JP2014145355A - Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto - Google Patents

Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto Download PDF

Info

Publication number
JP2014145355A
JP2014145355A JP2013028328A JP2013028328A JP2014145355A JP 2014145355 A JP2014145355 A JP 2014145355A JP 2013028328 A JP2013028328 A JP 2013028328A JP 2013028328 A JP2013028328 A JP 2013028328A JP 2014145355 A JP2014145355 A JP 2014145355A
Authority
JP
Japan
Prior art keywords
track
temperature
magnetic material
orbit
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013028328A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanaka
▲強▼ 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013028328A priority Critical patent/JP2014145355A/en
Publication of JP2014145355A publication Critical patent/JP2014145355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat engine applying magnetic characteristics of a metal thermosensitive magnetic material thereto.SOLUTION: A heat engine comprises an annular track 1 formed from a metal thermosensitive magnetic material and a mechanism in which the track 1 is rotationally movable. A part of the track 1 is immersed in a liquid equal to or lower than a Curie temperature of the metal thermosensitive magnetic material, and the remaining track 1 is placed in an atmosphere equal to or higher than the Curie temperature. A magnetic field is prepared by placing a magnet 2 at a liquid level position, and the track 1 is passed through the magnetic field. After the track 1 is magnetized in the liquid equal to or lower than the Curie temperature, a predetermined region of the track 1 in the magnetic field is demagnetized by being heated in the atmosphere equal to or higher than the Curie temperature, and the track 1 is moved by generating a trust to move the track 1 in a direction of demagnetization. While the heated region of the track 1 enters the liquid and moves, the track 1 is cooled equal to or lower than the Curie temperature.

Description

本発明は、金属感温磁性材料のキュリ−温度前後で示す鋭敏な磁性/非磁性のスイッチング機能の特質的な磁気特性と金属が熱良導材料であることに着眼してなされた、金属感温磁性材料の磁気特性を応用した熱機関に関するものである。  The present invention is based on the distinctive magnetic characteristics of the sensitive magnetic / nonmagnetic switching function shown before and after the Curie temperature of the metal temperature-sensitive magnetic material and the metal feeling made by focusing on the fact that the metal is a heat conducting material. The present invention relates to a heat engine that applies the magnetic properties of a thermomagnetic material.

従来、磁性体のキュリ−温度近傍における磁化の変位を利用して熱エネルギ−を力学的エネルギ−に変換する方法や熱機関が考案されているが、一般の磁性体で十分な磁化の変位を得るためには、大きな温度差が必要であるためエネルギ−の変換効率が低く、一方感温フェライトは優れた磁気特性がありながらも熱伝導率が小さいため加熱・冷却時の熱交換効率が低い等の課題があり、磁性材料の磁気特性を応用した熱機関は今だ実用化されていない。  Conventionally, methods and heat engines have been devised to convert thermal energy into mechanical energy using the displacement of magnetization in the vicinity of the Curie temperature of a magnetic material. In order to obtain it, the energy conversion efficiency is low because a large temperature difference is required. On the other hand, temperature-sensitive ferrite has excellent magnetic properties but low thermal conductivity, so heat exchange efficiency during heating and cooling is low. However, heat engines that apply the magnetic properties of magnetic materials have not yet been put into practical use.

特開平2−106183(磁性流体熱機関)JP-A-2-106183 (Magnetic Fluid Heat Engine) 特開平6−141571(磁性体熱機関)JP-A-6-141571 (Magnetic Heat Engine) 特開平6−141572(磁性体エンジン)JP-A-6-141572 (magnetic material engine)

特願2012−270755(金属感温磁性材料の磁気特性を応用した熱機関)Japanese Patent Application No. 2012-270755 (heat engine applying the magnetic properties of metal thermosensitive magnetic materials) 特願2012−85881(熱磁気アクチュエ−タ−)Japanese Patent Application No. 2012-85881 (Thermomagnetic Actuator) 見城尚志著、(モ−タ−のABC)、講談社出版、P196〜P199Naoshi Mijo, (ABC of Motor), Kodansha Publishing, P196-P199

本発明は、従来の課題を解決し、エネルギ−の変換効率が高く実用的な金属感温磁性材料の磁気特性を応用した熱機関を提供する目的からなされたものである。  The present invention has been made for the purpose of providing a heat engine that solves the conventional problems and applies the magnetic properties of a practical metal temperature-sensitive magnetic material with high energy conversion efficiency.

上記の課題を解決する本発明は、以下の通りである。
金属感温磁性材料から成る環状の軌道と軌道が回転移動できる機構を具備し、軌道の一部は金属感温磁性材料のキュリ−温度以下の液体に浸し、それ以外の軌道はキュリ−温度以上の雰囲気中に置き、液面位置に磁石を固定配置して磁場を作って磁場中に軌道を通し、軌道をキュリ−温度以下の液体中で磁化した後、磁場中の軌道の所定の領域をキュリ−温度以上の雰囲気中で加熱して消磁し、消磁された方向に軌道が移動する推力を生じさせて軌道を移動し、軌道の加熱された領域が液体に進入して移動する間にキュリ−温度以下に冷却することを特徴とする熱機関を提供できたものである。
The present invention for solving the above problems is as follows.
It is equipped with a ring-shaped orbit made of a metal temperature-sensitive magnetic material and a mechanism that allows the orbit to rotate. A part of the orbit is immersed in a liquid having a temperature lower than the Curie temperature of the metal temperature-sensitive magnetic material, and the other orbit is higher than the Curie temperature The magnet is fixedly placed at the liquid level, a magnetic field is created, the orbit is passed through the magnetic field, the orbit is magnetized in the liquid below the Curie temperature, and then a predetermined region of the orbit in the magnetic field is formed. Demagnetize by heating in an atmosphere above the Curie temperature, generate a thrust that moves the track in the demagnetized direction, move the track, and while the heated region of the track enters and moves into the liquid, -It has been possible to provide a heat engine characterized by cooling to a temperature below.

Fe,Ni等の一般的な磁性体の軌道で十分な磁化の変位を得るためには、磁性体の軌道の低温領域と高温領域で数百度の温度差を必要とするが、本発明は金属感温磁性材料で環状の軌道を形成したことを特徴とするもので、磁場中の低温領域と高温領域の温度差は、金属感温磁性材料のキュリ−温度前後の数度の温度差で十分な磁化の変位を得ることができることに加え、金属であるから熱伝導が良く、更に冷却手段が液体であるから軌道を均一に素早く冷却することができ、磁場中の加熱領域と非加熱領域で明確な非磁性領域と磁性領域の境界を作ることができた結果、エネルギ−の変換効率の高く、駆動力の大きい熱機関を提供できたものである。  In order to obtain a sufficient magnetization displacement in the orbit of a general magnetic material such as Fe and Ni, a temperature difference of several hundred degrees is required between the low temperature region and the high temperature region of the magnetic material orbit. It is characterized by the formation of an annular orbit with a temperature-sensitive magnetic material. The temperature difference between the low temperature region and the high temperature region in the magnetic field is sufficient with a temperature difference of several degrees before and after the Curie temperature of the metal temperature-sensitive magnetic material. In addition to being able to obtain a large magnetization displacement, since it is a metal, it has good heat conduction, and since the cooling means is a liquid, it can cool the orbit uniformly and quickly, and it can be used in heated and unheated regions in a magnetic field. As a result of making a clear boundary between the non-magnetic region and the magnetic region, a heat engine having high energy conversion efficiency and a large driving force can be provided.

現在、Fe−Ni,Fe−Ni−Cr等の金属感温磁性材料が生産され、電磁調理器の電磁誘導加熱材料や温度スイッチ材料として限定的に使用されているが、今後はこれらの素材の生産が飛躍的に拡大して産業の発展に寄与できる一方、更に特性の優れた磁性材料の開発や応用が促進されるものと期待できる。  At present, metallic thermosensitive magnetic materials such as Fe-Ni, Fe-Ni-Cr, etc. are produced and used in a limited manner as electromagnetic induction heating materials and temperature switch materials for electromagnetic cookers. While production can be dramatically expanded to contribute to industrial development, it is expected that development and application of magnetic materials with even better characteristics will be promoted.

従来、熱エネルギ−を力学的エネルギ−に変換するための作業物質は、蒸気機関を基軸に一般的に気体であり、気体の体積膨張や圧力上昇であったが、本発明の作業物質は金属感温磁性材料で、その素材のキュリ−温度前後で示す鋭敏な磁性/非磁性のスイッチング機能の特質的な磁気特性と優れた熱伝導によるものであり、本発明の熱機関は加熱手段および冷却手段の熱エネルギ−を静止状態で利用できる極めて簡単なシステムである。  Conventionally, a working material for converting thermal energy into mechanical energy is generally a gas centering on a steam engine and has been a volume expansion or pressure increase of the gas, but the working material of the present invention is a metal. This is a temperature-sensitive magnetic material, which is based on the characteristic magnetic characteristics of the sensitive magnetic / non-magnetic switching function shown before and after the Curie temperature of the material and excellent heat conduction. It is a very simple system in which the thermal energy of the means can be used stationary.

本発明の熱機関の実施例の動作原理図である。It is an operation | movement principle figure of the Example of the heat engine of this invention. 金属感温磁性材料と一般的な磁性体の磁化と温度の相関図である。It is a correlation diagram of magnetization and temperature of a metal thermosensitive magnetic material and a general magnetic substance.

以下、本発明の実施の形態を図面に基づき詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の熱機関の実施例の動作原理図である。  FIG. 1 is an operation principle diagram of an embodiment of a heat engine according to the present invention.

本実施例は、所定の寸法の金属感温磁性材料薄板を適度な間隔で並べて無限軌道1を形成し、軌道1を回転体3で支持して軌道が回転移動できる機構とし、無限軌道1を垂直にして液面位置に磁石2を固定配置して固定局とし、無限軌道1の下側の一部を金属感温磁性材料のキュリ−温度以下の液体に浸し、それ以外の軌道はキュリ−温度以上の雰囲気に置いて移動局とした実施例である。  In this embodiment, metal temperature-sensitive magnetic material thin plates having predetermined dimensions are arranged at appropriate intervals to form an endless track 1, and the track 1 is supported by a rotating body 3 so that the track can be rotated. A magnet 2 is fixedly arranged vertically at a liquid surface position to form a fixed station, and a part of the lower side of the endless track 1 is immersed in a liquid below the Curie temperature of the metal thermosensitive magnetic material, and the other tracks are curly. This is an embodiment in which the mobile station is placed in an atmosphere above the temperature.

実施における軌道1は所定の幅のある金属感温磁性材料薄板を所定の長さで折り曲げたり、所定の幅と肉厚のある金属感温磁性材料に適度な間隔で溝を入れたり、穴をあけたり、編目としたり、押し出し成型や鋳型での一体成型でもよく、また、肉薄管を連ねたり、無数の棒状、針状、管状、球状等の金属感温磁性材料片を集合または集積したり、容器等に収容したり、金属感温磁性材料の金網あるいはこれに類似したもので作ることもできる。  In practice, the track 1 is formed by bending a metal temperature-sensitive magnetic material thin plate having a predetermined width at a predetermined length, or grooving a metal temperature-sensitive magnetic material having a predetermined width and thickness at an appropriate interval, or forming a hole. Opening, stitching, extrusion molding or integral molding with a mold, thin-walled tubes, countless bar-shaped, needle-shaped, tubular, spherical, etc. metal temperature-sensitive magnetic material pieces can be assembled or accumulated It can also be housed in a container or the like, or made of a metal net of a metal temperature-sensitive magnetic material or the like.

環状の軌道1は無限軌道以外に、同心円筒や同心円盤状の軌道1とすることもできる。  In addition to the endless track, the annular track 1 can be a concentric cylinder or a concentric disk-shaped track 1.

本実施例の動作原理を、例えば、液体の温度が20度、大気温度が50度の条件下に、キュリ−温度が25度の金属感温磁性材料から成る無限軌道1を図1の様に配置した実施例をもって説明すると、磁石2によって作られた磁場中の20度の液体中で軌道1は磁化し、その後50度の雰囲気で加熱されて消磁し、この過程で、消磁された方向に軌道が移動する推力が生じて軌道は移動し、軌道の加熱された領域が20度の液体に進入して移動する間にキュリ−温度以下に冷やされ、この一連の過程の条件が満たされ続ける限り回転運動は継続する。  The operation principle of this embodiment is as follows. For example, an endless track 1 made of a metal temperature-sensitive magnetic material having a Curie temperature of 25 degrees under the condition of a liquid temperature of 20 degrees and an atmospheric temperature of 50 degrees as shown in FIG. Explaining with the arranged embodiment, the orbit 1 is magnetized in a liquid of 20 degrees in a magnetic field created by the magnet 2 and then demagnetized by heating in an atmosphere of 50 degrees, in this process in the demagnetized direction. The orbit moves, causing the orbit to move, and the heated region of the orbit is cooled to below the Curie temperature while entering and moving into the 20 degree liquid, and the conditions of this series of processes continue to be met. As long as the rotation continues.

本発明のエネルギ−変換は、金属感温磁性材料のキュリ−温度前後の加熱と冷却の熱サイクルによるものであるから、得られる回転運動は基本的に低速である。  Since the energy conversion of the present invention is based on the thermal cycle of heating and cooling around the Curie temperature of the metal thermosensitive magnetic material, the resulting rotational motion is basically slow.

実施においては、変速機等を用いて回転速度を上げて回転機としたり、発電機を駆動して発電システムを構築することもできる。  In implementation, it is possible to increase the rotational speed using a transmission or the like to make a rotating machine, or to drive the generator to construct a power generation system.

図2は、本発明の軌道1の材料である金属感温磁性材料と一般的な磁性体の磁化と温度の相関図であり、一般的な磁性体の磁化がその素材固有のキュリ−温度に向かって温度上昇と供に指数関数的に減少していくのに対し、金属感温磁性材料はキュリ−温度前後で鋭敏な磁性/非磁性のスイッチング機能の特質的な磁気特性があることがわかる。  FIG. 2 is a correlation diagram of the magnetization and temperature of a metal temperature-sensitive magnetic material, which is the material of the orbit 1 of the present invention, and a general magnetic material, and the magnetization of the general magnetic material becomes the Curie temperature specific to the material. As the temperature rises, the temperature decreases exponentially, whereas metal temperature-sensitive magnetic materials have distinctive magnetic properties with a sensitive magnetic / nonmagnetic switching function around the Curie temperature. .

図2において、熱エネルギ−を力学的エネルギ−に変換するために必要な十分な磁化の変位を得るために、一般的な磁性体ではキュリ−温度前後で大きな温度差を必要とするのに対して、金属感温磁性材料ではキュリ−温度前後で必要とする温度差は極めて小さいことがわかる。  In FIG. 2, in order to obtain sufficient magnetization displacement necessary for converting thermal energy into mechanical energy, a general magnetic material requires a large temperature difference before and after the Curie temperature. Thus, it can be seen that the metal temperature-sensitive magnetic material requires a very small temperature difference before and after the Curie temperature.

一般的な磁性体の磁化の変位が、キュリ−温度に対してアナログ的変化であるのに対して金属感温磁性材料はデジタル的変化である。  While the displacement of the magnetization of a general magnetic material is an analog change with respect to the Curie temperature, the metal temperature-sensitive magnetic material is a digital change.

磁場を作るための磁石2には永久磁石、電磁石等があるが、磁石2の温度が上昇すると磁力が低下するので、磁石2の温度上昇を抑える熱対策は重要である。  The magnet 2 for creating a magnetic field includes a permanent magnet, an electromagnet, and the like. However, when the temperature of the magnet 2 rises, the magnetic force decreases, so a heat countermeasure that suppresses the temperature rise of the magnet 2 is important.

温度の低い液体を使用する場合は、磁石2を液中に浸しても磁力の低下は少ないが、液質によっては磁石の腐蝕が発生するので、所作を講じて防蝕対策をすることもできる。  When using a liquid having a low temperature, even if the magnet 2 is immersed in the liquid, there is little decrease in the magnetic force, but depending on the liquid quality, the magnet may be corroded.

熱対策としては磁石2と加熱手段である高温の雰囲気間の断熱や磁石2を水冷、油冷、空冷あるいはその他の冷却媒体による冷却等の熱対策を講ずることができる。  As heat countermeasures, it is possible to take heat countermeasures such as heat insulation between the magnet 2 and a high temperature atmosphere as a heating means, and cooling of the magnet 2 with water cooling, oil cooling, air cooling, or other cooling medium.

本発明の熱機関は動作原理とシステムが極めて簡単で安価で製作できるので、実施においては磁石2が液面になるように浮き輪等を付けて液面に浮かせて使用することもできるし、液体の攪拌器として利用したり、海面や湖面に浮かぶ玩具とすることもできる。  Since the heat engine of the present invention has a very simple operating principle and system and can be manufactured at low cost, it can be used by floating it on the liquid surface with a floating ring or the like so that the magnet 2 is at the liquid surface. It can be used as a liquid stirrer, or can be a toy floating on the sea or lake.

実施において高温の雰囲気は、地熱や太陽熱等の自然エネルギ−を利用することもできるし、可燃物や可燃ガスの燃焼熱や廃熱等の熱源を利用することもできる。  In the implementation, the high temperature atmosphere can use natural energy such as geothermal or solar heat, or can use a heat source such as combustion heat or waste heat of combustible materials or combustible gas.

本発明の熱機関は温度差の熱エネルギ−を利用したものであるから、今後キュリ−温度が低温域にある金属感温磁性材料が開発できれば、冷熱エネルギ−も有効に活用できるものである。  Since the heat engine of the present invention utilizes the thermal energy of the temperature difference, if a metal thermosensitive magnetic material having a Curie temperature in a low temperature range can be developed in the future, the cold energy can be effectively utilized.

本発明は原理と構成が極めて簡単なものであるから、今後更なる優れた磁性材料が開発されることと相生して、一般産業はもとよりエネルギ−関連、電力、医療、遊具等の広範囲の分野で利用できるものである。  Since the present invention is extremely simple in principle and configuration, it is combined with the development of further excellent magnetic materials in the future, and in a wide range of fields such as energy-related, electric power, medical, playground equipment as well as general industries. Is available.

1…軌道
2…磁石
3…回転体
4…軌道の移動方向
5…回転方向
6…支持体
DESCRIPTION OF SYMBOLS 1 ... Orbit 2 ... Magnet 3 ... Rotating body 4 ... Moving direction 5 of an orbit ... Rotating direction 6 ... Support

Claims (1)

金属感温磁性材料から成る環状の軌道と軌道が回転移動できる機構を具備し、軌道の一部は金属感温磁性材料のキュリ−温度以下の液体に浸し、それ以外の軌道はキュリ−温度以上の雰囲気中に置き、液面位置に磁石を固定配置して磁場を作って磁場中に軌道を通し、軌道をキュリ−温度以下の液体中で磁化した後、磁場中の軌道の所定の領域をキュリ−温度以上の雰囲気中で加熱して消磁し、消磁された方向に軌道が移動する推力を生じさせて軌道を移動し、軌道の加熱された領域が液体に進入して移動する間にキュリ−温度以下に冷却することを特徴とする熱機関。  It is equipped with a ring-shaped orbit made of a metal temperature-sensitive magnetic material and a mechanism that allows the orbit to rotate. A part of the orbit is immersed in a liquid having a temperature lower than the Curie temperature of the metal temperature-sensitive magnetic material, and the other orbit is higher than the Curie temperature. The magnet is fixedly placed at the liquid level, a magnetic field is created, the orbit is passed through the magnetic field, the orbit is magnetized in the liquid below the Curie temperature, and then a predetermined region of the orbit in the magnetic field is formed. Demagnetize by heating in an atmosphere above the Curie temperature, generate a thrust that moves the track in the demagnetized direction, move the track, and while the heated region of the track enters and moves into the liquid, A heat engine, characterized by cooling below temperature.
JP2013028328A 2013-01-29 2013-01-29 Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto Pending JP2014145355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028328A JP2014145355A (en) 2013-01-29 2013-01-29 Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028328A JP2014145355A (en) 2013-01-29 2013-01-29 Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto

Publications (1)

Publication Number Publication Date
JP2014145355A true JP2014145355A (en) 2014-08-14

Family

ID=51425778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028328A Pending JP2014145355A (en) 2013-01-29 2013-01-29 Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto

Country Status (1)

Country Link
JP (1) JP2014145355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351834A (en) * 2023-05-23 2023-06-30 广东绿航环保工程有限公司 Energy-saving waste gas treatment device and waste gas treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351834A (en) * 2023-05-23 2023-06-30 广东绿航环保工程有限公司 Energy-saving waste gas treatment device and waste gas treatment method
CN116351834B (en) * 2023-05-23 2023-09-08 广东绿航环保工程有限公司 Energy-saving waste gas treatment device and waste gas treatment method

Similar Documents

Publication Publication Date Title
US3743866A (en) Rotary curie point magnetic engine
KR20060123118A (en) Device for generating a thermal flux with a magneto-caloric material
JPWO2010137597A1 (en) Composite magnetic ring and energy converter
CN102403925B (en) Thermomagnetic power generation system driven by reciprocating motion piston pump
JP2014145355A (en) Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto
JP2014138550A (en) Thermomagnetic generator applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014145354A (en) Heat engine applying magnetic characteristics of metal thermosensitive magnetic material thereto
JP2014207843A (en) Heat engine applying magnetic characteristics of temperature-sensitive magnetic material
JP2014155428A (en) Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material
JP2014138549A (en) Heat engine applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014105698A (en) Method for converting heat energy to dynamical energy
JP2014139500A (en) Heat engine applying magnetic characteristics of thermosensitive magnetic metal material
US8096118B2 (en) Engine for utilizing thermal energy to generate electricity
JP2014155429A (en) Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material
JP2014140284A (en) Heat engine applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014108043A (en) Heat engine applying magnetic characteristics of metal temperature-sensitive material
JP2014138548A (en) Heat engine system applying magnetic characteristic of metal temperature-sensitive magnetic material
US11075333B2 (en) Apparatus and method for converting thermal energy into electrical energy
JP2014204658A (en) Heating appliance with rotation function or cookstove
JP7065224B1 (en) Energy conversion element
JPH06141572A (en) Magnetic body engine
JP2000104655A (en) Thermal magnetic engine
CN218274229U (en) Shielding type semi-magnetic ring structure
JP2011080711A (en) Device and system for adjusting temperature
JP2013198391A (en) Thermomagnetic actuator