JP2014140970A - Method of producing mold for molding of optical element and mold for molding optical element - Google Patents

Method of producing mold for molding of optical element and mold for molding optical element Download PDF

Info

Publication number
JP2014140970A
JP2014140970A JP2013009231A JP2013009231A JP2014140970A JP 2014140970 A JP2014140970 A JP 2014140970A JP 2013009231 A JP2013009231 A JP 2013009231A JP 2013009231 A JP2013009231 A JP 2013009231A JP 2014140970 A JP2014140970 A JP 2014140970A
Authority
JP
Japan
Prior art keywords
optical element
heat treatment
plating layer
molding die
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013009231A
Other languages
Japanese (ja)
Inventor
Yuta Hosaka
雄太 保坂
Yuji Futagami
祐司 二上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013009231A priority Critical patent/JP2014140970A/en
Publication of JP2014140970A publication Critical patent/JP2014140970A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a mold for molding an optical element which has excellent durability and a shape of a high-precision transfer surface while securing machinability of a substrate and a mold for molding an optical element.SOLUTION: Execution of a vacuum heat treatment before finishing processing tends to increase the hardness of a plating layer 12, resulting in severe wear of a cutting tool used in the finishing processing. In the vacuum heating treatment step, the increase of the hardness of the plating layer 12 can be substantially suppressed by carrying out the heat treatment at temperatures equal to or higher than 200°C and lower than 260°C for 3.5 h in a vacuum environment, leading to maximal suppression of wear of the cutting tool used in the finishing process.

Description

本発明は、光学素子を形成するのに用いる光学素子成形用金型の製造方法及び光学素子成形用金型に関する。   The present invention relates to a method for manufacturing an optical element molding die used for forming an optical element and an optical element molding die.

一般的に光ピックアップ装置や撮像装置等に用いられる光学素子は、高精度を必要とされる一方、近年では海外メーカーとの競合が激化し、製品の競争力を高めるために、よりコストを抑制することが求められている。ここで、高精度な光学素子を安価に大量生産するには、金型を用いた射出成形が好ましいといえるが、射出成形において更にコストを抑制する場合において、金型が1つのネックになる。より具体的には、金型の加工費用が高くなれば、成形品としての光学素子のコストを引き上げすこととなり、また金型の耐久性が低ければ、頻繁に交換が必要になってコストを引き上げることになる。特に、高性能な光学素子は回折構造などを光学面に有するので、これを転写する金型の面に、回折構造等に対応する微細な凹凸を切削加工する際に、高価な細幅のバイトを用いる必要があり、しかも1回の切削での摩耗量が大きくなりがちであるから、頻繁に取り替えが必要になり、これがコストを大きく引き上げる要因となっている。   In general, optical elements used in optical pickup devices, imaging devices, etc. require high precision, but in recent years, competition with overseas manufacturers has intensified, and in order to increase the competitiveness of products, costs can be further reduced. It is requested to do. Here, in order to mass-produce high-precision optical elements at low cost, it can be said that injection molding using a mold is preferable, but the mold becomes a bottleneck when the cost is further suppressed in the injection molding. More specifically, if the mold processing cost is high, the cost of the optical element as a molded product will be raised, and if the mold durability is low, it will be necessary to replace it frequently. Will be raised. In particular, high-performance optical elements have a diffractive structure on the optical surface, so when cutting fine irregularities corresponding to the diffractive structure etc. on the surface of the mold for transferring the diffractive structure, an expensive narrow bite In addition, since the amount of wear in one cutting tends to be large, frequent replacement is necessary, which is a factor that greatly increases the cost.

一般的な光学素子成形用金型は、まず基材の予備加工を行って、メッキ層を付与し、所望の転写面形状に類似した粗加工を行った後に、熱処理を行い、更に仕上げ加工を行っている。しかるに、粗加工を行った後に熱処理を行うと、塵埃等の異物が加工面に付着して焼き付き、ピンホールやシミなどの表面不良を発生させる恐れがある。このような表面不良が発生すると、再加工が必要になり手間がかかる他、場合によっては基材を廃棄しなくてはならず、素材や加工が無駄になる。   A general optical element molding die is first subjected to preliminary processing of a base material, a plating layer is applied, rough processing similar to a desired transfer surface shape is performed, heat treatment is performed, and further finishing processing is performed. Is going. However, if heat treatment is performed after rough processing, foreign matters such as dust may adhere to the processed surface and be seized, resulting in surface defects such as pinholes and spots. When such a surface defect occurs, reworking becomes necessary and time-consuming, and in some cases, the base material must be discarded, and materials and processing are wasted.

これに対し、熱処理を行わなければ、加工工程ではピンホールやシミなどの表面不良が発生しないが、金型の硬度を確保できないから、成形時における摺動により金型にカジリが発生したり、成形時の熱でピンホールやシミなどの表面不良が発生する恐れがある。成形中に、このような不具合が発生すると通常の金型交換時期よりも早いタイミングで、金型を交換せざるを得ず、メンテナンスコストが増大する恐れがある。   On the other hand, if heat treatment is not performed, surface defects such as pinholes and spots will not occur in the processing process, but the hardness of the mold cannot be ensured, so that the mold may be damaged due to sliding during molding, There is a risk of surface defects such as pinholes and spots caused by heat during molding. If such a problem occurs during molding, the mold must be replaced at a timing earlier than the normal mold replacement timing, which may increase the maintenance cost.

これに対し、特許文献1には、ガラスレンズを成形する金型の製造方法であって、メッキを施した基材に対して予備熱処理を行った後に粗加工を行い、更に第2の熱処理を行った後に仕上げ加工することが開示されている。   On the other hand, Patent Document 1 discloses a method for manufacturing a mold for molding a glass lens, in which a rough heat treatment is performed on a plated base material after a preliminary heat treatment, and a second heat treatment is performed. It is disclosed to finish after doing.

特開2010−215425号公報JP 2010-215425 A

特許文献1の技術によれば、メッキ層が高温の熱処理で硬化する前に、所望の最終形状に近似する形状に加工する粗加工を行っているので、硬化した後に行う仕上げ加工の際のメッキ層の取り代を小さくすることができ、粗加工に用いるバイトの摩耗を抑制することができる。また、高温の熱処理でメッキ層の結晶化を進行させた後に、所望の最終形状に加工する仕上げ加工を行うため、一旦仕上げた形状がその後の工程で崩れることを抑制でき、結晶化によって増大した面粗さを仕上げ加工によって低減させることができる。   According to the technique of Patent Document 1, since the roughing process is performed to process the shape close to the desired final shape before the plating layer is cured by the high-temperature heat treatment, the plating during the finishing process performed after curing is performed. The machining allowance of the layer can be reduced, and wear of the cutting tool used for roughing can be suppressed. In addition, after finishing the crystallization of the plating layer by a high-temperature heat treatment, the finishing process is carried out to the desired final shape, so that the shape once finished can be prevented from collapsing in the subsequent steps, and increased by crystallization. Surface roughness can be reduced by finishing.

しかしながら、特許文献1の技術によれば、粗加工工程前に熱処理を行っているので、それにより基材表面の硬度が高まり、切削時のバイトの摩耗が激しく、コストの増大を招く恐れがある。特に、仕上げ加工工程で回折構造に対応する微細な凹凸構造を加工するバイトは、一般的に細幅であるから、仕上げ加工前に行う熱処理の温度が高いことと相まって、摩耗・損傷しやすく、これが切削工程を一層困難なものとしている。   However, according to the technique of Patent Document 1, since the heat treatment is performed before the roughing process, the hardness of the surface of the base material is increased, and the wear of the cutting tool during the cutting is severe, which may increase the cost. . In particular, since the cutting tool for processing a fine concavo-convex structure corresponding to the diffractive structure in the finishing process is generally narrow, it is easily worn and damaged in combination with the high temperature of the heat treatment performed before the finishing process. This makes the cutting process more difficult.

本発明の目的は、上述した課題に鑑みてなされたものであり、基材の切削性を確保しながらも、耐久性に優れ、高精度な転写面形状を有する光学素子成形用金型の製造方法及び光学素子成形用金型を提供することである。   The object of the present invention has been made in view of the above-described problems, and is capable of manufacturing an optical element molding die having excellent durability and a highly accurate transfer surface shape while ensuring the machinability of the substrate. A method and an optical element molding die are provided.

請求項1に記載の成形用金型は、
光学素子を成形する光学素子成形用金型の製造方法であって、
基材の表面にNi−Pメッキからなるメッキ層を形成する工程と、
前記メッキ層を、所望の最終形状に近似する形状に加工する粗加工工程と、
前記粗加工工程の後、熱処理によって前記メッキ層を硬化させる真空熱処理工程と、
前記真空熱処理工程によって硬化した前記メッキ層を、前記所望の最終形状に加工する仕上げ加工工程と、を有し、
前記粗加工工程前に熱処理を行わないことを特徴とする。
The molding die according to claim 1 is:
A method of manufacturing an optical element molding die for molding an optical element,
Forming a plating layer made of Ni-P plating on the surface of the substrate;
A roughing step of processing the plating layer into a shape approximating a desired final shape;
After the roughing step, a vacuum heat treatment step for curing the plating layer by heat treatment,
A finishing process for processing the plated layer cured by the vacuum heat treatment process into the desired final shape;
The heat treatment is not performed before the roughing process.

本発明によれば、前記粗加工工程前に熱処理を行わないので、前記メッキ層が硬化しないから、これを切削する粗加工時の工具の損耗を極力抑えることができる。一方、前記仕上げ加工前に真空熱処理を行うので、ピンホールやシミが発生した場合でも、前記仕上げ加工で転写面形状を整える際に効率的に除去でき、歩留まりが向上する。又、前記真空熱処理を行うことで、処理中における前記基材の酸化を抑制できるから、メッキ層の微細な結晶粒界の発生を防ぐことができ、前記仕上げ加工による加工面の平滑性を確保できる。このようにして形成された金型は、真空熱処理により硬度を確保しているので、成形時の摺動によりキズ付きを抑制でき、長期間にわたって安定して成形に用いることができる。   According to the present invention, since the heat treatment is not performed before the rough machining step, the plating layer is not hardened, so that the wear of the tool during the rough machining for cutting the plated layer can be suppressed as much as possible. On the other hand, since vacuum heat treatment is performed before the finishing process, even when pinholes or spots are generated, the transfer surface shape can be efficiently removed by the finishing process, and the yield is improved. Moreover, since the oxidation of the base material during the treatment can be suppressed by performing the vacuum heat treatment, the generation of fine crystal grain boundaries in the plating layer can be prevented, and the smoothness of the processed surface by the finishing process can be ensured. it can. Since the mold formed in this manner secures hardness by vacuum heat treatment, it is possible to suppress scratches by sliding during molding, and it can be used for molding stably over a long period of time.

請求項2に記載の光学素子成形用金型の製造方法は、請求項1に記載の発明において、前記真空熱処理工程は、200℃以上、260℃未満で3.5時間の熱処理を真空環境で行うことを特徴とする。   According to a second aspect of the present invention, there is provided the method for manufacturing an optical element molding die according to the first aspect of the invention, wherein the vacuum heat treatment step is a heat treatment in a vacuum environment at a temperature of 200 ° C. or more and less than 260 ° C. for 3.5 hours. It is characterized by performing.

前記仕上げ加工前に真空熱処理を行うと、前記メッキ層の硬度が上昇し、前記仕上げ加工に用いる切削工具の損耗が進行しやすい。そこで、前記真空熱処理工程において、200℃以上、260℃未満で3.5時間の熱処理を真空環境で行うことにより、前記メッキ層の硬度の増大を抑えて、前記仕上げ加工に用いる切削工具の損耗を極力抑制するようにしている。尚、熱処理を200℃以上で行うことで、前記メッキ層の硬度を確保できるから、成形時のキズ付きを抑制できる。又、熱処理を260℃未満で行うことで、前記メッキ層の硬度が高くなりすぎないようにできるから、次工程の仕上げ加工において、前記メッキ層の切削性を確保し、工具の損耗を抑えることができる。但し、より好ましくは、210℃以上、250℃以下で熱処理を行うことである。   When a vacuum heat treatment is performed before the finishing process, the hardness of the plating layer increases, and the wear of the cutting tool used for the finishing process tends to progress. Therefore, in the vacuum heat treatment step, by performing heat treatment at 200 ° C. or higher and less than 260 ° C. for 3.5 hours in a vacuum environment, an increase in the hardness of the plating layer is suppressed, and wear of the cutting tool used for the finishing process is lost. Is to be suppressed as much as possible. In addition, since the hardness of the said plating layer can be ensured by performing heat processing at 200 degreeC or more, the damage at the time of shaping | molding can be suppressed. In addition, by performing the heat treatment at less than 260 ° C., the hardness of the plating layer can be prevented from becoming too high, so that in the finishing process of the next process, the machinability of the plating layer is ensured and the wear of the tool is suppressed. Can do. However, more preferably, the heat treatment is performed at 210 ° C. or higher and 250 ° C. or lower.

請求項3に記載の光学素子成形用金型の製造方法は、請求項1又は2に記載の発明において、前記仕上げ加工工程で、前記所望の最終形状として回折構造を光学素子の光学面に転写する転写面を形成することを特徴とする。   According to a third aspect of the present invention, there is provided a method for manufacturing an optical element molding die according to the first or second aspect, wherein the diffractive structure is transferred to the optical surface of the optical element as the desired final shape in the finishing step. Forming a transfer surface.

回折構造などを転写するために微細な凹凸構造を加工するバイトは、一般的に細幅であるから摩耗・損傷しやすいが、本発明によれば、前記メッキ層の硬度の増大を抑えることができるから、前記仕上げ加工に用いる切削工具の損耗を極力抑制できる。   A tool for processing a fine concavo-convex structure for transferring a diffractive structure or the like is generally thin and easy to be worn and damaged, but according to the present invention, an increase in the hardness of the plating layer can be suppressed. Therefore, the wear of the cutting tool used for the finishing process can be suppressed as much as possible.

請求項4に記載の光学素子成形用金型の製造方法は、請求項1〜3のいずれかに記載の発明において、前記光学素子成形用金型は、プラスチックを素材として光学素子を成形することを特徴とする。   The method for manufacturing an optical element molding die according to claim 4 is the invention according to any one of claims 1 to 3, wherein the optical element molding die is formed of plastic as a raw material. It is characterized by.

プラスチックはガラスに比べガラス転移点温度が低いので、取り扱いが容易であり、大量生産に適する。   Since plastic has a lower glass transition temperature than glass, it is easy to handle and suitable for mass production.

請求項5に記載の光学素子成形用金型の製造方法は、請求項1〜4のいずれかに記載の発明において、前記真空熱処理工程後、前記基材を130℃以下になるまで真空環境で保持することを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for manufacturing an optical element molding die according to any one of the first to fourth aspects, wherein after the vacuum heat treatment step, the substrate is kept in a vacuum environment until the temperature becomes 130 ° C. or lower. It is characterized by holding.

これにより、前記基材が安定し、取り扱いが容易になる。   Thereby, the said base material is stabilized and handling becomes easy.

請求項6に記載の光学素子成形用金型は、請求項1〜5のいずれかに記載の製造方法によって製造されたことを特徴とする。   An optical element molding die according to a sixth aspect is manufactured by the manufacturing method according to any one of the first to fifth aspects.

本発明によれば、基材の切削性を確保しながらも、耐久性に優れ、高精度な転写面形状を有する光学素子成形用金型の製造方法及び光学素子成形用金型を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing an optical element molding die and an optical element molding die that have excellent durability and have a highly accurate transfer surface shape while ensuring the machinability of a substrate. Can do.

本実施形態における光学素子成形用金型の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical element shaping die in this embodiment. 各工程を模式的に示す断面図である。It is sectional drawing which shows each process typically. メッキ層の熱処理温度とビッカース硬度(Hv)との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of a plating layer, and Vickers hardness (Hv).

以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。   Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

図1は、本実施形態における光学素子成形用金型の製造方法を示すフローチャート、図2は各工程を模式的に示す断面図、図3はメッキ層の熱処理温度とビッカース硬度(Hv)との関係を示すグラフである。以下、図1のフローチャートに従って各工程を順に説明する。   FIG. 1 is a flowchart showing a method of manufacturing an optical element molding die in this embodiment, FIG. 2 is a cross-sectional view schematically showing each step, and FIG. 3 is a graph showing the heat treatment temperature and Vickers hardness (Hv) of the plating layer. It is a graph which shows a relationship. Hereinafter, each process will be described in order according to the flowchart of FIG.

まず、図1のステップS101において、基材の予備加工を行う。より具体的には、円筒状の基材11の成形面15を、工具T1を用いて成形すべき光学素子の光学面に応じた所定の形状に加工する(図2(a))。基材11の材質に特に制限はない。好ましく用いることができる材質として、例えば、各種耐熱合金(ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(炭化珪素、窒化珪素等)、カーボンを含んだ複合材料等が挙げられるが、ここではプリハードン鋼系の素材を用いる。   First, in step S101 in FIG. 1, the base material is preliminarily processed. More specifically, the molding surface 15 of the cylindrical base material 11 is processed into a predetermined shape corresponding to the optical surface of the optical element to be molded using the tool T1 (FIG. 2A). There is no restriction | limiting in particular in the material of the base material 11. FIG. Examples of materials that can be preferably used include various heat-resistant alloys (such as stainless steel), super hard materials mainly composed of tungsten carbide, various ceramics (such as silicon carbide and silicon nitride), and composite materials including carbon. However, here, a pre-hardened steel material is used.

又、成形面15の形状にも特に制限はなく、平面、凸面、凹面の何れであってもよい。次の工程で形成するメッキ層12の膜厚を薄くし、メッキ層12の剥離を抑制する観点からは、製造するプラスチック成形体の面形状に対応した最終形状に近い形状とすることが好ましいが、加工コストが上がるため必要以上に最終形状に近い形状とする必要はない。最終形状と、本工程における基材11の成形面の形状との差は、最も大きい位置で1μm〜50μmであることが好ましく、2μm〜20μmであることがより好ましい。   Further, the shape of the molding surface 15 is not particularly limited, and may be any one of a flat surface, a convex surface, and a concave surface. From the viewpoint of reducing the thickness of the plated layer 12 formed in the next step and suppressing the peeling of the plated layer 12, it is preferable to have a shape close to the final shape corresponding to the surface shape of the plastic molded body to be manufactured. Since the processing cost increases, it is not necessary to make the shape closer to the final shape than necessary. The difference between the final shape and the shape of the molding surface of the base material 11 in this step is preferably 1 μm to 50 μm, more preferably 2 μm to 20 μm, at the largest position.

次に、図1のステップS102において、無電解メッキ層の形成を行う。より具体的には、基材11の表面(成形面15)にNi−Pメッキからなるメッキ層12を形成する(図2(b))。ここで、Ni−Pメッキとは、Pを含む無電解ニッケルメッキであり、公知の方法で形成することができる。メッキ液としては、例えば、還元剤として次亜リン酸を用いたメッキ液等を用いればよい。メッキ層12の膜厚は、加工によって最終形状を得るための取り代の分だけの厚みがあればよいが、必要な形状精度を得るために繰り返し追い込み加工を行う場合の取り代の分も考慮しておくことが好ましい。しかし、必要以上に厚すぎると膜剥離等の欠陥が発生しやすくなる場合がある。そのため、メッキ層12の膜厚は、基材11の成形面15の形状と最終形状との差の最大値よりも、1μm〜50μm厚いことが好ましい。従って、メッキ層12の膜厚は、2μm〜100μmが好ましく、3μm〜70μmがより好ましい。   Next, in step S102 of FIG. 1, an electroless plating layer is formed. More specifically, the plating layer 12 made of Ni—P plating is formed on the surface (molding surface 15) of the base material 11 (FIG. 2B). Here, the Ni-P plating is electroless nickel plating containing P, and can be formed by a known method. As the plating solution, for example, a plating solution using hypophosphorous acid as a reducing agent may be used. The thickness of the plating layer 12 need only be as much as the allowance for obtaining the final shape by processing, but also consider the allowance for repeated chasing to obtain the required shape accuracy. It is preferable to keep it. However, if it is thicker than necessary, defects such as film peeling may easily occur. Therefore, the thickness of the plating layer 12 is preferably 1 μm to 50 μm thicker than the maximum value of the difference between the shape of the molding surface 15 of the substrate 11 and the final shape. Therefore, the film thickness of the plating layer 12 is preferably 2 μm to 100 μm, and more preferably 3 μm to 70 μm.

次に、図1のステップS103において、粗加工工程を行う。より具体的には、メッキ層12を、ダイヤモンドバイト等のバイトT2を用いて所望の最終形状に近似する形状に加工する(図2(c))。   Next, a roughing process is performed in step S103 of FIG. More specifically, the plated layer 12 is processed into a shape approximating a desired final shape using a bit T2 such as a diamond bit (FIG. 2C).

粗加工は、公知の加工装置、加工方法により実施すればよい。粗加工工程後のメッキ層12の形状は、最終形状に近似する形状であり、粗加工工程の前よりも最終形状との差が小さくなっている。そのため、メッキ層12が硬化した後に行う仕上げ加工工程(工程S105)の際の取り代を小さくすることができ、バイトの摩耗を抑制することができる。仕上げ加工工程におけるバイトの摩耗を効果的に抑制する観点からは、粗加工工程におけるメッキ層12の取り代の最大値は、仕上げ加工工程における取り代の最大値よりも大きいことが好ましい。粗加工工程により最終形状にできるだけ近い形状に加工することが好ましいが、次に行う真空熱処理工程で変形してしまうことを考慮すると、必要以上に最終形状に近づけることは加工コストが高くなるだけで好ましくない。そのため、粗加工工程後の形状と最終形状との差は、0.5〜5μmが好ましく、1〜4μmがより好ましい。   The roughing process may be performed by a known processing apparatus and processing method. The shape of the plating layer 12 after the roughing process is a shape that approximates the final shape, and the difference from the final shape is smaller than that before the roughing process. Therefore, the machining allowance in the finishing process (step S105) performed after the plating layer 12 is cured can be reduced, and wear of the cutting tool can be suppressed. From the viewpoint of effectively suppressing the wear of the cutting tool in the finishing process, it is preferable that the maximum value of the machining allowance of the plating layer 12 in the roughing process is larger than the maximum value of the machining allowance in the finishing process. It is preferable to process to the shape as close as possible to the final shape by the roughing process, but considering that it will be deformed in the next vacuum heat treatment step, bringing the final shape closer than necessary only increases the processing cost. It is not preferable. Therefore, the difference between the shape after the rough machining step and the final shape is preferably 0.5 to 5 μm, and more preferably 1 to 4 μm.

次いで、図1のステップS104において、真空熱処理工程を行う。より具体的には、図2(c)において、基材11を密閉された真空炉VF内に配置し、負圧ポンプPを用いて、内部を0.09Paを目標に負圧にする。そして、ヒータHTにより、内部温度を200℃以上、260℃未満に上昇させ、3.5時間保持する。その後、内部温度が130度℃を下回るまで基材11を真空炉VF内に放置して徐冷し、取り出して次工程に送る。   Next, in step S104 of FIG. 1, a vacuum heat treatment step is performed. More specifically, in FIG. 2C, the base material 11 is placed in a sealed vacuum furnace VF, and the negative pressure pump P is used to set the inside to a negative pressure of 0.09 Pa as a target. Then, the internal temperature is raised to 200 ° C. or higher and lower than 260 ° C. by the heater HT, and held for 3.5 hours. Thereafter, the substrate 11 is left in the vacuum furnace VF to be gradually cooled until the internal temperature falls below 130 ° C., and is taken out and sent to the next step.

図3に示すように、200℃以上、260℃未満の熱処理を行うと、メッキ層12のビッカース硬度は560Hvから620Hv程度であり、ビッカース硬度の上昇は僅かである。これにより次工程での仕上げ加工の加工性を高め、バイトの損耗を抑えながらも、成形時に必要なメッキ層12の硬度を確保できる。   As shown in FIG. 3, when heat treatment at 200 ° C. or higher and lower than 260 ° C. is performed, the Vickers hardness of the plating layer 12 is about 560 Hv to 620 Hv, and the increase in Vickers hardness is slight. Thereby, the hardness of the plating layer 12 required at the time of shaping | molding can be ensured, improving the workability of the finishing process at the next process and suppressing the wear of the cutting tool.

次に、図1のステップS106で、仕上げ加工工程を行う。より具体的には、真空熱処理工程で熱処理されたメッキ層12を、ダイヤモンドバイト等の剣先バイトT3を用いて、回折構造を転写する最終の転写面形状に加工する(図2(d))。メッキ層12は、真空熱処理工程によって硬化を抑えられているとともに、上述の粗加工工程(ステップS103)によって最終形状に近似する形状にまで加工されているため、剣先バイトT3の摩耗を最小限に抑えることができるから、剣先バイトT3が微細な輪帯形状13を形成するのに適した細幅のものであっても、比較的長い切削距離を維持できる。   Next, in step S106 in FIG. 1, a finishing process is performed. More specifically, the plating layer 12 that has been heat-treated in the vacuum heat treatment step is processed into a final transfer surface shape to which the diffractive structure is transferred, using a sword tip tool T3 such as a diamond tool (FIG. 2D). Since the plating layer 12 is hardened by the vacuum heat treatment process and processed to the shape approximate to the final shape by the roughing process (step S103) described above, wear of the sword tip bit T3 is minimized. Therefore, even if the sword tip T3 has a narrow width suitable for forming the fine annular zone shape 13, a relatively long cutting distance can be maintained.

また、仕上げ加工工程を行うことによって、真空熱処理工程における結晶化によって増大したメッキ層12の面粗さを低減させ、且つ熱処理時に生じたピンホールやシミなどを排除できる。加工は、公知の加工装置、加工方法により実施すればよい。仕上げ加工工程の際の取り代の最大値は、通常は、0.5〜5μmが好ましく、1〜4μmがより好ましい。   Further, by performing the finishing process, it is possible to reduce the surface roughness of the plating layer 12 increased by crystallization in the vacuum heat treatment process, and to eliminate pinholes and spots generated during the heat treatment. What is necessary is just to implement a process with a well-known processing apparatus and a processing method. The maximum value of the machining allowance in the finishing process is usually preferably 0.5 to 5 μm and more preferably 1 to 4 μm.

仕上げ加工工程が完了すると、光学素子成形用金型が完成する。ただし、メッキ層12の劣化の抑制や、プラスチック成形体へのエアー溜まりの発生の抑制という効果を得る観点からは、仕上げ加工工程に引き続いて、保護膜を形成する工程を設けても良い。   When the finishing process is completed, the optical element molding die is completed. However, from the viewpoint of obtaining the effects of suppressing the deterioration of the plating layer 12 and suppressing the occurrence of air accumulation in the plastic molded body, a step of forming a protective film may be provided following the finishing process.

以下、本発明者らが行った検討結果を説明する。本発明者らは、図1に示す工程で、真空熱処理時の温度を変えながら、又は行わず、光学素子成形用金型を製作し、硬度と、切削性と、製品品質安定性を評価した。基材を取り付けた旋盤の回転速度は、1000min-1(rpm)とした。評価結果を表1に示す。 Hereinafter, the results of studies conducted by the present inventors will be described. In the process shown in FIG. 1, the inventors manufactured an optical element molding die with or without changing the temperature during vacuum heat treatment, and evaluated hardness, machinability, and product quality stability. . The rotation speed of the lathe to which the substrate was attached was 1000 min −1 (rpm). The evaluation results are shown in Table 1.

Figure 2014140970
Figure 2014140970

表1に示すように、熱処理を行わない場合、切削性には優れるが、金型の硬度が不足し、成形時にカジリなどの不具合が生じた。一方、260℃で熱処理を行った場合、金型の硬度は十分であり、カジリもなく製品品質安定性に優れるが、同じバイトで切削できる基材の数は4本以上9本以下であり、やや切削性に難があることが分かった。特に265℃で熱処理を行った場合、同じバイトで切削できる基材の数は3本以下と悪化した。これに対し、210℃から250℃で熱処理を行った場合、いずれも金型の硬度は十分であり、製品品質安定性に優れ、同じバイトで切削できる基材の数は10本以上と切削性に優れることが分かった。   As shown in Table 1, when heat treatment was not performed, the machinability was excellent, but the hardness of the mold was insufficient, and problems such as galling occurred during molding. On the other hand, when heat treatment is performed at 260 ° C., the hardness of the mold is sufficient and the product quality stability is excellent without galling, but the number of substrates that can be cut with the same tool is 4 or more and 9 or less, It was found that there was some difficulty in cutting. In particular, when heat treatment was performed at 265 ° C., the number of base materials that could be cut with the same tool deteriorated to 3 or less. In contrast, when heat treatment is performed at 210 ° C. to 250 ° C., the hardness of the mold is sufficient, the product quality is stable, and the number of base materials that can be cut with the same tool is 10 or more. It turned out to be excellent.

本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、本発明により製造した金型で成形できる光学素子としては、光ピックアップ装置用の対物レンズ、撮像装置用のレンズなどがある。   The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. For example, optical elements that can be molded with a mold manufactured according to the present invention include an objective lens for an optical pickup device and a lens for an imaging device.

11 基材
12 メッキ層
13 輪帯形状
VF 真空炉
HT ヒータ
P 負圧ポンプ
11 Substrate 12 Plating layer 13 Ring-shaped VF Vacuum furnace HT Heater P Negative pressure pump

Claims (6)

光学素子を成形する光学素子成形用金型の製造方法であって、
基材の表面にNi−Pメッキからなるメッキ層を形成する工程と、
前記メッキ層を、所望の最終形状に近似する形状に加工する粗加工工程と、
前記粗加工工程の後、熱処理によって前記メッキ層を硬化させる真空熱処理工程と、
前記真空熱処理工程によって硬化した前記メッキ層を、前記所望の最終形状に加工する仕上げ加工工程と、を有し、
前記粗加工工程前に熱処理を行わないことを特徴とする光学素子成形用金型の製造方法。
A method of manufacturing an optical element molding die for molding an optical element,
Forming a plating layer made of Ni-P plating on the surface of the substrate;
A roughing step of processing the plating layer into a shape approximating a desired final shape;
After the roughing step, a vacuum heat treatment step for curing the plating layer by heat treatment,
A finishing process for processing the plated layer cured by the vacuum heat treatment process into the desired final shape;
A method for producing an optical element molding die, wherein heat treatment is not performed before the roughing step.
前記真空熱処理工程は、200℃以上、260℃未満で3.5時間の熱処理を真空環境で行うことを特徴とする請求項1に記載の光学素子成形用金型の製造方法。   2. The method of manufacturing an optical element molding die according to claim 1, wherein the vacuum heat treatment step is performed in a vacuum environment at a temperature of 200 ° C. or higher and lower than 260 ° C. for 3.5 hours. 前記仕上げ加工工程で、前記所望の最終形状として回折構造を光学素子の光学面に転写する転写面を形成することを特徴とする請求項1又は2に記載の光学素子成形用金型の製造方法。   3. The method of manufacturing an optical element molding die according to claim 1, wherein a transfer surface for transferring the diffractive structure to the optical surface of the optical element is formed as the desired final shape in the finishing step. . 前記光学素子成形用金型は、プラスチックを素材として光学素子を成形することを特徴とする請求項1〜3のいずれかに記載の光学素子成形用金型の製造方法。   The method for manufacturing an optical element molding die according to any one of claims 1 to 3, wherein the optical element molding die is an optical element molded from plastic. 前記真空熱処理工程後、前記基材を130℃以下になるまで真空環境で保持することを特徴とする請求項1〜4のいずれかに記載の光学素子成形用金型の製造方法。   5. The method for manufacturing an optical element molding die according to claim 1, wherein after the vacuum heat treatment step, the base material is held in a vacuum environment until the temperature becomes 130 ° C. or lower. 請求項1〜5のいずれかに記載の製造方法によって製造されたことを特徴とする光学素子成形用金型。   An optical element molding die manufactured by the manufacturing method according to claim 1.
JP2013009231A 2013-01-22 2013-01-22 Method of producing mold for molding of optical element and mold for molding optical element Pending JP2014140970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009231A JP2014140970A (en) 2013-01-22 2013-01-22 Method of producing mold for molding of optical element and mold for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009231A JP2014140970A (en) 2013-01-22 2013-01-22 Method of producing mold for molding of optical element and mold for molding optical element

Publications (1)

Publication Number Publication Date
JP2014140970A true JP2014140970A (en) 2014-08-07

Family

ID=51422730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009231A Pending JP2014140970A (en) 2013-01-22 2013-01-22 Method of producing mold for molding of optical element and mold for molding optical element

Country Status (1)

Country Link
JP (1) JP2014140970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208509A1 (en) * 2015-06-25 2016-12-29 コニカミノルタ株式会社 Forming mold, optical element, and method for producing optical element
CN108555552A (en) * 2018-04-14 2018-09-21 上海小糸车灯有限公司 Mould of car lamp parts machining process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208509A1 (en) * 2015-06-25 2016-12-29 コニカミノルタ株式会社 Forming mold, optical element, and method for producing optical element
JPWO2016208509A1 (en) * 2015-06-25 2018-04-05 コニカミノルタ株式会社 Mold, optical element, and optical element manufacturing method
US10293518B2 (en) 2015-06-25 2019-05-21 Konica Minolta, Inc. Forming mold, optical element, and method for producing optical element
CN108555552A (en) * 2018-04-14 2018-09-21 上海小糸车灯有限公司 Mould of car lamp parts machining process
CN108555552B (en) * 2018-04-14 2020-09-15 华域视觉科技(上海)有限公司 Machining process for automobile lamp die parts

Similar Documents

Publication Publication Date Title
JP2006044265A (en) Ceramic mold
CN109250895A (en) Optical glass non-spherical surface lens moulding manufacture method and its mold
US20200333511A1 (en) Micro- and nano- hot embossing method for optical glass lens arrays
US9868661B2 (en) Glass lens blank for polishing, manufacturing method therefore, and optical lens manufacturing method
JP2014140970A (en) Method of producing mold for molding of optical element and mold for molding optical element
JP5019102B2 (en) Manufacturing method of glass mold
US20100229600A1 (en) Method for manufacturing glass molding die and method for manufacturing molded glass article
JP5073469B2 (en) Manufacturing method of glass mold
JP2010202419A (en) Member for molding element, method for producing the element, and the element
JP2008150225A (en) Press mold for molding glass optical device and manufacturing method and manufacturing apparatus therefor
TW201634720A (en) Cylindrical sputtering target
JP6411734B2 (en) Mold for glass optical element blank for polishing, glass optical element blank for polishing, and method for producing optical element
JP5442420B2 (en) Thickness determination method and manufacturing method of glass material for precision press molding, and manufacturing method of glass optical element
TW201414857A (en) Nickel-phosphorus alloy and mold cord
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JP2014040642A (en) Amorphous alloy, and method of manufacturing mold and optical device
JP2009073693A (en) Optical element-molding die, and method for producing the same
CN110713389B (en) Method for forming non-spherical ceramic mold core
JP2003154529A (en) Molding die for optical element
JP5444397B2 (en) Manufacturing method of optical components
JPH11268920A (en) Forming mold for forming optical element and its production
JP2006124214A (en) Method of molding optical device and die for molding optical device
JP6406938B2 (en) Amorphous alloy, mold for molding, and method of manufacturing optical element
TWI329620B (en) Mold for molding glass optical articles
CN116652119A (en) Casting method of medical alloy appliance forging