JP2014141165A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2014141165A
JP2014141165A JP2013010480A JP2013010480A JP2014141165A JP 2014141165 A JP2014141165 A JP 2014141165A JP 2013010480 A JP2013010480 A JP 2013010480A JP 2013010480 A JP2013010480 A JP 2013010480A JP 2014141165 A JP2014141165 A JP 2014141165A
Authority
JP
Japan
Prior art keywords
groove
tire
tread
bottom portion
lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013010480A
Other languages
Japanese (ja)
Other versions
JP5695681B2 (en
Inventor
Tsutomu Nakajima
努 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013010480A priority Critical patent/JP5695681B2/en
Priority to CN201310367080.XA priority patent/CN103935190B/en
Publication of JP2014141165A publication Critical patent/JP2014141165A/en
Application granted granted Critical
Publication of JP5695681B2 publication Critical patent/JP5695681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve circularity of a tread part and drainage performance in excellent balance.SOLUTION: In a pneumatic tire, a tread part 2 is provided with a pair of main grooves 3 extending continuously in the tire circumferential direction along both sides of a tire equator C, and a plurality of lug grooves 4 extending from the main grooves 3 toward the tire axial direction outside and ending at the furthermore inside in the tire axial direction than the tread ground contact end Te. The groove width of each lug groove 4 is 3-11% of a tread ground contact width TW. Each lug groove 4 includes a shallow bottom part 11 linking to the main groove 3 and having a small groove depth, a deep bottom part 13 having a larger groove depth than the shallow bottom part 11, and a taper part 12 connecting the deep bottom part 13 to the shallow bottom part 11 and having a groove depth reducing gradually toward the shallow bottom part 11.

Description

本発明は、トレッド部の真円度及び排水性能をバランス良く向上させた空気入りタイヤに関する。   The present invention relates to a pneumatic tire in which the roundness of a tread portion and drainage performance are improved in a well-balanced manner.

従来から、タイヤ周方向に連続してのびる主溝と、主溝からタイヤ軸方向外側に向かってのびるラグ溝とが設けられた空気入りタイヤが知られている。このような空気入りタイヤは、トレッド部の陸部と路面との間の水膜をラグ溝によって集め、主溝を介してタイヤの外側に排出するため、高い排水性能を発揮する。   Conventionally, a pneumatic tire is known in which a main groove extending continuously in the tire circumferential direction and a lug groove extending from the main groove toward the outer side in the tire axial direction are provided. Since such a pneumatic tire collects the water film between the land portion of the tread portion and the road surface by the lug groove and discharges it to the outside of the tire through the main groove, it exhibits high drainage performance.

しかしながら、このような空気入りタイヤを加硫成形によって製造する際、ラグ溝を成形する加硫金型の溝成形用突起が、未加硫のトレッドゴムをトレッド部の踏面側に移動させる。このため、加硫成形されたタイヤは、ラグ溝近傍の陸部のゴム厚さが設計ゴム厚さよりも大きくなり、トレッド部の真円度が悪化するという問題があった。   However, when manufacturing such a pneumatic tire by vulcanization molding, the groove forming projection of the vulcanization mold for forming the lug groove moves the unvulcanized tread rubber to the tread surface side of the tread portion. For this reason, the vulcanized tire has a problem that the rubber thickness of the land portion in the vicinity of the lug groove is larger than the designed rubber thickness, and the roundness of the tread portion is deteriorated.

特開2009−196431号公報JP 2009-196431 A

本発明は、以上のような実状に鑑み案出されたもので、ラグ溝の溝幅、及び、その溝形状を一定の範囲に規定することを基本として、加硫成形時のラグ溝近傍のトレッドゴムの変形を小さくし、トレッド部の真円度及び排水性能をバランス良く向上させた空気入りタイヤを提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and based on defining the groove width of the lug groove and the groove shape within a certain range, the vicinity of the lug groove at the time of vulcanization molding is provided. The main purpose is to provide a pneumatic tire in which the deformation of the tread rubber is reduced and the roundness of the tread portion and the drainage performance are improved in a well-balanced manner.

本発明のうち請求項1記載の発明は、トレッド部に、タイヤ赤道の両側をタイヤ周方向に連続してのびる一対の主溝と、前記主溝からタイヤ軸方向外側に向かってのびかつトレッド接地端よりもタイヤ軸方向内側で終端する複数本のラグ溝とが設けられた空気入りタイヤであって、前記ラグ溝は、溝幅がトレッド接地幅の3〜11%であり、しかも前記ラグ溝は、前記主溝に連なり溝深さが小さい浅底部、該浅底部よりも溝深さが大きい深底部、及び、該深底部と前記浅底部とを継ぎかつ溝深さが前記浅底部に向かって漸減するテーパー部とを含むことを特徴とする。   According to the first aspect of the present invention, the tread portion includes a pair of main grooves extending continuously in the tire circumferential direction on both sides of the tire equator, and extending from the main grooves toward the outer side in the tire axial direction and tread grounding. A pneumatic tire provided with a plurality of lug grooves that terminate on the inner side in the tire axial direction from the end, wherein the lug groove has a groove width of 3 to 11% of a tread contact width, and the lug groove Is connected to the main groove and has a shallow bottom portion, a deep bottom portion having a groove depth larger than the shallow bottom portion, and a joint between the deep bottom portion and the shallow bottom portion, and the groove depth toward the shallow bottom portion. And a taper portion that gradually decreases.

また請求項2記載の発明は、前記ラグ溝は、タイヤ周方向に対して40〜60°の角度で傾斜する請求項1記載の空気入りタイヤである。   The invention according to claim 2 is the pneumatic tire according to claim 1, wherein the lug groove is inclined at an angle of 40 to 60 degrees with respect to the tire circumferential direction.

また請求項3記載の発明は、前記浅底部の溝深さは、前記深底部の溝深さの30〜60%である請求項1又は2記載の空気入りタイヤである。   The invention according to claim 3 is the pneumatic tire according to claim 1 or 2, wherein the groove depth of the shallow bottom portion is 30 to 60% of the groove depth of the deep bottom portion.

また請求項4記載の発明は、前記浅底部は、タイヤ軸方向の長さが前記トレッド接地幅の5〜15%である請求項1乃至3のいずれかに記載の空気入りタイヤである。   The invention according to claim 4 is the pneumatic tire according to any one of claims 1 to 3, wherein the shallow bottom portion has a length in the tire axial direction of 5 to 15% of the tread contact width.

また請求項5記載の発明は、前記テーパー部は、タイヤ軸方向の長さが前記トレッド接地幅の10〜20%である請求項1乃至4のいずれかに記載の空気入りタイヤである。   The invention according to claim 5 is the pneumatic tire according to any one of claims 1 to 4, wherein the tapered portion has a length in a tire axial direction of 10 to 20% of the tread contact width.

また請求項6記載の発明は、前記ラグ溝は、溝深さが5mm以上である請求項1乃至5のいずれかに記載の空気入りタイヤである。   The invention according to claim 6 is the pneumatic tire according to any one of claims 1 to 5, wherein the lug groove has a groove depth of 5 mm or more.

また請求項7記載の発明は、前記ラグ溝は、タイヤ周上に10〜40本設けられる請求項1乃至6のいずれかに記載の空気入りタイヤである。   The invention according to claim 7 is the pneumatic tire according to any one of claims 1 to 6, wherein 10 to 40 lug grooves are provided on a tire circumference.

本発明の空気入りタイヤは、トレッド部に、タイヤ赤道の両側をタイヤ周方向に連続してのびる一対の主溝と、主溝からタイヤ軸方向外側に向かってのびかつトレッド接地端よりもタイヤ軸方向内側で終端する複数本のラグ溝とが設けられる。ラグ溝は、溝幅がトレッド接地幅の3〜11%で形成される。このようなラグ溝は、トレッド部の陸部と路面との間の水膜を効率良く主溝へ排出し、排水性能を向上させる。   The pneumatic tire of the present invention includes a pair of main grooves extending continuously in the tire circumferential direction on both sides of the tire equator in the tread portion, extending outward from the main groove in the tire axial direction, and extending beyond the tread grounding end. A plurality of lug grooves that terminate in the inner direction are provided. The lug groove is formed with a groove width of 3 to 11% of the tread ground contact width. Such a lug groove efficiently discharges a water film between the land portion of the tread portion and the road surface to the main groove to improve drainage performance.

ラグ溝は、主溝に連なり溝深さが小さい浅底部、該浅底部よりも溝深さが大きい深底部、及び、該深底部と浅底部とを継ぎかつ溝深さが浅底部に向かって漸減するテーパー部とを含む。このようなラグ溝は、加硫成形時、深底部を成形する加硫金型の溝成形用突起に押圧されたトレッドゴムが、テーパー部を介して浅底部側へスムーズに移動する。このとき、押圧されたトレッドゴムは、例えば、テーパー部や浅底部を成形するトレッドゴムの空隙に流れ込む。また、加硫金型の溝成形用突起によるトレッドゴムは、主溝とラグ溝とが連なる領域において、大きく押圧される。このため、ラグ溝が主溝に連なる部分を浅底部とすることにより、トレッドゴムの押圧力が低下し、ゴムの移動量が小さくなる。従って、ラグ溝近傍の陸部の加硫成形後のゴム厚さが設計ゴム厚さよりも大きくなることが抑制され、トレッド部の真円度が向上する。   The lug groove is connected to the main groove and has a shallow bottom portion having a small groove depth, a deep bottom portion having a groove depth larger than the shallow bottom portion, and the deep bottom portion and the shallow bottom portion connected to each other and the groove depth toward the shallow bottom portion. And a taper portion that gradually decreases. In such a lug groove, the tread rubber pressed by the groove forming projection of the vulcanization mold for forming the deep bottom portion smoothly moves toward the shallow bottom portion through the tapered portion at the time of vulcanization molding. At this time, the pressed tread rubber flows into, for example, a gap of the tread rubber that forms a tapered portion or a shallow bottom portion. Further, the tread rubber formed by the groove forming protrusions of the vulcanization mold is largely pressed in the region where the main groove and the lug groove are continuous. For this reason, by setting the portion where the lug groove is connected to the main groove as a shallow bottom portion, the pressing force of the tread rubber is reduced, and the amount of movement of the rubber is reduced. Therefore, the rubber thickness after vulcanization molding of the land portion in the vicinity of the lug groove is suppressed from becoming larger than the designed rubber thickness, and the roundness of the tread portion is improved.

本発明の一実施形態を示すトレッド部の展開図である。It is an expanded view of the tread part which shows one Embodiment of this invention. (a)は、図1のX−X断面図、(b)は、他の実施形態のラグ溝の長手方向の断面図である。(A) is XX sectional drawing of FIG. 1, (b) is sectional drawing of the longitudinal direction of the lug groove of other embodiment.

以下、本発明の実施の一形態が図面に基づき説明される。
図1に示されるように、本実施形態の空気入りタイヤ(以下、単に「タイヤ」ということがある。)は、例えば乗用車用として好適に利用され、そのトレッド部2は、タイヤ赤道Cの両側をタイヤ周方向に連続してのびる一対の主溝3と、各主溝3からタイヤ軸方向外側に向かってのびかつトレッド接地端Teよりもタイヤ軸方向内側で終端する複数本のラグ溝4と、タイヤ周方向に隣り合うラグ溝4、4間に配される傾斜溝5とを具える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the pneumatic tire of this embodiment (hereinafter, simply referred to as “tire”) is preferably used for, for example, a passenger car, and the tread portion 2 is formed on both sides of the tire equator C. A pair of main grooves 3 extending continuously in the tire circumferential direction, and a plurality of lug grooves 4 extending from each main groove 3 toward the tire axial direction outer side and terminating at the inner side in the tire axial direction than the tread ground contact end Te; , And an inclined groove 5 disposed between the lug grooves 4 and 4 adjacent to each other in the tire circumferential direction.

これにより、本実施形態のトレッド部2には、一対の主溝3、3で区分された一本のセンター陸部6、及び、主溝3とトレッド接地端Teとで区分された一対のショルダー陸部7が配される。   Thus, the tread portion 2 of the present embodiment includes a single center land portion 6 divided by the pair of main grooves 3 and 3 and a pair of shoulders divided by the main groove 3 and the tread grounding end Te. Land part 7 is arranged.

前記「トレッド接地端」Teは、正規リム(図示せず)にリム組みされかつ正規内圧が充填された無負荷の正規状態のタイヤに、正規荷重を負荷してキャンバー角0°で平面に接地させたときの最もタイヤ軸方向外側の接地位置として定められる。そして、このトレッド接地端Te、Te間のタイヤ軸方向の距離がトレッド接地幅TWとして定められる。特に断りがない場合、タイヤ各部の寸法等は、前記正規状態で測定された値である。   The “tread grounding end” Te is grounded on a flat surface at a camber angle of 0 ° by applying a normal load to an unloaded normal tire that is assembled with a normal rim (not shown) and filled with a normal internal pressure. It is determined as the ground contact position on the outermost side in the tire axial direction when it is used. A distance in the tire axial direction between the tread ground contact Te and Te is determined as a tread ground contact width TW. When there is no notice in particular, the dimension of each part of a tire is the value measured in the said normal state.

前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めているリムであり、JATMAであれば"標準リム"、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim"となる。また、前記「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば"最高空気圧"、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" とするが、タイヤが乗用車用である場合には180kPaとする。   The “regular rim” is a rim defined for each tire in the standard system including the standard on which the tire is based. “Standard Rim” for JATMA, “Design Rim” for TRA For ETRTO, "Measuring Rim". In addition, the “regular internal pressure” is an air pressure determined by each standard for each tire in the standard system including the standard on which the tire is based. The maximum value described in TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES is "INFLATION PRESSURE" for ETRTO, but 180 kPa for tires for passenger cars.

また、「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば "最大負荷能力" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY" であるが、タイヤが乗用車用の場合には前記荷重の88%に相当する荷重とする。   The “regular load” is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. “Maximum load capacity” for JATMA, “Table for TRA” The maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” is “LOAD CAPACITY” in the case of ETRTO.

本実施形態の主溝3は、タイヤ周方向に沿った直線状をなす。このような主溝3は、溝内の水をタイヤ回転方向の後方へスムーズに排水する。このため、排水性能が向上する。なお、主溝3は、例えば、波状やジグザグ状にのびる溝であっても良い。また、主溝3は、タイヤ赤道Cの両側でバランス良く排水性能を高めるために、タイヤ赤道Cを中心として対称に配されるのが望ましい。   The main groove 3 of the present embodiment has a linear shape along the tire circumferential direction. Such a main groove 3 smoothly drains water in the groove backward in the tire rotation direction. For this reason, drainage performance improves. The main groove 3 may be a groove extending in a wave shape or a zigzag shape, for example. The main grooves 3 are preferably arranged symmetrically about the tire equator C in order to improve drainage performance with good balance on both sides of the tire equator C.

主溝3の溝幅(溝中心線と直角方向に測定される溝幅で、以下、他の溝についても同様とする。)W1及び溝深さD1(図2(a)に示す)については、慣例に従って種々定めることができる。しかしながら、これらの溝幅W1又は溝深さD1さが小さくなると、排水性能が悪化するおそれがある。逆に、これらの溝幅W1又は溝深さD1が大きくなると、センター陸部6及びショルダー陸部7の踏面の面積が小さくなり、グリップ性能が悪化するおそれがある。このため、主溝3の溝幅W1は、例えば、トレッド接地幅TWの好ましくは4%以上、より好ましくは5%以上であり、好ましくは8%以下、より好ましくは7%以下である。溝深さD1は、好ましくは5mm以上、より好ましくは6mm以上であり、また好ましくは10mm以下、より好ましくは9mm以下である。   About the groove width of the main groove 3 (the groove width measured in the direction perpendicular to the groove center line, hereinafter the same applies to other grooves) W1 and the groove depth D1 (shown in FIG. 2A) Various definitions can be made in accordance with common practice. However, when these groove widths W1 or groove depths D1 are reduced, drainage performance may be deteriorated. Conversely, when the groove width W1 or the groove depth D1 is increased, the areas of the tread surfaces of the center land portion 6 and the shoulder land portion 7 are decreased, and the grip performance may be deteriorated. For this reason, the groove width W1 of the main groove 3 is, for example, preferably 4% or more, more preferably 5% or more, preferably 8% or less, more preferably 7% or less of the tread ground contact width TW. The groove depth D1 is preferably 5 mm or more, more preferably 6 mm or more, and preferably 10 mm or less, more preferably 9 mm or less.

センター陸部6及びショルダー陸部7のタイヤ軸方向の剛性をバランスよく確保するため、主溝3の溝中心線G1とタイヤ赤道Cとの間のタイヤ軸方向距離L1は、トレッド接地幅TWの5〜13%が望ましい。   In order to ensure the rigidity in the tire axial direction of the center land portion 6 and the shoulder land portion 7 with a good balance, the tire axial distance L1 between the groove center line G1 of the main groove 3 and the tire equator C is equal to the tread ground contact width TW. 5-13% is desirable.

主溝3は、タイヤ周方向にのびる溝壁面に、該溝壁面とショルダー陸部7又はセンター陸部6の踏面との交差部を斜めに切欠いた面取り部(図示省略)が設けられても良い。   The main groove 3 may be provided on the groove wall surface extending in the tire circumferential direction with a chamfered portion (not shown) obtained by obliquely notching the intersection between the groove wall surface and the shoulder land portion 7 or the tread surface of the center land portion 6. .

ラグ溝4は、本実施形態では、タイヤ周方向に対し一方側に傾斜(図1ではタイヤ軸方向外側に向かって上側に傾斜)する。このようなラグ溝4は、溝内の水をスムーズに主溝3へ排水できる。   In the present embodiment, the lug groove 4 is inclined to one side with respect to the tire circumferential direction (in FIG. 1, it is inclined upward toward the outer side in the tire axial direction). Such a lug groove 4 can smoothly drain the water in the groove to the main groove 3.

ラグ溝4は、溝幅W2がトレッド接地幅TWの3〜11%に規定される。即ち、ラグ溝4の溝幅W2が3%未満の場合、ショルダー陸部7と路面との間の水膜を効率良く主溝3へ排出することができず、排水性能を悪化する。ラグ溝4の溝幅W2が11%を超える場合、ショルダー陸部7の踏面の面積が小さくなり、グリップ性能が悪化する。また、溝面積が大きくなるため、トレッド部2の外観のアグレッシブさが悪化する。このため、ラグ溝4の溝幅W2は、好ましくはトレッド接地幅TWの5%以上であり、好ましくは8%以下である。なお、溝幅W2の上記数値範囲は、ラグ溝4の最大幅で特定される。   The lug groove 4 is defined to have a groove width W2 of 3 to 11% of the tread ground contact width TW. That is, when the groove width W2 of the lug groove 4 is less than 3%, the water film between the shoulder land portion 7 and the road surface cannot be efficiently discharged to the main groove 3, and the drainage performance is deteriorated. When the groove width W2 of the lug groove 4 exceeds 11%, the area of the tread surface of the shoulder land portion 7 is reduced, and the grip performance is deteriorated. Moreover, since the groove area is increased, the aggressiveness of the appearance of the tread portion 2 is deteriorated. For this reason, the groove width W2 of the lug groove 4 is preferably 5% or more of the tread ground contact width TW, and preferably 8% or less. The numerical range of the groove width W2 is specified by the maximum width of the lug groove 4.

ラグ溝4の溝幅W2は、本実施形態では、主溝3側に向かって漸増している。これにより、さらに溝内の水が主溝3側へスムーズに排水される。また、ショルダー陸部7の剛性が高く確保される。   In this embodiment, the groove width W2 of the lug groove 4 is gradually increased toward the main groove 3 side. Thereby, the water in the groove is further smoothly drained to the main groove 3 side. Moreover, the rigidity of the shoulder land portion 7 is ensured to be high.

ラグ溝4は、タイヤ周方向に対する角度θ1が大きい場合、直進走行時の排水抵抗が大きくなり、直進走行時の排水性能が悪化するおそれがある。ラグ溝4のタイヤ周方向に対する角度θ1が小さい場合、旋回走行時の排水抵抗が大きくなり、旋回走行時の排水性能が悪化するおそれがある。このため、ラグ溝4のタイヤ周方向に対する角度θ1は、好ましくは40°以上、より好ましくは45°以上であり、好ましくは60°以下、より好ましくは55°以下である。ラグ溝4の角度θ1は、ラグ溝4の溝中心線G2の接線とタイヤ周方向線とのなす角度で規定される。また、ラグ溝4の溝中心線G2は、ラグ溝4のタイヤ周方向長さの中間点を継いで形成される線とする。なお、ラグ溝4のタイヤ軸方向の外端4e近傍は、排水性能への影響が小さいため、ラグ溝4の角度θ1は、主溝3からラグ溝4のタイヤ軸方向の長さL2の80%を超える範囲において上記範囲内で形成されれば良い。   When the angle θ1 with respect to the tire circumferential direction is large, the drainage resistance during straight traveling increases and the drainage performance during straight traveling may deteriorate. When the angle θ1 of the lug groove 4 with respect to the tire circumferential direction is small, the drainage resistance during cornering increases and the drainage performance during cornering may deteriorate. For this reason, the angle θ1 of the lug groove 4 with respect to the tire circumferential direction is preferably 40 ° or more, more preferably 45 ° or more, preferably 60 ° or less, more preferably 55 ° or less. The angle θ1 of the lug groove 4 is defined by the angle formed by the tangent to the groove center line G2 of the lug groove 4 and the tire circumferential direction line. Further, the groove center line G2 of the lug groove 4 is a line formed by joining the midpoint of the length of the lug groove 4 in the tire circumferential direction. The vicinity of the outer end 4e of the lug groove 4 in the tire axial direction has little influence on the drainage performance, so the angle θ1 of the lug groove 4 is 80, which is the length L2 of the main groove 3 to the lug groove 4 in the tire axial direction. It may be formed within the above range in a range exceeding%.

特に限定されるものではないが、旋回走行時のグリップ力と排水性能とをバランス良く確保する観点より、ラグ溝4のタイヤ軸方向の長さL2は、ショルダー陸部7のタイヤ軸方向の長さLsの好ましくは75%以上、より好ましくは80%以上であり、好ましくは95%以下、より好ましくは90%以下である。   Although not particularly limited, the length L2 of the lug groove 4 in the tire axial direction is the length of the shoulder land portion 7 in the tire axial direction from the viewpoint of ensuring a good balance between grip force and drainage performance during cornering. The thickness Ls is preferably 75% or more, more preferably 80% or more, preferably 95% or less, more preferably 90% or less.

図1のX−X断面図である図2(a)に示されるように、ラグ溝4は、排水性能を高く確保するため、溝深さD2が、好ましくは5mm以上で形成される。なお、溝深さD2が大きい場合、ショルダー陸部7の剛性が低下し、グリップ性能が悪化するおそれがある。このため、ラグ溝4の溝深さD2は、好ましくは4.0mm以下である。   As shown in FIG. 2 (a), which is an XX cross-sectional view of FIG. 1, the lug groove 4 is formed with a groove depth D2 of preferably 5 mm or more in order to ensure high drainage performance. In addition, when groove depth D2 is large, the rigidity of shoulder land part 7 may fall, and there exists a possibility that grip performance may deteriorate. For this reason, the groove depth D2 of the lug groove 4 is preferably 4.0 mm or less.

ラグ溝4は、一方のショルダー陸部7のタイヤ周上に10〜40本設けられるのが望ましい。即ち、ラグ溝4の本数が少ない場合、排水性能が悪化するおそれがある。ラグ溝4の本数が多い場合、ショルダー陸部7の踏面が小さくなり、路面との摩擦力が低下し、グリップ性能が悪化するおそれがある。また、外観のアグレッシブさも悪化するおそれがある。このため、ラグ溝4は、好ましくはタイヤ周上に15本以上、35本以下で設けられる。   It is desirable that 10 to 40 lug grooves 4 are provided on the tire circumference of one shoulder land portion 7. That is, when the number of the lug grooves 4 is small, the drainage performance may be deteriorated. When the number of lug grooves 4 is large, the tread surface of the shoulder land portion 7 becomes small, the frictional force with the road surface decreases, and the grip performance may be deteriorated. In addition, the aggressiveness of the appearance may be deteriorated. For this reason, the lug grooves 4 are preferably provided with 15 or more and 35 or less on the tire circumference.

ラグ溝4は、主溝3に連なりかつ溝深さが小さい浅底部11、該浅底部11よりも溝深さが大きい深底部13、及び、該深底部13と浅底部11とを継ぎかつ溝深さが浅底部11に向かって漸減するテーパー部12とを含む。このようなラグ溝4は、加硫成形時、深底部13を成形する加硫金型の溝成形用突起に押圧されたトレッドゴムが、テーパー部12を介して浅底部11側へスムーズに移動する。このとき、押圧されたトレッドゴムは、例えば、テーパー部12や浅底部11を成形するトレッドゴムの空隙に流れ込む。また、加硫金型の溝成形用突起によるトレッドゴムは、主溝3とラグ溝4とが連なる領域において、大きく押圧される。このため、ラグ溝が主溝に連なる部分を浅底部とすることにより、トレッドゴムの押圧力が低下し、ゴムの移動量が小さくなる。従って、ラグ溝4近傍のショルダー陸部7の加硫成形後のゴム厚さが設計ゴム厚さよりも大きくなることが抑制されるため、トレッド部2の真円度が向上する。   The lug groove 4 is connected to the main groove 3 and has a shallow bottom portion 11 having a small groove depth, a deep bottom portion 13 having a groove depth larger than the shallow bottom portion 11, and the deep bottom portion 13 and the shallow bottom portion 11. And a tapered portion 12 whose depth gradually decreases toward the shallow bottom portion 11. In such a lug groove 4, during the vulcanization molding, the tread rubber pressed by the groove molding projection of the vulcanization mold for molding the deep bottom portion 13 smoothly moves to the shallow bottom portion 11 side through the taper portion 12. To do. At this time, the pressed tread rubber flows into the gap of the tread rubber forming the tapered portion 12 and the shallow bottom portion 11, for example. Further, the tread rubber formed by the groove forming projections of the vulcanization mold is largely pressed in the region where the main groove 3 and the lug groove 4 are continuous. For this reason, by setting the portion where the lug groove is connected to the main groove as a shallow bottom portion, the pressing force of the tread rubber is reduced, and the amount of movement of the rubber is reduced. Therefore, since the rubber thickness after vulcanization molding of the shoulder land portion 7 in the vicinity of the lug groove 4 is suppressed from being larger than the designed rubber thickness, the roundness of the tread portion 2 is improved.

浅底部11の溝深さD3は、深底部13の溝深さD4の好ましくは30%以上、より好ましくは35%以上であり、好ましくは60%以下、より好ましくは55%以下である。前記溝深さの比D3/D4が大きい場合、深底部13を成形する加硫金型の溝成形用突起に押圧されたトレッドゴムが、浅底部11近傍のショルダー陸部7の踏面側まで移動し、上述の作用が効果的に発揮されないおそれがある。逆に、前記溝深さの比D3/D4が小さい場合、深溝部13から主溝3への溝内の排水抵抗が大きくなり、排水性能が悪化するおそれがある。   The groove depth D3 of the shallow bottom portion 11 is preferably 30% or more, more preferably 35% or more, preferably 60% or less, more preferably 55% or less, of the groove depth D4 of the deep bottom portion 13. When the groove depth ratio D3 / D4 is large, the tread rubber pressed by the groove forming projection of the vulcanization mold for forming the deep bottom portion 13 moves to the tread surface side of the shoulder land portion 7 in the vicinity of the shallow bottom portion 11. However, the above-described action may not be effectively exhibited. On the contrary, when the ratio D3 / D4 of the groove depth is small, the drainage resistance in the groove from the deep groove portion 13 to the main groove 3 is increased, and the drainage performance may be deteriorated.

浅底部11のタイヤ軸方向の長さL3(図1に示す)は、トレッド接地幅TWの好ましくは5%以上、より好ましくは7%以上であり、好ましくは15%以下、より好ましくは13%以下である。浅底部11のタイヤ軸方向の長さL3が15%を超える場合、排水性能が悪化するおそれがある。浅底部11のタイヤ軸方向の長さL3が5%未満の場合、浅底部11を成形するトレッドゴムの空隙が小さくなり、タイヤ成形時、深底部13から溝形成用突起に押されたトレッドゴムが、トレッド部2の踏面2n側まで移動するおそれがある。   The length L3 (shown in FIG. 1) of the shallow bottom portion 11 in the tire axial direction is preferably 5% or more, more preferably 7% or more, and preferably 15% or less, more preferably 13% of the tread contact width TW. It is as follows. If the length L3 of the shallow bottom portion 11 in the tire axial direction exceeds 15%, the drainage performance may be deteriorated. When the length L3 of the shallow bottom part 11 in the tire axial direction is less than 5%, the gap of the tread rubber for molding the shallow bottom part 11 becomes small, and the tread rubber pushed by the groove forming protrusion from the deep bottom part 13 at the time of tire molding. However, there is a possibility that the tread portion 2 may move to the tread 2n side.

テーパー部12のタイヤ軸方向の長さL4(図1に示す)は、トレッド接地幅TWの好ましくは10%以上、より好ましくは12%以上であり、好ましくは20%以下、より好ましくは18%以下である。テーパー部12のタイヤ軸方向の長さL4が10%未満の場合、浅底部11近傍のショルダー陸部7と深底部13近傍のショルダー陸部7との剛性段差が大きくなり、グリップ性能が悪化するおそれがある。テーパー部12のタイヤ軸方向の長さL4が20%を超える場合、浅底部11のタイヤ軸方向の長さL3又は深底部のタイヤ軸方向の長さが小さくなり、排水性能又はタイヤの真円度が悪化するおそれがある。   The length L4 (shown in FIG. 1) of the tapered portion 12 in the tire axial direction is preferably 10% or more, more preferably 12% or more, preferably 20% or less, more preferably 18% of the tread contact width TW. It is as follows. When the length L4 in the tire axial direction of the taper portion 12 is less than 10%, the rigidity step between the shoulder land portion 7 near the shallow bottom portion 11 and the shoulder land portion 7 near the deep bottom portion 13 becomes large, and the grip performance deteriorates. There is a fear. When the length L4 of the taper portion 12 in the tire axial direction exceeds 20%, the length L3 of the shallow bottom portion 11 in the tire axial direction or the length of the deep bottom portion in the tire axial direction becomes small, and the drainage performance or the perfect circle of the tire is reduced. There is a risk that the degree will deteriorate.

上述の作用を効果的に発揮させるため、テーパー部12のタイヤ軸方向の長さL4は、浅底部11のタイヤ軸方向の長さL3の好ましくは1.2倍以上、より好ましくは1.3倍以上であり、好ましくは1.7倍以下、より好ましくは1.6倍以下である。   In order to effectively exhibit the above-described action, the length L4 of the tapered portion 12 in the tire axial direction is preferably 1.2 times or more, more preferably 1.3 times the length L3 of the shallow bottom portion 11 in the tire axial direction. It is more than twice, preferably 1.7 times or less, more preferably 1.6 times or less.

テーパー部12の溝底12sは、本実施形態では、タイヤ子午線断面視、直線状に滑らかにのびる。このようなテーパー部12は、深底部13から押圧されたトレッドゴムをスムーズに浅底部11側へ移動させる。なお、テーパー部12の溝底の形状は、直線状に限定されず、図2(b)に示されるように、タイヤ半径方向内側に凸となる内側凸面12aと、該内側凸面12aと変曲点mを介して連なりタイヤ半径方向の外側に凸となる外凸面13bとの2つの円弧rを含む曲線状のものでも良い。このようなテーパー部12は、ショルダー陸部7の剛性段差をさらに小さくして、グリップ性能をさらに高く確保する。なお、円弧rの曲率は、同じものでも異なるものでも良い。   In this embodiment, the groove bottom 12s of the tapered portion 12 extends smoothly in a straight line in a tire meridian cross-sectional view. Such a tapered portion 12 smoothly moves the tread rubber pressed from the deep bottom portion 13 toward the shallow bottom portion 11 side. The shape of the groove bottom of the tapered portion 12 is not limited to a linear shape, and as shown in FIG. 2B, an inner convex surface 12a that is convex inward in the tire radial direction, and an inflection with the inner convex surface 12a. A curved shape including two arcs r connected to the outer convex surface 13b which is continuous through the point m and protrudes outward in the tire radial direction may be used. Such a tapered portion 12 further reduces the rigidity step of the shoulder land portion 7 and ensures a higher grip performance. Note that the curvature of the arc r may be the same or different.

図1のトレッド展開図に示されるように、傾斜溝5は、円弧状にのびる第1傾斜溝5A、該第1傾斜溝5Aとラグ溝4とのタイヤ周方向の間に配されかつ長手方向の略中間で大きく屈曲する第2傾斜溝5B、及び、両端がショルダー陸部7内で終端する第3傾斜溝5Cとを含む。第1傾斜溝5A及び第2傾斜溝5Bは、一端がショルダー陸部7内で終端し他端がトレッド接地端Teのタイヤ軸方向外側で終端する。   As shown in the tread development view of FIG. 1, the inclined groove 5 is arranged in a longitudinal direction between the first inclined groove 5A extending in an arc shape, between the first inclined groove 5A and the lug groove 4 in the tire circumferential direction. The second inclined groove 5 </ b> B that bends substantially in the middle of each other and the third inclined groove 5 </ b> C whose both ends terminate in the shoulder land portion 7. The first inclined groove 5A and the second inclined groove 5B have one end terminated in the shoulder land portion 7 and the other end terminated outside the tread ground contact end Te in the tire axial direction.

このように本実施形態のショルダー陸部7は、ラグ溝4、及び、傾斜溝5の少なくとも一端がショルダー陸部7内で終端する、タイヤ周方向に連続してのびるリブとして形成される。このため、ショルダー陸部7の剛性が大きく確保され、グリップ性能が高く維持される。また、ラグ溝4、及び、傾斜溝5は、ショルダー陸部7の踏面と路面との間の水膜を効果的に排水する。従って、排水性能が高く確保される。   As described above, the shoulder land portion 7 of the present embodiment is formed as a rib extending continuously in the tire circumferential direction in which at least one end of the lug groove 4 and the inclined groove 5 terminates in the shoulder land portion 7. For this reason, the rigidity of the shoulder land portion 7 is ensured and the grip performance is maintained high. Further, the lug groove 4 and the inclined groove 5 effectively drain the water film between the tread surface of the shoulder land portion 7 and the road surface. Therefore, high drainage performance is ensured.

ラグ溝4、各傾斜溝5は、タイヤ軸方向にのびる溝壁面に、該溝壁面とショルダー陸部7の踏面との交差部を斜めに切欠いた面取り部(図示省略)が設けられても良い。   Each of the lug grooves 4 and the inclined grooves 5 may be provided with a chamfered portion (not shown) in which a crossing portion between the groove wall surface and the tread surface of the shoulder land portion 7 is obliquely cut out on the groove wall surface extending in the tire axial direction. .

以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。   As mentioned above, although the pneumatic tire of this invention was demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment.

図1の基本パターンを有するサイズ245/40R18の空気入りタイヤが、表1の仕様に基づき試作され、各試供タイヤの排水性能、トレッド部の真円度、グリップ性能及び外観がテストされた。各タイヤの共通仕様は、以下の通りである。表1に記載された溝を除いて各溝の溝幅、タイヤ軸方向の長さ及び角度は、図1に示される通りである。
トレッド接地幅TW:212mm
<主溝>
主溝の溝深さD1:7.5mm
<ラグ溝>
テーパー部の断面形状を表す図:図2(a)
<その他>
第1傾斜溝の溝深さ:6.1mm
第2傾斜溝の溝深さ:6.1mm
第3傾斜溝の溝深さ:6.1mm
テスト方法は、次の通りである。
A pneumatic tire of size 245 / 40R18 having the basic pattern of FIG. 1 was prototyped based on the specifications in Table 1, and the drainage performance of each sample tire, the roundness of the tread portion, the grip performance and the appearance were tested. The common specifications for each tire are as follows. Except for the grooves described in Table 1, the groove width of each groove, the length in the tire axial direction, and the angle are as shown in FIG.
Tread contact width TW: 212mm
<Main groove>
Groove depth D1: 7.5mm
<Rug groove>
FIG. 2A is a diagram showing a cross-sectional shape of the tapered portion.
<Others>
Groove depth of the first inclined groove: 6.1 mm
Groove depth of second inclined groove: 6.1 mm
Groove depth of third inclined groove: 6.1 mm
The test method is as follows.

<排水性能>
試供タイヤを下記の条件にて、乗用車(排気量3000cc、国産FR車)の全輪に装着し、半径100mのアスファルト路面及び直線400mのアスファルト路面に、水深10mm、長さ20mの水たまりを設けたテストコース上を高速走行し、操縦安定性、直進安定性に対して、ドライバーの官能による評価を行った。結果は、6点を満点とする6点法で表示される。
リム:18×8.5J
内圧:230kPa(全輪)
<Drainage performance>
The sample tires were installed on all wheels of a passenger car (displacement of 3000 cc, domestic FR car) under the following conditions, and a puddle with a water depth of 10 mm and a length of 20 m was provided on an asphalt road surface with a radius of 100 m and a straight 400 m asphalt road surface. Driving at high speed on the test course, the driver's sensory evaluation was performed for steering stability and straight running stability. The results are displayed in a 6-point method with 6 points being the perfect score.
Rims: 18 x 8.5J
Internal pressure: 230 kPa (all wheels)

<グリップ性能>
上記テスト車両にて、乾燥アスファルト路面の上記テストコースをドライバー1名乗車で走行し、直進走行時、及び、旋回走行時のグリップ性能がドライバーの官能評価により、評価された。結果は、6点を満点とする6点法で表示される。
<Grip performance>
With the above test vehicle, the above test course on the dry asphalt road surface was ridden by one driver, and the grip performance when traveling straight and turning was evaluated by sensory evaluation of the driver. The results are displayed in a 6-point method with 6 points being the perfect score.

<外観>
試供タイヤを上記テスト車両に装着した状態で、トレッド部の外観がテスター10名により評価された。結果は、6点を満点とする6点法で表示される。
<Appearance>
With the test tires mounted on the test vehicle, the appearance of the tread portion was evaluated by 10 testers. The results are displayed in a 6-point method with 6 points being the perfect score.

<トレッド部の真円度>
試供タイヤをフォースバリエーション試験機を用い、JASO C607:2000のユニフォミティ試験条件に準拠して、RRO(ラジアルランナウト)及びRFV(ラジアルフォースバリエーション)が下記の条件で測定された(試供タイヤ、各20本の平均値)。評価は、実施例1の高速域のRRO及びRFVの逆数の平均値を100として算出し、50未満を1点、50以上60未満を2点、60以上70未満を3点、70以上80未満を4点、80以上90未満を5点、及び、90以上を6点とする6点法で表示される。
リム:18×8.5J
内圧:230kPa
荷重:5.72kN
速度:80km/h
テストの結果が表1に示される。
<Roundness of tread part>
RRO (radial run-out) and RFV (radial force variation) were measured under the following conditions in accordance with the uniformity test conditions of JASO C607: 2000 using a force variation testing machine (sample tires, 20 tires each). Average value). Evaluation is calculated by taking the average value of the reciprocal of RRO and RFV in the high speed range of Example 1 as 100, less than 50 1 point, 50 or more and less than 60 2 points, 60 or more and less than 70 3 points, 70 or more and less than 80 4 points, 80 to less than 90 5 points, and 90 or more 6 points.
Rims: 18 x 8.5J
Internal pressure: 230 kPa
Load: 5.72kN
Speed: 80km / h
The test results are shown in Table 1.

Figure 2014141165
Figure 2014141165
Figure 2014141165
Figure 2014141165
Figure 2014141165
Figure 2014141165

テストの評価は、各テストの総合で評価される。即ち、1点の評価がある例は、1点の評価がない例よりも総合評価が劣る。
テストの結果、実施例のタイヤは、比較例に比べて各性能をバランス良く向上させていた。
The evaluation of the test is evaluated by the total of each test. In other words, an example with one point of evaluation is inferior in overall evaluation to an example without one point of evaluation.
As a result of the test, the tires of the examples improved each performance in a well-balanced manner as compared with the comparative examples.

2 トレッド部
3 主溝
4 ラグ溝
11 浅底部
12 テーパー部
13 深底部
C タイヤ赤道
Te トレッド接地端
TW トレッド接地幅
2 tread portion 3 main groove 4 lug groove 11 shallow bottom portion 12 taper portion 13 deep bottom portion C tire equator Te tread grounding end TW tread grounding width

Claims (7)

トレッド部に、タイヤ赤道の両側をタイヤ周方向に連続してのびる一対の主溝と、
前記主溝からタイヤ軸方向外側に向かってのびかつトレッド接地端よりもタイヤ軸方向内側で終端する複数本のラグ溝とが設けられた空気入りタイヤであって、
前記ラグ溝は、溝幅がトレッド接地幅の3〜11%であり、しかも前記ラグ溝は、前記主溝に連なり溝深さが小さい浅底部、該浅底部よりも溝深さが大きい深底部、及び、該深底部と前記浅底部とを継ぎかつ溝深さが前記浅底部に向かって漸減するテーパー部とを含むことを特徴とする空気入りタイヤ。
In the tread portion, a pair of main grooves extending continuously in the tire circumferential direction on both sides of the tire equator,
A pneumatic tire provided with a plurality of lug grooves extending from the main groove toward the outer side in the tire axial direction and terminating at the inner side in the tire axial direction from the tread grounding end,
The lug groove has a groove width of 3 to 11% of the tread contact width, and the lug groove is connected to the main groove and has a shallow bottom portion having a small groove depth, and a deep bottom portion having a groove depth larger than the shallow bottom portion. And a tapered portion that joins the deep bottom portion and the shallow bottom portion, and has a groove depth that gradually decreases toward the shallow bottom portion.
前記ラグ溝は、タイヤ周方向に対して40〜60°の角度で傾斜する請求項1記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the lug groove is inclined at an angle of 40 to 60 ° with respect to the tire circumferential direction. 前記浅底部の溝深さは、前記深底部の溝深さの30〜60%である請求項1又は2記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein a groove depth of the shallow bottom portion is 30 to 60% of a groove depth of the deep bottom portion. 前記浅底部は、タイヤ軸方向の長さが前記トレッド接地幅の5〜15%である請求項1乃至3のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein the shallow bottom portion has a tire axial length of 5 to 15% of the tread contact width. 前記テーパー部は、タイヤ軸方向の長さが前記トレッド接地幅の10〜20%である請求項1乃至4のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 4, wherein the tapered portion has a length in a tire axial direction of 10 to 20% of the tread contact width. 前記ラグ溝は、溝深さが5mm以上である請求項1乃至5のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein the lug groove has a groove depth of 5 mm or more. 前記ラグ溝は、タイヤ周上に10〜40本設けられる請求項1乃至6のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein 10 to 40 lug grooves are provided on the tire circumference.
JP2013010480A 2013-01-23 2013-01-23 Pneumatic tire Expired - Fee Related JP5695681B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013010480A JP5695681B2 (en) 2013-01-23 2013-01-23 Pneumatic tire
CN201310367080.XA CN103935190B (en) 2013-01-23 2013-08-21 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013010480A JP5695681B2 (en) 2013-01-23 2013-01-23 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014141165A true JP2014141165A (en) 2014-08-07
JP5695681B2 JP5695681B2 (en) 2015-04-08

Family

ID=51183180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010480A Expired - Fee Related JP5695681B2 (en) 2013-01-23 2013-01-23 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP5695681B2 (en)
CN (1) CN103935190B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456552A1 (en) * 2017-09-15 2019-03-20 Sumitomo Rubber Industries, Ltd. Tire
JP2019093755A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
CN110077177A (en) * 2015-10-06 2019-08-02 通伊欧轮胎株式会社 Pneumatic tire
JP2020049956A (en) * 2018-09-21 2020-04-02 住友ゴム工業株式会社 tire
JP7476694B2 (en) 2020-07-06 2024-05-01 住友ゴム工業株式会社 Pneumatic tires

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131358B2 (en) * 2018-12-13 2022-09-06 住友ゴム工業株式会社 pneumatic radial tire
CN114161883A (en) * 2020-09-11 2022-03-11 深圳市道瑞轮胎有限公司 High-elasticity bicycle tire
CN112590462A (en) * 2020-12-23 2021-04-02 安徽佳通乘用子午线轮胎有限公司 Pneumatic tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591407A (en) * 1978-12-29 1980-07-11 Bridgestone Corp Pneumatic tire for bicycle
JP2002316516A (en) * 2001-04-24 2002-10-29 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2009067244A (en) * 2007-09-13 2009-04-02 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2010132181A (en) * 2008-12-05 2010-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
US20100252159A1 (en) * 2009-04-06 2010-10-07 Tomoyuki Mukai Pneumatic tire
US20130220499A1 (en) * 2012-02-23 2013-08-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339848B2 (en) * 2000-03-13 2002-10-28 住友ゴム工業株式会社 Pneumatic radial tire
JP4145346B1 (en) * 2007-11-07 2008-09-03 横浜ゴム株式会社 Pneumatic tire
JP4653831B2 (en) * 2008-10-28 2011-03-16 住友ゴム工業株式会社 Pneumatic tire
JP4957786B2 (en) * 2009-02-12 2012-06-20 横浜ゴム株式会社 Pneumatic tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591407A (en) * 1978-12-29 1980-07-11 Bridgestone Corp Pneumatic tire for bicycle
US4289182A (en) * 1978-12-29 1981-09-15 Bridgestone Tire Company Limited Pneumatic tires for large size and high speed motorcycles
JP2002316516A (en) * 2001-04-24 2002-10-29 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2009067244A (en) * 2007-09-13 2009-04-02 Sumitomo Rubber Ind Ltd Pneumatic tire
US20100326577A1 (en) * 2007-09-13 2010-12-30 Yoshitaka Iwai Pneumatic tire
JP2010132181A (en) * 2008-12-05 2010-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
US20100252159A1 (en) * 2009-04-06 2010-10-07 Tomoyuki Mukai Pneumatic tire
JP2010241267A (en) * 2009-04-06 2010-10-28 Sumitomo Rubber Ind Ltd Pneumatic tire
US20130220499A1 (en) * 2012-02-23 2013-08-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2013173394A (en) * 2012-02-23 2013-09-05 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110077177A (en) * 2015-10-06 2019-08-02 通伊欧轮胎株式会社 Pneumatic tire
CN110077177B (en) * 2015-10-06 2021-05-28 通伊欧轮胎株式会社 Pneumatic tire
EP3456552A1 (en) * 2017-09-15 2019-03-20 Sumitomo Rubber Industries, Ltd. Tire
JP2019051863A (en) * 2017-09-15 2019-04-04 住友ゴム工業株式会社 tire
US11220138B2 (en) 2017-09-15 2022-01-11 Sumitomo Rubber Industries, Ltd. Tire
JP2019093755A (en) * 2017-11-17 2019-06-20 Toyo Tire株式会社 Pneumatic tire
JP7118625B2 (en) 2017-11-17 2022-08-16 Toyo Tire株式会社 pneumatic tire
JP2020049956A (en) * 2018-09-21 2020-04-02 住友ゴム工業株式会社 tire
JP7176320B2 (en) 2018-09-21 2022-11-22 住友ゴム工業株式会社 tire
JP7476694B2 (en) 2020-07-06 2024-05-01 住友ゴム工業株式会社 Pneumatic tires

Also Published As

Publication number Publication date
JP5695681B2 (en) 2015-04-08
CN103935190A (en) 2014-07-23
CN103935190B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5695681B2 (en) Pneumatic tire
JP5238050B2 (en) Pneumatic tire
JP5993406B2 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP5250063B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
KR101720801B1 (en) Pneumatic tire
JP2017105361A (en) Pneumatic tire
JP6317942B2 (en) Pneumatic tire
US9809060B2 (en) Pneumatic tire
JP7290082B2 (en) Mold, tire manufacturing method and tire
JP2018095042A (en) Pneumatic tire
JP2014177238A (en) Pneumatic tire
JP6450224B2 (en) Pneumatic tire
JP6393222B2 (en) Motorcycle tires
JP2020142586A (en) tire
JP6371597B2 (en) Pneumatic tire and its mounting method
JP6790664B2 (en) tire
CN106427402B (en) Pneumatic tire
US9056530B2 (en) Pneumatic tire
JP5965138B2 (en) Pneumatic tires for motorcycles
JP2016107884A (en) Pneumatic tire
JP2018076001A (en) tire
JP6421652B2 (en) Pneumatic tire
JP6965507B2 (en) tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees