JP2014145093A - Supply device and supply method of an electrolytic solution - Google Patents

Supply device and supply method of an electrolytic solution Download PDF

Info

Publication number
JP2014145093A
JP2014145093A JP2013012995A JP2013012995A JP2014145093A JP 2014145093 A JP2014145093 A JP 2014145093A JP 2013012995 A JP2013012995 A JP 2013012995A JP 2013012995 A JP2013012995 A JP 2013012995A JP 2014145093 A JP2014145093 A JP 2014145093A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
copper
solution
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013012995A
Other languages
Japanese (ja)
Other versions
JP5962525B2 (en
Inventor
Masahiro Shingu
正寛 新宮
Masaki Imamura
正樹 今村
Kazuyuki Takaishi
和幸 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013012995A priority Critical patent/JP5962525B2/en
Publication of JP2014145093A publication Critical patent/JP2014145093A/en
Application granted granted Critical
Publication of JP5962525B2 publication Critical patent/JP5962525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supply device and a supply method of an electrolytic solution each capable of adjusting to constant volumes of metals supplied into an electrolytic tank regardless of variations of metal ion concentrations within the electrolytic solution.SOLUTION: The provided supply device A of an electrolytic solution includes: a liquid transport means P for transporting an electrolytic solution into an electrolytic tank B; a flow meter 2 capable of measuring flow rates of metal ions included within the electrolytic solution without being affected by electrolytic currents of the electrolytic tank B; and a valve 3 capable of controlling the supply flow rate of the electrolytic solution. Since flow rates of metal ions included within the electrolytic solution can be measured by the flow meter 2, the flow rate of the supplied electrolytic solution can be increased or decreased in accordance with metal ion concentration variations of the electrolytic solution by controlling the valve 3 so as to realize a fixed measurement value of the flow meter 2, and quantities of metals supplied into the electrolytic tank B can be adjusted fixedly regardless of variations of the metal ion concentrations of the electrolytic solution.

Description

本発明は、電解液の給液装置および給液方法に関する。さらに詳しくは、電解採取や電解精製の電解槽に電解液を給液する給液装置および給液方法に関する。   The present invention relates to an electrolytic solution supply apparatus and a supply method. More specifically, the present invention relates to a liquid supply apparatus and a liquid supply method for supplying an electrolytic solution to an electrolytic tank for electrolytic collection or electrolytic purification.

硫化物から目的金属を回収する湿式製錬プロセスの一例を図4に基づき説明する(特許文献1参照)。
まず、ニッケルマットなどの原料を粉砕工程において粉砕した後、後述のアノライトと混合してマットスラリーとし、その大部分をセメンテーション工程に供給する。セメンテーション工程には塩素浸出工程で得られた浸出液が供給されており、この浸出液中に含まれる銅がマット中のニッケルと置換反応を起こして、硫化銅として析出する。そして、析出した硫化銅をセメンテーション残渣とともに分離し、塩素浸出工程に供給する。
An example of a hydrometallurgical process for recovering a target metal from sulfide will be described with reference to FIG. 4 (see Patent Document 1).
First, a raw material such as a nickel mat is pulverized in a pulverization step, and then mixed with an anolyte described later to form a mat slurry, and most of it is supplied to the cementation step. The cementation process is supplied with the leachate obtained in the chlorine leaching process, and the copper contained in the leachate undergoes a substitution reaction with the nickel in the mat to precipitate as copper sulfide. Then, the precipitated copper sulfide is separated together with the cementation residue and supplied to the chlorine leaching process.

セメンテーション工程の終液中にはCoやFeなどが含まれているため、浄液工程で塩素ガスを吹き込んで酸化しつつ、同時に炭酸ニッケルを添加して中和する、いわゆる酸化中和法により、これらの元素およびCu、Pb、Asなどの微量不純物を除去する。不純物を除去した液はその後、ニッケル電解液としてニッケル電解工程に送る。ニッケル電解工程においては、電解採取により、ニッケル電解液に含まれるニッケルを電気ニッケルとして回収する。ニッケル電解工程から排出されたニッケル電解廃液は、脱塩素処理工程において塩素が除去されアノライトとなり、粉砕工程、浄液工程、および後述の脱銅電解工程に送られる。脱塩素処理工程で分離された塩素ガスは塩素浸出工程および浄液工程に繰り返して再利用する。   Since the final liquid of the cementation process contains Co, Fe, etc., it is oxidized by injecting chlorine gas in the liquid purification process and simultaneously neutralizing by adding nickel carbonate. Remove these elements and trace impurities such as Cu, Pb and As. The liquid from which impurities have been removed is then sent to the nickel electrolysis process as a nickel electrolyte. In the nickel electrolysis step, nickel contained in the nickel electrolyte is recovered as electric nickel by electrowinning. The nickel electrolysis waste liquid discharged from the nickel electrolysis process removes chlorine in the dechlorination treatment process to become anorite, and is sent to the pulverization process, the liquid purification process, and the decopper electrolysis process described later. Chlorine gas separated in the dechlorination process is repeatedly reused in the chlorine leaching process and the liquid purification process.

塩素浸出工程には残りのマットスラリーとMS(Mix Sulfide:ニッケルとコバルトの混合硫化物)およびセメンテーション残渣からなるスラリーが供給される。塩素浸出工程では、浸出槽に吹き込まれる塩素ガスの酸化力によって、スラリー中の固形物に含まれる非鉄金属が実質的に全て液中に浸出される。塩素浸出工程から排出されたスラリーは固液分離装置により浸出液と浸出残渣とに固液分離される。マットに含まれていた硫黄はほとんど浸出されず、その大部分が浸出残渣として分離される。非鉄金属が浸出された浸出液の大部分は、そのままセメンテーション工程に繰り返して供給される。浸出液の一部は脱銅電解工程に送られ、電解採取により銅が除去された脱銅電解廃液が浸出液とともにセメンテーション工程に供給される。   In the chlorine leaching step, the remaining mat slurry, MS (Mix Sulfide: mixed sulfide of nickel and cobalt), and slurry consisting of cementation residue are supplied. In the chlorine leaching step, substantially all of the nonferrous metal contained in the solid matter in the slurry is leached into the liquid by the oxidizing power of the chlorine gas blown into the leaching tank. The slurry discharged from the chlorine leaching step is solid-liquid separated into a leachate and a leach residue by a solid-liquid separator. Sulfur contained in the mat is hardly leached, and most of it is separated as a leaching residue. Most of the leachate from which the non-ferrous metal is leached is repeatedly supplied to the cementation process as it is. Part of the leachate is sent to the copper removal electrolysis process, and the copper removal electrolysis waste liquid from which copper has been removed by electrowinning is supplied to the cementation process together with the leachate.

図5に示すように、従来の脱銅電解工程の処理設備は、濃度調整槽101、ヘッドタンク102、および脱銅電解槽103を備えている。濃度調整槽101において浸出液にアノライトを混合することで、銅イオン濃度を調整して脱銅電解液とする。濃度調整槽101内の脱銅電解液はポンプPによりヘッドタンク102に送液され、ヘッドタンク102から所定の流量で脱銅電解槽103に給液される。脱銅電解槽103では、電解採取により脱銅電解液に含まれる銅を電気銅として回収する。そして、銅が除去された脱銅電解廃液が脱銅電解槽103から排出される。   As shown in FIG. 5, the conventional treatment equipment for the copper removal electrolysis process includes a concentration adjusting tank 101, a head tank 102, and a copper removal electrolytic tank 103. By mixing anolyte with the leachate in the concentration adjusting tank 101, the copper ion concentration is adjusted to obtain a copper-free electrolytic solution. The copper removal electrolytic solution in the concentration adjustment tank 101 is sent to the head tank 102 by the pump P, and is supplied from the head tank 102 to the copper removal electrolytic tank 103 at a predetermined flow rate. In the copper removal electrolysis tank 103, the copper contained in the copper removal electrolytic solution is recovered as electrolytic copper by electrowinning. Then, the copper removal electrolysis waste liquid from which copper is removed is discharged from the copper removal electrolysis tank 103.

ヘッドタンク102は、液面に大気圧がかかるタンクであり、液面高さと液体の流出部の高さの差である位置ヘッドを与えて液体を流出させるものである。位置ヘッドを一定にすることで液体を一定流量で定常的に流出させることができる。すなわち、ヘッドタンク102により脱銅電解液が一定流量で脱銅電解槽103に給液される。   The head tank 102 is a tank in which atmospheric pressure is applied to the liquid level, and gives a position head that is the difference between the liquid level height and the height of the liquid outflow portion to allow the liquid to flow out. By making the position head constant, the liquid can flow out constantly at a constant flow rate. That is, the copper removal electrolyte is supplied to the copper removal electrolytic bath 103 by the head tank 102 at a constant flow rate.

脱銅電解液は、銅を含有する塩化ニッケル溶液である。脱銅電解槽103においては、銅とニッケルの標準電極電位の違いを利用して、選択的に銅をカソードに電着させることで、脱銅電解液から銅を除去する。   The copper removal electrolytic solution is a nickel chloride solution containing copper. In the copper removal electrolysis tank 103, copper is removed from the copper removal electrolytic solution by selectively electrodepositing copper on the cathode using the difference in standard electrode potential between copper and nickel.

塩化ニッケル溶液中の銅イオンを電解採取で除去する反応は、下記のアノード反応とカソード反応からなる。なお、E0は標準電極電位である。
(アノード反応)
(1) 2Cl-→Cl2+2e- E0=1.36V
(2) Cu+→Cu2++e- E0=0.16V
(3) Cu++1/2Cl2→Cu2++Cl- E0=0.42V
(カソード反応)
(4) Cu2++e-→Cu+ E0=0.51V
(5) Cu++e-→Cu0 E0=0.16V
(6) 2H++2e-→H2 E0=0V
(7) Ni2++2e-→Ni0 E0=-0.25V
The reaction for removing copper ions in the nickel chloride solution by electrowinning comprises the following anodic reaction and cathodic reaction. E 0 is the standard electrode potential.
(Anode reaction)
(1) 2Cl → Cl 2 + 2e E 0 = 1.36V
(2) Cu + → Cu 2+ + e - E 0 = 0.16V
(3) Cu + + 1 / 2Cl 2 → Cu 2+ + Cl E 0 = 0.42V
(Cathode reaction)
(4) Cu 2+ + e → Cu + E 0 = 0.51V
(5) Cu + + e - → Cu 0 E 0 = 0.16V
(6) 2H + + 2e - → H 2 E 0 = 0V
(7) Ni 2+ + 2e - → Ni 0 E 0 = -0.25V

アノード反応としては(1)から(3)の反応が考えられるが、主反応は塩素ガス(Cl2)の発生である。一方、カソード反応としては、最初に電位差が最も小さい(4)の反応が進み、全てのCu2+がCu+に還元される。その後、(5)の反応が進むことでCu0がカソードに電着する。ここで、銅電着反応による分極が生じても、(7)の反応によるNi0の電着はある程度抑制される。しかし、脱銅電解槽103内の銅イオン濃度がある一定値を下回ると分極が大きくなり、(7)の反応が進行してカソードにニッケルが電着してしまう。 Although the reactions (1) to (3) can be considered as the anode reaction, the main reaction is the generation of chlorine gas (Cl 2 ). On the other hand, as the cathode reaction, the reaction (4) having the smallest potential difference proceeds first, and all Cu 2+ is reduced to Cu +. Thereafter, Cu 0 is electrodeposited on the cathode as the reaction (5) proceeds. Here, even if polarization is caused by the copper electrodeposition reaction, the electrodeposition of Ni 0 due to the reaction of (7) is suppressed to some extent. However, when the copper ion concentration in the decopperization electrolytic cell 103 falls below a certain value, the polarization increases, and the reaction (7) proceeds and nickel is electrodeposited on the cathode.

ニッケルの電着を抑制するためには、脱銅電解槽103内の銅イオン濃度を最適な条件に調整する必要がある。具体的には、(4)の反応で得られたCu+を(2)の反応でできる限りCu0まで還元でき、かつ、(7)の反応が進行しない最低限の銅イオン濃度に調整することが求められる。例えば、脱銅電解廃液の銅イオン濃度が7g/L以上となるように調整される(特許文献2参照)。 In order to suppress the electrodeposition of nickel, it is necessary to adjust the copper ion concentration in the copper removal electrolysis tank 103 to an optimum condition. Specifically, Cu + obtained by the reaction (4) can be reduced to Cu 0 as much as possible by the reaction (2) and adjusted to the minimum copper ion concentration at which the reaction (7) does not proceed. Is required. For example, the copper ion concentration of the decopperized electrolytic waste liquid is adjusted to be 7 g / L or more (see Patent Document 2).

脱銅電解槽103内の銅イオン濃度を調整するには、脱銅電解槽103の電解電流を制御する方法か、脱銅電解槽103への銅供給量を制御する方法が考えられる。電解電流を制御する方法では電解電流を低下させる場合もあり、限られた設備で銅を効率よく除去することを考慮すると、銅供給量を制御する方法の方が電解電流を維持できるため好ましい。   In order to adjust the copper ion concentration in the copper removal electrolysis tank 103, a method of controlling the electrolytic current of the copper removal electrolysis tank 103 or a method of controlling the amount of copper supplied to the copper removal electrolysis tank 103 can be considered. In the method of controlling the electrolytic current, the electrolytic current may be lowered. In consideration of efficiently removing copper with limited equipment, the method of controlling the copper supply amount is preferable because the electrolytic current can be maintained.

脱銅電解槽103への銅供給量を制御するには、脱銅電解液の給液流量を制御する方法か、脱銅電解液の銅イオン濃度を制御する方法が考えられる。脱銅電解液の給液流量を制御すには脱銅電解液の給液流量を測定する必要があるが、一般的な流量計は電解電流の影響を受けるため、脱銅電解液の給液流量を測定することは困難である。そのため、前述のごとくヘッドタンク102により脱銅電解液の給液流量を一定とすることが一般的である。そこで、従来は濃度調整槽101において脱銅電解液の銅イオン濃度を調整することで、銅脱銅電解槽103への銅供給量を制御していた。   In order to control the amount of copper supplied to the copper removal electrolytic bath 103, a method of controlling the supply flow rate of the copper removal electrolytic solution or a method of controlling the copper ion concentration of the copper removal electrolytic solution can be considered. In order to control the supply flow rate of the copper removal electrolyte, it is necessary to measure the supply flow rate of the copper removal electrolyte. However, since general flow meters are affected by the electrolytic current, It is difficult to measure the flow rate. Therefore, as described above, it is general that the supply flow rate of the copper removal electrolyte is made constant by the head tank 102. Therefore, conventionally, the amount of copper supplied to the copper decoppering electrolytic bath 103 is controlled by adjusting the copper ion concentration of the copper removal electrolytic solution in the concentration adjusting bath 101.

しかし、原料である鉱石中の銅品位は一定でないため、浸出液の銅イオン濃度は原料により変動する。そのため、濃度調整槽101により脱銅電解液の銅イオン濃度を最適な条件に維持することは困難であり、脱銅電解液の銅イオン濃度が変動してしまう。そして、従来のヘッドタンク方式では、脱銅電解液の銅イオン濃度の変動に対応できず、脱銅電解槽103内の銅イオン濃度が低下し、ニッケルが電着してしまう恐れがあった。結局、ニッケルの電着を防止するためには、脱銅電解廃液の銅イオン濃度の管理値を理想的な値よりも高めに設定せざるをえず、脱銅電解槽103への銅供給量に余裕があるために、電流効率が理想的な条件から比べると低くなるという問題がある。   However, since the copper quality in the ore that is the raw material is not constant, the copper ion concentration of the leachate varies depending on the raw material. For this reason, it is difficult to maintain the copper ion concentration of the decopperized electrolyte in an optimum condition by the concentration adjusting tank 101, and the copper ion concentration of the decoppered electrolyte varies. The conventional head tank system cannot cope with fluctuations in the copper ion concentration of the copper removal electrolytic solution, so that the copper ion concentration in the copper removal electrolytic bath 103 is lowered and nickel may be electrodeposited. After all, in order to prevent nickel electrodeposition, the control value of the copper ion concentration of the decopperization electrolysis waste liquid must be set higher than the ideal value, and the amount of copper supplied to the decopperization electrolysis tank 103 Therefore, there is a problem that current efficiency becomes lower than ideal conditions.

特許第3243929号公報Japanese Patent No. 3243929 特開平5−295467号公報JP-A-5-295467

本発明は上記事情に鑑み、電解液の金属イオン濃度の変動に関わらず電解槽への金属供給量を一定に調整できる電解液の給液装置および給液方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an electrolyte solution supply device and a solution supply method capable of adjusting the amount of metal supplied to an electrolytic cell to be constant regardless of fluctuations in the metal ion concentration of the electrolyte solution.

第1発明の電解液の給液装置は、電解槽に電解液を送液する送液手段と、前記電解槽の電解電流の影響によらず前記電解液に含有される金属イオンの流量を測定可能な流量計と、前記電解液の給液流量を制御可能なバルブと、を備えることを特徴とする。
第2発明の電解液の給液装置は、第1発明において、前記流量計より上流側において、前記電解液の金属イオン濃度を調整する濃度調整手段を備えることを特徴とする。
第3発明の電解液の給液装置は、第1または第2発明において、前記電解液は、銅を含有する塩化ニッケル溶液であり、前記電解槽は、電解採取により前記電解液中の銅を電着させる電解槽であることを特徴とする。
第4発明の電解液の給液方法は、電解槽に電解液を送液し、前記電解槽の電解電流の影響によらず前記電解液に含有される金属イオンの流量を測定可能な流量計を用いて、該電解液に含有される金属イオンの流量を測定し、前記流量計の測定値が一定の値となるように前記電解液の給液流量を制御することを特徴とする。
第5発明の電解液の給液方法は、第4発明において、前記電解液の金属イオン濃度を調整した後に、前記流量計を用いて前記電解液に含有される金属イオンの流量を測定することを特徴とする。
第6発明の電解液の給液方法は、第4または第5発明において、前記電解液は、銅を含有する塩化ニッケル溶液であり、前記電解槽は、電解採取により前記電解液中の銅を電着させる電解槽であることを特徴とする。
The liquid supply device for an electrolytic solution of the first invention measures the flow rate of metal ions contained in the electrolytic solution regardless of the influence of the electrolytic current of the electrolytic cell, and the liquid feeding means for feeding the electrolytic solution to the electrolytic cell And a valve capable of controlling a supply flow rate of the electrolyte solution.
According to a second aspect of the present invention, there is provided an electrolyte solution supply apparatus according to the first invention, further comprising concentration adjusting means for adjusting a metal ion concentration of the electrolyte solution upstream of the flow meter.
According to a third aspect of the present invention, there is provided the electrolytic solution supply apparatus according to the first or second aspect, wherein the electrolytic solution is a nickel chloride solution containing copper, and the electrolytic bath removes copper in the electrolytic solution by electrolytic collection. It is an electrolytic cell to be electrodeposited.
According to a fourth aspect of the present invention, there is provided a method of supplying an electrolytic solution, wherein the electrolytic solution is fed to an electrolytic cell and the flow rate of metal ions contained in the electrolytic solution can be measured regardless of the influence of the electrolytic current of the electrolytic cell. Is used to measure the flow rate of metal ions contained in the electrolytic solution, and to control the supply flow rate of the electrolytic solution so that the measured value of the flow meter becomes a constant value.
According to a fifth aspect of the present invention, there is provided a method for supplying an electrolytic solution, wherein, in the fourth aspect, after adjusting a metal ion concentration of the electrolytic solution, the flow rate of the metal ions contained in the electrolytic solution is measured using the flowmeter. It is characterized by.
According to a sixth aspect of the present invention, in the fourth or fifth aspect, the electrolytic solution is a nickel chloride solution containing copper, and the electrolytic bath removes copper in the electrolytic solution by electrolytic collection. It is an electrolytic cell to be electrodeposited.

第1発明によれば、流量計で電解液に含有される金属イオンの流量を測定できるので、流量計の測定値が一定の値となるようにバルブを制御することで、電解液の金属イオン濃度の変動に従い電解液の給液流量を増減させ、電解液の金属イオン濃度の変動に関わらず電解槽への金属供給量を一定に調整できる。
第2発明によれば、予め電解液の金属イオン濃度を調整することで、電解液の金属イオン濃度の変動を抑制でき、電解液の給液流量の増減を抑えることができる。そのため、電解液の給液流量の増減による電解槽の液面高さの変動を抑制できる。
第3発明によれば、電解液の銅イオン濃度の変動に関わらず電解槽への銅供給量を一定に調整できるので、電解槽内の銅イオン濃度を最適な条件に調整でき、銅を効率良く電着させることができる。
第4発明によれば、電解液に含有される金属イオンの流量が一定となるように電解液の給液流量を制御することで、電解液の金属イオン濃度の変動に従い電解液の給液流量を増減させ、電解液の金属イオン濃度の変動に関わらず電解槽への金属供給量を一定に調整できる。
第5発明によれば、予め電解液の金属イオン濃度を調整することで、電解液の金属イオン濃度の変動を抑制でき、電解液の給液流量の増減を抑えることができる。そのため、電解液の給液流量の増減による電解槽の液面高さの変動を抑制できる。
第6発明によれば、電解液の銅イオン濃度の変動に関わらず電解槽への銅供給量を一定に調整できるので、電解槽内の銅イオン濃度を最適な条件に調整でき、銅を効率良く電着させることができる。
According to the first invention, since the flow rate of the metal ions contained in the electrolyte solution can be measured with the flow meter, the metal ions in the electrolyte solution can be controlled by controlling the valve so that the measured value of the flow meter becomes a constant value. According to the concentration variation, the supply flow rate of the electrolytic solution can be increased or decreased, and the metal supply amount to the electrolytic cell can be adjusted to be constant regardless of the variation of the metal ion concentration of the electrolytic solution.
According to the second invention, by adjusting the metal ion concentration of the electrolytic solution in advance, fluctuations in the metal ion concentration of the electrolytic solution can be suppressed, and increase / decrease in the supply flow rate of the electrolytic solution can be suppressed. Therefore, the fluctuation | variation of the liquid level of an electrolytic cell by increase / decrease in the supply flow rate of electrolyte solution can be suppressed.
According to the third aspect of the invention, the amount of copper supplied to the electrolytic cell can be adjusted to be constant regardless of fluctuations in the copper ion concentration of the electrolytic solution, so that the copper ion concentration in the electrolytic cell can be adjusted to an optimum condition, and copper can be efficiently used. It can be electrodeposited well.
According to the fourth aspect of the invention, the supply flow rate of the electrolytic solution is controlled according to the fluctuation of the metal ion concentration of the electrolytic solution by controlling the supply flow rate of the electrolytic solution so that the flow rate of the metal ions contained in the electrolytic solution is constant. The amount of metal supplied to the electrolytic cell can be adjusted to be constant regardless of fluctuations in the metal ion concentration of the electrolytic solution.
According to the fifth aspect, by adjusting the metal ion concentration of the electrolytic solution in advance, fluctuations in the metal ion concentration of the electrolytic solution can be suppressed, and increase / decrease in the supply flow rate of the electrolytic solution can be suppressed. Therefore, the fluctuation | variation of the liquid level of an electrolytic cell by increase / decrease in the supply flow rate of electrolyte solution can be suppressed.
According to the sixth aspect of the invention, since the amount of copper supplied to the electrolytic cell can be adjusted to be constant regardless of fluctuations in the copper ion concentration of the electrolytic solution, the copper ion concentration in the electrolytic cell can be adjusted to the optimum condition, and copper can be efficiently used. It can be electrodeposited well.

本発明の一実施形態に係る電解液の給液装置を備える脱銅電解工程の処理設備の説明図である。It is explanatory drawing of the processing equipment of the copper removal electrolysis process provided with the liquid supply apparatus of the electrolyte solution which concerns on one Embodiment of this invention. 電磁流量計の原理説明図である。It is principle explanatory drawing of an electromagnetic flowmeter. 電磁流量計のノイズ除去方法の説明図である。It is explanatory drawing of the noise removal method of an electromagnetic flowmeter. 湿式製錬プロセスの工程図である。It is process drawing of a hydrometallurgical process. 従来の脱銅電解工程の処理設備の説明図である。It is explanatory drawing of the processing equipment of the conventional copper removal electrolysis process.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る電解液の給液装置は、硫化物から目的金属を回収する湿式製錬プロセスにおける脱銅電解工程の処理設備の一部として用いられるものである。脱銅電解工程には塩素浸出工程で得られた浸出液の一部が供給され、電解採取により不純物である銅が除去される。湿式製錬プロセスの全体工程については、従来と同様であるので説明を省略する(図4参照)。
Next, an embodiment of the present invention will be described with reference to the drawings.
An electrolytic solution supply apparatus according to an embodiment of the present invention is used as part of a treatment facility for a copper removal electrolysis process in a hydrometallurgical process for recovering a target metal from sulfides. Part of the leaching solution obtained in the chlorine leaching step is supplied to the copper removal electrolysis step, and copper as an impurity is removed by electrowinning. Since the entire process of the hydrometallurgical process is the same as the conventional process, the description thereof is omitted (see FIG. 4).

図1に示すように、本実施形態に係る電解液の給液装置Aは、脱銅電解槽Bに脱銅電解液を給液する装置であり、濃度調整槽1と、ポンプPと、流量計2と、流量制御バルブ3とを備えている。濃度調整槽1と脱銅電解槽Bとは配管4で接続されており、配管4に上記ポンプP、流量計2および流量制御バルブ3が介装されている。なお、流量計2と流量制御バルブ3の前後は特に限定されないが、濃度調整槽1は流量計2より上流側に配置される必要がある。   As shown in FIG. 1, an electrolytic solution supply apparatus A according to this embodiment is an apparatus that supplies a copper removal electrolytic solution to a copper removal electrolytic bath B, and includes a concentration adjusting tank 1, a pump P, and a flow rate. A total 2 and a flow control valve 3 are provided. The concentration adjustment tank 1 and the copper removal electrolysis tank B are connected by a pipe 4, and the pump P, the flow meter 2 and the flow control valve 3 are interposed in the pipe 4. The front and rear of the flow meter 2 and the flow control valve 3 are not particularly limited, but the concentration adjustment tank 1 needs to be disposed upstream of the flow meter 2.

濃度調整槽1には、浸出液とアノライトとが供給されている。浸出液は、湿式製錬プロセスの塩素浸出工程で得られた浸出液であり、アノライトは、湿式精錬プロセスのニッケル電解工程から排出されたニッケル電解廃液を脱塩素処理工程において塩素を除去して得られたアノライトである(図4参照)。以下、浸出液にアノライトを混合した液を脱銅電解液と称する。脱銅電解液は、銅を含有する塩化ニッケル溶液である。アノライトは、ニッケルやコバルトなどの目的金属や不純物が除去された液であり、金属イオン濃度が低い。そのため、濃度調整槽1において浸出液にアノライトを混合することで、脱銅電解液の銅イオン濃度が所定の濃度となるよう調整できる。   The concentration adjusting tank 1 is supplied with a leachate and anolyte. The leachate is a leachate obtained in the chlorine leaching process of the wet smelting process, and anolyte was obtained by removing chlorine in the dechlorination treatment process of the nickel electrolysis waste liquid discharged from the nickel electrolysis process of the wet smelting process. Anorite (see FIG. 4). Hereinafter, a liquid obtained by mixing anolyte with the leachate is referred to as a copper removal electrolyte. The copper removal electrolytic solution is a nickel chloride solution containing copper. Anorite is a liquid from which target metals such as nickel and cobalt and impurities are removed, and has a low metal ion concentration. Therefore, by mixing anolyte with the leachate in the concentration adjusting tank 1, the copper ion concentration of the copper removal electrolyte can be adjusted to a predetermined concentration.

なお、濃度調整槽1が特許請求の範囲に記載の濃度調整手段に相当する。濃度調整のためには、アノライトに代えて水を混合してもよいが、湿式製錬プロセスの水バランスを考慮すると、工程内で発生するプロセス水であるアノライトを用いる方が好ましい。   The concentration adjusting tank 1 corresponds to the concentration adjusting means described in the claims. In order to adjust the concentration, water may be mixed instead of anolyte. However, in consideration of the water balance of the hydrometallurgical process, it is preferable to use anolyte, which is process water generated in the process.

濃度調整槽1で銅イオン濃度が調整された脱銅電解液は、ポンプPの駆動により配管4を介して脱銅電解槽Bに送液される。
なお、ポンプPは特許請求の範囲に記載の送液手段に相当する。
The copper removal electrolytic solution whose copper ion concentration is adjusted in the concentration adjusting tank 1 is sent to the copper removal electrolytic tank B through the pipe 4 by driving the pump P.
The pump P corresponds to the liquid feeding means described in the claims.

流量計2は、電磁流量計である。一般的な電磁流量計の測定原理を以下に説明する。
電磁流量計は電磁誘導の原理を利用した流量計である。図2に示すように、一般的な電磁流量計2は、測定管21と、励磁コイル22と、一対の電極23、34とを備えている。励磁コイル22により生じる磁界は測定管21の軸方向と直交する方向であり、一対の電極23、24は、測定管21の軸方向および磁界方向と直交する方向に配置されている。
The flow meter 2 is an electromagnetic flow meter. The measurement principle of a general electromagnetic flow meter will be described below.
An electromagnetic flow meter is a flow meter using the principle of electromagnetic induction. As shown in FIG. 2, the general electromagnetic flow meter 2 includes a measurement tube 21, an excitation coil 22, and a pair of electrodes 23 and 34. The magnetic field generated by the exciting coil 22 is a direction orthogonal to the axial direction of the measuring tube 21, and the pair of electrodes 23 and 24 are arranged in a direction orthogonal to the axial direction of the measuring tube 21 and the magnetic field direction.

磁束密度B(T)の磁界中に導電性の流体が流れると、磁界方向と直交する方向に起電力E(V)が発生する。この起電力Eは、流体の平均流速をv(m/s)、測定管21の直径をd(m)とすると、E=Bdvで表される。そのため、起電力Eを電極23、24間の電位差として検出することで、測定管21内に流れる流体の平均速度vを測定でき、これより流体の流量を測定できる。   When a conductive fluid flows in a magnetic field having a magnetic flux density B (T), an electromotive force E (V) is generated in a direction orthogonal to the magnetic field direction. The electromotive force E is expressed by E = Bdv where the average flow velocity of the fluid is v (m / s) and the diameter of the measurement tube 21 is d (m). Therefore, by detecting the electromotive force E as a potential difference between the electrodes 23 and 24, the average velocity v of the fluid flowing in the measuring tube 21 can be measured, and thereby the fluid flow rate can be measured.

しかし、電磁流量計2は、電気的に均一な導電性の流体でなければ正確に流量を測定できないことが知られている。また、非導電性の流体では起電力の測定が困難になることが知られている。濃度調整槽1で銅イオン濃度を調整したとしても、得られる脱銅電解液は電気的に不均一であり、電磁流量計2でその流量を正確に測定できない。   However, it is known that the electromagnetic flow meter 2 cannot accurately measure the flow rate unless it is an electrically uniform conductive fluid. Further, it is known that measurement of electromotive force becomes difficult with a non-conductive fluid. Even if the copper ion concentration is adjusted in the concentration adjusting tank 1, the resulting copper removal electrolyte is electrically non-uniform, and the electromagnetic flow meter 2 cannot accurately measure the flow rate.

ここで、本願発明者らは、電解液の金属イオン濃度が高くなり導電性が高くなると、起電力Eが大きくなり電磁流量計2で測定される流量が多くなり、電解液の金属イオン濃度が低下し導電性が低くなると、起電力Eが小さくなり電磁流量計2で測定される流量が少なくなるという知見を得た。このことから、電磁流量計2で電解液の流量を測定すると、電解液の実際の流量ではなく、電解液に含有される金属イオンの流量を定性的に測定できることを見出した。すなわち、脱銅電解液の実際の流量が一定であったとしても、脱銅電解液の銅イオン濃度が高くなると電磁流量計2で測定される流量が多くなり、脱銅電解液の銅イオン濃度が低くなると電磁流量計2で測定される流量が少なくなる。そのため、脱銅電解槽Bへの銅供給量を一定にするためには、流量計2の測定値が一定の値となるように流量制御バルブ3の開度を調整すればよい。   Here, when the metal ion concentration of electrolyte solution becomes high and electroconductivity becomes high, this inventor will increase electromotive force E, the flow volume measured with the electromagnetic flowmeter 2, and the metal ion concentration of electrolyte solution will become large. It has been found that the electromotive force E is reduced and the flow rate measured by the electromagnetic flow meter 2 is reduced when the conductivity is lowered and the electrical conductivity is lowered. From this, it has been found that when the flow rate of the electrolytic solution is measured by the electromagnetic flow meter 2, the flow rate of the metal ions contained in the electrolytic solution can be qualitatively measured instead of the actual flow rate of the electrolytic solution. That is, even if the actual flow rate of the copper removal electrolyte is constant, when the copper ion concentration of the copper removal electrolyte increases, the flow rate measured by the electromagnetic flow meter 2 increases, and the copper ion concentration of the copper removal electrolyte increases. When the value becomes lower, the flow rate measured by the electromagnetic flow meter 2 decreases. Therefore, in order to make the amount of copper supplied to the copper removal electrolytic cell B constant, the opening degree of the flow control valve 3 may be adjusted so that the measured value of the flow meter 2 becomes a constant value.

流量計2は、脱銅電解槽Bに接続された配管4に介装されているため、脱銅電解槽Bの電解電流の一部が配管4内の脱銅電解液を通り、流量計2の電極23、24を介して地絡する。そのため、電極23、24間の電位差には、脱銅電解液の流れにより生じる起電力Eの他に、電解電流によるノイズが含まれる。本実施形態では、脱銅電解槽Bの電解電流によるノイズを除去できる流量計2が用いられる。   Since the flow meter 2 is interposed in the pipe 4 connected to the copper removal electrolytic cell B, a part of the electrolytic current in the copper removal electrolytic cell B passes through the copper removal electrolytic solution in the pipe 4, and the flow meter 2. A ground fault occurs through the electrodes 23 and 24. Therefore, the potential difference between the electrodes 23 and 24 includes noise due to the electrolytic current in addition to the electromotive force E generated by the flow of the copper removal electrolyte. In the present embodiment, a flow meter 2 that can remove noise due to the electrolytic current of the copper removal electrolysis tank B is used.

電解電流によるノイズの除去方法は種々の方法を採用でき、特に限定されないが、例えば以下の方法が用いられる。
図3に示すように、励磁コイル22により直流で断続的に磁界を作る。磁界のあるときにサンプリングされた電極23、24間の電位差には、電解液の流れにより生じる流量成分と電解電流によるノイズ成分が含まれる。磁界のないときにサンプリングされた電位差はノイズ成分のみである。そのため、磁界があるときの電位差から磁界がないときの電位差を差し引くことで、電解電流によるノイズを除去できる。
Various methods can be adopted as a method for removing noise due to the electrolytic current, and the method is not particularly limited. For example, the following method is used.
As shown in FIG. 3, a magnetic field is intermittently generated with direct current by the exciting coil 22. The potential difference between the electrodes 23 and 24 sampled in the presence of a magnetic field includes a flow rate component caused by the flow of the electrolytic solution and a noise component due to the electrolytic current. The potential difference sampled when there is no magnetic field is only the noise component. Therefore, noise due to the electrolytic current can be removed by subtracting the potential difference when there is no magnetic field from the potential difference when there is a magnetic field.

以上のように、流量計2は、脱銅電解槽Bの電解電流の影響によらず脱銅電解液に含有される金属イオンの流量を定性的に測定できる。   As described above, the flow meter 2 can qualitatively measure the flow rate of metal ions contained in the copper removal electrolytic solution regardless of the influence of the electrolytic current in the copper removal electrolytic cell B.

脱銅電解槽Bにおいては、電解採取により脱銅電解液中の銅をカソードに電着させる。銅とニッケルの標準電極電位の違いを利用して、選択的に銅をカソードに電着させることで、脱銅電解液から銅を除去し、脱銅電解廃液として排出する。   In the copper removal electrolysis tank B, the copper in the copper removal electrolytic solution is electrodeposited on the cathode by electrowinning. By selectively depositing copper on the cathode using the difference in standard electrode potential between copper and nickel, copper is removed from the copper removal electrolyte and discharged as a copper removal waste liquid.

つぎに、本実施形態の電解液の給液装置Aによる脱銅電解液の給液方法を説明する。
濃度調整槽1において浸出液にアノライトを混合することで、脱銅電解液の銅イオン濃度が所定の濃度となるよう調整し、ポンプPの駆動により配管4を介して脱銅電解槽Bに脱銅電解液を送液する。
Next, a method for supplying a copper-free electrolytic solution by the electrolytic solution supply apparatus A of the present embodiment will be described.
The concentration of the copper ion in the decopperized electrolyte is adjusted to a predetermined level by mixing anolyte with the leachate in the concentration adjusting tank 1, and the copper is removed to the decoppered electrolytic tank B via the pipe 4 by driving the pump P. Feed the electrolyte.

流量計2を用いて、配管4を流れる脱銅電解液に含有される銅イオンの流量を測定し、流量計2の測定値が一定の値となるように流量制御バルブ3の開度を調整する。これにより脱銅電解液の給液流量を制御する。
例えば、脱銅電解液の銅イオン濃度が高くなると、流量計2の測定値が高くなる。この場合、流量制御バルブ3を絞ることで、脱銅電解液の実際の給液流量を少なくする。逆に、脱銅電解液の銅イオン濃度が低くなると、流量計2の測定値が低くなる。この場合、流量制御バルブ3を開くことで、脱銅電解液の実際の給液流量を多くする。
Using the flow meter 2, measure the flow rate of copper ions contained in the copper removal electrolyte flowing through the pipe 4, and adjust the opening of the flow control valve 3 so that the measured value of the flow meter 2 becomes a constant value. To do. Thereby, the supply flow rate of the copper removal electrolyte is controlled.
For example, when the copper ion concentration of the copper removal electrolytic solution increases, the measured value of the flow meter 2 increases. In this case, the actual supply flow rate of the copper removal electrolyte is reduced by restricting the flow rate control valve 3. On the contrary, when the copper ion concentration of the copper removal electrolytic solution is lowered, the measured value of the flow meter 2 is lowered. In this case, the actual supply flow rate of the copper removal electrolyte is increased by opening the flow control valve 3.

以上のように、脱銅電解液に含有される銅イオンの流量が一定となるように給液流量を制御することで、脱銅電解液の銅イオン濃度の変動に従い脱銅電解液の給液流量を増減させることとなり、脱銅電解液の銅イオン濃度の変動に関わらず脱銅電解槽Bへの銅供給量を一定に調整できる。   As described above, the supply of the copper removal electrolyte according to the fluctuation of the copper ion concentration of the copper removal electrolyte by controlling the liquid supply flow rate so that the flow of the copper ions contained in the copper removal electrolyte is constant. The flow rate is increased or decreased, and the amount of copper supplied to the copper removal electrolysis tank B can be adjusted to be constant regardless of the fluctuation of the copper ion concentration of the copper removal electrolytic solution.

前述のごとく、湿式製錬プロセスの脱銅電解工程においては、脱銅電解液に不純物である銅の他に、ニッケルやコバルトなどの目的金属が含まれているため、脱銅電解液から銅を選択的に除去する必要がある。そして、脱銅電解槽B内の銅イオン濃度がある一定値を下回ると、ニッケルやコバルトが電着してしまい、操業効率が低下する。しかし、本実施形態によれば、脱銅電解槽B内の銅イオン濃度を最適な条件に調整でき、ニッケルやコバルトが電着することなく、銅を効率良く電着させることができる。   As described above, in the copper removal electrolysis process of the hydrometallurgical process, the copper removal solution contains target metals such as nickel and cobalt in addition to copper, which is an impurity. Must be selectively removed. And if the copper ion density | concentration in the copper removal electrolysis tank B falls below a certain fixed value, nickel and cobalt will electrodeposit and operation efficiency will fall. However, according to the present embodiment, the copper ion concentration in the copper removal electrolysis tank B can be adjusted to an optimum condition, and copper can be efficiently electrodeposited without electrodeposition of nickel or cobalt.

脱銅電解液の銅イオン濃度の変動が大きい場合には、銅イオン濃度が低いと脱銅電解液の給液流量が多くなりすぎ、脱銅電解槽Bから脱銅電解液があふれる恐れがあり、銅イオン濃度が高いと脱銅電解液の給液流量が少なくなりすぎ、脱銅電解槽Bの液面高さが低くなりすぎる恐れがある。しかし、本実施形態では、濃度調整槽1で予め脱銅電解液の銅イオン濃度を調整するので、脱銅電解液の銅イオン濃度の変動を抑制でき、脱銅電解液の給液流量の増減を抑えることができる。そのため、脱銅電解液の給液流量の増減による脱銅電解槽Bの液面高さの変動を抑制できる。   When the fluctuation of the copper ion concentration of the copper removal electrolyte is large, if the copper ion concentration is low, the supply flow rate of the copper removal electrolyte may increase too much, and the copper removal electrolyte may overflow from the copper removal electrolytic bath B. If the copper ion concentration is high, the supply flow rate of the copper removal electrolytic solution may be too small, and the liquid level of the copper removal electrolytic bath B may be too low. However, in this embodiment, since the copper ion concentration of the copper removal electrolyte is adjusted in advance in the concentration adjustment tank 1, fluctuations in the copper ion concentration of the copper removal electrolyte can be suppressed, and the supply flow rate of the copper removal electrolyte is increased or decreased. Can be suppressed. Therefore, the fluctuation | variation of the liquid level of the copper removal electrolysis tank B by the increase / decrease in the liquid supply flow volume of a copper removal electrolyte solution can be suppressed.

(その他の実施形態)
本発明に係る電解液の給液装置および給液方法は、上記の脱銅電解工程に限定されず、ニッケルやコバルトなどの電解採取、銅などの電解精製において、電解槽に電解液を供給するのにも適用できる。この場合にも、電解槽内の目的金属のイオン濃度の変動を小さくできるので、操業効率を向上させることができる。
(Other embodiments)
The electrolytic solution supply apparatus and the liquid supply method according to the present invention are not limited to the above-described copper removal electrolysis step, and supply electrolytic solution to an electrolytic cell in electrolytic collection of nickel, cobalt, etc., and electrolytic purification of copper, etc. It can also be applied. Also in this case, since the fluctuation of the ion concentration of the target metal in the electrolytic cell can be reduced, the operation efficiency can be improved.

つぎに、実施例を説明する。
湿式製錬プロセスの脱銅電解工程において、上記実施形態を適用して脱銅電解液の給液流量を制御した場合(実施例1)と、従来と同様にヘッドタンク方式(図5参照)として脱銅電解液の給液流量を一定にした場合(比較例1)とで操業を行った。脱銅電解槽Bに給液される脱銅電解液の銅イオン濃度は23.5g/Lとした。なお、実施例1において流量計2は、電磁流量計(アズビル社製、MGG10CZ型)を使用した。
Next, examples will be described.
In the copper removal electrolysis step of the hydrometallurgical process, when the above-described embodiment is applied to control the supply flow rate of the copper removal electrolyte (Example 1), the head tank system (see FIG. 5) is used as in the conventional case. The operation was performed when the supply flow rate of the copper removal electrolyte was constant (Comparative Example 1). The copper ion concentration of the copper removal electrolyte supplied to the copper removal electrolysis tank B was 23.5 g / L. In Example 1, the flow meter 2 was an electromagnetic flow meter (manufactured by Azbil Corporation, MGG10CZ type).

実施例1および比較例1において、脱銅電解液の給液流量、および脱銅電解廃液の銅イオン濃度を測定し、脱銅電解液と脱銅電解廃液の銅イオン濃度差、および電流効率を求めると、表1の通りとなった。なお、電流効率は以下の式で求めた。
電流効率=〔銅イオン濃度差×給液流量〕/〔Cu2+電気化学等量×通電時間×通電電流〕
In Example 1 and Comparative Example 1, the supply flow rate of the copper removal electrolyte and the copper ion concentration of the copper removal waste solution were measured, and the difference in copper ion concentration between the copper removal solution and the copper removal waste solution and the current efficiency were determined. When asked, it became as shown in Table 1. In addition, the current efficiency was calculated | required with the following formula | equation.
Current efficiency = [copper ion concentration difference x feed flow rate] / [Cu 2+ electrochemical equivalent x energization time x energization current]

表1から明らかなように、実施例1は比較例1に比べて、銅イオン濃度差を大きくすることでき、電流効率を向上できることが確認された。なお、電着した電気銅中のNi品位は実施例1と比較例1とで同等であった。   As is clear from Table 1, it was confirmed that Example 1 can increase the copper ion concentration difference and can improve the current efficiency as compared with Comparative Example 1. The Ni quality in the electrodeposited electrolytic copper was the same in Example 1 and Comparative Example 1.

A 給液装置
B 脱銅電解槽
1 濃度調整槽
2 流量計
3 流量制御バルブ
4 配管
A Liquid supply device B Copper removal electrolysis tank 1 Concentration adjustment tank 2 Flow meter 3 Flow control valve 4 Piping

Claims (6)

電解槽に電解液を送液する送液手段と、
前記電解槽の電解電流の影響によらず前記電解液に含有される金属イオンの流量を測定可能な流量計と、
前記電解液の給液流量を制御可能なバルブと、を備える
ことを特徴とする電解液の給液装置。
A liquid feeding means for feeding an electrolytic solution to the electrolytic cell;
A flow meter capable of measuring the flow rate of metal ions contained in the electrolyte solution regardless of the influence of the electrolytic current of the electrolytic cell;
An electrolyte solution supply apparatus comprising: a valve capable of controlling a supply flow rate of the electrolyte solution.
前記流量計より上流側において、前記電解液の金属イオン濃度を調整する濃度調整手段を備える
ことを特徴とする請求項1記載の電解液の給液装置。
2. The electrolytic solution supply apparatus according to claim 1, further comprising a concentration adjusting unit configured to adjust a metal ion concentration of the electrolytic solution upstream of the flow meter.
前記電解液は、銅を含有する塩化ニッケル溶液であり、
前記電解槽は、電解採取により前記電解液中の銅を電着させる電解槽である
ことを特徴とする請求項1または2記載の電解液の給液装置。
The electrolytic solution is a nickel chloride solution containing copper,
3. The electrolytic solution supply device according to claim 1, wherein the electrolytic bath is an electrolytic bath for electrodepositing copper in the electrolytic solution by electrolytic collection.
電解槽に電解液を送液し、
前記電解槽の電解電流の影響によらず前記電解液に含有される金属イオンの流量を測定可能な流量計を用いて、該電解液に含有される金属イオンの流量を測定し、
前記流量計の測定値が一定の値となるように前記電解液の給液流量を制御する
ことを特徴とする電解液の給液方法。
Send the electrolyte to the electrolytic cell,
Using a flow meter capable of measuring the flow rate of metal ions contained in the electrolyte solution regardless of the influence of the electrolytic current of the electrolytic cell, the flow rate of metal ions contained in the electrolyte solution is measured,
A method for supplying an electrolytic solution, wherein the flow rate of the electrolytic solution is controlled so that a measured value of the flow meter becomes a constant value.
前記電解液の金属イオン濃度を調整した後に、
前記流量計を用いて前記電解液に含有される金属イオンの流量を測定する
ことを特徴とする請求項4記載の電解液の給液方法。
After adjusting the metal ion concentration of the electrolyte,
5. The method of supplying an electrolytic solution according to claim 4, wherein the flow rate of metal ions contained in the electrolytic solution is measured using the flow meter.
前記電解液は、銅を含有する塩化ニッケル溶液であり、
前記電解槽は、電解採取により前記電解液中の銅を電着させる電解槽である
ことを特徴とする請求項4または5記載の電解液の給液方法。
The electrolytic solution is a nickel chloride solution containing copper,
6. The electrolytic solution feeding method according to claim 4, wherein the electrolytic bath is an electrolytic bath for electrodepositing copper in the electrolytic solution by electrolytic collection.
JP2013012995A 2013-01-28 2013-01-28 Electrolyte solution supply apparatus and method Active JP5962525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013012995A JP5962525B2 (en) 2013-01-28 2013-01-28 Electrolyte solution supply apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012995A JP5962525B2 (en) 2013-01-28 2013-01-28 Electrolyte solution supply apparatus and method

Publications (2)

Publication Number Publication Date
JP2014145093A true JP2014145093A (en) 2014-08-14
JP5962525B2 JP5962525B2 (en) 2016-08-03

Family

ID=51425575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012995A Active JP5962525B2 (en) 2013-01-28 2013-01-28 Electrolyte solution supply apparatus and method

Country Status (1)

Country Link
JP (1) JP5962525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107287A1 (en) * 2017-11-29 2019-06-06 パンパシフィック・カッパー株式会社 Method for producing electrolytic copper
JP2019178354A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
CN110662857A (en) * 2017-11-29 2020-01-07 环太铜业株式会社 Method for producing electrolytic copper
WO2020255475A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelting furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943011A (en) * 1995-07-31 1997-02-14 Sumitomo Metal Mining Co Ltd Measuring method for flow rate of electrolytic solution
JP2003073879A (en) * 2001-09-04 2003-03-12 Sumitomo Metal Mining Co Ltd Control device for flow rate in supplying electrolytic solution, and method for manufacturing starting sheet using the device
JP2007500790A (en) * 2003-07-28 2007-01-18 フェルプス ドッジ コーポレイション Method and apparatus for electrowinning copper using ferrous / ferric anode reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943011A (en) * 1995-07-31 1997-02-14 Sumitomo Metal Mining Co Ltd Measuring method for flow rate of electrolytic solution
JP2003073879A (en) * 2001-09-04 2003-03-12 Sumitomo Metal Mining Co Ltd Control device for flow rate in supplying electrolytic solution, and method for manufacturing starting sheet using the device
JP2007500790A (en) * 2003-07-28 2007-01-18 フェルプス ドッジ コーポレイション Method and apparatus for electrowinning copper using ferrous / ferric anode reactions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107287A1 (en) * 2017-11-29 2019-06-06 パンパシフィック・カッパー株式会社 Method for producing electrolytic copper
CN110662857A (en) * 2017-11-29 2020-01-07 环太铜业株式会社 Method for producing electrolytic copper
JP2019178354A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment device
JP7022332B2 (en) 2018-03-30 2022-02-18 住友金属鉱山株式会社 Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment
WO2020255475A1 (en) * 2019-06-21 2020-12-24 三菱重工業株式会社 Electrolytic smelting furnace
JP2021001370A (en) * 2019-06-21 2021-01-07 三菱重工業株式会社 Electrolytic refining furnace
CN114040997A (en) * 2019-06-21 2022-02-11 三菱重工业株式会社 Electrolytic smelting furnace
JP7303038B2 (en) 2019-06-21 2023-07-04 三菱重工業株式会社 Electrolytic smelting furnace

Also Published As

Publication number Publication date
JP5962525B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
Cocchiara et al. Dismantling and electrochemical copper recovery from Waste Printed Circuit Boards in H2SO4–CuSO4–NaCl solutions
EP2528704B1 (en) Method and arrangement for producing metal powder
JP5962525B2 (en) Electrolyte solution supply apparatus and method
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
JP5125278B2 (en) Method of electrolytic oxidation of etching waste liquid
AU2016214943B2 (en) Electrolytic system for precipitating metals and regenerating the oxidising agents used in the leaching of metals, scrap metal, metal sulphurs, sulphide minerals, raw materials containing metals from solutions from leaching, including a process for combining the precipitation and the oxidation in a single step, eliminating the steps of filtration, washing, transportation and manipulation of highly toxic reagents
FI127471B (en) A method of recovering copper from a dilute metal containing solution and the use of the method for removal and recovery of copper from mining waters
Garrido et al. Copper recovery from ammonia solutions through electro-electrodialysis (EED)
CN104630824A (en) Purification process of copper electrolysis waste liquid
Agrawal et al. Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis
JP3896107B2 (en) Diaphragm electrolysis method
JP6610368B2 (en) Method for removing impurities from aqueous nickel chloride solution
JP7211143B2 (en) Method for producing sulfuric acid solution
LAOKHEN et al. Recovery of nickel from spent electroplating solution by hydrometallurgical and electrometallurgical process
JP6222048B2 (en) Liquid supply equipment for copper removal electrolysis process
US20160047054A1 (en) Iron powder production via flow electrolysis
JP2013253276A (en) Wet smelting method
KR20200064668A (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
Maatgi et al. The Influence of Different Parameters on the Electro Refining of Copper
JP2011042820A (en) Method for producing sulfur-containing electrolytic nickel
JP2005270779A (en) Separation method for heavy metal and separation apparatus therefor
JP6592494B2 (en) Electrolysis method of bismuth
JP2017214612A (en) Electrolytic refining method for copper
EP3795717A1 (en) Sulfuric acid solution production method, and electrolysis vessel which can be used in said production method
JP2022543601A (en) Metal recovery from lead-containing electrolytes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150