)
100 optical axes,
102 line symmetry axis,
104 on the first side of the line symmetry axis,
106 the second side of the line symmetry axis,
117 cover glass,
118, 128, 138 non-translucent region,
500 first transmitted light (transmitting through region A),
501 second transmitted light (transmitting through region B),
502 Third transmitted light (transmitted through region C).

Claims (11)

光源からの光を平行光として物体を照明する照明系と、物体からの光を所定倍率で結像させる結像系とを有する光学系において、
照明系中の光源と共役な位置に、結像系に入射する直接光(0次光)を制限する開口
絞りと
結像系中の開口絞りの位置(瞳位置)に、全ての0次光が通過するA領域と、1次回折光が通過するB領域と、−1次回折光が通過するC領域とを有し、瞳面と光軸との交点を含む対称軸に関して、B領域とC領域が軸対像の関係にあり、B領域またはC領域は、A領域に対して所定位相差を発生させる構造を有し、B領域、C領域は、A領域と共通な領域が存在しない位相板とを含むことを特徴とする光学系。
In an optical system having an illumination system that illuminates an object using light from a light source as parallel light, and an imaging system that forms an image of light from the object at a predetermined magnification,
An aperture stop that limits direct light (0th order light) incident on the imaging system at a position conjugate with the light source in the illumination system, and all 0th order light at the position of the aperture stop (pupil position) in the imaging system. A region through which the first order diffracted light passes, and a C region through which the −1st order diffracted light passes, and the B region and the C region with respect to the symmetry axis including the intersection of the pupil plane and the optical axis Is a phase plate in which the B region or the C region has a structure that generates a predetermined phase difference with respect to the A region, and the B region and the C region have no common region with the A region. And an optical system.
A領域に対するB領域またはA領域に対するC領域の位相差をΔとすると、
Δは以下の条件を満足することを特徴とする請求項1に記載の光学系。
0.05π≦|Δ|≦0.95π
If the phase difference of the B region relative to the A region or the C region relative to the A region is Δ,
The optical system according to claim 1, wherein Δ satisfies the following condition.
0.05π ≦ | Δ | ≦ 0.95π
A領域に対するB領域またはA領域に対するC領域の位相差をΔとすると、
Δは以下の条件を満足することを特徴とする請求項2に記載の光学系。
0.25π≦|Δ|≦0.5π
If the phase difference of the B region relative to the A region or the C region relative to the A region is Δ,
The optical system according to claim 2, wherein Δ satisfies the following condition.
0.25π ≦ | Δ | ≦ 0.5π
前記0次光の通過するA領域は光軸と瞳面の交点に関して点対称の形状である
ことを特徴とする請求項2または3に記載の光学系。
4. The optical system according to claim 2, wherein the A region through which the zero-order light passes has a point-symmetric shape with respect to the intersection of the optical axis and the pupil plane.
前記0次光の通過するA領域は光軸と瞳面の交点を含む円形である
ことを特徴とする請求項4に記載の光学系。
The optical system according to claim 4, wherein the A region through which the zero-order light passes is a circle including an intersection of the optical axis and the pupil plane.
前記0次光の通過するA領域は光軸と瞳面の交点を含む矩形である
ことを特徴とする請求項4に記載の光学系。
The optical system according to claim 4, wherein the A region through which the zero-order light passes is a rectangle including an intersection of the optical axis and the pupil plane.
B領域及びC領域の持つA領域に対する位相差をそれぞれΔB、ΔCとすると、以下の条件を満足することを特徴とする請求項2乃至6の何れか1項に記載の光学系。
ΔB=ΔC
7. The optical system according to claim 2, wherein the following conditions are satisfied, where ΔB and ΔC are the phase differences of the B region and the C region with respect to the A region.
ΔB = ΔC
B領域またはC領域は、光を減衰させる構造を持ち、その透過率をTとすると以下の条件を満足することを特徴とする請求項2乃至6の何れか1項に記載の光学系。
0.1<T<0.9
The optical system according to any one of claims 2 to 6, wherein the B region or the C region has a structure for attenuating light, and the transmittance is T, and the following condition is satisfied.
0.1 <T <0.9
所定位相差を発生させる構造は、2以上の波長に対して一定の位相差Δを与える位相膜であり、その位相差Δは、比較的広い波長帯域で前記Δの条件を満足する請求項2乃至8の何れか1項に記載の光学系。   The structure for generating a predetermined phase difference is a phase film that gives a constant phase difference Δ to two or more wavelengths, and the phase difference Δ satisfies the condition of Δ in a relatively wide wavelength band. 9. The optical system according to any one of 1 to 8. 所定位相差を発生させる構造は、使用する光に対して透明であり、かつ、0次光と1次光の位相差を発生させる箇所は、光の進む光軸方向には単一な物質からなる層構造を有することを特徴とする請求項2乃至9の何れか1項に記載の光学系。   The structure that generates the predetermined phase difference is transparent to the light to be used, and the portion that generates the phase difference between the zero-order light and the first-order light is a single substance in the optical axis direction in which the light travels. The optical system according to claim 2, wherein the optical system has a layer structure as follows. 前記B領域とC領域は、前記A領域の矩形の対向する一組の辺の外側であり、前記対称軸に関して線対称の弓形であることを特徴とする請求項6乃至10何れか1項に記載の光学系。   The B region and the C region are outside a pair of opposing sides of the rectangle of the A region, and are arcuate line-symmetric with respect to the symmetry axis. The optical system described.
JP2013013255A 2013-01-28 2013-01-28 Optical system, phase plate used in optical system, and method of manufacturing optical system Active JP6095382B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013013255A JP6095382B2 (en) 2013-01-28 2013-01-28 Optical system, phase plate used in optical system, and method of manufacturing optical system
PCT/JP2014/051681 WO2014115871A1 (en) 2013-01-28 2014-01-27 Optical system, phase plate used in optical system, and method for manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013255A JP6095382B2 (en) 2013-01-28 2013-01-28 Optical system, phase plate used in optical system, and method of manufacturing optical system

Publications (2)

Publication Number Publication Date
JP2014145839A true JP2014145839A (en) 2014-08-14
JP6095382B2 JP6095382B2 (en) 2017-03-15

Family

ID=51227659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013255A Active JP6095382B2 (en) 2013-01-28 2013-01-28 Optical system, phase plate used in optical system, and method of manufacturing optical system

Country Status (2)

Country Link
JP (1) JP6095382B2 (en)
WO (1) WO2014115871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442413A (en) * 2016-09-29 2017-02-22 江苏大学 Two-beam non-orthogonal phase microscopic instant imaging system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598607B2 (en) * 2017-06-14 2020-03-24 Camtek Ltd. Objective lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129149A (en) * 1974-09-06 1976-03-12 Robert Hoffman ISOBUTSUTAI KANSATSUYOKENBIKYOSHISUTEMU
JPS6165107A (en) * 1984-09-07 1986-04-03 Hitachi Ltd Inspecting method for surface defect
JPH09230247A (en) * 1996-02-22 1997-09-05 Olympus Optical Co Ltd Phase difference microscope
JP2004184447A (en) * 2002-11-29 2004-07-02 Olympus Corp Optical address spatial light modulator and microscope system using the same
JP2006258990A (en) * 2005-03-15 2006-09-28 Osaka Industrial Promotion Organization Optical microscope
JP2009211010A (en) * 2008-03-06 2009-09-17 Yutaka Suenaga Optical component and phase contrast microscope using the optical component
JP2014515500A (en) * 2011-05-27 2014-06-30 ハー・エス・エー・ベー・ドレスデン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Assembly for generation of differential interference contrast images

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129149A (en) * 1974-09-06 1976-03-12 Robert Hoffman ISOBUTSUTAI KANSATSUYOKENBIKYOSHISUTEMU
JPS6165107A (en) * 1984-09-07 1986-04-03 Hitachi Ltd Inspecting method for surface defect
JPH09230247A (en) * 1996-02-22 1997-09-05 Olympus Optical Co Ltd Phase difference microscope
JP2004184447A (en) * 2002-11-29 2004-07-02 Olympus Corp Optical address spatial light modulator and microscope system using the same
JP2006258990A (en) * 2005-03-15 2006-09-28 Osaka Industrial Promotion Organization Optical microscope
JP2009211010A (en) * 2008-03-06 2009-09-17 Yutaka Suenaga Optical component and phase contrast microscope using the optical component
JP2014515500A (en) * 2011-05-27 2014-06-30 ハー・エス・エー・ベー・ドレスデン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Assembly for generation of differential interference contrast images

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442413A (en) * 2016-09-29 2017-02-22 江苏大学 Two-beam non-orthogonal phase microscopic instant imaging system and method
CN106442413B (en) * 2016-09-29 2019-02-05 江苏大学 A kind of micro- Polaroid system and method for the nonopiate phase of dual-beam

Also Published As

Publication number Publication date
JP6095382B2 (en) 2017-03-15
WO2014115871A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
Siegel et al. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers
Lee et al. Quantitative phase imaging unit
Fu et al. Quantitative DIC microscopy using an off-axis self-interference approach
JP3708246B2 (en) Optical microscope having light control member
US8755116B2 (en) Wavelength or polarization sensitive optical assembly and use thereof
CN104111590B (en) Based on the laser direct-writing device of combined vortex bivalve focal beam spot
JP2013504774A5 (en)
JP6546989B2 (en) Sample observing apparatus and sample observing method
US9891585B2 (en) Incoherent fluorescence digital holographic microscopy using transmission liquid crystal lens
KR101593080B1 (en) Diffraction phase microscope system and Method for simultaneous measurement of refractive index and thickness using the same
Shribak Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation
Finkeldey et al. Depth-filtering in common-path digital holographic microscopy
CN103197413B (en) The optical microscope imaging method of three-dimensional image can be produced
US20170205610A1 (en) Image-forming optical system, illuminating device, and observation apparatus
JP2009237109A (en) Phase-contrast microscope
JP6095382B2 (en) Optical system, phase plate used in optical system, and method of manufacturing optical system
JP2015219280A (en) Phase-contrast microscope and phase-contrast microscope system
US20170205609A1 (en) Image-forming optical system, illumination apparatus, and microscope apparatus
Brooker et al. Historical development of FINCH from the beginning to single-shot 3D confocal imaging beyond optical resolution
US20160266368A1 (en) Total internal reflection light illumination device
WO2009044834A1 (en) Polarization compensation optical system and polarization compensation optical element used in this optical system
JP2004318185A (en) Optical microscope having light control member
US2616334A (en) Phase microscopy
JP6381437B2 (en) Phase contrast microscope
Piper et al. Variable bright‐darkfield‐contrast, a new illumination technique for improved visualizations of complex structured transparent specimens

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250