JP6041201B2 - Lead-free glass for semiconductor encapsulation - Google Patents

Lead-free glass for semiconductor encapsulation Download PDF

Info

Publication number
JP6041201B2
JP6041201B2 JP2012224863A JP2012224863A JP6041201B2 JP 6041201 B2 JP6041201 B2 JP 6041201B2 JP 2012224863 A JP2012224863 A JP 2012224863A JP 2012224863 A JP2012224863 A JP 2012224863A JP 6041201 B2 JP6041201 B2 JP 6041201B2
Authority
JP
Japan
Prior art keywords
glass
temperature
lead
content
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012224863A
Other languages
Japanese (ja)
Other versions
JP2014076912A (en
Inventor
橋本 幸市
幸市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012224863A priority Critical patent/JP6041201B2/en
Publication of JP2014076912A publication Critical patent/JP2014076912A/en
Application granted granted Critical
Publication of JP6041201B2 publication Critical patent/JP6041201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は半導体封入用無鉛ガラスに関し、具体的にはシリコンダイオード、発光ダイオード、サーミスタ等の半導体素子の封入用外套管材料として用いられる半導体封入用無鉛ガラスに関する。   The present invention relates to a lead-free glass for semiconductor encapsulation, and more particularly to a lead-free glass for semiconductor encapsulation used as an envelope material for encapsulation of semiconductor elements such as silicon diodes, light emitting diodes, and thermistors.

シリコンダイオード、発光ダイオード、サーミスタ等の小型の電子部品は、これらの半導体素子をジュメット線等の金属線で両側から挟み、ガラス製の半導体封入用外套管で囲んだ後に所定の温度に加熱し、この外套管を軟化変形させて気密封入した構造(DHD型)が広く採用されている。また、サーミスタには、一方向にリード線を出す構造も存在する。   Small electronic parts such as silicon diodes, light-emitting diodes, thermistors, etc. are sandwiched between metal semiconductors such as dumet wires from both sides, and surrounded by a glass-made semiconductor enclosure tube, and then heated to a predetermined temperature. A structure (DHD type) in which the outer tube is softly deformed and hermetically sealed is widely used. The thermistor also has a structure in which a lead wire is provided in one direction.

半導体封入用ガラスは、半導体素子が熱劣化しない温度で封入可能であることが要求される。半導体素子の耐熱温度は、種類や設計により異なるが、半導体素子の小型化の傾向に伴い、低下する傾向にある。このため、封入温度はできるだけ低温であることが好ましく、例えば660℃以下、特に650℃以下が好ましい。なお、封入温度は、一般的に、ガラスの粘度が10dPa・sになる温度を指す。 The glass for semiconductor encapsulation is required to be capable of being encapsulated at a temperature at which the semiconductor element is not thermally deteriorated. The heat-resistant temperature of a semiconductor element varies depending on the type and design, but tends to decrease as the semiconductor element becomes smaller. For this reason, it is preferable that the enclosure temperature is as low as possible, for example, 660 ° C. or lower, particularly 650 ° C. or lower. The sealing temperature generally refers to a temperature at which the viscosity of the glass is 10 6 dPa · s.

従来、低温封入が可能な半導体封入用ガラスとして、PbOを多量に含む鉛ケイ酸塩ガラスが使用されてきた。その理由は、ガラス組成中のPbOは、ガラス骨格を安定化しつつ、ガラスの粘度を下げる効果が極めて大きいからである。具体的に言えば、PbOを46質量%含む半導体封入用ガラスは、封入温度が約700℃であり、またPbOを60質量%含む半導体封入用ガラスは、封入温度が約655℃である。   Conventionally, lead silicate glass containing a large amount of PbO has been used as a glass for semiconductor encapsulation capable of low-temperature encapsulation. The reason is that PbO in the glass composition has an extremely large effect of lowering the viscosity of the glass while stabilizing the glass skeleton. Specifically, the glass for semiconductor encapsulation containing 46% by mass of PbO has an encapsulation temperature of about 700 ° C., and the glass for semiconductor encapsulation containing 60% by mass of PbO has an encapsulation temperature of about 655 ° C.

ところが鉛は環境上好ましくない成分であることから、近年では実質的に鉛やその他の有害成分を含まず、環境に配慮した無鉛ガラスからなる半導体封入用ガラスが提案されている(例えば特許文献1〜4)。   However, since lead is an environmentally unfavorable component, semiconductor encapsulating glass made of lead-free glass that does not substantially contain lead or other harmful components and is environmentally friendly has been proposed in recent years (for example, Patent Document 1). ~ 4).

特開2002−37641号公報JP 2002-37641 A 特開2003-17632号公報Japanese Patent Laid-Open No. 2003-17632 特開2011−116578号公報JP 2011-116578 A 特開2012−31048号公報JP 2012-31048 A

しかしながら特許文献1や特許文献2に記載されたガラスは封入温度が651〜710℃と高く、封入温度の更なる低温化が望まれている現状に対して課題を解決できていない。   However, the glass described in Patent Document 1 and Patent Document 2 has a high sealing temperature of 651 to 710 ° C., and the problem cannot be solved with respect to the current situation where further lowering of the sealing temperature is desired.

ところで半導体封入用ガラスには高い体積抵抗率を有することが望まれる。ガラスの体積抵抗率が低いと、電極間に僅かながらも電気が流れてしまい、半導体製品としての電気特性に支障を生じてしまう。しかしながら無鉛ガラスは、従来の鉛ケイ酸塩系ガラスに比べて体積抵抗率が低い傾向にある。   By the way, it is desired that the glass for semiconductor encapsulation has a high volume resistivity. If the volume resistivity of the glass is low, a small amount of electricity flows between the electrodes, resulting in a hindrance to the electrical characteristics of the semiconductor product. However, lead-free glass tends to have a lower volume resistivity than conventional lead silicate glass.

無鉛ガラスでありながら、比較的体積抵抗率の高いガラスの例が引用文献3及び引用文献4に開示されている。しかしながら、これらのガラスは、TiOを多量に含んでおり、失透し易いガラスである。また引用文献3の発明は、高価なBiを必須成分として使用しており、原料コストが高いという問題もある。 Reference examples 3 and 4 disclose examples of glass having a relatively high volume resistivity while being lead-free glass. However, these glasses contain a large amount of TiO 2 and are easily devitrified. Further, the invention of the cited document 3 uses expensive Bi 2 O 3 as an essential component, and there is a problem that the raw material cost is high.

本発明の課題は、650℃以下の低い温度で封入が可能で、且つ150℃における体積抵抗率が1012.5Ω・cm以上と高く、しかも耐失透性に優れた半導体封入用無鉛ガラスを提供することである。 An object of the present invention is a lead-free glass for encapsulating a semiconductor that can be sealed at a low temperature of 650 ° C. or lower, has a high volume resistivity of 10 12.5 Ω · cm or higher at 150 ° C., and has excellent devitrification resistance. Is to provide.

本発明の半導体封入用無鉛ガラスは、ガラス組成として、質量%でSiO 24〜46%、Al 0.1〜4.0%、B 16〜35%、ZnO 6〜22%、LiO 1〜5%、NaO 1〜10%、KO 2〜12%、TiO 0〜2%含有し、NaO/KOの比が≦1.2であることを特徴とする。なお「無鉛」とは、ガラス原料として、積極的にPbOを添加しない趣旨であり、具体的にはガラス組成中のPbOの含有量が2000ppm以下の場合を指す。 Encapsulating a semiconductor lead-free glass of the present invention has a glass composition, SiO 2 24 to 46% by mass%, Al 2 O 3 0.1~4.0% , B 2 O 3 16~35%, ZnO 6~22 %, Li 2 O 1-5%, Na 2 O 1-10%, K 2 O 2-12%, TiO 2 0-2%, and the ratio of Na 2 O / K 2 O is ≦ 1.2 It is characterized by being. “Lead-free” means that PbO is not actively added as a glass raw material, and specifically refers to a case where the content of PbO in the glass composition is 2000 ppm or less.

また本発明においては、実質的にBiを含有しないことが好ましい。なお「実質的にBiを含有しない」とは、ガラス原料として、積極的にBiを使用しない趣旨であり、具体的にはガラス組成中のBiの含有量が2000ppm以下の場合を指す。 In the present invention, it is preferable to contain substantially no Bi 2 O 3. Note that "substantially free of Bi 2 O 3" is a glass raw material is positively spirit not using Bi 2 O 3, in particular the content of Bi 2 O 3 in the glass composition It refers to the case of 2000 ppm or less.

上記構成によれば、原料コストの高騰を抑制することができる。   According to the said structure, the raise of raw material cost can be suppressed.

また本発明においては、150℃における体積抵抗率がLogρで12.5(Ω・cm)以上であることが好ましい。   In the present invention, the volume resistivity at 150 ° C. is preferably 12.5 (Ω · cm) or more in terms of Log ρ.

上記構成によれば、電気特性に優れた半導体製品をより確実に製造することが可能になる。   According to the above configuration, it becomes possible to more reliably manufacture a semiconductor product having excellent electrical characteristics.

また本発明においては、封入温度が650℃以下であることが好ましい。なお本発明における「封入温度」とは、ガラスの粘度が10dPa・sとなる温度を意味する。 Moreover, in this invention, it is preferable that enclosure temperature is 650 degrees C or less. The “encapsulation temperature” in the present invention means a temperature at which the viscosity of the glass is 10 6 dPa · s.

上記構成によれば、封入される半導体素子の熱劣化を適切に防止することができる。   According to the said structure, the thermal degradation of the semiconductor element enclosed can be prevented appropriately.

本発明のガラスは、低温で封入が可能で、且つ体積抵抗率が高く、しかも耐失透性に優れる。よってシリコンダイオード、発光ダイオード、サーミスタ等の小型の電子部品の作製に用いる外套管材料として好適である。   The glass of the present invention can be sealed at a low temperature, has a high volume resistivity, and is excellent in devitrification resistance. Therefore, it is suitable as an outer tube material used for manufacturing a small electronic component such as a silicon diode, a light emitting diode, or a thermistor.

本発明の半導体封入用無鉛ガラスの組成範囲を上記のように限定した理由を説明する。なお以下、特に断りのない限り、「%」は質量%を意味する。   The reason why the composition range of the lead-free glass for semiconductor encapsulation of the present invention is limited as described above will be described. Hereinafter, “%” means mass% unless otherwise specified.

SiOはガラスの骨格と構成する為に必要な主成分であり、その含有量は24〜46%、好ましくは30〜44%、更に好ましくは36〜42%である。SiOの含有量が24%未満だと実用上必要な耐候性が不十分になる。SiOの含有量が46%より多いと封入温度が高くなる。 SiO 2 is a main component necessary for constituting a glass skeleton, and its content is 24 to 46%, preferably 30 to 44%, and more preferably 36 to 42%. When the content of SiO 2 is less than 24%, the weather resistance necessary for practical use becomes insufficient. When the content of SiO 2 is more than 46%, the sealing temperature becomes high.

Alはガラスの耐候性を高める成分であり、その含有量は0.1〜4.0%、好ましくは0.2〜3%、更に好ましくは0.3〜2%である。Alの含有量が0.1%未満だと耐候性が不十分になる。Alの含有量が4.0%より多いと封入温度が高くなる。 Al 2 O 3 is a component that enhances the weather resistance of the glass, and its content is 0.1 to 4.0%, preferably 0.2 to 3%, and more preferably 0.3 to 2%. When the content of Al 2 O 3 is less than 0.1%, the weather resistance is insufficient. When the content of Al 2 O 3 is more than 4.0%, the encapsulation temperature becomes high.

はガラスの骨格を構成し、また熱膨張係数を低下させながら封入温度を低くする成分であり、その含有量は16〜35%、好ましくは18〜30%、更に好ましくは20〜25%である。Bの含有量が16%未満だと封入温度が高くなる。Bの含有量が35%より多いと耐水性が悪化する。 B 2 O 3 is a component that constitutes the skeleton of the glass and lowers the sealing temperature while lowering the thermal expansion coefficient, and its content is 16 to 35%, preferably 18 to 30%, more preferably 20 to 20%. 25%. When the content of B 2 O 3 is less than 16%, the sealing temperature becomes high. When the content of B 2 O 3 is more than 35%, the water resistance deteriorates.

ZnOは熱膨張係数を低下させながら封入温度を低くする成分であり、その含有量は6〜22%、好ましくは9〜19%、更に好ましくは12〜17%である。ZnOの含有量が6%未満だと封入温度が高くなる。ZnOの含有量が22%より多いと失透性が悪化する。   ZnO is a component that lowers the encapsulation temperature while lowering the thermal expansion coefficient, and its content is 6 to 22%, preferably 9 to 19%, and more preferably 12 to 17%. When the ZnO content is less than 6%, the encapsulation temperature becomes high. When the content of ZnO is more than 22%, devitrification is deteriorated.

LiOは熱膨張係数を高める効果及び封入温度を低下させる効果がそれぞれ最も大きい成分であり、その含有量は1〜5%、好ましくは1.5〜4.5%、更に好ましくは2.0〜4.0%である。LiOの含有量が1%未満だと封入温度が高くなる。LiOの含有量が5%より多いと熱膨張係数が大きくなり過ぎる。 Li 2 O is a component having the largest effect of increasing the thermal expansion coefficient and the effect of decreasing the sealing temperature, and its content is 1 to 5%, preferably 1.5 to 4.5%, more preferably 2. 0 to 4.0%. When the content of Li 2 O is less than 1%, the encapsulation temperature increases. When the content of Li 2 O is more than 5%, the thermal expansion coefficient becomes too large.

NaOは封入温度を低くする成分であり、その含有量は1〜10%、好ましくは2〜9%、更に好ましくは3〜8%である。NaOの含有量が1%未満だと封入温度が高くなる。NaOの含有量が10%より多いと体積抵抗率が低くなり過ぎる。 Na 2 O is a component that lowers the encapsulation temperature, and its content is 1 to 10%, preferably 2 to 9%, and more preferably 3 to 8%. When the content of Na 2 O is less than 1%, the sealing temperature increases. When the content of Na 2 O is more than 10%, the volume resistivity becomes too low.

Oは体積抵抗率を高める成分であり、その含有量は2〜12%、好ましくは4〜11%、更に好ましくは6〜10%、特に好ましくは8.5〜10%である。KOの含有量が2%未満だと体積抵抗率が低くなり過ぎる。KOの含有量が12%より多いと熱膨張係数が高くなり過ぎる。 K 2 O is a component that increases the volume resistivity, and its content is 2 to 12%, preferably 4 to 11%, more preferably 6 to 10%, and particularly preferably 8.5 to 10%. If the content of K 2 O is less than 2%, the volume resistivity becomes too low. When the content of K 2 O is more than 12%, the thermal expansion coefficient becomes too high.

TiOは耐酸性を高めるのに有効な成分であり、その含有量は0〜2%である。TiOの含有量が2%より多いと失透性が悪化する傾向にある。 TiO 2 is an effective component for enhancing acid resistance, and its content is 0 to 2%. When the content of TiO 2 is more than 2%, devitrification tends to deteriorate.

NaO/KOの比は体積抵抗率を高める指標であり、その比率はNaO/KO≦1.2、好ましくはNaO/KO≦1.1、更に好ましくはNaO/KO≦1.0である。比率がNaO/KO>1.2だと体積抵抗率が低くなる。 Na 2 ratio of O / K 2 O is an index to increase the volume resistivity, the ratio Na 2 O / K 2 O ≦ 1.2, preferably Na 2 O / K 2 O ≦ 1.1, more preferably Is Na 2 O / K 2 O ≦ 1.0. When the ratio is Na 2 O / K 2 O> 1.2, the volume resistivity decreases.

なお上記成分以外にも、溶融性の向上、封入温度の低温化、化学的耐久性の向上、清澄性の改善等の目的で、P、SO、Sb、F、Cl等を適量添加することができる。なお、上記の通り、PbOやBiは添加しないことが好ましい。 In addition to the above components, P 2 O 5 , SO 3 , Sb 2 O 3 , F, Cl are used for the purpose of improving the meltability, lowering the sealing temperature, improving the chemical durability, improving the clarity. Etc. can be added in an appropriate amount. Incidentally, as described above, PbO and Bi 2 O 3 is preferably not added.

また本発明の半導体素子用無鉛ガラスは、150℃における体積抵抗率は、Logρ(Ω・cm)で12.5以上、特に12.7以上であることが好ましい。150℃における体積抵抗率が低くなると、電極間に電気が流れるようになり、ダイオード等に平行して抵抗体を設置したような回路が発生しやすくなる。   The lead-free glass for semiconductor elements of the present invention preferably has a volume resistivity at 150 ° C. of 12.5 or more, particularly 12.7 or more in terms of Log ρ (Ω · cm). When the volume resistivity at 150 ° C. becomes low, electricity flows between the electrodes, and a circuit in which a resistor is installed in parallel with a diode or the like is likely to be generated.

また本発明の半導体封入用無鉛ガラスは、封入温度が650℃以下、特に640℃以下であることが好ましい。   The lead-free glass for semiconductor encapsulation of the present invention preferably has an encapsulation temperature of 650 ° C. or lower, particularly 640 ° C. or lower.

また本発明の半導体素子用無鉛ガラスは、30〜380℃における熱膨張係数が85〜105×10−7/℃、特に85〜100×10−7/℃であることが好ましい。このようにすれば、半導体封入用ガラスの熱膨張係数が、ジュメット線等の金属線の熱膨張係数に整合しやすくなり、結果として、電子部品の信頼性を高めることができる。 The lead-free glass for a semiconductor element of the present invention preferably has a thermal expansion coefficient at 30 to 380 ° C. of 85 to 105 × 10 −7 / ° C., particularly 85 to 100 × 10 −7 / ° C. If it does in this way, the thermal expansion coefficient of the glass for semiconductor encapsulation can be easily matched with the thermal expansion coefficient of a metal wire such as a dumet wire, and as a result, the reliability of the electronic component can be improved.

次に、本発明の半導体封入用無鉛ガラス、及びこれをもちいた半導体封入用外套管の製造方法を説明する。   Next, a lead-free glass for semiconductor encapsulation of the present invention and a method for producing a semiconductor encapsulation sheath tube using the same will be described.

まず各種のガラス原料を調合、混合する。ガラス原料は、通常、複数の成分からなる鉱物や不純物を含むが、このような場合、ガラス原料の成分分析値を考慮して、所望のガラス組成になるように調合すればよい。続いて、Vミキサー、ロッキングミキサー、攪拌羽根が付いたミキサー等の混合機で各種のガラス原料を混合し、投入原料を得る。   First, various glass raw materials are prepared and mixed. The glass raw material usually contains minerals and impurities composed of a plurality of components. In such a case, the glass raw material may be formulated so as to have a desired glass composition in consideration of the component analysis value of the glass raw material. Subsequently, various glass raw materials are mixed with a mixer such as a V mixer, a rocking mixer, and a mixer equipped with stirring blades to obtain input raw materials.

次に、投入原料をガラス溶融炉に投入し、溶融ガラスを得る。ガラス溶融炉は、溶融ガラスを得るための溶融槽と、溶融ガラス中の泡を除去するための清澄槽と、清澄された溶融ガラスを成形に適当な粘度まで下げて、成形装置に導くための通路(フィーダー)等で構成される。ガラス溶融炉は、バーナーまたは電気通電により加熱される。投入原料は、通常1300℃〜1600℃の溶解槽で溶融されて、更に1400℃〜1600℃の清澄槽に入る。清澄糟から出た溶融ガラスは、フィーダーを通って成形装置に移動していく過程で、温度が低下し、成形に適した粘度10〜10dPa・sになる。 Next, the input raw material is charged into a glass melting furnace to obtain molten glass. The glass melting furnace is a melting tank for obtaining molten glass, a clarification tank for removing bubbles in the molten glass, and for lowering the clarified molten glass to a viscosity suitable for molding and leading it to a molding apparatus. It consists of a passage (feeder) and the like. The glass melting furnace is heated by a burner or electric conduction. The input raw material is usually melted in a dissolution tank at 1300 ° C. to 1600 ° C. and further enters a clarification tank at 1400 ° C. to 1600 ° C. In the process of moving the molten glass from the clarified rice cake through the feeder to the molding apparatus, the temperature is lowered and the viscosity becomes 10 4 to 10 6 dPa · s suitable for molding.

次いで、成形装置で溶融ガラスを管状に成形する。成形法として、ダンナー法、ベロ法、ダウンドロー法、アップドロー法等が適用可能である。   Next, the molten glass is formed into a tubular shape with a forming apparatus. As a forming method, a Danner method, a tongue method, a downdraw method, an updraw method, or the like can be applied.

得られたガラス管を所定の寸法に切断すれば、半導体封入用外套管を作製することができる。ガラス管の切断加工に際し、ガラス管をダイヤモンドホイールカッターで個別に切断することも可能であるが、多数のガラス管を結束させた後にダイヤモンドホイールカッターで切断する方法が大量生産に適している。   If the obtained glass tube is cut into a predetermined dimension, a mantle tube for semiconductor encapsulation can be produced. When cutting a glass tube, it is possible to cut the glass tube individually with a diamond wheel cutter. However, a method in which a large number of glass tubes are bound and then cut with a diamond wheel cutter is suitable for mass production.

続いて、半導体封入用外套管による半導体素子の封入方法を説明する。   Next, a method for encapsulating a semiconductor element using a semiconductor encapsulating tube will be described.

最初に、半導体封入用外套管内において、半導体素子を両側から挟み込んだ状態になるように、ジュメット線等の金属線を固定する。次に、650℃以下の温度に加熱し、外套管を軟化変形させて半導体素子を封入する。このようにして、シリコンダイオード、発光ダイオード、サーミスタ等の電子部品を作製することができる。   First, a metal wire such as a dumet wire is fixed so that the semiconductor element is sandwiched from both sides in the outer tube for semiconductor encapsulation. Next, the semiconductor element is sealed by heating to a temperature of 650 ° C. or lower to soften and deform the outer tube. In this way, electronic components such as silicon diodes, light emitting diodes, thermistors, and the like can be manufactured.

なお、本発明の半導体封入用無鉛ガラスは、外套管として使用する以外にも、例えば、粉末状に粉砕した後にペースト化し、これを半導体素子に巻き付けて焼成することにより、半導体素子を封入することもできる。   The lead-free glass for encapsulating a semiconductor of the present invention can be used as an outer tube, for example, by crushing it into a powder form and then pasting it, winding it around a semiconductor element and firing it to encapsulate the semiconductor element You can also.

以下、実施例に基づいて本発明を詳述する。   Hereinafter, the present invention will be described in detail based on examples.

表1〜2は本発明の実施例(No.1〜12)及び比較例(No.13〜14)
を示している。
Tables 1-2 show Examples (No. 1-12) and Comparative Examples (No. 13-14) of the present invention.
Is shown.

表中に示すガラス組成になるようにガラス原料を調合し、白金坩堝を用いて1200℃で4時間30分溶融した後、溶融ガラスを所定の形状に成形、加工して各評価に供した。各試料について熱膨張係数、歪点、徐冷点、軟化点、封入温度、成形温度、150℃における体積抵抗率、及び10Ω・cmにおける温度及び液相温度について評価した。 Glass raw materials were prepared so as to have the glass composition shown in the table, and after melting for 4 hours 30 minutes at 1200 ° C. using a platinum crucible, the molten glass was formed into a predetermined shape and processed for each evaluation. Each sample was evaluated for thermal expansion coefficient, strain point, annealing point, softening point, encapsulation temperature, molding temperature, volume resistivity at 150 ° C., and temperature and liquidus temperature at 10 8 Ω · cm.

なお熱膨張係数は、直径約3mm、長さ約50mmの円柱状の測定試料を用いて、自記示差熱膨張計により30〜380℃の温度範囲における平均熱膨張係数を測定した値である。   The thermal expansion coefficient is a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. with a self-described differential thermal dilatometer using a cylindrical measurement sample having a diameter of about 3 mm and a length of about 50 mm.

歪点、徐冷点及は、ASTM C336に準拠するファイバー法で測定した。軟化点はASTM C338に準拠するファイバー法で測定した。成形温度は白金球引き上げ法によって10dPa・sの粘度に相当する温度を求めた。 The strain point, annealing point and the like were measured by a fiber method in accordance with ASTM C336. The softening point was measured by a fiber method conforming to ASTM C338. The molding temperature was determined as a temperature corresponding to a viscosity of 10 4 dPa · s by a platinum ball pulling method.

封入温度は次のようにして求めた。まず上述の方法で求めた歪点、徐冷点、軟化点、成形温度の温度と粘度をFulcherの式に当てはめ、10dPa・sに相当する温度を封入温度とした。 The enclosure temperature was determined as follows. First, the temperature and viscosity of the strain point, annealing point, softening point and molding temperature obtained by the above method were applied to the Fulcher equation, and the temperature corresponding to 10 6 dPa · s was taken as the sealing temperature.

150℃における体積抵抗率は、ASTM C657に準拠した方法で測定した値である。   The volume resistivity at 150 ° C. is a value measured by a method based on ASTM C657.

10Ω・cmにおける温度は、体積抵抗を示す指標であり、数値が大きいほど体積抵抗率が高いことを示す。10Ω・cmにおける温度は、ASTM C657に準拠した方法で150℃、250℃及び350℃の体積抵抗率を求めた後、横軸に絶対温度の逆数1/K(Kは絶対温度)、縦軸に体積抵抗率(Log)Ω・cmをプロットしたグラフの傾きから算出した。 The temperature at 10 8 Ω · cm is an index indicating volume resistance, and the larger the value, the higher the volume resistivity. The temperature at 10 8 Ω · cm is a reciprocal 1 / K of absolute temperature on the horizontal axis 1 / K (K is an absolute temperature) after obtaining volume resistivity of 150 ° C., 250 ° C. and 350 ° C. by a method according to ASTM C657, It calculated from the inclination of the graph which plotted volume resistivity (Log) ohm * cm on the vertical axis | shaft.

液相温度は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。   The liquid phase temperature passed through a standard sieve 30 mesh (500 μm), the glass powder remaining in 50 mesh (300 μm) was placed in a platinum boat, held in a temperature gradient furnace for 24 hours, and then the temperature at which crystals precipitated was measured. Points to the value.

表1〜2から明らかなように、本発明の実施例であるNo.1〜12はいずれも封入温度が650℃以下であり、且つ150℃における体積抵抗率がLogρで12.5(Ω・cm)以上であった。また熱膨張係数が88〜99×10−7/℃の範囲内であり、封入金属であるジュメット線と整合していることが分かった。またTiOの含有量が2%以下である本発明の各実施例は、液相温度が低く、耐失透性に優れていることが確認された。 As is apparent from Tables 1 and 2, No. 1 is an example of the present invention. 1 to 12 had an enclosure temperature of 650 ° C. or lower and a volume resistivity at 150 ° C. of Log ρ of 12.5 (Ω · cm) or higher. Moreover, it was found that the thermal expansion coefficient is in the range of 88 to 99 × 10 −7 / ° C., which is consistent with the jumet wire that is the encapsulated metal. Embodiments of the present invention that the content of TiO 2 is 2% or less also, the liquidus temperature is low, it was confirmed to have excellent devitrification resistance.

一方、比較例である試料No.13、14は、NaO/KOの比が>1.2であり、150℃における体積抵抗率が12.5未満と低かった。 On the other hand, sample No. which is a comparative example. 13 and 14, the ratio of Na 2 O / K 2 O was> 1.2, and the volume resistivity at 150 ° C. was as low as less than 12.5.

Claims (4)

ガラス組成として、質量%でSiO 24〜46%、Al 0.1〜4.0%、B 16〜35%、ZnO 6〜22%、LiO 1〜5%、NaO 1〜10%、KO 2〜12%、TiO 0〜2%含有し、NaO/KOの比が≦1.0であることを特徴とする半導体封入用無鉛ガラス。 A glass composition, SiO 2 24~46% by mass%, Al 2 O 3 0.1~4.0% , B 2 O 3 16~35%, ZnO 6~22%, Li 2 O 1~5%, Lead free for semiconductor encapsulation, containing Na 2 O 1-10%, K 2 O 2-12%, TiO 2 0-2%, and a ratio of Na 2 O / K 2 O ≦ 1.0 Glass. 実質的にBiを含有しないことを特徴とする請求項1に記載の半導体封入用無鉛ガラス。 The lead-free glass for semiconductor encapsulation according to claim 1, which contains substantially no Bi 2 O 3 . 150℃における体積抵抗率がLogρで12.5(Ω・cm)以上であることを特徴とする請求項1又は2に記載の半導体封入用無鉛ガラス。   The lead-free glass for semiconductor encapsulation according to claim 1, wherein the volume resistivity at 150 ° C. is 12.5 (Ω · cm) or more in terms of Log ρ. 封入温度が650℃以下であることを特徴とする請求項1〜3の何れかに記載の半導体封入用無鉛ガラス。
The lead-free glass for semiconductor encapsulation according to any one of claims 1 to 3, wherein the encapsulation temperature is 650 ° C or lower.
JP2012224863A 2012-10-10 2012-10-10 Lead-free glass for semiconductor encapsulation Active JP6041201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224863A JP6041201B2 (en) 2012-10-10 2012-10-10 Lead-free glass for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224863A JP6041201B2 (en) 2012-10-10 2012-10-10 Lead-free glass for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JP2014076912A JP2014076912A (en) 2014-05-01
JP6041201B2 true JP6041201B2 (en) 2016-12-07

Family

ID=50782554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224863A Active JP6041201B2 (en) 2012-10-10 2012-10-10 Lead-free glass for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP6041201B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792806B2 (en) * 2015-04-10 2020-12-02 日本電気硝子株式会社 Glass plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899139A (en) * 1981-12-03 1983-06-13 Matsushita Electric Ind Co Ltd Enamel frit
JPS63288929A (en) * 1987-05-21 1988-11-25 Nakashima:Kk Frit for thermally spraying glass
JP2003007421A (en) * 2001-06-26 2003-01-10 Ngk Spark Plug Co Ltd Spark plug
JP5088914B2 (en) * 2001-06-28 2012-12-05 日本電気硝子株式会社 Glass for semiconductor encapsulation and outer tube for semiconductor encapsulation
JP5047449B2 (en) * 2002-09-25 2012-10-10 日本電気硝子株式会社 Optical glass for mold press molding
JP5796270B2 (en) * 2009-04-16 2015-10-21 日本電気硝子株式会社 Electrode forming material
JP5556336B2 (en) * 2010-04-28 2014-07-23 旭硝子株式会社 Glass ceramic composition and element mounting substrate
JP2012031048A (en) * 2010-07-01 2012-02-16 Nippon Electric Glass Co Ltd Lead-free glass for semiconductor

Also Published As

Publication number Publication date
JP2014076912A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5354445B2 (en) Glass for metal coating and semiconductor sealing material
US6534346B2 (en) Glass and glass tube for encapsulating semiconductors
JP5029014B2 (en) Semiconductor sealing glass, semiconductor sealing outer tube, and semiconductor electronic component
WO2012063726A1 (en) Lead-free glass for encapsulating semiconductor, and overcoat tube for encapsulating semiconductor
US9230872B2 (en) Lead-free glass for semiconductor encapsulation
JP4789052B2 (en) Semiconductor encapsulation glass, semiconductor encapsulation envelope, and semiconductor element encapsulation method
JP5088914B2 (en) Glass for semiconductor encapsulation and outer tube for semiconductor encapsulation
JP6041201B2 (en) Lead-free glass for semiconductor encapsulation
WO2014103936A1 (en) Glass for encapsulating semiconductor and sheath tube for encapsulating semiconductor
JP6128418B2 (en) Glass plate for thin film solar cell
WO2012060337A1 (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
CN1184155C (en) Glass and outer sleeve for packing-in semiconductor
JP2011116578A (en) Glass for sealing semiconductor, sheath tube for sealing semiconductor, and method for sealing semiconductor element
JP2011184216A (en) Glass for sealing semiconductor, mantle tube for sealing semiconductor and semiconductor electronic component
JP2000143286A (en) Tube glass less liable to leach lead
JP2014094859A (en) Glass plate for thin film solar cell
JPH0867534A (en) Semiconductor-encapsulating glass
JP2014037346A (en) Glass substrate for solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6041201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150