JP2014145359A - Internal combustion operating method - Google Patents

Internal combustion operating method Download PDF

Info

Publication number
JP2014145359A
JP2014145359A JP2014012959A JP2014012959A JP2014145359A JP 2014145359 A JP2014145359 A JP 2014145359A JP 2014012959 A JP2014012959 A JP 2014012959A JP 2014012959 A JP2014012959 A JP 2014012959A JP 2014145359 A JP2014145359 A JP 2014145359A
Authority
JP
Japan
Prior art keywords
exhaust gas
turbine
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014012959A
Other languages
Japanese (ja)
Other versions
JP6261993B2 (en
Inventor
Mayer Christian
クリスティアン・マイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of JP2014145359A publication Critical patent/JP2014145359A/en
Application granted granted Critical
Publication of JP6261993B2 publication Critical patent/JP6261993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/03By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a new operating method of an internal combustion engine.SOLUTION: In the method, at least one turbine (3) is arranged in an internal combustion engine (1), and exhaust gas leaving the internal combustion engine (1) can be supplied to the turbine for expansion. Energy obtained at that time is used for driving at least one compressor (2) or at least one power generator, and at least one catalyst-type exhaust gas purification device (6) is arranged in the internal combustion engine (1), and the expanded exhaust gas can be supplied to the catalyst type exhaust gas purification device or each turbine (3) for cleaning. Or, to make a quick heating process of each catalyst type exhaust gas purification device (6) sure, an adjusting variable relating to influences of a waist gate, and/or an adjusting variable relating to influences of a turbine geometry of each turbine (3) are determined according to a temperature setting value relating to exhaust gas temperature existing before each turbine (3).

Description

本発明は、請求項1のプリアンブルに記載の内燃機関の運転方法に関する。   The present invention relates to a method for operating an internal combustion engine according to the preamble of claim 1.

内燃機関にタービンを後置し、内燃機関の排ガスを膨張させ、排ガスが膨張する際に得られたエネルギーを、圧縮機又は発電機を駆動するために用いることが実践から知られている。さらに、少なくとも1つの触媒式排ガス浄化装置を用いて内燃機関の排ガスを洗浄することが実践から知られており、当該排ガスは、1つ又は各タービンにおいて膨張した後、1つ又は各触媒式排ガス浄化装置に供給される。   It is known from practice that a turbine is placed after an internal combustion engine, the exhaust gas of the internal combustion engine is expanded, and the energy obtained when the exhaust gas expands is used to drive a compressor or a generator. Furthermore, it is known from practice to clean the exhaust gas of an internal combustion engine using at least one catalytic exhaust gas purification device, the exhaust gas being expanded in one or each turbine and then one or each catalytic exhaust gas. Supplied to the purification device.

効果的な排ガス洗浄と、それに伴って排ガスエミッションの最小化とを確実にするためには、触媒式排ガス浄化装置を決まった温度で稼働させなければならない。それまで停止していた内燃機関の運転を開始する際には、触媒式排ガス浄化装置を加熱しなければならない。1つ又は各触媒式排ガス浄化装置のための加熱プロセスは、可能な限り短い時間で実施されるべきであり、それによって、効果的な排ガス洗浄が可能な限り早く確実化される。   In order to ensure effective exhaust gas cleaning and concomitant minimization of exhaust gas emissions, the catalytic exhaust gas purification device must be operated at a fixed temperature. When starting the operation of the internal combustion engine that has been stopped until then, the catalytic exhaust gas purification device must be heated. The heating process for one or each catalytic exhaust gas purification device should be performed in the shortest possible time, thereby ensuring effective exhaust gas cleaning as soon as possible.

実践から知られている内燃機関においては、1つ又は各触媒式排ガス浄化装置の迅速な加熱プロセスを確実化するために、ウェイストゲートバルブのウェイストゲートの影響によって1つ又は各タービンを迂回して、及び/又は、可変タービンジオメトリを備えたタービンの場合は1つ又は各タービンのタービンジオメトリの影響を受けて、排ガスを各触媒式排ガス浄化装置に供給することが一般的である。   In internal combustion engines known from practice, one or each turbine is bypassed by the influence of the wastegate of the wastegate valve in order to ensure a rapid heating process of one or each catalytic exhaust gas purification device. In the case of a turbine having a variable turbine geometry, it is common to supply exhaust gas to each catalytic exhaust gas purifier under the influence of the turbine geometry of one or each turbine.

ここで、実践によると、ウェイストゲートの影響に関する調整変数(Stellgroesse)及び/又はタービンジオメトリの影響に関する調整変数が、加熱プロセスのための制御器によって、すなわち、すでに膨張した排ガスの、1つ又は各タービンの後で存在する排ガス温度に関する温度設定値(Sollwert)に応じて決定される。   Here, according to practice, the adjustment variables for the influence of the wastegate (Stellgroesse) and / or the influence of the turbine geometry are determined by the controller for the heating process, i.e. one or each of the already expanded exhaust gases. It is determined according to the temperature setpoint (Sollwert) relating to the exhaust gas temperature present after the turbine.

以上を出発点として、本発明の課題は、内燃機関の新しい運転方法を提供することにある。   With the above as a starting point, an object of the present invention is to provide a new operating method of an internal combustion engine.

本課題は、請求項1に記載の内燃機関の運転方法によって解決される。本発明によると、1つ又は各触媒式排ガス浄化装置の迅速な加熱プロセスを確実化するために、ウェイストゲートの影響に関する調整変数及び/又は1つ若しくは各タービンのタービンジオメトリの影響に関する調整変数が、まだ膨張していない排ガスの、1つ又は各タービンの前で存在する排ガス温度に関する温度設定値に応じて決定される。   This problem is solved by the operation method of the internal combustion engine according to claim 1. According to the invention, in order to ensure a rapid heating process of one or each catalytic exhaust gas purification device, there are adjustment variables relating to the influence of the waste gate and / or adjustment variables relating to the influence of the turbine geometry of one or each turbine. , Depending on the temperature setpoint for the exhaust gas temperature that is present in front of one or each turbine of the exhaust gas that has not yet expanded.

本発明によって、1つ又は各触媒式排ガス浄化装置の迅速な加熱プロセスを確実化するために、ウェイストゲートの影響に関する調整変数及び/又はタービンジオメトリの影響に関する調整変数を、まだ膨張していない排ガスの、1つ又は各タービンの前で存在する排ガス温度に関する温度設定値に応じて決定することが初めて提案される。これは、実践から知られた方法に対して、1つ又は各触媒式排ガス浄化装置が、その決められた動作温度までより早く加熱され得るという利点を有している。したがって、触媒式排ガス浄化装置を、排ガスの洗浄のためにより早く利用することができる。ウェイストゲートバルブをより早く閉止することが可能であり、及び/又は、タービンジオメトリに、1つ又は各タービンにおいてより早くにより多い出力が得られるように、より早くに影響を与えることが可能である。総じて、これによって、内燃機関の全体効率を上昇させることが可能になる。   In accordance with the present invention, in order to ensure a rapid heating process of one or each catalytic exhaust gas purification device, the adjustment variables relating to the influence of the wastegate and / or the adjustment variables relating to the influence of the turbine geometry are set to the exhaust gas that has not yet expanded It is proposed for the first time to determine in dependence on the temperature setpoint for the exhaust gas temperature present in front of one or each turbine. This has the advantage over one known from practice that one or each catalytic exhaust gas purification device can be heated to its defined operating temperature faster. Therefore, the catalytic exhaust gas purification device can be used more quickly for cleaning the exhaust gas. The wastegate valve can be closed earlier and / or the turbine geometry can be affected earlier so that more power is obtained earlier in one or each turbine. . Overall, this makes it possible to increase the overall efficiency of the internal combustion engine.

原則的に、触媒式排ガス浄化装置の加熱プロセスは、例えば作動要素のようなさらなるアクチュエータを用いて、選択的に又は組み合わせて、1つ若しくは各タービンを迂回して高温若しくは低温(冷却された)の給気を排ガスに噴出させる形態において、又は、給気から排ガス内への高温若しくは低温(冷却された)のエンジンバイパスの形態において、又は、高温若しくは低温(冷却された)の圧縮機バイパスの形態において、影響を与えられる。制御戦略を、ウェイストゲートの影響及び/又はタービンジオメトリの影響に関して説明されたように、前記アクチュエータに同様に適用することは、ここではまだ主張されていない。   In principle, the heating process of the catalytic exhaust gas purification device can be performed selectively or in combination, for example with additional actuators, such as actuating elements, to bypass one or each turbine at high or low temperatures (cooled). In the form of jetting the supply air into the exhaust gas, or in the form of a high or low temperature (cooled) engine bypass from the supply air into the exhaust gas, or in the high or low temperature (cooled) compressor bypass In form, it is influenced. It has not yet been claimed here to apply the control strategy to the actuator as well, as explained with respect to the effects of wastegate and / or turbine geometry.

第1の有利なさらなる構成によると、負荷に依存する温度設定値が、1つ又は各タービンの前で存在する排ガス温度に関して用いられる。この温度設定値は、対応する温度実測値と比較され、制御器は、温度設定値と温度実測値との差異に応じて、ウェイストゲートの影響に関する調整変数及び/又はタービンジオメトリの影響に関する調整変数を決定する。   According to a first advantageous further configuration, a load-dependent temperature setpoint is used for the exhaust gas temperature present in front of one or each turbine. This temperature set value is compared with the corresponding measured temperature value, and the controller adjusts the waste gate effect and / or turbine geometry effect variable depending on the difference between the temperature set value and the measured temperature value. To decide.

負荷に依存する温度設定値を用いることによって、特に単純な手段を用いて、排ガス粉塵許容限界値を順守し、かつ、部品最高温度を順守して、本発明を実施することが可能になる。1つ又は各タービンの前で存在する排ガス温度に関する負荷に依存する温度設定値の曲線は、少ない労力でパラメータ化することができる。   By using a temperature set value that depends on the load, it becomes possible to implement the present invention by complying with the exhaust gas dust allowable limit value and complying with the maximum component temperature using a particularly simple means. The load-dependent temperature setpoint curve in relation to the exhaust gas temperature present in front of one or each turbine can be parameterized with little effort.

第2の代替的な有利なさらなる構成によると、1つ又は各タービンの前で存在する排ガス温度に関する負荷に依存しない温度設定値は、排ガス粉塵設定値又はラムダ設定値と共に用いられ、温度設定値は、温度実測値と比較され、及び、排ガス粉塵設定値は、排ガス粉塵実測値と比較され、又は、ラムダ設定値は、ラムダ実測値と比較され、制御器は、対応する差異に応じて、ウェイストゲートの影響に関する調整変数及び/又はタービンジオメトリの影響に関する調整変数を決定する。   According to a second alternative advantageous further configuration, a load independent temperature setpoint relating to the exhaust gas temperature present in front of one or each turbine is used together with the exhaust gas dust setpoint or lambda setpoint, Is compared with the actual measured temperature value, and the exhaust gas dust set value is compared with the exhaust gas dust actual value, or the lambda set value is compared with the lambda actual measured value, and the controller depends on the corresponding difference. An adjustment variable for wastegate effects and / or an adjustment variable for turbine geometry effects is determined.

さらに排ガスセンサ又はラムダセンサが存在する場合、負荷に依存しない温度設定値も用いることが可能であり、排ガス粉塵センサの測定値を用いることによって、及び/又は、ラムダセンサの測定値を用いることによって、排ガス粉塵許容限界値の順守が確実化され得る。   In addition, if there is an exhaust gas sensor or lambda sensor, it is also possible to use a temperature setpoint that does not depend on the load, by using the measured value of the exhaust gas dust sensor and / or by using the measured value of the lambda sensor. Compliance with the exhaust gas dust tolerance limits can be ensured.

好ましくは、1つ又は各触媒式排ガス浄化装置の触媒式排ガス浄化装置実測温度が触媒式排ガス浄化装置設定温度に達した場合、1つ又は各タービンの前で存在する排ガス温度に関する温度設定値に依存する制御から、1つ又は各タービンの後で存在する排ガス温度に関する温度設定値に依存する制御に切り替えられる。触媒式排ガス浄化装置がその触媒式排ガス浄化装置設定温度に達した場合、加熱プロセスは終了する。   Preferably, when the measured temperature of the catalytic exhaust gas purification device of one or each catalytic exhaust gas purification device reaches the set temperature of the catalytic exhaust gas purification device, the temperature setting value relating to the exhaust gas temperature existing in front of one or each turbine From dependent control, control is switched to temperature-dependent control over the exhaust gas temperature present after one or each turbine. When the catalytic exhaust gas purification device reaches the set temperature of the catalytic exhaust gas purification device, the heating process ends.

さらに、本発明は、本発明に係る方法を実施するための手段を有する内燃機関の制御器に関する。   The invention further relates to a controller for an internal combustion engine having means for carrying out the method according to the invention.

本発明の好ましいさらなる構成は、下位請求項と以下の説明とから明らかになる。本発明の実施例が図を用いて詳細に説明されるが、これに限定されるものではない。示されているのは以下の図である。   Preferred further configurations of the invention will become apparent from the subclaims and the following description. Embodiments of the present invention will be described in detail with reference to the drawings, but are not limited thereto. The following figure is shown.

排ガス過給及び排ガス洗浄を備えた内燃機関の概略図である。It is the schematic of the internal combustion engine provided with exhaust gas supercharging and exhaust gas cleaning. 内燃機関を運転するための本発明に係る方法を明確化するためのダイアグラムである。1 is a diagram for clarifying the method according to the invention for operating an internal combustion engine.

図1は、排ガス過給及び排ガス洗浄を備えた内燃機関1の概略ブロック図である。内燃機関1は複数のシリンダ2を有しており、シリンダ2内では燃料混合物が燃焼する。内燃機関2を離れた排ガスを、排ガスターボチャージャ4のタービン3に供給することが可能であり、当該排ガスはタービン3内で膨張する。このとき得られたエネルギーは、排ガスターボチャージャ4の圧縮機5を駆動するために用いられ、それによって、内燃機関1に供給されるべき給気が圧縮される。   FIG. 1 is a schematic block diagram of an internal combustion engine 1 equipped with exhaust gas supercharging and exhaust gas cleaning. The internal combustion engine 1 has a plurality of cylinders 2 in which the fuel mixture burns. The exhaust gas leaving the internal combustion engine 2 can be supplied to the turbine 3 of the exhaust gas turbocharger 4, and the exhaust gas expands in the turbine 3. The energy obtained at this time is used to drive the compressor 5 of the exhaust gas turbocharger 4, whereby the supply air to be supplied to the internal combustion engine 1 is compressed.

排ガスターボチャージャ4によって準備された排ガス過給に加えて、図1に示された内燃機関は排ガス洗浄を含んでおり、当該内燃機関は、そのために触媒式排ガス浄化装置6を有している。触媒式排ガス浄化装置6には、排ガスターボチャージャ4のタービン3内で膨張した排ガスを、洗浄のために供給することが可能である。   In addition to the exhaust gas supercharging provided by the exhaust gas turbocharger 4, the internal combustion engine shown in FIG. 1 includes exhaust gas cleaning, and the internal combustion engine has a catalytic exhaust gas purification device 6 for this purpose. The catalytic exhaust gas purification device 6 can be supplied with the exhaust gas expanded in the turbine 3 of the exhaust gas turbocharger 4 for cleaning.

図1によると、内燃機関1を離れた排ガスは、バイパス7を通って、タービン3の横を通り過ぎる。すなわち、バイパス7に組み込まれたウェイストゲートバルブ8の開口位置に応じてである。ウェイストゲートバルブ8が閉止している場合、排ガス全体が、排ガスターボチャージャ4のタービン3を通じて、内燃機関1に導かれる。   According to FIG. 1, the exhaust gas leaving the internal combustion engine 1 passes by the side of the turbine 3 through the bypass 7. That is, depending on the opening position of the waste gate valve 8 incorporated in the bypass 7. When the waste gate valve 8 is closed, the entire exhaust gas is guided to the internal combustion engine 1 through the turbine 3 of the exhaust gas turbocharger 4.

さらに、図1は、触媒式排ガス浄化装置6に配設された温度センサ9を示しており、当該温度センサを用いて、触媒式排ガス浄化装置6の実測温度が把握され得る。   Further, FIG. 1 shows a temperature sensor 9 disposed in the catalytic exhaust gas purification device 6, and the measured temperature of the catalytic exhaust gas purification device 6 can be grasped using the temperature sensor.

図1に示された内燃機関1は、さらに、排ガスターボチャージャ4のタービン3の上流に位置する温度センサ10を備えており、それによって、タービン3の上流における、まだ膨張していない排ガスの実測温度が把握される。   The internal combustion engine 1 shown in FIG. 1 further includes a temperature sensor 10 located upstream of the turbine 3 of the exhaust gas turbocharger 4, thereby measuring the exhaust gas that has not yet expanded upstream of the turbine 3. The temperature is grasped.

さらに、図1に示された内燃機関1は、排ガスターボチャージャ4のタービン3の下流に位置する温度センサ12を備えており、それによって、タービン3の下流における、膨張した排ガスの実測温度が把握される。   Further, the internal combustion engine 1 shown in FIG. 1 is provided with a temperature sensor 12 located downstream of the turbine 3 of the exhaust gas turbocharger 4, thereby grasping the actually measured temperature of the expanded exhaust gas downstream of the turbine 3. Is done.

図1に示された内燃機関1は一実施例であることを、すでにここで指摘しておく。   It has already been pointed out here that the internal combustion engine 1 shown in FIG. 1 is an example.

図示された実施例とは異なり、内燃機関は、少なくとも2つの排ガスターボチャージャを備えた多段式排ガス過給を有していても良い。   Unlike the illustrated embodiment, the internal combustion engine may have a multi-stage exhaust gas supercharger equipped with at least two exhaust gas turbochargers.

さらに、その内部で内燃機関の排ガスが膨張するタービンが、電気エネルギーを生成するための発電機を駆動することが可能である。   Furthermore, a turbine in which the exhaust gas of the internal combustion engine expands can drive a generator for generating electrical energy.

図示された実施例において、排ガスターボチャージャ4のタービン3は、変更不可能なタービンジオメトリを有するタービン3である。これとは異なり、変更可能なタービンジオメトリを有するタービン3を用いることも可能である。   In the illustrated embodiment, the turbine 3 of the exhaust gas turbocharger 4 is a turbine 3 having a turbine geometry that cannot be changed. On the other hand, it is also possible to use a turbine 3 with a changeable turbine geometry.

図1に示された内燃機関1の触媒式排ガス浄化装置6のために、可能な限り短時間での動作温度への加熱段階を確実化し、それによって、例えば内燃機関1が始動した後、触媒式排ガス浄化装置6が可能な限り短時間で効果的な排ガス洗浄を確実化できるようにするために、タービン3の前で存在する排ガス温度に関する温度設定値に応じて、ウェイストゲートの影響に関する調整変数、好ましくはウェイストゲートバルブ8の開口位置の影響に関する調整変数を決定することが提案される。   For the catalytic exhaust gas purification device 6 of the internal combustion engine 1 shown in FIG. 1, a heating phase to the operating temperature in the shortest possible time is ensured, so that, for example, after the internal combustion engine 1 is started, the catalyst In order to ensure that the exhaust gas purification device 6 can ensure effective exhaust gas cleaning in as short a time as possible, the adjustment relating to the influence of the wastegate is made according to the temperature setting value relating to the exhaust gas temperature existing in front of the turbine 3 It is proposed to determine a variable, preferably an adjustment variable relating to the influence of the opening position of the wastegate valve 8.

したがって、図1は制御器11を示しており、当該制御器は、温度センサ10の測定値を受信する。温度センサ10は、タービン3の前における、まだ膨張していない排ガスの実測温度を把握する。制御器11は、タービン3の上流における排ガスの当該実測温度に応じて、及び、図1の実施例における対応する温度設定値に応じて、ウェイストゲートバルブ8に関する調整変数を決定し、それによって、可能な限り迅速な触媒式排ガス浄化装置6の加熱プロセスが確実化される。   Accordingly, FIG. 1 shows a controller 11 that receives the measured value of the temperature sensor 10. The temperature sensor 10 grasps the measured temperature of the exhaust gas that has not yet expanded before the turbine 3. The controller 11 determines an adjustment variable for the wastegate valve 8 according to the measured temperature of the exhaust gas upstream of the turbine 3 and according to the corresponding temperature setting in the embodiment of FIG. The heating process of the catalytic exhaust gas purification device 6 as fast as possible is ensured.

タービン3が変更可能なタービンジオメトリを有している場合、制御器11は、代替的又は追加的に、タービン3のタービンジオメトリの影響に関する対応する調整変数を決定することができる。すなわち、温度センサ10によって算出された温度実測値に応じて、及び、タービン3の上流における排ガス温度に関する、制御器11に記憶された温度設定値に応じて、である。   If the turbine 3 has a changeable turbine geometry, the controller 11 can alternatively or additionally determine a corresponding tuning variable for the influence of the turbine geometry of the turbine 3. That is, according to the actual temperature value calculated by the temperature sensor 10 and according to the temperature setting value stored in the controller 11 regarding the exhaust gas temperature upstream of the turbine 3.

触媒式排ガス浄化装置6がその動作温度に達した場合、すなわち、触媒式排ガス浄化装置の実測温度が触媒式排ガス浄化装置の設定温度に一致する場合、タービン3の前で存在する排ガス温度に関する温度設定値に依存する制御から、1つ又は各タービン3の後で存在する排ガス温度に関する温度設定値に依存する制御に切り替えられる。   When the catalytic exhaust gas purification device 6 reaches its operating temperature, that is, when the measured temperature of the catalytic exhaust gas purification device matches the set temperature of the catalytic exhaust gas purification device, the temperature related to the exhaust gas temperature existing in front of the turbine 3 The control depending on the set value is switched to the control depending on the temperature set value relating to the exhaust gas temperature existing after one or each turbine 3.

図2は、これを時間ダイアグラムで示している。つまり、図2には、時間tにわたって、異なる温度推移Tが示されている。温度推移T10は、温度センサ10を用いて測定される、タービン3の前における排ガス実測温度に相当し、T‐SOLL10は、対応する温度設定値に相当する。温度推移T12は、温度センサ12を用いて測定される、タービン3の後における排ガス実測温度に相当し、T‐SOLL12は、対応する温度設定値に相当する。温度推移T9は、温度センサ9を用いて測定される、触媒式排ガス浄化装置6の実測温度に相当し、T‐SOLL9は、触媒式排ガス浄化装置の設定温度に相当する。   FIG. 2 illustrates this in a time diagram. That is, FIG. 2 shows different temperature transitions T over time t. The temperature transition T10 corresponds to the actually measured temperature of the exhaust gas before the turbine 3 measured using the temperature sensor 10, and T-SOLL10 corresponds to the corresponding temperature setting value. The temperature transition T12 corresponds to the actually measured exhaust gas temperature after the turbine 3 measured using the temperature sensor 12, and the T-SOLL 12 corresponds to the corresponding temperature setting value. The temperature transition T9 corresponds to the actually measured temperature of the catalytic exhaust gas purification device 6 measured using the temperature sensor 9, and T-SOLL9 corresponds to the set temperature of the catalytic exhaust gas purification device.

時点t1、すなわち触媒式排ガス浄化装置6を加熱する時点の前に、タービン3の上流における排ガス温度に関する制御が行われる。制御器11は、ウェイストゲートバルブ8に関する調整変数を、タービンの前の排ガス実測温度T10と、対応する設定値T‐SOLL10と、に応じて決定する。   Before the time point t1, that is, the time point when the catalytic exhaust gas purification device 6 is heated, the control relating to the exhaust gas temperature upstream of the turbine 3 is performed. The controller 11 determines an adjustment variable related to the waste gate valve 8 according to the exhaust gas measured temperature T10 before the turbine and the corresponding set value T-SOLL10.

時点t1において、触媒式排ガス浄化装置6の温度T9が、動作温度又は設定値T‐SOLL9に達した場合、制御が切り替えられ、時点t1を始まりとして、タービンの後における排ガス実測温度T12及び対応する温度設定値T‐SOLL12に基づく制御が行われる。   When the temperature T9 of the catalytic exhaust gas purification device 6 reaches the operating temperature or the set value T-SOLL9 at the time point t1, the control is switched, and the exhaust gas measured temperature T12 after the turbine and the corresponding time start from the time point t1. Control based on temperature set value T-SOLL12 is performed.

本発明の第1の有利なさらなる構成によると、制御器11には、触媒式排ガス浄化装置6の加熱プロセスに関する負荷に依存する温度設定値T‐SOLL10が記憶されている。内燃機関1が加熱プロセスの間に駆動される際の負荷に応じて、制御器11には、タービン3の前で存在する排ガス温度T10に関する対応する負荷に依存する温度設定値T‐SOLL10が記憶されている。この温度設定値T‐SOLL10は測定された温度実測値T10と比較され、制御器11は、負荷に依存する温度設定値T‐SOLL10と測定された温度実測値T10との差に応じて、ウェイストゲートバルブ8のウェイストゲートの影響に関する調整変数を決定する。   According to a first advantageous further configuration of the invention, the controller 11 stores a temperature setpoint T-SOLL 10 depending on the load for the heating process of the catalytic exhaust gas purification device 6. Depending on the load when the internal combustion engine 1 is driven during the heating process, the controller 11 stores a temperature setpoint T-SOLL10 depending on the corresponding load relating to the exhaust gas temperature T10 present in front of the turbine 3. Has been. This temperature set value T-SOLL10 is compared with the measured actual temperature value T10, and the controller 11 determines the waste according to the difference between the load-dependent temperature setpoint T-SOLL10 and the measured actual temperature value T10. An adjustment variable relating to the influence of the waste gate of the gate valve 8 is determined.

このとき、制御器9には、経験的に決定された、好ましくは負荷に依存する温度設定値曲線が記憶されている。以下の表は、例示的な、負荷に依存する温度設定値曲線である。当該表からは、エンジンの負荷が全負荷の45%以上の場合、同一の温度設定値T‐SOLL10が記憶されていることがわかる。したがって、タービン3の上流において存在する排ガス温度T10に関する負荷に依存する温度設定値曲線は、少ない労力でパラメータ化され、少ない労力で経験的に決定され得る。なぜなら、エンジンの全負荷の45%以上のエンジン負荷については、同一の温度設定値T‐SOLL10が用いられるからである。   At this time, the controller 9 stores a temperature setpoint curve which is determined empirically, preferably depending on the load. The following table is an exemplary load-dependent temperature setpoint curve. From this table, it is understood that the same temperature set value T-SOLL10 is stored when the engine load is 45% or more of the total load. Therefore, the temperature setpoint curve depending on the load relating to the exhaust gas temperature T10 existing upstream of the turbine 3 can be parameterized with little effort and determined empirically with little effort. This is because the same temperature setting value T-SOLL10 is used for an engine load of 45% or more of the total engine load.

この負荷に依存する温度設定値の決定によって、少ないパラメータ化の労力で、排ガス粉塵許容限界値を順守し、かつ、部品許容最高温度を順守して、触媒式排ガス浄化装置6のための短時間の加熱プロセスを確実化することが可能になる。   By determining the temperature setting value depending on the load, the exhaust gas dust allowable limit value is observed and the component allowable maximum temperature is observed with a small amount of parameterization effort. It is possible to ensure the heating process.

本発明によって、単純な手段で、内燃機関の高効率が保証され得る。短時間で、触媒式排ガス浄化装置6を動作温度まで効率的に加熱することが可能なので、短時間での効果的な排ガス洗浄が確実化される。触媒式排ガス浄化装置6が短時間で動作温度まで加熱されるので、さらに、ウェイストゲートバルブ8を比較的早く閉止し、効率を高めるためにより多くの排ガスを、排ガスターボチャージャ4のタービン3を経由するように導くことができる。   By means of the present invention, high efficiency of the internal combustion engine can be ensured by simple means. Since the catalytic exhaust gas purification device 6 can be efficiently heated to the operating temperature in a short time, effective exhaust gas cleaning in a short time is ensured. Since the catalytic exhaust gas purification device 6 is heated to the operating temperature in a short time, the waste gate valve 8 is closed relatively early, and more exhaust gas is passed through the turbine 3 of the exhaust gas turbocharger 4 to increase efficiency. Can be guided to do.

負荷に依存する温度設定値を、触媒式排ガス浄化装置6の加熱プロセスのために制御器11に記憶させることは、特に容易であり、好ましいことではあるが、本発明の代替的なさらなる構成においては、制御器11に、タービン3の上流における排ガス温度に関する、負荷に依存しない温度設定値T‐SOLL10を記憶させることも可能である。この場合、好ましくは触媒式排ガス浄化装置6の下流に排ガスセンサが設置されており、及び/又は、内燃機関1の領域にラムダセンサが設置されており、それによって、排ガス粉塵実測値及び/又はラムダ実測値が把握される。当該排ガス粉塵実測値は、制御器11に記憶された排ガス粉塵設定値と比較され得る、及び/又は、当該ラムダ実測値は、制御器に記憶されたラムダ設定値と比較され得る。制御器11は、温度実測値と温度設定値との間の制御偏差に応じて、及び、ラムダ実測値とラムダ設定値との間の、又は、排ガス粉塵実測値と排ガス粉塵設定値との間の制御偏差に応じて、ウェイストゲートバルブ8の影響に関する制御変数を決定する。   In the alternative further configuration of the present invention, it is particularly easy and preferable to have the controller 11 memorize the load-dependent temperature setpoint for the heating process of the catalytic exhaust gas purification device 6. The controller 11 can also store a temperature set value T-SOLL 10 that does not depend on the load, regarding the exhaust gas temperature upstream of the turbine 3. In this case, preferably an exhaust gas sensor is installed downstream of the catalytic exhaust gas purification device 6 and / or a lambda sensor is installed in the region of the internal combustion engine 1, whereby the exhaust gas dust measured value and / or Lambda actual measurement value is grasped. The actual exhaust gas dust value can be compared with the exhaust gas dust set value stored in the controller 11 and / or the actual lambda actual value can be compared with the lambda set value stored in the controller. The controller 11 is configured according to a control deviation between the actual temperature measured value and the temperature set value, and between the actual lambda measured value and the lambda set value, or between the actual exhaust gas dust measured value and the exhaust gas dust set value. The control variable relating to the influence of the waste gate valve 8 is determined according to the control deviation.

すでに述べたように、本発明を、ウェイストゲートバルブ8が存在せず、変更可能なタービンジオメトリを有するタービン3が用いられる場合にも利用することができる。この場合、制御器11は、タービンジオメトリの影響に関する制御変数を決定する。   As already mentioned, the invention can also be used when the wastegate valve 8 is not present and a turbine 3 having a changeable turbine geometry is used. In this case, the controller 11 determines a control variable relating to the influence of the turbine geometry.

同様に、タービンジオメトリの影響に加えて、ウェイストゲートの影響に関する制御変数を決定することも可能である。ここでは、変更可能なタービンジオメトリを有するタービン3が、ウェイストゲートバルブ8と共に用いられる。   Similarly, it is possible to determine control variables related to wastegate effects in addition to turbine geometry effects. Here, a turbine 3 having a changeable turbine geometry is used with a wastegate valve 8.

やはりすでに述べたように、本発明は、好ましくは、内燃機関、特に重油で駆動される船舶用ディーゼル内燃機関を駆動するために用いられる。触媒式排ガス浄化装置6は、好ましくはSCR‐触媒式排ガス浄化装置であり、触媒式排ガス浄化装置6の動作温度は、SCR‐触媒式排ガス浄化装置に、排ガスの洗浄のために、尿素水溶液が導入され得る温度に相当する。   As already mentioned, the present invention is preferably used to drive an internal combustion engine, in particular a marine diesel internal combustion engine driven by heavy oil. The catalytic exhaust gas purification device 6 is preferably an SCR-catalyst exhaust gas purification device. The operating temperature of the catalytic exhaust gas purification device 6 is such that the urea aqueous solution is used for cleaning the exhaust gas in the SCR-catalyst exhaust gas purification device. Corresponds to the temperature that can be introduced.

これとは異なり、特に、タービン3によって駆動される発電機を通じて電気エネルギーを生成するために排ガスフローが用いられる場合、本発明を定置内燃機関において用いることも可能である。   In contrast, the present invention can also be used in stationary internal combustion engines, particularly when exhaust gas flow is used to generate electrical energy through a generator driven by a turbine 3.

1 内燃機関
2 シリンダ
3 タービン
4 排ガスターボチャージャ
5 圧縮機
6 触媒式排ガス浄化装置
7 バイパス
8 ウェイストゲートバルブ
9 温度センサ
10 温度センサ
11 制御器
12 温度センサ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Turbine 4 Exhaust gas turbocharger 5 Compressor 6 Catalytic exhaust gas purification device 7 Bypass 8 Waste gate valve 9 Temperature sensor 10 Temperature sensor 11 Controller 12 Temperature sensor

Claims (8)

内燃機関(1)を運転するための方法であって、
前記内燃機関(1)には少なくとも1つのタービン(3)が配設されており、前記タービンには、排ガスを膨張するために前記内燃機関(1)を離れた排ガスを供給することが可能であり、
この際に得られたエネルギーは、少なくとも1つの圧縮機(2)又は少なくとも1つの発電機を駆動するために利用され、
前記内燃機関(1)には、少なくとも1つの触媒式排ガス浄化装置(6)が配設されており、前記触媒式排ガス浄化装置には、排気ガスの洗浄のために前記タービン(3)において膨張した排ガスが供給されることが可能であり、
前記触媒式排ガス浄化装置(6)の迅速な加熱プロセスを確実化するために、ウェイストゲートの影響によって前記タービン(3)を迂回して、及び/又は、前記タービン(3)のタービンジオメトリの影響を受けて、排ガスが前記触媒式排ガス浄化装置(6)それぞれに供給される、方法において、
前記触媒式排ガス浄化装置(6)の迅速な加熱プロセスを確実化するために、ウェイストゲートの影響に関する調整変数及び/又は前記タービン(3)のタービンジオメトリの影響に関する調整変数が、前記タービン(3)の前で存在する排ガス温度に関する温度設定値(T‐SOLL10)に応じて決定されることを特徴とする方法。
A method for operating an internal combustion engine (1), comprising:
The internal combustion engine (1) is provided with at least one turbine (3), and the turbine can be supplied with exhaust gas leaving the internal combustion engine (1) in order to expand the exhaust gas. Yes,
The energy obtained at this time is used to drive at least one compressor (2) or at least one generator,
The internal combustion engine (1) is provided with at least one catalytic exhaust gas purification device (6). The catalytic exhaust gas purification device expands in the turbine (3) for cleaning exhaust gas. Exhaust gas can be supplied,
In order to ensure a rapid heating process of the catalytic exhaust gas purification device (6), the influence of the wastegate bypasses the turbine (3) and / or the influence of the turbine geometry of the turbine (3) In response, the exhaust gas is supplied to each of the catalytic exhaust gas purification devices (6),
In order to ensure a rapid heating process of the catalytic exhaust gas purification device (6), an adjustment variable relating to the influence of the wastegate and / or an adjustment variable relating to the influence of the turbine geometry of the turbine (3) may be applied to the turbine (3 ) Is determined according to the temperature setpoint (T-SOLL10) relating to the exhaust gas temperature present before.
負荷に依存する温度設定値(T‐SOLL10)が、前記タービン(3)の前で存在する排ガス温度に用いられ、
前記温度設定値(T‐SOLL10)は、対応する温度実測値(T10)と比較され、制御器(11)は、前記温度設定値(T‐SOLL10)と前記温度実測値(T10)との差異に応じて、前記ウェイストゲートの影響に関する調整変数及び/又は前記タービンジオメトリの影響に関する調整変数を決定することを特徴とする請求項1に記載の方法。
A load-dependent temperature setpoint (T-SOLL10) is used for the exhaust gas temperature present in front of the turbine (3),
The temperature setting value (T-SOLL10) is compared with the corresponding temperature measurement value (T10), and the controller (11) determines the difference between the temperature setting value (T-SOLL10) and the temperature measurement value (T10). The method according to claim 1, further comprising determining an adjustment variable related to the influence of the wastegate and / or an adjustment variable related to the influence of the turbine geometry.
負荷に依存する温度設定値曲線が経験的に決定されることを特徴とする請求項2に記載の方法。   3. A method according to claim 2, characterized in that the load-dependent temperature setpoint curve is determined empirically. 前記タービン(3)の前で存在する排ガス温度に関して、負荷に依存しない温度設定値(T‐SOLL10)が、排ガス粉塵設定値又はラムダ設定値と共に用いられ、
前記温度設定値(T‐SOLL10)は、温度実測値(T10)と、及び、前記排ガス粉塵設定値は排ガス粉塵実測値と、又は、前記ラムダ設定値はラムダ実測値と比較され、
制御器は、対応する差異に応じて、前記ウェイストゲートの影響に関する調整変数及び/又は前記タービンジオメトリの影響に関する調整変数を決定することを特徴とする請求項1に記載の方法。
For the exhaust gas temperature present in front of the turbine (3), a temperature independent setpoint (T-SOLL10) independent of the load is used together with the exhaust gas dust setpoint or lambda setpoint,
The temperature set value (T-SOLL10) is compared with the temperature measured value (T10), and the exhaust gas dust set value is compared with the exhaust gas dust measured value, or the lambda set value is compared with the lambda measured value,
The method of claim 1, wherein the controller determines an adjustment variable for the wastegate effect and / or an adjustment variable for the turbine geometry effect in response to a corresponding difference.
特に、前記触媒式排ガス浄化装置(6)の触媒式排ガス浄化装置実測温度(T9)が触媒式排ガス浄化装置設定温度(T‐SOLL9)に達した場合、前記タービン(3)の前で存在する排ガス温度に関して、温度設定値(T‐SOLL10)に依存する制御から、前記タービン(3)の後で存在する排ガス温度に関する温度設定値(T‐SOLL12)に依存する制御に、切り替えられることを特徴とする請求項1から4のいずれか一項に記載の方法。   In particular, when the catalytic exhaust gas purification device measured temperature (T9) of the catalytic exhaust gas purification device (6) reaches the catalytic exhaust gas purification device set temperature (T-SOLL9), it exists before the turbine (3). The exhaust gas temperature is switched from the control depending on the temperature set value (T-SOLL10) to the control depending on the temperature set value (T-SOLL12) regarding the exhaust gas temperature existing after the turbine (3). The method according to any one of claims 1 to 4. 当該方法が、内燃機関(1)、特に重油で駆動される船舶用ディーゼル内燃機関を運転するために用いられ、
前記タービン(3)は、少なくとも1つの排ガスターボチャージャ(4)の構成要素であり、
前記タービン(3)内で得られたエネルギーは、各排ガスターボチャージャ(4)の圧縮機(5)を駆動するために用いられ、それによって、前記内燃機関(1)に供給されるべき燃焼空気の給気圧が上昇することを特徴とする請求項1から5のいずれか一項に記載の方法。
The method is used for operating an internal combustion engine (1), in particular a marine diesel internal combustion engine driven by heavy oil,
The turbine (3) is a component of at least one exhaust gas turbocharger (4);
The energy obtained in the turbine (3) is used to drive the compressor (5) of each exhaust gas turbocharger (4) and thereby the combustion air to be supplied to the internal combustion engine (1). The method according to any one of claims 1 to 5, characterized in that the supply pressure increases.
当該方法が、定置内燃機関を運転するために用いられ、
前記タービン内で得られたエネルギーは、少なくとも1つの発電機を駆動するために用いられ、それによって、電気エネルギーが生成されることを特徴とする請求項1から5のいずれか一項に記載の方法。
The method is used to operate a stationary internal combustion engine,
6. The energy obtained in the turbine is used to drive at least one generator, thereby generating electrical energy. Method.
請求項1から7のいずれか一項に記載の方法を実施するための手段を有する内燃機関の制御器。   A controller for an internal combustion engine comprising means for carrying out the method according to any one of the preceding claims.
JP2014012959A 2013-01-29 2014-01-28 Operation method of internal combustion engine Expired - Fee Related JP6261993B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013001453.0A DE102013001453A1 (en) 2013-01-29 2013-01-29 Method for operating an internal combustion engine
DE102013001453.0 2013-01-29

Publications (2)

Publication Number Publication Date
JP2014145359A true JP2014145359A (en) 2014-08-14
JP6261993B2 JP6261993B2 (en) 2018-01-17

Family

ID=51163168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012959A Expired - Fee Related JP6261993B2 (en) 2013-01-29 2014-01-28 Operation method of internal combustion engine

Country Status (5)

Country Link
JP (1) JP6261993B2 (en)
KR (1) KR102019521B1 (en)
CN (1) CN103982277B (en)
DE (1) DE102013001453A1 (en)
FI (1) FI20145088L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218406A1 (en) * 2018-10-26 2020-04-30 BMTS Technology GmbH & Co. KG Method for operating an internal combustion engine system
CN109488428B (en) * 2018-12-03 2021-02-23 潍柴动力股份有限公司 Method, device and system for controlling post-processing efficiency
EP3961004B1 (en) * 2019-04-26 2024-03-06 Weichai Power Co., Ltd. Post-treatment system, method for controlling post-treatment system, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257097A (en) * 2008-04-11 2009-11-05 Mitsubishi Heavy Ind Ltd Exhaust energy collection device
JP2010151038A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Control device for internal combustion engine
WO2012086002A1 (en) * 2010-12-20 2012-06-28 トヨタ自動車株式会社 Control device for internal combustion engine equipped with supercharger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305825B2 (en) * 2004-10-14 2007-12-11 General Motors Corporation Engine turbine temperature control system
DE102008061222A1 (en) * 2008-12-09 2010-06-17 Man Diesel Se Stationary multi-stage loaded internal-combustion engine i.e. highly supercharged large diesel engine, for ship, has exhaust gas cleaning device that is arranged between high pressure turbines and low-pressure turbines
US8191354B2 (en) * 2009-10-20 2012-06-05 Ford Global Technologies, Llc Method and aftertreatment configuration to reduce engine cold-start NOx emissions
US8347609B2 (en) * 2009-12-23 2013-01-08 Ford Global Technologies, Llc Methods and systems for emission system control
US8904759B2 (en) * 2010-09-24 2014-12-09 General Electric Company System and method for treating particulate matter vented from an engine crankcase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257097A (en) * 2008-04-11 2009-11-05 Mitsubishi Heavy Ind Ltd Exhaust energy collection device
JP2010151038A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Control device for internal combustion engine
WO2012086002A1 (en) * 2010-12-20 2012-06-28 トヨタ自動車株式会社 Control device for internal combustion engine equipped with supercharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system

Also Published As

Publication number Publication date
JP6261993B2 (en) 2018-01-17
KR20140097043A (en) 2014-08-06
KR102019521B1 (en) 2019-09-06
CN103982277A (en) 2014-08-13
FI20145088L (en) 2014-07-30
CN103982277B (en) 2019-02-22
DE102013001453A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP6001454B2 (en) Power system
JP6261993B2 (en) Operation method of internal combustion engine
CN105041494A (en) Apparatus for controlling an internal combustion engine
WO2015182160A1 (en) Control device for internal combustion engine
RU2015153201A (en) METHOD FOR ENGINE BRAKE DEVICE MANAGEMENT AND ENGINE BRAKE DEVICE
JP5029780B2 (en) Multistage supercharging system controller
EP2181260A2 (en) Control apparatus and control method for internal combustion engine
US9995228B2 (en) Engine exhaust system
RU2013155072A (en) METHOD AND DEVICE FOR INCREASING THE EXHAUST GAS TEMPERATURE IN THE EXHAUST TURN OF THE INTERNAL COMBUSTION ENGINE WITH TURBOCHARGING
US9587617B2 (en) Method of spark timing adjustment for an internal combustion engine
RU2013142310A (en) METHOD FOR SUBMITTING THERMAL ENERGY TO A DEVICE FOR NEUTRALIZING EXHAUST GAS, PLACED IN THE OUTLET OF THE INTERNAL COMBUSTION ENGINE
US9228538B2 (en) Internal combustion engine control apparatus
RU2017111458A (en) METHOD FOR CONTROL TURBO-GENERATOR IN ENGINE SYSTEM WITH BRANCHED EXHAUST MANIFOLD (OPTIONS) AND ENGINE SYSTEM
US9982610B2 (en) Control method of boosting apparatus
JP6612640B2 (en) Internal combustion engine, method for operating the internal combustion engine and control device for carrying out the method
GB2528602A (en) A method of cleaning up a particulate filter of an internal combustion engine
JP4355962B2 (en) Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
GB2491458A8 (en) Control of a diesel engines exhaust condition to improve catalytic convertor efficacy
JP2010248980A (en) Internal combustion engine with turbosupercharger
JP2010151087A (en) Controller for internal combustion engine
US9528421B2 (en) Exhaust device of internal combustion engine
KR101593096B1 (en) Turbo Charging System and Control Method thereof
JP5310910B2 (en) Multistage supercharging system controller
GB2490942A (en) Controlling an electrically driven compressor
JP2009138651A (en) Control device for internal combustion engine with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6261993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees