JP2014145368A - Crash box made of steel - Google Patents

Crash box made of steel Download PDF

Info

Publication number
JP2014145368A
JP2014145368A JP2013012478A JP2013012478A JP2014145368A JP 2014145368 A JP2014145368 A JP 2014145368A JP 2013012478 A JP2013012478 A JP 2013012478A JP 2013012478 A JP2013012478 A JP 2013012478A JP 2014145368 A JP2014145368 A JP 2014145368A
Authority
JP
Japan
Prior art keywords
hat
section
cross
crash box
closed cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013012478A
Other languages
Japanese (ja)
Inventor
Hiroshi Okusu
洋 大楠
Shinnosuke Nishijima
進之助 西島
Katsuhide Nishio
克秀 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2013012478A priority Critical patent/JP2014145368A/en
Publication of JP2014145368A publication Critical patent/JP2014145368A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and light crash box made of a steel sheet, which copes with variations of crash angles and has excellent impact absorption properties in the axial collapse direction, by working out plans of improving a closed cross-sectional shape and imparting a taper to the crash box in the axial-length direction.SOLUTION: In the crash box made of the steel sheet having a hat-shaped closed cross sectional structure where a hat-shaped member bent into a hat shape and a member of a closing plate having different bending rigidity are stacked up to form a closed cross section structure and stacked sites of flanges protruded outside from the contour of the closed cross section are joined together, v-shaped recesses are formed in the inside direction of the closed cross section, on a web part of the hat-shaped member and on a central part region of the closing plate in the direction behind the web region, respectively, and the cross section shape has a shape where a cross sectional area is gradually increased rearward from the collapsing face side in the axial-length direction.

Description

本発明は、自動車フレーム、特にフロントフレームやリアフレームの先端に配置された、衝突時のエネルギーを効率良く吸収するための鋼板製クラッシュボックスに関する。   The present invention relates to a steel plate crash box that is disposed at the front end of an automobile frame, particularly a front frame or a rear frame, for efficiently absorbing energy at the time of a collision.

低速での衝突に際しては、クラッシュボックスのみが変形してエネルギーを吸収することにより、車体やその他の車輌部品に損傷を与えず、クラッシュボックスとバンパー補強部材の交換のみで補修が完了して修理費を軽減させることを目的として設置した緩衝部材が、クラッシュボックスである。したがって、クラッシュボックスとしては、それを構成する構造部材で衝撃エネルギーをいかに有効に吸収させるかが重要になる。
クラッシュボックスは、一般にモナカ構造の閉断面を有する鋼板プレス品が主流であり、軸長方向(長手方向)に衝撃荷重を受けたとき、蛇腹状に座屈変形することで衝撃エネルギーを吸収するように設計されている。この際、衝撃吸収特性を高めるため、第一番目の座屈の起りにくさに直結するピーク荷重を下げるとともに、外乱となる変動要因に左右されず、規則正しく蛇腹状に座屈変形を生じさせて衝撃エネルギーを安定的に効率良く吸収することが重要である。
In the event of a collision at low speed, only the crash box deforms and absorbs energy, so that the vehicle body and other vehicle parts are not damaged, and the repair is completed simply by replacing the crash box and bumper reinforcement members. The shock absorbing member installed for the purpose of reducing this is a crash box. Therefore, as a crash box, it is important how to effectively absorb the impact energy by the structural members constituting the crash box.
Crush boxes are generally made of steel plate pressed products with a closed cross-section with a monaca structure. When impact loads are applied in the axial length direction (longitudinal direction), the impact energy is absorbed by buckling in a bellows shape. Designed to. At this time, in order to improve the shock absorption characteristics, the peak load directly connected to the difficulty of the first buckling is lowered, and the buckling deformation is regularly generated in a bellows shape without being influenced by the fluctuation factors causing disturbance. It is important to absorb impact energy stably and efficiently.

例えば、自動車の先頭に配置されたクラッシュボックスは基端部をフロントフレームと、また先端部はバンパー補強部材と、ボルト等で固着させた状態でフェンダーパネルと平行して配置されている。衝突事故時に自動車が正面衝突した場合、このクラッシュボックスの先端部に衝撃荷重が加わって軸長方向に座屈変形を起こすが、衝突初期の荷重は比較的大きくなる傾向がある。また正面衝突時は運転手が身の危険性を感じて反射的にハンドルをきるため、衝突角度は斜めになる可能性が高い。   For example, a crash box arranged at the top of an automobile is arranged in parallel with the fender panel in a state where the base end is fixed to the front frame and the tip is fixed with a bumper reinforcing member and a bolt or the like. When a car collides head-on at the time of a collision accident, an impact load is applied to the tip of the crash box, causing buckling deformation in the axial direction, but the load at the beginning of the collision tends to be relatively large. In a frontal collision, the driver feels danger and turns the steering wheel reflectively, so the collision angle is likely to be oblique.

そこで、15km/h以下の軽衝突時には、座屈初期のピーク荷重を下げてフロントフレームを含むキャビン等の後方に配置された別の構造部材が最初に損傷することを防止し(以下、本明細書ではこの要求性能を「ダメージャビリティ」と記す)、さらには±10°以内の衝突角度変動を生じた場合でも、衝突面側からフロントフレーム側に向けて順次に塑性変形が進行するよう規則正しく蛇腹状に座屈変形させ(以下、本明細書ではこの要求性能を「ロバスト性」と記す)、衝突に伴う衝撃エネルギーのほぼすべてをクラッシュボックスのみで吸収できる(以下、本明細書ではこの要求性能を「衝撃吸収能」と記す)ようにすることが要求される。言い換えれば、クラッシュボックスは、車輌損傷を最小限に抑えるため、変動要因も考慮に入れて緩衝部材として衝突性能が発現できるよう設計する必要がある。   Therefore, at the time of a light collision of 15 km / h or less, the peak load in the initial buckling is lowered to prevent other structural members arranged behind the cabin including the front frame from being damaged first (hereinafter, this specification) In this document, this required performance is described as “damageability”. Furthermore, even when a collision angle fluctuation within ± 10 ° occurs, orderly plastic deformation progresses in order from the collision surface side to the front frame side. It is buckled and deformed in a bellows shape (hereinafter, this required performance is referred to as “robustness”), and almost all of the impact energy associated with the collision can be absorbed only by the crash box (hereinafter, this requirement is referred to in this specification). It is required that the performance be described as “shock absorbing ability”. In other words, in order to minimize vehicle damage, the crash box needs to be designed so that the impact performance can be exhibited as a buffer member in consideration of the fluctuation factors.

従来、上記課題を解決するため、例えば特許文献1に見られるように、潰れビードと呼ばれる変形の起点を与える窪みを配置する対策が取られてきた。特許文献1で提案された構造部材は、構造面で弱い潰れビードを、部材の軸長方向に対して等間隔に、かつ、その向きが軸長方向に対して直交するよう複数配置することにより、その部位を優先的に塑性変形させ、より低い荷重で対象とする部材の初期座屈を誘発させて、かつ、衝突面側から規則正しく蛇腹状に座屈変形させるように設計されたものである。   Conventionally, in order to solve the above-described problem, for example, as seen in Patent Document 1, a measure has been taken to arrange a depression called a crush bead that gives a starting point of deformation. In the structural member proposed in Patent Document 1, a plurality of weakly crushed beads on the structural surface are arranged at equal intervals with respect to the axial length direction of the member and the direction thereof is orthogonal to the axial length direction. It is designed to preferentially plastically deform the part, induce initial buckling of the target member with a lower load, and to buckle and deform regularly in a bellows shape from the collision surface side. .

また特許文献2にみられるように、衝突面側である前方から後方に向かって肉厚を漸増させることにより衝突初期のピーク荷重の低減を図るとともに、鋼板に比べて比強度(材料の単位密度に対する引張強さの比率)が高い繊維強化樹脂を材料として使用することで、部材単位質量当りの衝撃吸収能の大幅な向上を図ることを可能にした円筒状の構造部材も提案されている。   In addition, as seen in Patent Document 2, the peak load at the beginning of the collision is reduced by gradually increasing the thickness from the front to the rear on the collision surface side, and the specific strength (unit density of the material is higher than that of the steel plate). Also, a cylindrical structural member has been proposed that enables a significant improvement in shock absorption capacity per unit mass of a member by using a fiber reinforced resin having a high tensile strength ratio relative to the material.

特開昭55−136660号公報JP-A-55-136660 特開平6−264949号公報JP-A-6-264949

しかしながら、特許文献1で提案された、いわゆる潰れビードを配置する対策では、座屈変形の再現性や安定化には非常に有効である反面、部材全体で吸収できる衝撃エネルギーを、潰れビードを配置しない場合に比べて大きく低下させてしまう。そのため、所望の衝撃吸収能が得られない場合は、部材板厚を上げて対処する必要があり、部材の質量増加を招くといった欠点がある。
また衝撃吸収能を確保するには、高張力普通鋼板への材料置換という手段もあるが、鋼板が高強度化すると材料費の上昇に繋がる。さらに、鋼板自体の伸び等のプレス成形性も低下することから、プレス成形で複数の潰れビードを設ける際に材料が割れたり、自動車衝突による座屈変形時に潰れビードを形成した箇所やスポット溶接箇所から割れを生じ易くなったりするといった欠点もあった。
However, the measure proposed by Patent Document 1 for arranging so-called crushed beads is very effective for the reproducibility and stabilization of buckling deformation, while the crushed beads are arranged to absorb impact energy that can be absorbed by the entire member. It will be greatly reduced compared to when not. For this reason, when the desired shock absorption capacity cannot be obtained, it is necessary to increase the thickness of the member, which is disadvantageous in that it increases the mass of the member.
Further, in order to secure the shock absorbing ability, there is a means of replacing the material with a high-strength plain steel plate. In addition, because the press formability such as elongation of the steel sheet itself also decreases, the material cracks when providing multiple crushed beads by press forming, the place where the crushed bead was formed during buckling deformation due to automobile collision, and the spot welded place There is also a drawback that cracking is likely to occur.

一方、特許文献2に開示された肉厚を漸増させ、かつ繊維強化樹脂を材料に使用した構造部材は、鋼板の単純な薄肉高強度化では難しい、ダメージャビリティと部材単位質量当りの衝撃吸収能といった二つの衝突性能の向上の両立が比較的容易に達成できる点で非常に優れているが、材料費や製造に要する時間等の面で課題も多く、その適用はスポーツカー等、少量生産の高級車種に限定されるといった点で問題がある。
本発明は、これらの現状に鑑みて発明されたものであり、その閉断面形状の改良と軸長方向に対するテーパー付与といった工夫を凝らすことにより、自動車衝突時における衝突初期のピーク荷重が小さく、かつ部材単位質量当りの衝撃吸収能が高めるとともに、衝突角度の変動にも対応した、低コストで軽量な鋼板製クラッシュボックスを提供することを目的とするものである。
On the other hand, the structural member disclosed in Patent Document 2 that gradually increases the wall thickness and uses fiber reinforced resin as a material is difficult to achieve by simply increasing the strength of the steel sheet. Damage ability and shock absorption per unit mass of the member are difficult. Although it is very excellent in that it is relatively easy to achieve the improvement of two collision performances such as performance, there are many problems in terms of material cost and manufacturing time, etc. There is a problem in that it is limited to luxury cars.
The present invention has been invented in view of these current conditions, and by improving the closed cross-sectional shape and adding taper to the axial length direction, the peak load at the beginning of a collision at the time of an automobile collision is small, and An object of the present invention is to provide a low-cost and lightweight steel-made crash box that has improved impact absorption capacity per unit mass of the member and can cope with fluctuations in the collision angle.

本発明の鋼板製クラッシュボックスは、その目的を達成するため、ハット形状に曲げ加工されたハット型部材とクロージングプレートの曲げ剛性の異なる部材を重ね合わせて閉断面構造にし、前記閉断面の輪郭から外側に突出したフランジの重ね合わせ部位を接合したハット型閉断面構造の鋼板製クラッシュボックスであって、ハット型部材のウェブ部と、その背後に当る方向のクロージングプレートの中央部領域に対して、輪郭となる閉断面の内側方向にV字状の凹みを有し、かつ軸長方向に衝突面側から後方に向かって断面積を漸増させて末拡がりのテーパーを形成させることを特徴とする。   In order to achieve the object, the steel plate crash box of the present invention has a closed cross-sectional structure formed by stacking a hat-shaped member bent into a hat shape and a member having different bending rigidity of the closing plate, from the outline of the closed cross-section. It is a steel-made crush box with a hat-type closed cross-section structure that joins the overlapping parts of the flanges protruding outward, with respect to the web part of the hat-type member and the central part region of the closing plate in the direction that hits behind it. It has a V-shaped dent on the inner side of the closed cross-section that becomes the contour, and the cross-sectional area is gradually increased from the collision surface side toward the rear in the axial direction to form a divergent taper.

本発明によれば、ハット型閉断面構造を有する構造部材において、その閉断面形状をハット型部材のウェブ部と、その背後に当る方向のクロージングプレートの中央部領域に対して、閉断面の内側方向にV字状の凹みを設けた形状にするとともに、閉断面形状サイズを衝突面側から後方に向かって軸長方向にテーパー状にすることで断面積を漸増させている。このような形状にすることにより、衝突角度の変動にも対応した、軸圧潰方向の衝撃吸収特性に優れる軽量な鋼板製クラッシュボックスを低コストで提供できる。   According to the present invention, in a structural member having a hat-type closed cross-sectional structure, the closed cross-sectional shape is the inside of the closed cross-section with respect to the web part of the hat-type member and the central region of the closing plate in the direction of hitting behind the web part. The cross-sectional area is gradually increased by forming a V-shaped dent in the direction and tapering the closed cross-sectional shape size from the collision surface side toward the rear in the axial length direction. By adopting such a shape, it is possible to provide a lightweight steel steel crash box that is excellent in shock absorption characteristics in the axial crushing direction and that can cope with fluctuations in the collision angle.

供試体として用いた各種クラッシュボックスのハット型閉断面形状の説明図Explanatory drawing of hat-shaped closed cross-sectional shape of various crash boxes used as specimens 異なる断面形状を有する各種クラッシュボックスの座屈形態の違いの説明図Explanatory drawing of the difference in buckling form of various crash boxes with different cross-sectional shapes テーパーを付与したダブル凹断面を有するクラッシュボックスの輪郭概略図Outline diagram of crush box with double concave cross section with taper 本明細書の範囲内での落錘試験の方法を説明する概念図Conceptual diagram explaining the drop weight test method within the scope of this specification 落錘試験で得られた荷重−変位曲線を概念的に示す図A diagram conceptually showing the load-displacement curve obtained in the drop weight test 供試体の座屈変形を示した模式図(条件4、衝突角度=0°)Schematic diagram showing buckling deformation of specimen (Condition 4, Collision angle = 0 °) 落錘試験と同一条件の軸圧潰FEM解析で得られた座屈変形の推移図Transition diagram of buckling deformation obtained by axial crush FEM analysis under the same conditions as the drop weight test

本発明者等は、高い衝撃吸収特性等が要求されるクラッシュボックスの高性能化について種々検討を重ねてきた。その過程で、その断面形状をいわゆるハット型閉断面にするとともに、その断面形状や部分焼入れ方法に工夫を凝らすことにより、軸圧潰強度を高めて衝撃吸収特性を向上させたクラッシュボックスが低コストで得られることがわかった。これらの知見は特開2011−178179号公報で提案している。   The inventors of the present invention have made various studies on improving the performance of a crash box that requires high shock absorption characteristics and the like. In the process, the cross-sectional shape is a so-called hat-shaped closed cross-section, and the cross-sectional shape and the partial quenching method are devised to improve the axial crushing strength and improve the shock absorption characteristics at a low cost. It turns out that it is obtained. These findings are proposed in Japanese Patent Application Laid-Open No. 2011-178179.

ところで、自動車が他の物体に衝突する場合、クラッシュボックスの軸長方向に真っ直ぐに衝撃荷重が加わることは少ない。すなわち、正面衝突して自動車の先頭に配置された両サイドのクラッシュボックスが同時に潰れる場合よりも、部分的に衝突して片方のクラッシュボックスから潰れ始めて、さらにもう片方も時間差をもって順次潰れる場合の方が多い。この場合には、クラッシュボックスは軸長方向に真っ直ぐに衝撃荷重を受けるのではなく、わずかな角度が付加された向きに対して衝撃荷重を受けることになる。このように、種々変わった角度で衝突した場合であっても、安定した衝撃吸収特性を備えておくことが要求される。
そこで、本発明者等は、断面形状がハット型閉断面の鋼板製クラッシュボックスにおいて、前記優れたダメージャビリティの他に、衝突角度に変動を生じた場合でも衝撃吸収能に対しては変動を生じにくく影響されない、高いロバスト性と衝撃吸収能を発揮し得る断面形状について検討し、本発明に到達した。
By the way, when an automobile collides with another object, an impact load is hardly applied straight in the axial length direction of the crash box. That is, rather than the case where the crash boxes on both sides placed at the top of the car collide with each other due to a frontal collision, the one that collides partially and begins to collapse from one crash box, and the other crashes sequentially with a time difference. There are many. In this case, the crash box does not receive an impact load straight in the axial direction, but receives an impact load in a direction to which a slight angle is added. As described above, even when the vehicle collides at various angles, it is required to have a stable shock absorbing characteristic.
Therefore, the present inventors, in a steel plate crash box having a hat-shaped closed cross section, in addition to the excellent damage ability, even when the collision angle fluctuates, the shock absorption capacity varies. The present inventors have studied a cross-sectional shape that can exhibit high robustness and impact absorption ability that is not easily generated and is not affected, and reached the present invention.

以下に、検討の経緯から説明する。
本発明者等は前記特開2011−178179号公報において、ハット型閉断面の鋼板製クラッシュボックスでは、例えば図1(a)に示すような単純な□形断面の鋼板製クラッシュボックスに比べて、図1(b)に示すようなウェブ部に閉断面の内側方向にV字状の凹みを設けたシングル凹断面の鋼板製クラッシュボックスの方が優れた性能を有している旨を報告している。
The following is an explanation from the background of the study.
In the above-mentioned JP2011-178179A, the inventors of the present invention have a hat-type closed cross section made of a steel plate crush box, for example, compared to a simple □ cross section cross section made of a steel plate crush box as shown in FIG. Reported that a single-concave cross-section steel plate crush box with a V-shaped dent in the inner direction of the closed cross-section in the web portion as shown in FIG. Yes.

シングル凹断面形状にすることにより性能アップが可能なので、図1(c)に示すようにハット型閉断面のクロージングプレートの中央部領域にも閉断面の内側方向に窪むV字状の凹みを設けて、いわゆるダブル凹断面形状にしてみることにした。
さらに、ダブル凹断面の柱状クラッシュボックスを、衝突端の断面が小さく、車本側の端部に向かって断面積が徐々に大きくなるようなテーパー状にしてみることにした。
なお、各種形状の鋼板製クラッシュボックスは、ハット形状に曲げ加工されたハット型断面形状鋼板とクロージングプレートを構成する鋼板の重ね合わされたフランジ部をスポット溶接やレーザー溶接によって溶融接合したものである。
Since the performance can be improved by adopting a single concave cross-sectional shape, a V-shaped dent recessed in the inner direction of the closed cross section is also formed in the central region of the closing plate of the hat closed cross section as shown in FIG. I decided to make it a so-called double concave cross-sectional shape.
In addition, we decided to make the columnar crush box with a double concave cross section tapered so that the cross section at the collision end is small and the cross-sectional area gradually increases toward the end on the vehicle body side.
In addition, the steel plate crush box of various shapes is obtained by melt-joining a hat-shaped cross-section shaped steel plate bent into a hat shape and a superposed flange portion of the steel plate constituting the closing plate by spot welding or laser welding.

これら各種の形状の鋼板製クラッシュボックスについて、衝突角度を種々変更して衝撃吸収能を調べてみた。
詳細は、後記の実施例に譲るが、ハット型部材とクロージングプレートとで閉断面構造にした鋼板製クラッシュボックスにあっては、ハット型部材ウェブ部の他に、その背後に当る方向のクロージングプレートの中央部領域にも、閉断面の内側方向にV字状の凹みを形成し、かつ断面形状が軸長方向に衝突面側から後方に向かって断面積を漸増させることで末拡がりのテーパー状に大きくなった形状のものが、初期ピーク荷重を低減しつつ、衝撃吸収能が衝突角度変動といった外乱要因に影響されずに再現性を持って高レベルを発揮し得ることがわかり、本発明に到達したものである。すなわち、本発明により、優れたダメージャビリティの他に、高いロバスト性と衝撃吸収能を有する鋼板製クラッシュボックスを提供することができたものである。
The impact absorbing ability of various types of steel plate crash boxes was examined by changing the collision angle.
The details will be given in the embodiments described later, but in the case of a steel plate crash box having a closed cross-section structure with a hat-shaped member and a closing plate, in addition to the hat-shaped member web portion, the closing plate in the direction hitting behind it A V-shaped dent is also formed in the inner region of the closed cross-section, and the cross-sectional shape gradually increases in cross-sectional area from the collision surface side toward the rear in the axial length direction, so that the taper shape expands toward the end. It can be seen that the shape that has become larger can reduce the initial peak load, and the impact absorption capability can exhibit a high level with reproducibility without being affected by disturbance factors such as collision angle fluctuations. It has been reached. That is, according to the present invention, in addition to excellent damage ability, a steel plate crash box having high robustness and shock absorption capability can be provided.

ハット型部材ウェブ部の他に、その背後に当る方向のクロージングプレートの中央部領域にも閉断面の内側方向にV字状の凹みを形成した、いわゆるダブル凹断面形状にしたクラッシュボックスが、衝撃吸収能が向上する理由としては、次のように考えられる。
すなわち、ハット型部材ウェブ部の中央にV字状の凹み形成した凹断面形状を有するもの(図2(b))とすると、単なる□形断面(図2(a))に比べて湾曲面が多く、稜線領域が4箇所から7箇所へと増加する。さらにクロージングプレートの中央部領域にもV字状の凹みを形成したダブル凹断面形状にしたもの(図2(c))とすると、稜線領域が10箇所へと大幅に増加する。
In addition to the hat-shaped member web portion, a crash box with a so-called double-concave cross-sectional shape in which a V-shaped dent is formed in the inner direction of the closed cross-section also in the central region of the closing plate in the direction of hitting behind the web The reason why the absorption ability is improved is considered as follows.
That is, if it has a concave cross-sectional shape with a V-shaped recess formed in the center of the hat-shaped member web portion (FIG. 2 (b)), the curved surface is larger than a simple □ -shaped cross-section (FIG. 2 (a)). Many ridgeline areas increase from four to seven. Furthermore, if it is a double concave cross-sectional shape (FIG. 2 (c)) in which a V-shaped dent is also formed in the central region of the closing plate, the ridge line region is greatly increased to ten locations.

また、衝撃エネルギーを主に吸収する部位、すなわち大きな塑性ひずみを発生する部位は、図2(a)の一点破線の楕円中に示した平坦部の二次元的な曲げ変形部位よりも、同図中に矢印で示したように、三次元的な複雑な曲げ変形を誘発する、いわゆるコーナーR部等、二つの平坦部が交差する湾曲面に位置する。さらに付帯効果として、塑性ひずみが高い部位は、単位時間当りの塑性ひずみの増加割合も大きいことから、塑性ひずみ速度も当然大きくなる。稜線領域の増加により、上記の効果が複合的に作用して軸圧潰強度を大幅に増大させ、高い衝撃吸収能(衝撃吸収エネルギー)が得られたものと考えられる。   In addition, the part that mainly absorbs impact energy, that is, the part that generates a large plastic strain is more than the two-dimensional bending deformation part of the flat part shown in the one-dot broken line ellipse in FIG. As indicated by an arrow in the figure, it is located on a curved surface where two flat portions intersect such as a so-called corner R portion that induces a complicated three-dimensional bending deformation. Furthermore, as an incidental effect, the plastic strain rate naturally increases in the portion where the plastic strain is high because the increase rate of the plastic strain per unit time is large. It is considered that the increase in the ridgeline region combined the above effects to greatly increase the axial crushing strength and to obtain a high impact absorption capability (impact absorption energy).

ところで、ダメージャビリティなる性能に直結する座屈の初期ピーク荷重は、クラッシュボックス断面のサイズ・板厚(すなわち断面積)と材料特性によって決まってくる。低速での自動車衝突に伴う最初の損傷がフロントフレーム等の後方に配置された構造部材で生じさせないようにダメージャビリティを向上させるためには、初期ピーク荷重を低減させることが有効ではあるが、板厚を薄くすること、或いは強度の低い材料の使用は、クラッシュボックスの衝撃吸収能を低下させることになるので好ましくなかった。
しかし、本発明の上記稜線領域を増加させる発想により、初期ピーク荷重を低減したものであっても高い衝撃吸収能が得られるクラッシュボックスを提供できることになる。
By the way, the initial peak load of buckling directly linked to the performance of damageability is determined by the size / thickness (ie, cross-sectional area) of the crush box cross section and the material characteristics. In order to improve the damageability so that the initial damage caused by the automobile collision at a low speed does not occur in the structural member arranged behind the front frame or the like, it is effective to reduce the initial peak load, It is not preferable to reduce the plate thickness or use a low-strength material because the impact absorption capacity of the crush box is lowered.
However, the idea of increasing the ridgeline region of the present invention can provide a crash box that can obtain a high shock absorption capacity even if the initial peak load is reduced.

次に、柱状のクラッシュボックスにあって、その断面形状が軸長方向に衝突面側から後方に向かって末拡がりのテーパー状に大きくなった形状のものの優位性に関しては、詳細はこれも実施例の記載に譲るが、テーパー状に大きくしたことにより、断面の小さい衝突面側から断面の大きい後方に向かって順次蛇腹状に折り畳まれた状態で座屈変形が規則正しく進行することになる。この結果、衝突角度が種々変わったとしても座屈変形が規則正しく進行し、バラツキのない安定した衝撃吸収能を呈すること、すなわちロバスト性が向上することになると考えられる。   Next, regarding the superiority of the columnar crush box whose cross-sectional shape is enlarged in a taper shape that widens toward the rear from the collision surface side in the axial length direction, details are also described in the embodiment. However, by increasing the taper shape, the buckling deformation regularly proceeds in a state of being sequentially folded in a bellows shape from the collision surface side having a small cross section toward the rear side having a large cross section. As a result, it is considered that even if the collision angle changes variously, the buckling deformation proceeds regularly and exhibits a stable shock absorbing ability without variation, that is, the robustness is improved.

各供試体を製造した素材鋼板としては、板厚1.0mm、或いは板厚1.4mmであって、440MPa級及び980MPa級の引張強さを有する自動車用加工性冷間圧延高張力鋼板を用いた。
上記素材鋼板を、表1に示す仕様、形状で供試用のクラッシュボックスを作製し、落錘試験を行ってみた。
なお、表1中、軸長方向の断面形状を末拡がりとしたダブル凹断面を有する供試体は、図3に示す形状、サイズとしている。各種供試体は、フランジ部において25mm間隔ごとにスポット溶接で接合している。各種供試体の軸長方向(長手方向)の長さは、いずれも135mmである。
As the material steel plate from which each specimen was manufactured, a workable cold-rolled high-tensile steel plate for automobiles having a plate thickness of 1.0 mm or 1.4 mm and a tensile strength of 440 MPa class and 980 MPa class was used. It was.
A crush box for a test was produced from the material steel plate with the specifications and shapes shown in Table 1, and a falling weight test was performed.
In Table 1, the specimen having a double-concave cross section with the cross-sectional shape in the axial length direction extending toward the end has the shape and size shown in FIG. Various specimens are joined by spot welding at intervals of 25 mm at the flange. The length of each specimen in the axial length direction (longitudinal direction) is 135 mm.

表1中には高速引張試験機とJIS7号試験片を用いて引張試験を実施して得られた材料の動的降伏強さを示す。引張試験条件は、自動車衝突時のひずみ速度と同等レベルを想定し、試験速度は24.6m/s(相当塑性ひずみ速度≒10−3/s)とした。
また、落錘試験で得られる初期ピーク荷重の大略の値をあらかじめ把握するため、供試体の動的な耐座屈強さBSを次式により算出したので、この値も表中に併記する。
BS=(YS÷1000)×A=(YS÷1000)×{W÷(ρ×H)}…(1)
ここで、YS:材料の動的降伏強さ(MPa)、A:供試体断面の平均的な断面積(mm)、W:供試体の質量(kg)、ρ:鋼の密度(=7.84×10−6kg/mm)、H:供試体の軸長方向の長さ(mm)である。
Table 1 shows the dynamic yield strength of materials obtained by carrying out a tensile test using a high-speed tensile tester and a JIS 7 test piece. The tensile test conditions were assumed to be the same level as the strain rate at the time of automobile collision, and the test speed was set to 24.6 m / s (equivalent plastic strain rate≈10 −3 / s).
Further, in order to advance understanding of approximately the value of the initial peak load obtained in the falling weight test, since the dynamic buckling resistance hefty of BS d of the specimen was calculated by the following equation, this value is also shown together in the table.
BS d = (YS d ÷ 1000) × A = (YS d ÷ 1000) × {W ÷ (ρ × H)} (1)
Here, YS d : dynamic yield strength (MPa) of the material, A: average cross-sectional area (mm 3 ) of the cross section of the specimen, W: mass (kg) of the specimen, ρ: density of steel (= 7.84 × 10 −6 kg / mm 3 ), H: length (mm) in the axial length direction of the specimen.

Figure 2014145368
Figure 2014145368

落錘試験は、図4に示すような態様で行った。なお、図4に示す落錘試験方法における、供試体11と上下2個のくさび状当て板12は、アーク溶接により連続接合している。
落錘試験は、角度−10°、0°、+10°で衝突した場合を想定して、頂角を調整したくさび状当て板12を用いて3態様で行った。落錘条件は、錘の質量を640kgとし、錘の落下高さを供試体への衝突初速度が15km/hとなるように設定した。
このような落錘試験を行い、各種供試体ごとに、図5に示すような荷重−変位曲線を得るとともに、座屈の発生状況を観察した。
また、荷重−変位曲線をもとに各供試体の初期ピーク値と衝撃吸収エネルギーを算出した。ここで、任意の変位ごとに荷重を積分して得られる図5中に記載の荷重−変位曲線内に囲まれた面積が、70mmまで圧潰した際に供試体が吸収した衝撃エネルギー(または衝撃吸収能)であると定義した。得られた結果を表2にまとめて示す。
The falling weight test was performed in the manner shown in FIG. In addition, in the falling weight test method shown in FIG. 4, the specimen 11 and the upper and lower wedge-shaped plate 12 are continuously joined by arc welding.
The falling weight test was performed in three modes using a wedge-shaped patch plate 12 with an adjusted apex angle, assuming the case of collision at angles of −10 °, 0 °, and + 10 °. The falling weight condition was set such that the weight of the weight was 640 kg, and the falling height of the weight was set so that the initial collision speed to the specimen was 15 km / h.
Such a falling weight test was performed, and a load-displacement curve as shown in FIG. 5 was obtained for each of the various specimens, and the occurrence of buckling was observed.
Moreover, the initial peak value and impact absorption energy of each specimen were calculated based on the load-displacement curve. Here, the impact energy (or shock absorption) absorbed by the specimen when the area enclosed in the load-displacement curve shown in FIG. 5 obtained by integrating the load for each arbitrary displacement is crushed to 70 mm. ). The obtained results are summarized in Table 2.

Figure 2014145368
Figure 2014145368

表2に記載された初期ピーク荷重の平均値は、事前に試算した供試体の動的耐座屈強さ(すなわち、自動車衝突に相当する速度で供試体を軸圧潰した際に塑性変形を生じさせるために最低必要な力)と近い値であることから、前述したように、初期ピーク荷重が供試体断面の平均的な断面積と材料特性によってほぼ定まることは明白である。そして、クラッシュボックス以外の構造部材を最初に座屈させないように初期ピーク荷重を220kN以下に抑えるためには、供試体の動的耐座屈強さも220kN以下にする必要があることがわかった。   The average value of the initial peak load shown in Table 2 is the dynamic buckling strength of the specimen calculated in advance (that is, it causes plastic deformation when the specimen is axially crushed at a speed corresponding to an automobile collision). Therefore, it is obvious that the initial peak load is almost determined by the average cross-sectional area of the specimen cross section and the material characteristics, as described above. And in order to suppress an initial peak load to 220 kN or less so that structural members other than a crash box may not be buckled initially, it turned out that the dynamic buckling strength of a specimen needs also to be 220 kN or less.

一方、表2に示す結果から明らかなように、ダブル凹断面とした条件(条件3〜7)では、稜線領域を増やしたために衝撃吸収エネルギーが飛躍的に増大する。例えば、同じ鋼板を用いた条件2,3,9では、稜線領域は、それぞれ4,10,7となっている。つまり、初期ピーク荷重の平均値にはそれぞれ大きな差はないが、稜線領域を増やすことで衝撃吸収エネルギーは大幅に増大させることができることになる。   On the other hand, as is apparent from the results shown in Table 2, under the conditions (conditions 3 to 7) having the double concave cross section, the impact absorption energy increases dramatically because the ridge line area is increased. For example, in the conditions 2, 3, and 9 using the same steel plate, the ridge line regions are 4, 10, and 7, respectively. That is, there is no great difference in the average value of the initial peak load, but the impact absorption energy can be greatly increased by increasing the ridge line region.

以上より、上記の手順に従えば、初期ピーク荷重と衝撃吸収能の二つの特性を、ある程度は独立した状態で、個別に所望する特性となるよう設計できるわけである。
さらには、末拡がりのテーパーを有する提案構造(条件4〜7)は、テーパーを形成していない条件3に比べると、衝撃吸収能はやや低いが、テーパー付与は座屈変形の再現性と安定化に有効であることから、衝突角度変動に起因した各特性値のばらつきの抑制に対して有効で、すなわちロバスト性に優れることがわかる。
As described above, according to the above procedure, the two characteristics of the initial peak load and the shock absorption ability can be designed to be individually desired characteristics to some extent in an independent state.
Furthermore, the proposed structure (conditions 4 to 7) having a taper at the end is slightly lower in impact absorption capacity than condition 3 in which no taper is formed, but the taper is reproducible and stable in buckling deformation. From this, it can be seen that it is effective in suppressing variations in the characteristic values due to the collision angle fluctuation, that is, it is excellent in robustness.

テーパーを付与した供試体における座屈変形の経時的変化の一例を図6に示す。表1中の条件4で示した供試体について、衝突角度0°で落錘試験を実施した際に高速ビデオにて観察された座屈変形の状況を模式的に示したものである。衝突面側から順次蛇腹状に座屈変形していくことがわかる。
また、図7にはFEM解析で得られたクラッシュボックスの座屈変形の経時的変化を、供試体へのテーパー付与の影響が比較できるよう、以下4条件の解析結果を並べて示す。図7中の(a)は、テーパーを付与していない条件3の供試体を衝突角度0°の条件下で圧潰した場合であり、(b)は同一の供試体に対して衝突角度を+10°に変更した場合の解析結果である。また、図7の(c)は、テーパーを付与した条件4の供試体を衝突角度0°の条件下で圧潰した場合であり、(d)は同一の供試体に対して衝突角度を+10°に変更した場合の解析結果である。
ハット型閉断面の断面積を軸長方向で一定にした条件3は、第一番目の座屈発生箇所が定まっておらず再現性に欠けるが、条件4の場合には、テーパーの付与により、座屈変形が周長の短い衝突面側から周長の長い後方へと順次蛇腹状に折り畳まれた状態で規則正しく進行していることがわかる。
An example of the change over time of the buckling deformation in the specimen provided with the taper is shown in FIG. About the specimen shown by the conditions 4 in Table 1, the situation of the buckling deformation observed by the high-speed video when the falling weight test was carried out at a collision angle of 0 ° is schematically shown. It turns out that it buckles and deforms in a bellows shape from the collision surface side.
Further, FIG. 7 shows the analysis results under the following four conditions side by side so that the influence of the taper on the specimen can be compared with the time-dependent change in the buckling deformation of the crash box obtained by the FEM analysis. (A) in FIG. 7 is a case where the specimen of Condition 3 to which no taper is applied is crushed under the condition of a collision angle of 0 °, and (b) is a collision angle of +10 with respect to the same specimen. It is an analysis result when changing to °. FIG. 7 (c) shows a case where the test specimen of condition 4 with a taper is crushed under the condition of a collision angle of 0 °, and (d) shows a collision angle of + 10 ° with respect to the same specimen. It is an analysis result when changing to.
Condition 3 in which the cross-sectional area of the hat-shaped closed cross section is constant in the axial length direction is not reproducible because the first buckling occurrence location is not determined, but in the case of condition 4, by providing a taper, It can be seen that the buckling deformation progresses regularly in a state in which the buckling deformation is sequentially folded in a bellows shape from the collision surface side having a short circumference to the rear side having a long circumference.

Claims (1)

ハット型に曲げ加工されたハット型部材とクロージングプレートの曲げ剛性の異なる部材を重ね合わせて閉断面構造にし、前記閉断面の輪郭から外側に突出したフランジの重ね合わせ部位を接合したハット型閉断面構造の鋼板製クラッシュボックスであって、ハット型部材のウェブ部と、その背後に当る方向のクロージングプレートの中央部領域に対して、輪郭となる閉断面の内側方向にV字状の凹みを有し、かつ軸長方向に衝突面側から後方に向かって断面積を漸増させて末拡がりのテーパーを形成させることを特徴とする鋼板製クラッシュボックス。   A hat-shaped closed section in which a hat-shaped member bent into a hat shape and a member with different bending rigidity of the closing plate are overlapped to form a closed section structure, and the overlapping portion of the flange protruding outward from the outline of the closed section is joined. A steel steel crash box with a V-shaped dent on the inner side of the closed cross section, which is the contour of the web part of the hat-shaped member and the central area of the closing plate in the direction of hitting behind it. And a steel-made crash box characterized in that a taper is formed by gradually increasing the cross-sectional area from the collision surface side toward the rear in the axial direction.
JP2013012478A 2013-01-25 2013-01-25 Crash box made of steel Pending JP2014145368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013012478A JP2014145368A (en) 2013-01-25 2013-01-25 Crash box made of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012478A JP2014145368A (en) 2013-01-25 2013-01-25 Crash box made of steel

Publications (1)

Publication Number Publication Date
JP2014145368A true JP2014145368A (en) 2014-08-14

Family

ID=51425786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012478A Pending JP2014145368A (en) 2013-01-25 2013-01-25 Crash box made of steel

Country Status (1)

Country Link
JP (1) JP2014145368A (en)

Similar Documents

Publication Publication Date Title
JP6369550B2 (en) Automotive parts
JP4330652B2 (en) Vehicle metal absorber, vehicle bumper system, automobile bumper absorber and automobile bumper system
CA2882393C (en) Crash box and automobile chassis
JP5488069B2 (en) Crash box and car body
JP6625545B2 (en) Shock absorbing member
JP5168023B2 (en) Bumper reinforcement and manufacturing method thereof
JP6631560B2 (en) Automotive collision energy absorbing parts
JP2008241036A (en) Impact absorbing member and its arrangement structure
KR20200037398A (en) Absence of hollow
KR20200037390A (en) Hollow member
JP5147003B2 (en) Side member
JP2022547492A (en) Rear structure for electric vehicles
JP5235007B2 (en) Crash box
JP2014145367A (en) Crash box made of steel sheet
JP6565291B2 (en) Shock absorbing member, vehicle body and shock absorbing method
CN206954313U (en) A kind of front rail structure of automobile
CN106740621B (en) Automobile energy absorption device
JP2014145368A (en) Crash box made of steel
JP5283405B2 (en) Automotive reinforcement
CN112969633B (en) Front floor reinforcement structure for vehicle having battery pack placed in tunnel
JP6613712B2 (en) Structural member for automobile body, method for manufacturing the same, automobile body, and impact energy absorbing method
JP6787365B2 (en) How to determine the shape and spot welding position of collision energy absorbing parts for automobiles
JP6881683B2 (en) Automotive structural members and vehicle body
KR101034793B1 (en) Stay in automotive bumper system
US20240149947A1 (en) Impact absorbing structure of automobile