JP2014141397A - Glass and sheath tube for semiconductor sealing - Google Patents

Glass and sheath tube for semiconductor sealing Download PDF

Info

Publication number
JP2014141397A
JP2014141397A JP2013261145A JP2013261145A JP2014141397A JP 2014141397 A JP2014141397 A JP 2014141397A JP 2013261145 A JP2013261145 A JP 2013261145A JP 2013261145 A JP2013261145 A JP 2013261145A JP 2014141397 A JP2014141397 A JP 2014141397A
Authority
JP
Japan
Prior art keywords
glass
temperature
sio
content
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261145A
Other languages
Japanese (ja)
Inventor
Koichi Yabuuchi
浩一 籔内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013261145A priority Critical patent/JP2014141397A/en
Publication of JP2014141397A publication Critical patent/JP2014141397A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/105Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass for semiconductor sealing which satisfies conditions necessary for a glass for semiconductor sealing, specifically, a sealing temperature of 650°C or lower and a coefficient of linear expansion in a temperature range of 30 to 380°C of 85 to 100×10/°C, and is excellent in acid resistance, regardless of a glass having a low content of a lead, and to provide a sheath tube for semiconductor sealing.SOLUTION: A glass for semiconductor sealing contains, as a glass composition, by mass%, 5 to 35% of PbO, 40 to 55% of SiO, and 5 to 20% of LiO+NaO+KO; and preferably contains 5 to 35% of PbO, 40 to 55% of SiO, 0 to 5% of AlO, 0 to 15% of BO, 0 to 5% of MgO, 0 to 5% of CaO, 0 to 5% of BaO, 0 to 5% of SrO, 0 to 10% of ZnO, 1 to 5% of LiO, 0 to 10% of NaO, 0 to 10% of KO, 5 to 20% of LiO+NaO+KO, 0 to 10% of TiO, and 0 to 3% of ZrO.

Description

本発明は半導体封入用のガラス、すなわち、シリコンダイオード、発光ダイオード、サーミスタ等の素子と、それに電気的に接続するジュメット線等の電極材料を気密封入するガラスに関する。   The present invention relates to a glass for semiconductor encapsulation, that is, a glass that hermetically seals an element such as a silicon diode, a light emitting diode, or a thermistor and an electrode material such as a jumet wire electrically connected thereto.

ダイオード、LED、サーミスタ等といった小型の電子部品の製造には以下の方法が広く採用されている。まず半導体素子とジュメット線等の電極材料を、半導体素子が電極材料で両側から挟まれた状態でガラス外套管内に挿入し、保持する。続いて、この状態で加熱してガラス管を軟化変形させることにより、半導体素子をガラス管内に気密封入する。ガラス管を加熱する温度は、一般的にはガラスの粘度が10dPa・sとなる温度であり、封入温度と呼ばれる。ここで、ガラスの封入温度に求められる条件は、半導体の電気特性が封入温度で失われないように、封入する半導体の耐熱温度以下であることである。半導体の耐熱温度はその種類や設計に応じて多岐に渡るが、汎用性の高い半導体の耐熱性は650℃程度なので、封入温度は650℃以下であることが重要になる。また、ガラスに求められる特性として、熱膨張係数がある。これは、電極材料として最も一般的に用いられているジュメット線の熱膨張係数に整合することであり、具体的には85〜100×10−7/℃(30〜380℃間)の範囲内の熱膨張係数が必要である。さらに、半導体素子の加熱封入後、ガラス管外に露出した金属線は、酸化膜を除去する目的で酸処理やメッキ処理等が行われる。この際、部品の仕様によっては、ガラス管の一部(リード付タイプ)、もしくは全面(表面実装タイプ)をこれら薬液に浸漬し、処理する。このため、ガラスには十分な耐薬品性、特に耐酸性が要求される。 The following methods are widely used for manufacturing small electronic components such as diodes, LEDs, thermistors, and the like. First, an electrode material such as a semiconductor element and a dumet wire is inserted and held in a glass sheath tube in a state where the semiconductor element is sandwiched between the electrode materials from both sides. Subsequently, the semiconductor element is hermetically sealed in the glass tube by heating in this state to soften and deform the glass tube. The temperature at which the glass tube is heated is generally the temperature at which the viscosity of the glass is 10 6 dPa · s, and is called the sealing temperature. Here, the condition required for the encapsulation temperature of the glass is that the electrical characteristics of the semiconductor are not higher than the heat resistance temperature of the semiconductor to be encapsulated so as not to be lost at the encapsulation temperature. Although the heat resistance temperature of semiconductors varies widely depending on the type and design, since the heat resistance of semiconductors with high versatility is about 650 ° C., it is important that the sealing temperature is 650 ° C. or lower. Further, as a characteristic required for glass, there is a thermal expansion coefficient. This is to match the coefficient of thermal expansion of the most commonly used jumet wire as an electrode material, specifically within the range of 85 to 100 × 10 −7 / ° C. (between 30 to 380 ° C.). The thermal expansion coefficient is required. Furthermore, after heat sealing the semiconductor element, the metal wire exposed outside the glass tube is subjected to an acid treatment or a plating treatment for the purpose of removing the oxide film. At this time, depending on the specifications of the parts, a part of the glass tube (leaded type) or the entire surface (surface mount type) is immersed in these chemicals and processed. For this reason, the glass is required to have sufficient chemical resistance, particularly acid resistance.

従来、このような条件を満たす半導体封入用ガラスには、PbOを45〜75質量%と多量に含有する鉛ケイ酸塩ガラスが使われている。鉛ケイ酸塩ガラスが広く採用されている理由として、例えば以下の利点が挙げられる。PbOはケイ酸塩ガラスにおいて、ガラスの粘度を下げる作用が大きく、低温で半導体素子を封入できる。またPbO量の調整によって熱膨張係数を調節することが可能であることから、一般的に用いられている種々のジュメット線の熱膨張係数に整合させることが容易である。   Conventionally, lead silicate glass containing PbO in a large amount of 45 to 75% by mass is used as a glass for semiconductor encapsulation that satisfies such conditions. The reason why lead silicate glass is widely used includes, for example, the following advantages. PbO has a large effect of reducing the viscosity of glass in silicate glass, and can enclose a semiconductor element at a low temperature. In addition, since the thermal expansion coefficient can be adjusted by adjusting the amount of PbO, it is easy to match the thermal expansion coefficient of various commonly used jumet wires.

特開2002−37641号公報JP 2002-37641 A 特開平08−067534号公報Japanese Patent Application Laid-Open No. 08-067534

近年、鉛やカドミニウム、砒素などの有害成分による環境汚染が問題視され、工業製品にそれらの有害成分を低減することが要求されている。電子部品においても、先ず半田の鉛低減化が積極的に取り組まれており、次いで、半導体封入用ガラスにもPbOの含有量低減が望まれている。   In recent years, environmental pollution due to harmful components such as lead, cadmium and arsenic has been regarded as a problem, and industrial products are required to reduce these harmful components. Also in electronic parts, first, lead reduction of solder has been actively pursued, and then the PbO content reduction is also desired in the glass for semiconductor encapsulation.

ところで半導体素子の封入の際の温度が高いと、素子が劣化したり、金属の降伏点を越えて弾性を失うことによる金属線の接触不良が生じたりする。これを改善するためにはガラスの封入温度を下げることが望ましい。従来の鉛ケイ酸塩ガラスにおいて、多量にPbOが含有されている理由は封入温度を下げるためといえる。しかし、PbOは酸溶液に溶出しやすい性質があり、多量にPbOを含有するほど、溶出量が多くなり、封止性が低下することがある。   By the way, when the temperature at the time of encapsulating the semiconductor element is high, the element deteriorates, or the contact of the metal wire is lost due to loss of elasticity beyond the yield point of the metal. In order to improve this, it is desirable to lower the glass sealing temperature. In the conventional lead silicate glass, it can be said that the reason why PbO is contained in a large amount is to lower the sealing temperature. However, PbO has a property of being easily eluted in an acid solution, and the more PbO is contained, the greater the amount of elution and the lowering of sealing properties may occur.

また、耐酸性が十分でないと、ガラス表面の劣化による細かいクラックが生じ、様々な汚れや水分が付着しやすくなり、素子の表面抵抗が下がり、電気製品に不具合を生じることがある。   In addition, if the acid resistance is not sufficient, fine cracks due to deterioration of the glass surface occur, and various stains and moisture are liable to adhere, resulting in a decrease in the surface resistance of the device, which may cause problems in electrical products.

本発明は、上記課題の解決の為になされたものであり、鉛の含有量の少ないガラスであるにも関わらず、半導体封入用ガラスとして必要な条件、すなわち、封入温度が650℃以下、30〜380℃の温度範囲における線膨張係数が85〜100×10−7/℃を満足しており、しかも耐酸性に優れた半導体封入用ガラス及び半導体封入用外套管を提供することである。 The present invention has been made in order to solve the above-mentioned problems. Despite being a glass having a low content of lead, the conditions necessary for glass for semiconductor encapsulation, that is, an encapsulation temperature of 650 ° C. or lower, 30 A linear expansion coefficient in a temperature range of ˜380 ° C. satisfies 85 to 100 × 10 −7 / ° C., and further provides a glass for semiconductor encapsulation and an outer tube for semiconductor encapsulation excellent in acid resistance.

本発明者等は、PbO含有量を5〜35質量%に低減しても、SiO等の含有量を維持しながら、アルカリ金属酸化物R‘O(LiO、NaO、KO)量を増やすことにより、封入温度の低温化の達成と耐酸性の低下防止を両立できるガラスが得られることを見出した。 Even if the inventors reduce the PbO content to 5-35% by mass, the alkali metal oxide R ′ 2 O (Li 2 O, Na 2 O, K, while maintaining the content of SiO 2, etc. It has been found that by increasing the amount of 2 O), it is possible to obtain a glass that can achieve both a reduction in the sealing temperature and prevention of a decrease in acid resistance.

即ち、本発明の半導体封入用ガラスは、ガラス組成として、質量%で、PbO 5〜35%、SiO 40〜55%、LiO+NaO+KO 5〜20%含有することを特徴とする。ここで「LiO+NaO+KO」とは、LiO、NaO及びKOの含有量の合量を指す。
上記構成によれば、封入温度が650℃以下、30〜380℃の温度範囲における線膨張係数が85〜100×10−7/℃を満足しており、しかも耐酸性に優れた半導体封入用外套管を作製することが可能になる。
That is, the glass for semiconductor encapsulation of the present invention is characterized by containing, as a glass composition, 5% to 35% PbO, 40% to 55% SiO 2 , and 5% to 20% Li 2 O + Na 2 O + K 2 O by mass%. . Here, “Li 2 O + Na 2 O + K 2 O” refers to the total content of Li 2 O, Na 2 O and K 2 O.
According to the above configuration, the encapsulation temperature is 650 ° C. or less, the linear expansion coefficient in the temperature range of 30 to 380 ° C. is 85 to 100 × 10 −7 / ° C., and the semiconductor encapsulation sheath has excellent acid resistance. Tubes can be made.

本発明においては、ガラス組成として、質量%で、PbO 5〜35%、SiO 40〜55%、Al 0〜5%、B 0〜15%、MgO 0〜5%、CaO 0〜5%、BaO 0〜5%、SrO 0〜5%、ZnO 0〜10%、LiO 1〜5%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 5〜20%、TiO 0〜10%、ZrO 0〜3%含有することが好ましい。 In the present invention, as a glass composition, by mass%, PbO 5 to 35%, SiO 2 40 to 55%, Al 2 O 3 0 to 5%, B 2 O 3 0 to 15%, MgO 0 to 5%, CaO 0~5%, BaO 0~5%, SrO 0~5%, 0~10% ZnO, Li 2 O 1~5%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 5~20%, TiO 2 0~10%, preferably contains ZrO 2 0 to 3%.

上記構成によれば、封入温度が650℃以下、30〜380℃の温度範囲における線膨張係数が85〜100×10−7/℃を満足しており、しかも耐酸性に優れた半導体封入用外套管を容易に作製することができる。 According to the above configuration, the encapsulation temperature is 650 ° C. or less, the linear expansion coefficient in the temperature range of 30 to 380 ° C. is 85 to 100 × 10 −7 / ° C., and the semiconductor encapsulation sheath has excellent acid resistance. Tubes can be made easily.

本発明においては、質量%で、SiO+TiO 45〜60%であることが好ましい。ここで「SiO+TiO」とは、SiO及びTiOの含有量の合量を指す。 In the present invention, in mass%, it is preferable that SiO 2 + TiO 2 45~60%. Here, “SiO 2 + TiO 2 ” refers to the total content of SiO 2 and TiO 2 .

上記構成によれば、より耐酸性に優れたガラスを得ることができる。   According to the said structure, the glass excellent in acid resistance can be obtained.

本発明においては、10dPa・sの粘度に相当する温度が650℃以下であることが好ましい。本発明において、「10dPa・sの粘度に相当する温度」は、次のようにして求めた温度を意味する。まずASTM C338に準拠するファイバ法によりガラスの軟化点を測定する。次に白金球引き上げ法により作業点領域の粘度に相当する温度を求める。最後にこれらの粘度と温度をFulcherの式に当てはめて、10dPa・sにおける温度を算出する。 In the present invention, the temperature corresponding to a viscosity of 10 6 dPa · s is preferably 650 ° C. or lower. In the present invention, “temperature corresponding to a viscosity of 10 6 dPa · s” means a temperature determined as follows. First, the softening point of glass is measured by a fiber method conforming to ASTM C338. Next, a temperature corresponding to the viscosity of the working point region is obtained by a platinum ball pulling method. Finally, these viscosities and temperatures are applied to the Fulcher equation to calculate the temperature at 10 6 dPa · s.

本発明の半導体封入用外套管は、上記ガラスからなることを特徴とする。   The outer tube for semiconductor encapsulation of the present invention is characterized by being made of the above glass.

本発明の半導体封入用ガラスは、低温で半導体素子を封入できる。また耐酸性に優れるため、素子封入後に酸処理やメッキ処理を施しても、表面にクラックが生じないことから信頼性の高い半導体封入部品を作製することができる。しかもガラス管成形時に結晶が析出しにくいことから、安定して大量に外套管を生産することができる。   The glass for semiconductor encapsulation of the present invention can encapsulate a semiconductor element at a low temperature. Moreover, since it is excellent in acid resistance, even if an acid treatment or a plating treatment is performed after the element is encapsulated, a crack is not generated on the surface, so that a highly reliable semiconductor encapsulated part can be produced. In addition, since it is difficult for crystals to precipitate during glass tube forming, it is possible to stably produce a large amount of outer tube.

本発明の半導体封入用無鉛ガラスにおいて、上記のようにガラス組成範囲を限定した理由を以下に説明する。なお、以下の%表示は質量%を指す。   The reason for limiting the glass composition range as described above in the lead-free glass for semiconductor encapsulation of the present invention will be described below. In addition, the following% display points out the mass%.

PbOは、封入温度を下げ、また所望の熱膨張係数に調整するために重要な成分である。しかし、PbOの含有量が多くなると耐酸性が悪化する。このためPbOの含有量は5〜35%、好ましくは10〜35%、さらに好ましくは10〜30%である。PbOの含有量が少なすぎると上記した効果を享受し難くなる。一方、PbOの含有量が多すぎると酸処理によって、ガラス表面が劣化しやすくなり、結果として製品の封止性が低下する。   PbO is an important component for lowering the sealing temperature and adjusting to a desired thermal expansion coefficient. However, when the PbO content increases, the acid resistance deteriorates. For this reason, the content of PbO is 5 to 35%, preferably 10 to 35%, and more preferably 10 to 30%. When there is too little content of PbO, it will become difficult to enjoy the above-mentioned effect. On the other hand, when there is too much content of PbO, the glass surface will deteriorate easily by acid treatment, and as a result, the sealing property of a product will fall.

SiOは、主成分であり、またガラスの安定化に重要な成分である。また耐酸性の向上に大きな効果がある。一方、SiOは封止温度を上昇させる成分でもある。SiOの含有量は40〜55%、好ましくは40〜52%、さらに好ましくは43〜52%である。SiOの含有量が少なすぎると上記した効果を享受し難くなる。逆にSiOの含有量が多すぎると低温封入が困難になる。 SiO 2 is a main component and an important component for stabilizing the glass. It also has a great effect on improving acid resistance. On the other hand, SiO 2 is also a component that raises the sealing temperature. The content of SiO 2 is 40 to 55%, preferably 40 to 52%, more preferably 43 to 52%. When the content of SiO 2 is too small it becomes difficult to enjoy the effects described above. On the other hand, if the SiO 2 content is too large, low-temperature encapsulation becomes difficult.

Alは、Siを含有する結晶の析出を抑え、また耐水性や耐酸性を高める成分である。一方、Alはガラスの粘性を上昇させる成分でもある。Alの含有量は0〜5%、特に0.5〜4.5%であることが好ましい。Alの含有量が多すぎるとガラスの粘性が高くなり過ぎて成形性が低下し易くなり、低温封入が困難になる。さらに組成のバランスを欠いて、Liを含有する結晶が析出しやすくなる。 Al 2 O 3 is a component that suppresses precipitation of crystals containing Si and increases water resistance and acid resistance. On the other hand, Al 2 O 3 is also a component that increases the viscosity of the glass. The content of Al 2 O 3 is preferably 0 to 5%, particularly preferably 0.5 to 4.5%. When the content of Al 2 O 3 is too large tends to decrease. Viscosity becomes too high formability of the glass, it is difficult to cold sealed. Further, the composition balance is lost, and crystals containing Li are likely to precipitate.

は、ガラスを安定化させる成分であるとともに、ガラスの粘性を低下させる成分である。一方、Bは耐薬品性を低下させる成分でもある。Bの含有量は0〜15%、3〜11%、特に5〜10%であることが好ましい。Bの含有量が少なすぎると上記した効果を享受し難くなる。逆にBの含有量が多すぎると耐薬品性が悪くなる。 B 2 O 3 is a component that stabilizes the glass and lowers the viscosity of the glass. On the other hand, B 2 O 3 is also a component that lowers chemical resistance. The content of B 2 O 3 is preferably 0 to 15%, 3 to 11%, particularly preferably 5 to 10%. If the content of B 2 O 3 is too small it becomes difficult to enjoy the effects described above. On the other hand, if the content of B 2 O 3 is too large, the chemical resistance is deteriorated.

アルカリ土類金属酸化物RO(MgO、CaO、SrO、BaO)はガラスを安定化させる効果が高い。その一方で、10dPa・sの粘度に相当する温度が650℃以下のガラスにおいては、ROによるガラスの低温化効果は期待できず、むしろ封入温度を上昇させるおそれがある。このためROの含有量は少ない方が好ましく、その含有量は各々0〜5%、特に各々0〜3%であることが好ましい。またこれらの成分は合量で10%以下、特に7%以下であることが望ましい。 Alkaline earth metal oxides RO (MgO, CaO, SrO, BaO) have a high effect of stabilizing the glass. On the other hand, in a glass having a temperature corresponding to a viscosity of 10 6 dPa · s of 650 ° C. or lower, the effect of lowering the glass temperature by RO cannot be expected, but rather the encapsulation temperature may be increased. For this reason, it is preferable that the content of RO is small, and the content is preferably 0 to 5%, particularly preferably 0 to 3%. Further, the total amount of these components is desirably 10% or less, particularly 7% or less.

ZnOはアルカリ金属酸化物に比べて膨張を上げずに、また耐酸性を劣化させずにガラスの粘性を低下させることができる成分である。ZnOの含有量は0〜10%、0.5〜8%、特に3〜7%であることが好ましい。ZnOが少なすぎると上記した効果を享受することができず、逆に過剰になると結晶が析出し易くなる。   ZnO is a component that can lower the viscosity of the glass without increasing the expansion and without deteriorating the acid resistance as compared with the alkali metal oxide. The content of ZnO is preferably 0 to 10%, 0.5 to 8%, particularly 3 to 7%. If the amount of ZnO is too small, the above-mentioned effects cannot be enjoyed. Conversely, if the amount is excessive, crystals are likely to precipitate.

アルカリ金属酸化物R‘O(LiO、NaO、KO)は、ガラスの粘性を下げたり、膨張を上げたりする効果がある。特にLiOはガラスの粘性を低下させる効果が大きいことから、上記組成のガラスでは必須成分として使用することが好ましい。一方、ROが過剰になると、膨張が高くなりすぎてジュメット等の金属線との間でクラックを生じる。それゆえROは合量(LiO、NaO、KO)で5〜20%、好ましくは6〜15%、さらに好ましくは9〜13%である。なお各アルカリ金属酸化物成分については以下に述べる。 Alkali metal oxide R ′ 2 O (Li 2 O, Na 2 O, K 2 O) has an effect of lowering the viscosity of glass or increasing the expansion. In particular, Li 2 O is preferably used as an essential component in the glass having the above composition because it has a great effect of reducing the viscosity of the glass. On the other hand, when R 2 O becomes excessive, expansion becomes too high and cracks are generated between metal wires such as dumet. Therefore, the total amount of R 2 O (Li 2 O, Na 2 O, K 2 O) is 5 to 20%, preferably 6 to 15%, and more preferably 9 to 13%. Each alkali metal oxide component will be described below.

LiOは上記したようにガラスの粘性を低下させる効果が大きいが、その含有量が多くなるとLiを含有する結晶を生じさせやすい。このためLiOの含有量は1〜5%、1.5〜4.5%、特に2.5〜4.0%であることが望ましい。一方、LiOの含有量が多すぎると失透し易くなり、LiO−ZnO−SiO系やLiO−TiO−SiOの結晶が析出しやすくなる。また耐酸性が悪化する傾向にある。 Li 2 O has a large effect of reducing the viscosity of the glass as described above. However, when the content of Li 2 O increases, crystals containing Li tend to be generated. For this reason, it is desirable that the content of Li 2 O is 1 to 5%, 1.5 to 4.5%, and particularly 2.5 to 4.0%. On the other hand, when the content of Li 2 O is too large, devitrification tends to occur, and crystals of Li 2 O—ZnO—SiO 2 or Li 2 O—TiO 2 —SiO 2 tend to precipitate. Moreover, acid resistance tends to deteriorate.

NaOは上記したアルカリ金属共通の効果の他にガラスを安定化させて失透を防止する効果がある。その一方でNaOはガラスの耐酸性を悪化させる。本発明においてはガラスの安定化を考慮して導入することが望ましい。NaOの含有量は0〜10%、2〜7%、特に3〜6%であることが好ましい。NaOの含有量が少なすぎると上記した効果を享受し難くなる。一方、NaOの含有量が多すぎると、失透し易くなる。 Na 2 O has the effect of stabilizing the glass and preventing devitrification in addition to the effects common to the alkali metals described above. On the other hand, Na 2 O deteriorates the acid resistance of the glass. In the present invention, it is desirable to introduce in consideration of stabilization of the glass. The content of Na 2 O is preferably 0 to 10%, 2 to 7%, particularly 3 to 6%. When the Na 2 O content is too small it becomes difficult to enjoy the effects described above. On the other hand, when the content of Na 2 O is too large, easily devitrified.

Oは上記したアルカリ金属共通の効果の他にガラスを安定化させ失透を防止する効果がある。その一方でKOはガラスの耐酸性を悪化させる。KOの含有量は0〜10%、2〜7%、特に3〜6%であることが好ましい。KOの含有量が多すぎると失透し易くなる。 K 2 O has the effect of stabilizing the glass and preventing devitrification in addition to the effects common to the alkali metals described above. On the other hand, K 2 O worsens the acid resistance of the glass. The content of K 2 O is preferably 0 to 10%, 2 to 7%, particularly 3 to 6%. When the content of K 2 O is too large easily devitrified.

なおガラスを安定化させるためには、NaOとKOのどちらか一方または両方を含有させることが望ましい。 In order to stabilize the glass, it is desirable to contain one or both of Na 2 O and K 2 O.

TiOは耐酸性を高めるために添加する成分である。その一方でTiOは結晶を誘発させやすく、ガラスの耐失透性を悪化させやすい。このためTiOを過剰に含有させると金属や耐火物との接触によってガラスが容易に失透し、この失透物の影響によって得られるガラスの寸法精度が低下するという問題を引き起こす虞がある。TiOの含有量は0〜10%、0.5〜6%、特に1.5〜4%であることが好ましい。 TiO 2 is a component added to increase acid resistance. On the other hand, TiO 2 tends to induce crystals and tends to deteriorate the devitrification resistance of the glass. For this reason, if TiO 2 is contained excessively, the glass is easily devitrified by contact with a metal or a refractory, and there is a possibility that the dimensional accuracy of the glass obtained due to the influence of the devitrified material is lowered. The content of TiO 2 is preferably 0 to 10%, 0.5 to 6%, particularly preferably 1.5 to 4%.

ZrOは耐薬品性を向上させる成分である。その一方で、ZrOの含有量が多すぎるとガラスの粘性が高くなりすぎ、低温封入が困難になる。ZrOの含有量は0〜3%、特に0〜2%であることが好ましい。 ZrO 2 is a component that improves chemical resistance. On the other hand, when the content of ZrO 2 is too large too high the viscosity of the glass, it is difficult to cold sealed. The content of ZrO 2 is preferably 0 to 3%, particularly preferably 0 to 2%.

また本発明のガラスにおいては、SiOとTiOの合量を厳密にコントロールすることによって、耐酸性と低温化(封着温度)の両立を図ることが容易になる。SiOとTiOの合量を高めることで効率的に耐酸性を向上させることが可能となる。SiOとTiOの含有量は合量で45〜60%、特に47〜52%であることが好ましい。SiOとTiOの合量が45%以上であれば、耐酸性がより向上するため好ましい。SiOとTiOの合量が60%以下であれば、ガラスが固くなり難く、低温での封入がより容易になる。 In the glass of the present invention, by strictly controlling the SiO 2 and the total amount of TiO 2, it is easy to achieve both acid resistance and low temperature (sealing temperature). By increasing the total amount of SiO 2 and TiO 2 , it is possible to efficiently improve acid resistance. The total content of SiO 2 and TiO 2 is 45 to 60%, particularly 47 to 52%. If the total amount of SiO 2 and TiO 2 is 45% or more, the acid resistance is further improved, which is preferable. If the total amount of SiO 2 and TiO 2 is 60% or less, the glass is hard to be hardened, and encapsulation at a low temperature becomes easier.

本発明の半導体封入用ガラスは、上記成分以外にも、ガラスの特性を損なわない範囲で種々の成分を添加することができる。例えばガラスの粘性を低下させるためにFを0.5%まで、清澄剤としてSbを0.5%までそれぞれ添加することができる。ただしAs等の環境上好ましくない成分は添加すべきでない。具体的にはAsの含有量は0.1%以下に制限される。 The glass for semiconductor encapsulation of the present invention can contain various components in addition to the above components as long as the properties of the glass are not impaired. For example, in order to reduce the viscosity of glass, F can be added to 0.5%, and Sb 2 O 3 can be added to 0.5% as a fining agent. However, environmentally undesirable components such as As 2 O 3 should not be added. Specifically, the content of As 2 O 3 is limited to 0.1% or less.

上記組成を有する本発明の半導体封入用ガラスは、10dPa・sの粘度に相当する温度が好ましくは650℃以下、より好ましくは620〜640℃、更に好ましくは620〜635℃である。10dPa・sの粘度の温度は、概ね半導体素子の封入温度に相当する。それゆえ本発明のガラスは、650℃以下で半導体素子を封入することができる。 The glass for semiconductor encapsulation of the present invention having the above composition has a temperature corresponding to a viscosity of 10 6 dPa · s, preferably 650 ° C. or less, more preferably 620 to 640 ° C., and further preferably 620 to 635 ° C. The viscosity temperature of 10 6 dPa · s generally corresponds to the sealing temperature of the semiconductor element. Therefore, the glass of the present invention can encapsulate a semiconductor element at 650 ° C. or lower.

また本発明の半導体封入用ガラスは、ジュメットとシールするために、ガラスの30℃〜380℃の範囲における熱膨張係数が好ましくは85〜100×10−7/℃、より好ましくは85〜95×10−7/℃、更に好ましくは90〜95×10−7/℃である。 Moreover, the glass for semiconductor encapsulation of the present invention preferably has a thermal expansion coefficient in the range of 30 ° C. to 380 ° C. of the glass, preferably 85 to 100 × 10 −7 / ° C., more preferably 85 to 95 ×, for sealing with dumet. 10 −7 / ° C., more preferably 90 to 95 × 10 −7 / ° C.

また本発明の半導体封入用ガラスは、30℃−36N硫酸の5質量%溶液に60分間浸漬した場合に、好ましくは重量減少率が500ppm以下、より好ましくは400ppm以下、更に好ましくは300ppm以下である。重量減少率が小さいほど、めっき処理工程においてガラス表面にクラック等が発生し難くなるため好ましい。   The glass for semiconductor encapsulation of the present invention preferably has a weight loss rate of 500 ppm or less, more preferably 400 ppm or less, and even more preferably 300 ppm or less when immersed in a 5% by mass solution of 30 ° C.-36N sulfuric acid for 60 minutes. . A smaller weight reduction rate is preferable because cracks and the like are less likely to occur on the glass surface in the plating process.

また本発明の半導体封入用ガラスは、体積抵抗が極力高いことが好ましい。具体的には150℃における体積抵抗値が、Logρ(Ω・cm)で7以上、特に9以上、さらには11以上であることが望ましい。なおガラスの体積抵抗が低いと、例えばダイオードの場合は電極間にわずかに電気が流れるようになり、あたかもダイオードに平行して抵抗体を設置したような回路を生じてしまう。   Moreover, it is preferable that the glass for semiconductor encapsulation of the present invention has as high a volume resistance as possible. Specifically, the volume resistance value at 150 ° C. is preferably 7 or more, particularly 9 or more, and more preferably 11 or more in Logρ (Ω · cm). If the volume resistance of glass is low, for example, in the case of a diode, a slight amount of electricity flows between the electrodes, resulting in a circuit as if a resistor was installed in parallel with the diode.

次に本発明の半導体封入用ガラスからなる半導体封入用外套管の製造方法を説明する。ただし本発明の半導体封入用外套管を製造する方法は、下記の方法に限られるものではない。   Next, the manufacturing method of the outer tube for semiconductor encapsulation made of the glass for semiconductor encapsulation of the present invention will be described. However, the method for producing the outer tube for semiconductor encapsulation of the present invention is not limited to the following method.

工業的規模での半導体封入用外套管の製造方法の一つの態様では、ガラスを構成する成分を含む鉱物や精製結晶粉末を計測混合し、炉に投入する原料を調合する調合混合工程と、原料を溶融ガラス化する溶融工程と、溶融したガラスを管の形に成形する成形工程と、管を所定の寸法に切断する加工工程を含む。   In one aspect of the manufacturing method of the outer tube for semiconductor encapsulation on an industrial scale, a mixing and mixing step of measuring and mixing minerals and refined crystal powder containing components constituting glass and preparing raw materials to be introduced into a furnace, and raw materials A melting step of forming a molten glass, a forming step of forming the molten glass into a tube shape, and a processing step of cutting the tube into predetermined dimensions.

まず上記組成範囲となるように、ガラス原料を調合混合する。原料は、酸化物や炭酸塩など複数の成分からなる鉱物や不純物からなっており、分析値を考慮して調合すればよく、原料は限定されない。これらを重量換算で計測し、Vミキサーやロッキングミキサー、攪拌羽根のついたミキサーなど規模に応じた適当な混合機で混合し、投入原料を得る。   First, glass raw materials are prepared and mixed so as to be in the above composition range. The raw materials are composed of minerals and impurities composed of a plurality of components such as oxides and carbonates, and may be prepared in consideration of the analytical values, and the raw materials are not limited. These are measured in terms of weight and mixed with an appropriate mixer according to the scale, such as a V mixer, a rocking mixer, or a mixer equipped with stirring blades, to obtain an input raw material.

次に原料をガラス溶融炉に投入し、ガラス化する。溶融炉は、ガラス原料を溶融しガラス化するための溶融槽と、ガラス中の泡を上昇除去するための清澄槽と、清澄されたガラスを成形に適当な粘度まで下げ、成形装置に導くための通路(フィーダー)とを有するものが一般的である。溶融炉は、耐火物や内部を白金で覆った炉が使用され、バーナーによる加熱やガラスへの電気通電によって加熱される。投入された原料は通常1100℃〜1400℃の溶解槽でガラス化され、さらに1200℃〜1500℃の清澄槽に入る。ここでガラス中の泡を浮上させて泡を除去する。清澄糟から出たガラスは、フィーダーを通って成形装置に移動するうちに温度が下がり、ガラスの成形に適した粘度103.5〜10dPa・sになる。 Next, the raw material is put into a glass melting furnace and vitrified. The melting furnace is for melting a glass raw material into a vitrification tank, a clarification tank for raising and removing bubbles in the glass, and lowering the clarified glass to a viscosity suitable for molding and leading it to a molding apparatus. It is common to have a passage (feeder). As the melting furnace, a refractory material or a furnace covered with platinum is used, and it is heated by heating with a burner or electric current to glass. The charged raw materials are usually vitrified in a melting tank at 1100 ° C. to 1400 ° C., and further enter a clarification tank at 1200 ° C. to 1500 ° C. Here, bubbles in the glass are lifted to remove the bubbles. The glass that comes out of the clarified rice cake has a viscosity of 10 3.5 to 10 6 dPa · s, which is suitable for forming the glass, as it moves to the forming device through the feeder.

次いで成形装置にてガラスを管状に成形する。成形法としてはダンナー法、ベロ法、ダウンドロー法、アップドロー法が適用可能である。   Next, the glass is formed into a tubular shape with a forming apparatus. As a molding method, a Danner method, a tongue method, a downdraw method, and an updraw method can be applied.

その後、ガラス管を所定の寸法に切断することにより、本発明の半導体封入用外套管を得ることができる。ガラス管の切断加工は、管1本ずつをダイヤモンドカッターで切断することも可能であるが、大量生産に適した方法として、多数の管ガラスを1本に結束してからダイヤモンドホイールカッターで切断し、一度に多数の管ガラスを切断する方法が一般的に用いられている。   Then, the outer tube for semiconductor encapsulation of the present invention can be obtained by cutting the glass tube into a predetermined size. The glass tube can be cut one by one with a diamond cutter. However, as a method suitable for mass production, a large number of tube glasses are bound together and then cut with a diamond wheel cutter. A method of cutting a large number of tube glasses at a time is generally used.

また本発明の半導体封入用無鉛ガラスは、ガラス管に成形して外套管として使用する以外にも、例えば、粉末状にしてペースト化し、半導体素子に巻き付けて焼成することで半導体素子を封入することもできる。   The lead-free glass for encapsulating a semiconductor of the present invention is not only molded into a glass tube and used as a mantle tube, but also encapsulates a semiconductor element by, for example, forming a powder into a paste, winding it around a semiconductor element and firing it. You can also.

次に本発明の半導体封入用外套管を用いた半導体素子の封入方法の一例を述べる。   Next, an example of a method for encapsulating a semiconductor element using the outer tube for semiconductor encapsulation of the present invention will be described.

まず外套管内でジュメット線などの電極材料が半導体素子を両側から挟み込んだ状態となるように冶具を用いてセットする。その後、全体を650℃以下の温度に加熱し、外套管を軟化変形させて半導体素子を気密封入する。このような方法でシリコンダイオード、発光ダイオード、サーミスタなどの小型の電子部品を作製することができる。   First, a jig is used so that an electrode material such as a dumet wire sandwiches the semiconductor element from both sides in the outer tube. Thereafter, the whole is heated to a temperature of 650 ° C. or lower, the outer tube is softened and deformed, and the semiconductor element is hermetically sealed. By such a method, a small electronic component such as a silicon diode, a light emitting diode, or a thermistor can be manufactured.

以下、実施例に基づいて本発明を説明する。なお本発明は、下記実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples. In addition, this invention is not limited to the following Example.

表1は本発明の実施例(試料No.1〜11)、及び比較例(試料No.12、13)を示している。なおNo.12は特許文献2に記載のガラス、No.13は従来から半導体封入用ガラスとして用いられている一般的な鉛ケイ酸塩ガラスである   Table 1 shows examples of the present invention (sample Nos. 1 to 11) and comparative examples (samples No. 12 and 13). No. No. 12 is a glass described in Patent Document 2, No. 12; 13 is a general lead silicate glass conventionally used as a glass for semiconductor encapsulation.

各試料は次のようにして調製した。ます表中に記載のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1300℃で3時間溶融し、成形して各種の評価に供した。なおガラス原料としては、珪石粉、酸化アルミニウム、硼酸、炭酸カルシウム、炭酸バリウム、酸化亜鉛、炭酸リチウム、硝酸ソーダ、炭酸カリウム、酸化チタン等を使用した。   Each sample was prepared as follows. First, glass raw materials were prepared so as to have the glass composition described in the table, melted at 1300 ° C. for 3 hours using a platinum pot, molded, and subjected to various evaluations. As the glass raw material, silica powder, aluminum oxide, boric acid, calcium carbonate, barium carbonate, zinc oxide, lithium carbonate, sodium nitrate, potassium carbonate, titanium oxide and the like were used.

次に得られた試料について、熱膨張係数、10dPa・sにおける温度、耐酸性(重量減少率、クラック有無)、体積抵抗、及び結晶析出粘度を評価した。 Next, the thermal expansion coefficient, temperature at 10 6 dPa · s, acid resistance (weight reduction rate, presence or absence of cracks), volume resistance, and crystal precipitation viscosity were evaluated for the obtained samples.

表1から明らかなように、本発明の実施例である試料No.1〜11は、10dPa・sにおける温度が647℃以下であり、低温封入可能であった。また熱膨張係数が86.2〜99.3×10−7/℃であり、ジュメット線と整合する熱膨張係数を示した。また体積減少率が420ppm以下であり、クラックの発生もなく、耐酸性が良好であった。さらに結晶析出粘度が高く、失透が生じ難いことが確認された。 As is apparent from Table 1, sample No. which is an example of the present invention. 1 to 11 had a temperature at 10 6 dPa · s of 647 ° C. or lower, and could be sealed at a low temperature. The coefficient of thermal expansion was 86.2-99.3 × 10 −7 / ° C., indicating a coefficient of thermal expansion consistent with the Jumet line. Further, the volume reduction rate was 420 ppm or less, no crack was generated, and the acid resistance was good. Furthermore, it was confirmed that the crystal precipitation viscosity is high and devitrification hardly occurs.

熱膨張係数は、直径約5mm、長さ約20mmの円柱状の測定試料を用いて、自記示差熱膨張計により30〜380℃の温度範囲における平均線熱膨張係数を測定した値である。   The thermal expansion coefficient is a value obtained by measuring an average linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. with a self-recording differential thermal dilatometer using a cylindrical measurement sample having a diameter of about 5 mm and a length of about 20 mm.

封入温度は次のようにして求めた。まずASTM C338に準拠するファイバ法により軟化点を測定した。次に、白金球引き上げ法により作業点領域の粘度に相当する温度を求めた。最後に、これらの粘度と温度をFulcherの式に当てはめて、10dPa・sにおける温度を算出し、これを封入温度とした。 The enclosure temperature was determined as follows. First, the softening point was measured by a fiber method conforming to ASTM C338. Next, a temperature corresponding to the viscosity of the working point region was determined by a platinum ball pulling method. Finally, these viscosities and temperatures were applied to the Fulcher equation to calculate the temperature at 10 6 dPa · s, which was used as the sealing temperature.

耐酸性は次のようにして求めた。30×30×5mmのガラス板を作製し、鏡面研磨後、水洗い乾燥して元の重量を計測する。その後、30℃−36N硫酸の5質量%溶液に60分間浸漬したのち、90秒間純水で洗い、100℃で30分以上乾燥後、処理後の重量を計測し、(初期重量―処理後重量)/(初期重量)×100により重量減少率を算出した。単位はppmで表記した。またクラックの有無は処理後のガラス表面を落射顕微鏡で観察した。   The acid resistance was determined as follows. A 30 × 30 × 5 mm glass plate is prepared, mirror-polished, washed with water and dried to measure the original weight. Then, after dipping in a 5% by mass solution of 30 ° C.-36N sulfuric acid for 60 minutes, washing with pure water for 90 seconds, drying at 100 ° C. for 30 minutes or more, measuring the weight after treatment, and (initial weight−weight after treatment) ) / (Initial weight) × 100, the weight reduction rate was calculated. The unit is expressed in ppm. In addition, the presence or absence of cracks was observed on the treated glass surface with an episcopic microscope.

150℃における体積抵抗率は、ASTM C−657に準拠した方法で測定した値である。   The volume resistivity at 150 ° C. is a value measured by a method based on ASTM C-657.

結晶析出粘度は、試料を粉砕し、ふるいで粒度をそろえた後、白金製ボートに移し、温度傾斜のある炉で3時間処理して取り出し、偏光顕微鏡を用い、結晶の析出した最も高い温度を読み取り、この温度を粘度に換算し、結晶析出粘度とした   The crystal precipitation viscosity is determined by crushing the sample and aligning the particle size with a sieve, then transferring it to a platinum boat, treating it for 3 hours in a furnace with a temperature gradient, and using a polarizing microscope to determine the highest temperature at which crystals have precipitated. Read this, convert this temperature into viscosity, and set it as crystal precipitation viscosity

本発明の半導体封入用ガラスは、シリコンダイオード、発光ダイオード、サーミスタ等の半導体素子の封入に用いられるガラス外套管材料として好適である。   The glass for semiconductor encapsulation of the present invention is suitable as a glass envelope material used for encapsulation of semiconductor elements such as silicon diodes, light emitting diodes, and thermistors.

Claims (5)

ガラス組成として、質量%で、PbO 5〜35%、SiO 40〜55%、LiO+NaO+KO 5〜20%含有することを特徴とする半導体封入用ガラス。 A glass for semiconductor encapsulation, containing 5 to 35% of PbO, 40 to 55% of SiO 2 , and 5 to 20% of Li 2 O + Na 2 O + K 2 O as a glass composition. ガラス組成として、質量%で、PbO 5〜35%、SiO 40〜55%、Al 0〜5%、B 0〜15%、MgO 0〜5%、CaO 0〜5%、BaO 0〜5%、SrO 0〜5%、ZnO 0〜10%、LiO 1〜5%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 5〜20%、TiO 0〜10%、ZrO0〜3%含有することを特徴とする請求項1に記載の半導体封入用ガラス。 As a glass composition, in weight%, PbO 5~35%, SiO 2 40~55%, Al 2 O 3 0~5%, B 2 O 3 0~15%, 0~5% MgO, CaO 0~5% , BaO 0~5%, SrO 0~5% , 0~10% ZnO, Li 2 O 1~5%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O The glass for semiconductor encapsulation according to claim 1, comprising 5 to 20%, TiO 2 0 to 10%, and ZrO 2 0 to 3%. 質量%で、SiO+TiOが45〜60%であることを特徴とする請求項1又は2に記載の半導体封入用ガラス。 The glass for semiconductor encapsulation according to claim 1, wherein SiO 2 + TiO 2 is 45% to 60% by mass. 10dPa・sの粘度に相当する温度が650℃以下であることを特徴とする請求項1〜3の何れかに記載の半導体封入用ガラス The temperature corresponding to a viscosity of 10 6 dPa · s is 650 ° C. or lower, and the glass for semiconductor encapsulation according to claim 1, 請求項1〜4の何れかに記載のガラスからなることを特徴とする半導体封入用外套管。   A sheath tube for semiconductor encapsulation, comprising the glass according to claim 1.
JP2013261145A 2012-12-25 2013-12-18 Glass and sheath tube for semiconductor sealing Pending JP2014141397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261145A JP2014141397A (en) 2012-12-25 2013-12-18 Glass and sheath tube for semiconductor sealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012280638 2012-12-25
JP2012280638 2012-12-25
JP2013261145A JP2014141397A (en) 2012-12-25 2013-12-18 Glass and sheath tube for semiconductor sealing

Publications (1)

Publication Number Publication Date
JP2014141397A true JP2014141397A (en) 2014-08-07

Family

ID=51021020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261145A Pending JP2014141397A (en) 2012-12-25 2013-12-18 Glass and sheath tube for semiconductor sealing

Country Status (3)

Country Link
JP (1) JP2014141397A (en)
TW (1) TW201429912A (en)
WO (1) WO2014103936A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188015A1 (en) * 2016-04-28 2017-11-02 日本電気硝子株式会社 Glass tube for metal sealing and glass for metal sealing
JP7257350B2 (en) 2020-03-16 2023-04-13 三菱重工業株式会社 gas turbine combustor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668049B2 (en) * 1988-02-26 1997-10-27 株式会社オハラ Optical glass
JPH0350138A (en) * 1989-07-18 1991-03-04 Canon Inc Optical glass
JP2000143286A (en) * 1998-09-04 2000-05-23 Nippon Electric Glass Co Ltd Tube glass less liable to leach lead
JP2002211948A (en) * 2001-01-12 2002-07-31 Nippon Electric Glass Co Ltd Funnel glass for cathode-ray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188015A1 (en) * 2016-04-28 2017-11-02 日本電気硝子株式会社 Glass tube for metal sealing and glass for metal sealing
JPWO2017188015A1 (en) * 2016-04-28 2019-03-07 日本電気硝子株式会社 Metal sealing glass tube and metal sealing glass
US11377385B2 (en) 2016-04-28 2022-07-05 Nippon Electric Glass Co., Ltd. Glass tube for metal sealing and glass for metal sealing
JP7257350B2 (en) 2020-03-16 2023-04-13 三菱重工業株式会社 gas turbine combustor

Also Published As

Publication number Publication date
TW201429912A (en) 2014-08-01
WO2014103936A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US6534346B2 (en) Glass and glass tube for encapsulating semiconductors
JP5029014B2 (en) Semiconductor sealing glass, semiconductor sealing outer tube, and semiconductor electronic component
JP5354445B2 (en) Glass for metal coating and semiconductor sealing material
US9230872B2 (en) Lead-free glass for semiconductor encapsulation
JP2012116744A (en) Lead-free glass for sealing of semiconductor and overcoat tube for sealing of semiconductor
JP4789052B2 (en) Semiconductor encapsulation glass, semiconductor encapsulation envelope, and semiconductor element encapsulation method
JP5088914B2 (en) Glass for semiconductor encapsulation and outer tube for semiconductor encapsulation
JP2014141397A (en) Glass and sheath tube for semiconductor sealing
WO2012060337A1 (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP2020172423A (en) Alkali-free glass plate
JP6041201B2 (en) Lead-free glass for semiconductor encapsulation
EP1219572B1 (en) Glass for encapsulating semiconductor and overcoat tube for encapsulating semiconductor using the same
JP2011116578A (en) Glass for sealing semiconductor, sheath tube for sealing semiconductor, and method for sealing semiconductor element
JP5678410B2 (en) Lead-free low melting point glass
JP2011184216A (en) Glass for sealing semiconductor, mantle tube for sealing semiconductor and semiconductor electronic component
JP2012140259A (en) Method for producing sheath tube for sealing semiconductor and sheath tube for sealing semiconductor
JPH0867534A (en) Semiconductor-encapsulating glass