JP2014139904A - Square secondary battery - Google Patents

Square secondary battery Download PDF

Info

Publication number
JP2014139904A
JP2014139904A JP2013008771A JP2013008771A JP2014139904A JP 2014139904 A JP2014139904 A JP 2014139904A JP 2013008771 A JP2013008771 A JP 2013008771A JP 2013008771 A JP2013008771 A JP 2013008771A JP 2014139904 A JP2014139904 A JP 2014139904A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
diaphragm
lead
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013008771A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
洋 松本
Kazuaki Urano
和昭 浦野
Takuro Tsunaki
拓郎 綱木
Masaaki Iwasa
正明 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2013008771A priority Critical patent/JP2014139904A/en
Publication of JP2014139904A publication Critical patent/JP2014139904A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a square secondary battery which reliably and stably interrupts current when an internal pressure increases.SOLUTION: A square secondary battery 1 comprises: a battery cover 21 which seals a battery container 2 incorporating an electrode group 3; a through hole 21b mounted on the battery cover 21; a connecting terminal 52 inserted into the through hole 21b via an insulator 22; a lead 41 connected to the connecting terminal 52 inside the battery; and a diaphram 42 connected to the lead 41, in which the diaphram 42 is connected to a current collector plate 53 electrically connected to the electrode groupe 3 and has a curent interruption structure such that conduction between the connecting terminal 52 and the electrode groupe 3 is cut off by an increase of pressure inside the battery container, and the lead 41 is flat and fixes the diaphram 42 by the lead 41 via a sealing material 43.

Description

本発明は、車載用途等に使用される角形二次電池に関する。   The present invention relates to a prismatic secondary battery used for in-vehicle applications and the like.

従来から、車両やその他の機器に搭載される密閉型のリチウムイオン二次電池などにおいては、過充電や過昇温、外力による破損などによって、内部にガスが溜まり、そのガスによって、電池内部の圧力が上昇する場合がある。そのため、密閉型電池の電池ケースには、安全のための脆弱箇所が形成される。   Conventionally, in a sealed lithium ion secondary battery mounted on a vehicle or other equipment, gas is accumulated inside due to overcharge, excessive temperature rise, damage due to external force, etc. Pressure may increase. Therefore, a weak point for safety is formed in the battery case of the sealed battery.

例えば、電池ケースの一部の箇所に、電池の内圧によって変形する部材が用いられ、その部材の変形によって脆弱部分が破損するようにされているものがある。脆弱部分の破損によって、電流経路が遮断されるものや、密閉型電池の内外が連通されてガスを排出するものなどが提案されている。   For example, there is a battery case in which a member that is deformed by the internal pressure of the battery is used at a part of the battery case, and the fragile portion is damaged by the deformation of the member. There have been proposed ones in which a current path is interrupted due to breakage of a fragile portion, and ones in which the inside and outside of a sealed battery are communicated to discharge gas.

特許文献1には、外部電極端子と内部集電タブの間に封口体リードとダイアフラムを備えてあり、電池蓋に対して垂直方向に延びる筒状の封口体リードにダイアフラムの周縁が密閉され、電池内圧が上昇するとダイアフラムが変形し、脆弱箇所が破断され、それによって電流の経路を遮断するとされている。   In Patent Document 1, a sealing body lead and a diaphragm are provided between the external electrode terminal and the internal current collecting tab, and a peripheral edge of the diaphragm is sealed to a cylindrical sealing body lead extending in a direction perpendicular to the battery lid. It is said that when the battery internal pressure rises, the diaphragm is deformed and the fragile portion is broken, thereby interrupting the current path.

特開2008−66255号公報JP 2008-66255 A

しかしながら、前述した従来の技術では、例えば電池蓋に対して垂直方向に延びる筒状の封口体リードにダイアフラムの周縁を密閉しようとした場合、ダイアフラムを溶接する封口体リードの厚み部分、もしくはさらに加工を加えた部分は形状が複雑になり平面性が出しにくいことから溶接が不安定になる可能性がある。   However, in the above-described conventional technology, for example, when the periphery of the diaphragm is sealed with a cylindrical sealing body lead extending in a direction perpendicular to the battery lid, the thickness portion of the sealing body lead to which the diaphragm is welded, or further processing Since the shape of the part to which is added becomes complicated and the flatness is difficult to be obtained, there is a possibility that the welding becomes unstable.

本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、内圧が上昇した際には確実に安定して電流経路を遮断することができる角形二次電池を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a prismatic secondary battery that can reliably and stably interrupt a current path when the internal pressure increases. It is.

上記課題を解決する本発明の角形二次電池は、扁平の電極群を内蔵する電池容器と、該電池容器を密閉する電池蓋と、該電池蓋に開口する開口部に挿通される接続端子と、前記電池容器内に配置されて前記接続端子に接続されるリードと、該リードに接続されて前記接続端子を貫通する貫通孔を閉塞し、前記電池容器の内部圧力の上昇により変形するダイアフラムとを有し、前記ダイアフラムが、電極群に電気的に接続された集電板に接続され、電池容器内部の圧力の上昇により、接続端子と電極群の導通を切断する電流遮断構造を有する角形二次電池であって、前記ダイアフラムは、前記リードにかしめ固定されていることを特徴としている。   The prismatic secondary battery of the present invention that solves the above problems includes a battery container containing a flat electrode group, a battery lid that seals the battery container, and a connection terminal that is inserted through an opening that opens in the battery lid. A lead disposed in the battery container and connected to the connection terminal; a diaphragm connected to the lead and penetrating the connection terminal; and a diaphragm deformed by an increase in internal pressure of the battery container; The diaphragm is connected to a current collector plate electrically connected to the electrode group, and has a current blocking structure that cuts off the electrical connection between the connection terminal and the electrode group when the pressure inside the battery container increases. In the secondary battery, the diaphragm is caulked and fixed to the lead.

本発明によれば、内圧が上昇した際には確実に安定して電流遮断を行う角形二次電池を得ることができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to obtain a rectangular secondary battery that reliably and stably cuts off current when the internal pressure increases. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

角形二次電池の外観斜視図。The external appearance perspective view of a square secondary battery. 角形二次電池の分解斜視図。The disassembled perspective view of a square secondary battery. 電極群の分解斜視図。The exploded perspective view of an electrode group. 蓋組立体の分解斜視図。The exploded perspective view of a lid assembly. 角形二次電池の断面図。Sectional drawing of a square secondary battery. 角形二次電池の平面図及びA−A線断面図。The top view and sectional view on the AA line of a square secondary battery. 正極端子構成部の部分断面図。The fragmentary sectional view of the positive electrode terminal composition part. 負極端子構成部の部分断面図。The fragmentary sectional view of a negative electrode terminal structure part. 図7に示す正極端子構成部の電流遮断構造が作動する前の状態を示す断面図。Sectional drawing which shows the state before the electric current interruption structure of the positive electrode terminal structure part shown in FIG. 7 act | operates. 電流遮断構造が作動した後の状態を示す断面図。Sectional drawing which shows the state after the electric current interruption structure act | operates. 第1実施の形態におけるかしめ部の構成例を説明する断面図。Sectional drawing explaining the structural example of the crimping | crimped part in 1st Embodiment. ダイアフラムをかしめ固定する方法を説明する断面図。Sectional drawing explaining the method of crimping and fixing a diaphragm. ダイアフラムをかしめ固定する方法を説明する断面図。Sectional drawing explaining the method of crimping and fixing a diaphragm. ダイアフラムをかしめ固定する方法を説明する断面図。Sectional drawing explaining the method of crimping and fixing a diaphragm. ダイアフラムをかしめ固定する方法を説明する断面図。Sectional drawing explaining the method of crimping and fixing a diaphragm. 第2実施の形態におけるかしめ部の構成例を説明する断面図。Sectional drawing explaining the structural example of the caulking part in 2nd Embodiment. 第3実施の形態におけるかしめ部の構成例を説明する断面図。Sectional drawing explaining the structural example of the crimping | crimped part in 3rd Embodiment.

次に、本発明の実施形態について図面を用いて以下に説明する。なお、以下の説明では、角形二次電池の例として、電気自動車やハイブリッド自動車の電源として用いられる角形のリチウムイオン二次電池の場合を例に説明するが、これに限定されるものではなく、他の角形二次電池にも適用できるものである。   Next, embodiments of the present invention will be described below with reference to the drawings. In the following description, as an example of a prismatic secondary battery, a case of a prismatic lithium ion secondary battery used as a power source for an electric vehicle or a hybrid vehicle will be described as an example, but the present invention is not limited thereto. The present invention can also be applied to other prismatic secondary batteries.

[第1実施の形態]
図1は、本実施の形態に係わる角形二次電池の外観斜視図、図2は、図1に示される角形二次電池の分解斜視図である。
[First Embodiment]
FIG. 1 is an external perspective view of a prismatic secondary battery according to the present embodiment, and FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG.

角形二次電池であるリチウムイオン二次電池1は、図1及び図2に示すように、電池容器2内に電極群3を収容した構成を有している。電池容器2は、開口部11aを有する電池缶11と、電池缶11の開口部11aを封口する電池蓋21とを有する。電極群3は、正極板33と負極板31との間にセパレータ32、34を介在させて重ね合わせた状態で扁平状に捲回し、テープ35で固定した構造である。   As shown in FIGS. 1 and 2, the lithium ion secondary battery 1 that is a prismatic secondary battery has a configuration in which an electrode group 3 is accommodated in a battery container 2. The battery container 2 includes a battery can 11 having an opening 11 a and a battery lid 21 that seals the opening 11 a of the battery can 11. The electrode group 3 has a structure in which the separators 32 and 34 are interposed between the positive electrode plate 33 and the negative electrode plate 31, wound in a flat shape, and fixed with a tape 35.

電池缶11及び電池蓋21は、共にアルミニウム合金で製作されており、電池蓋21は、レーザー溶接によって電池缶11に溶接される。電池蓋21には、正極端子構成部50と負極端子構成部60が設けられており、蓋組立体4を構成している。   The battery can 11 and the battery lid 21 are both made of an aluminum alloy, and the battery lid 21 is welded to the battery can 11 by laser welding. The battery lid 21 is provided with a positive electrode terminal component 50 and a negative electrode terminal component 60 to constitute the lid assembly 4.

正極端子構成部50と負極端子構成部60は、正極接続端子52と負極接続端子62(一対の電極端子)を有している。正極接続端子52は、電池蓋21との間に正極外部絶縁部材22を介して配設され、負極接続端子62は、電池蓋21との間に負極外部絶縁部材23を介して配設されている。   The positive electrode terminal component 50 and the negative electrode terminal component 60 have a positive electrode connection terminal 52 and a negative electrode connection terminal 62 (a pair of electrode terminals). The positive electrode connection terminal 52 is disposed between the battery lid 21 via the positive electrode external insulation member 22, and the negative electrode connection terminal 62 is disposed between the battery lid 21 and the negative electrode external insulation member 23. Yes.

なお、電池蓋21には、正極端子構成部50及び負極端子構成部60の他に、電池容器2内の圧力が所定値よりも上昇すると開放されて電池容器2内のガスを排出するガス排出弁71と、電池容器2内に電解液を注入するための注液口72が配置されている。   In addition to the positive electrode terminal component 50 and the negative electrode terminal component 60, the battery lid 21 is opened when the pressure in the battery container 2 rises above a predetermined value, and discharges the gas in the battery container 2. A valve 71 and a liquid injection port 72 for injecting an electrolytic solution into the battery container 2 are disposed.

正極接続端子52及び負極接続端子62は、電池蓋21の長手方向一方側と他方側の互いに離れた位置に配置されている。正極接続端子52と負極接続端子62は、それぞれ電池蓋21の外側に配置される正極外部端子51と負極外部端子61を有している。正極接続端子52は、アルミニウム合金で製作され、負極接続端子62は、銅合金で製作されている。   The positive electrode connection terminal 52 and the negative electrode connection terminal 62 are disposed at positions separated from each other on one side and the other side in the longitudinal direction of the battery lid 21. The positive electrode connection terminal 52 and the negative electrode connection terminal 62 have a positive electrode external terminal 51 and a negative electrode external terminal 61 disposed on the outside of the battery lid 21, respectively. The positive electrode connection terminal 52 is made of an aluminum alloy, and the negative electrode connection terminal 62 is made of a copper alloy.

正極端子構成部50及び負極端子構成部60は、電池蓋21の内側から電池缶11の底部に向かって延出して電極群3に導通接続される正極集電板53と負極集電板63をそれぞれ有している。電極群3は、正極集電板53と負極集電板63との間に配置されて支持されており、蓋組立体4及び電極群3によって、発電要素組立体5が構成されている。   The positive electrode terminal component 50 and the negative electrode terminal component 60 include a positive electrode current collector plate 53 and a negative electrode current collector plate 63 that extend from the inside of the battery lid 21 toward the bottom of the battery can 11 and are conductively connected to the electrode group 3. Each has. The electrode group 3 is disposed and supported between the positive electrode current collector plate 53 and the negative electrode current collector plate 63, and the power generation element assembly 5 is configured by the lid assembly 4 and the electrode group 3.

図3は、図2に示された電極群3の詳細を示し、一部を展開した状態の外観斜視図である。
電極群3は、正極板33、セパレータ32、負極板31、セパレータ34の順に重ねて扁平状に捲回することによって構成される。電極群3は、図3に示すように、最外周の電極板が負極板31であり、さらにその外側にセパレータ34が捲回される。
FIG. 3 is an external perspective view showing the details of the electrode group 3 shown in FIG.
The electrode group 3 is configured by stacking a positive electrode plate 33, a separator 32, a negative electrode plate 31, and a separator 34 in this order and winding them in a flat shape. As shown in FIG. 3, in the electrode group 3, the outermost electrode plate is the negative electrode plate 31, and the separator 34 is wound further outside.

セパレータ32、34は、正極板33と負極板31を絶縁する役割を有している。負極板31の負極塗工部31aは、正極板33の正極塗工部33aよりも幅方向に大きく、これにより正極塗工部33aは、必ず負極塗工部31aに挟まれるように構成されている。   The separators 32 and 34 have a role of insulating the positive electrode plate 33 and the negative electrode plate 31. The negative electrode coating portion 31a of the negative electrode plate 31 is larger in the width direction than the positive electrode coating portion 33a of the positive electrode plate 33, so that the positive electrode coating portion 33a is always sandwiched between the negative electrode coating portions 31a. Yes.

正極未塗工部33b、負極未塗工部31bは、平面部分で束ねられて溶接等により正負極外部端子51、61につながる各極の集電板53、63に接続される。尚、セパレータ32、34は、幅方向で負極塗工部31aよりも広いが、正極未塗工部33b、負極未塗工部31bで金属箔面が露出する位置に捲回されるため、束ねて溶接する場合の支障にはならない。   The positive electrode uncoated portion 33b and the negative electrode uncoated portion 31b are bundled at a plane portion and connected to current collector plates 53, 63 connected to the positive and negative external terminals 51, 61 by welding or the like. The separators 32 and 34 are wider than the negative electrode coated portion 31a in the width direction, but are bundled because they are wound at positions where the metal foil surface is exposed at the positive electrode uncoated portion 33b and the negative electrode uncoated portion 31b. This will not interfere with welding.

正極板33は、正極集電体である正極電極箔の両面に正極活物質合剤を塗布した正極塗工部33aを有し、正極電極箔の幅方向一方側の端部には、正極活物質合剤を塗布しない正極未塗工部(箔露出部)33bが設けられている。   The positive electrode plate 33 has a positive electrode coating portion 33a in which a positive electrode active material mixture is applied on both surfaces of a positive electrode foil that is a positive electrode current collector, and a positive electrode active portion 33 is disposed at one end in the width direction of the positive electrode foil. A positive electrode uncoated portion (foil exposed portion) 33b to which no material mixture is applied is provided.

負極板31は、負極集電体である負極電極箔の両面に負極活物質合剤を塗布した負極塗工部31aを有し、正極電極箔の幅方向他方側の端部には、負極活物質合剤を塗布しない負極未塗工部(箔露出部)31bが設けられている。正極未塗工部33bと負極未塗工部31bは、電極箔の金属面が露出した領域であり、図3に示すように、捲回軸方向(X方向)一方側と他方側の位置に配置されるように捲回される。   The negative electrode plate 31 has a negative electrode coating part 31a in which a negative electrode active material mixture is applied to both surfaces of a negative electrode electrode foil that is a negative electrode current collector, and a negative electrode active part is disposed at the other end in the width direction of the positive electrode foil. A negative electrode uncoated portion (foil exposed portion) 31b to which the material mixture is not applied is provided. The positive electrode uncoated portion 33b and the negative electrode uncoated portion 31b are regions where the metal surface of the electrode foil is exposed. As shown in FIG. 3, the winding axis direction (X direction) is on one side and the other side. Wound to be placed.

負極板31においては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極電極箔)の両面に集電部(負極未塗工部31b)を残して塗布した。その後、乾燥、プレス、裁断して銅箔を含まない負極活物質塗布部厚さ70μmの負極板31を得た。   In the negative electrode plate 31, 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and N as a dispersion solvent. -A negative electrode mixture in which methylpyrrolidone (hereinafter referred to as NMP) was added and kneaded was prepared. This negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil (negative electrode foil) leaving the current collecting part (negative electrode uncoated part 31b). Then, the negative electrode active material application part thickness 70 micrometer negative electrode plate 31 which does not contain copper foil was obtained by drying, pressing, and cutting.

なお、本実施の形態では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。しかし、いずれの炭素質材料でもリチウムイオンの吸蔵により、負極活物質塗布部は膨張する。   In this embodiment, the case where amorphous carbon is used as the negative electrode active material is exemplified, but the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions and various artificial graphites are not limited thereto. The material may be a carbonaceous material such as a material or coke, and the particle shape is not particularly limited to a scale shape, a spherical shape, a fiber shape, a lump shape, or the like. However, in any carbonaceous material, the negative electrode active material application portion expands due to occlusion of lithium ions.

正極板33に関しては、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤を作製した。この正極合剤を厚さ20μmのアルミニウム箔(正極電極箔)の両面に無地の集電部(正極未塗工部33b)を残して塗布した。その後、乾燥、プレス、裁断してアルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極板33を得た。 For positive electrode plate 33, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material. A positive electrode mixture was prepared by adding and kneading NMP as a dispersion solvent. This positive electrode mixture was applied to both surfaces of an aluminum foil (positive electrode foil) having a thickness of 20 μm, leaving a solid current collecting portion (positive electrode uncoated portion 33b). Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate 33 having a thickness of 90 μm, which does not include an aluminum foil.

また、本実施の形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。   Further, in the present embodiment, the case where lithium manganate is used as the positive electrode active material is exemplified, but other lithium manganate having a spinel crystal structure or a lithium manganese composite oxide partially substituted or doped with a metal element or A lithium cobalt oxide or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.

また、本実施の形態では、正極板33、負極板31における塗工部の結着材としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。   Moreover, in this Embodiment, although illustrated about the case where PVDF is used as the binder of the coating part in the positive electrode plate 33 and the negative electrode plate 31, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile Polymers such as rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins, and mixtures thereof Can be used.

図4は、図2に示される蓋組立体の分解斜視図、図5は、角形二次電池の断面図、図6は、角形二次電池の平面図及び平面図のA−A線断面図、図7は、図5に示す蓋組立体4の正極端子構成部の部分断面図、図8は、負極端子構成部の部分断面図である。また、図9は、図7に示す正極端子構成部の電流遮断構造が作動する前の状態を示す断面図、図10は、電流遮断構造が作動した後の状態を示す断面図である。   4 is an exploded perspective view of the lid assembly shown in FIG. 2, FIG. 5 is a sectional view of the prismatic secondary battery, and FIG. 6 is a plan view of the prismatic secondary battery and a sectional view taken along line AA of the plan view. 7 is a partial cross-sectional view of the positive electrode terminal constituting portion of the lid assembly 4 shown in FIG. 5, and FIG. 8 is a partial cross-sectional view of the negative electrode terminal constituting portion. 9 is a cross-sectional view showing a state before the current interrupting structure of the positive electrode terminal component shown in FIG. 7 is activated, and FIG. 10 is a cross-sectional view showing a state after the current interrupting structure is activated.

正極端子構成部50は、図4に示すように、正極外部端子51、正極接続端子52、ガスケット26、正極外部絶縁部材22、リード41、シール部材43、ダイアフラム42、正極内部絶縁部材24、正極集電板53を有している。正極接続端子52は、電池蓋21との間にガスケット26、正極内部絶縁部材24、リード41が介在されており、電池蓋21から電気的に絶縁され、固定軸52cの先端を外径側に折り曲げて、かしめ加工することで前記介在部品を保持している。   As shown in FIG. 4, the positive electrode terminal component 50 includes a positive electrode external terminal 51, a positive electrode connection terminal 52, a gasket 26, a positive electrode external insulation member 22, a lead 41, a seal member 43, a diaphragm 42, a positive electrode internal insulation member 24, a positive electrode A current collecting plate 53 is provided. The positive electrode connection terminal 52 is interposed between the battery lid 21 and the gasket 26, the positive electrode internal insulating member 24, and the lead 41. The positive electrode connection terminal 52 is electrically insulated from the battery lid 21, and the distal end of the fixed shaft 52 c faces the outer diameter side. The intervening parts are held by bending and caulking.

正極集電板53は、図5及び図6に示すように、正極内部絶縁部材24を介して電池蓋21に固定されている。電池蓋21には、正極内部絶縁部材24の固定孔24bに挿入してかしめることにより正極内部絶縁部材24を電池蓋21に固定する凸部21aが設けられている。凸部21aは、例えば図6のA−A線断面図に示すように、電池蓋21の電池内側面に2箇所設けられており、正極内部絶縁部材24の固定孔24bに入れ、凸部21aの先端をかしめ固定することで正極内部絶縁部材24を保持する。   As shown in FIGS. 5 and 6, the positive electrode current collector plate 53 is fixed to the battery lid 21 via the positive electrode internal insulating member 24. The battery lid 21 is provided with a convex portion 21 a that fixes the positive electrode internal insulating member 24 to the battery lid 21 by being inserted into the fixing hole 24 b of the positive electrode internal insulating member 24 and caulked. For example, as shown in the AA line cross-sectional view of FIG. 6, the convex portion 21 a is provided at two locations on the battery inner surface of the battery lid 21, and is inserted into the fixing hole 24 b of the positive electrode internal insulating member 24, and the convex portion 21 a. The positive electrode internal insulating member 24 is held by caulking and fixing the tip of the positive electrode.

正極内部絶縁部材24には、正極集電板53の基部53dに穿設された支持穴53cに挿入してかしめることにより正極集電板53を正極内部絶縁部材24に固定するピン状の保持部24aが設けられている。保持部24aは、例えば4箇所設けられており、正極集電板53の支持穴53c(図4を参照)に挿入して、熱を加えて先端を変形させることで正極集電板53を保持する。   The positive electrode internal insulation member 24 is pin-shaped to fix the positive electrode current collection plate 53 to the positive electrode internal insulation member 24 by being inserted into a support hole 53c formed in the base 53d of the positive electrode current collection plate 53 and caulking. A portion 24a is provided. The holding portions 24a are provided, for example, at four locations, and are inserted into the support holes 53c (see FIG. 4) of the positive electrode current collector plate 53 to hold the positive electrode current collector plate 53 by applying heat to deform the tip. To do.

電池蓋21と正極内部絶縁部材24は凸部21aにより互いに固定され、正極内部絶縁部材24と正極集電板53は保持部24aにより互いに固定されており、電池蓋21と正極内部絶縁部材24と正極集電板53が一体化されている。   The battery lid 21 and the positive electrode internal insulating member 24 are fixed to each other by the convex portion 21a, and the positive electrode internal insulating member 24 and the positive electrode current collector plate 53 are fixed to each other by the holding portion 24a. A positive electrode current collector plate 53 is integrated.

負極端子構成部60は、図4に示すように、負極外部端子61、負極接続端子62、ガスケット26、負極外部絶縁部材23、負極内部絶縁部材25、負極集電板63を有している。負極接続端子62は、電池蓋21との間にガスケット26、負極内部絶縁部材25、負極集電板63が介在されており、電池蓋21から電気的に絶縁され、固定軸62cの先端を外径側に折り曲げて、かしめ加工することで前記介在部品を保持している。負極接続端子62と負極集電板63は例えばレーザー溶接で接合され、電気的に接続されている。   As shown in FIG. 4, the negative electrode terminal component 60 includes a negative electrode external terminal 61, a negative electrode connection terminal 62, a gasket 26, a negative electrode external insulating member 23, a negative electrode internal insulating member 25, and a negative electrode current collector plate 63. The negative electrode connection terminal 62 is interposed between the battery lid 21 and the gasket 26, the negative electrode internal insulating member 25, and the negative electrode current collector plate 63. The negative electrode connection terminal 62 is electrically insulated from the battery lid 21. The intervening parts are held by bending to the radial side and caulking. The negative electrode connection terminal 62 and the negative electrode current collector plate 63 are joined by, for example, laser welding and are electrically connected.

正極端子構成部50は、電池内圧の上昇により電流を遮断する電流遮断構造を有している。電流遮断構造は、正極接続端子52から正極集電板53までの電流経路に設けられている。   The positive electrode terminal component 50 has a current interrupting structure that interrupts current when the battery internal pressure increases. The current interruption structure is provided in a current path from the positive electrode connection terminal 52 to the positive electrode current collector plate 53.

正極接続端子52は、図7に示すように、電池蓋21との間にガスケット26、正極内部絶縁部材24、リード41を介してかしめ固定されている。リード41は、電池蓋21の内側で正極接続端子52にかしめられて電気的に接続されている。リード41には、図9に示すように、シール部材43を介してダイアフラム42がかしめ固定されている。   As shown in FIG. 7, the positive electrode connection terminal 52 is caulked and fixed between the battery lid 21 via a gasket 26, a positive electrode internal insulating member 24, and a lead 41. The lead 41 is crimped and electrically connected to the positive electrode connection terminal 52 inside the battery lid 21. As shown in FIG. 9, a diaphragm 42 is caulked and fixed to the lead 41 via a seal member 43.

ダイアフラム42は、湾曲面部42aの中央部と正極集電板53の接合部53aとが、例えば、レーザ溶接で接合されており、互いに電気的に接続されている。ダイアフラム42は、リード41に接続されて正極接続端子52の貫通孔52dを閉塞し、電池容器2の内部圧力の上昇により変形する。   In the diaphragm 42, the central portion of the curved surface portion 42a and the joint portion 53a of the positive electrode current collector plate 53 are joined by, for example, laser welding, and are electrically connected to each other. The diaphragm 42 is connected to the lead 41, closes the through hole 52 d of the positive electrode connection terminal 52, and is deformed by an increase in the internal pressure of the battery container 2.

正極集電板53の接合部53aの周囲には、脆弱部53bが設けられている。非正常的な電池内圧の上昇によって、正極接続端子52のダイアフラム42が変形する際に、正極集電板53の脆弱部53bが破断することによって、電気的接続を遮断する。これにより、電池内の密閉性を保ちつつ、電池の非正常的な作動を確実かつ安全に停止することができる。   A fragile portion 53 b is provided around the joint portion 53 a of the positive electrode current collector plate 53. When the diaphragm 42 of the positive electrode connection terminal 52 is deformed due to an abnormal increase in battery internal pressure, the fragile portion 53b of the positive electrode current collector plate 53 is broken, thereby cutting off the electrical connection. Thereby, the abnormal operation | movement of a battery can be stopped reliably and safely, maintaining the airtightness in a battery.

ダイアフラム42は、電池内側に向かって凸となるドーム状を有しており、電池内圧の上昇により頂部である中央部の高さが低くなる方向に変形して、正極集電板53の接合部53aを基部53dに直交する方向である電池外側(図4で上方)に向かって付勢し、脆弱部53bを破断させて接合部53aを基部53dから分離し、正極集電板53との間の電気的な接続を遮断するように構成されている。   The diaphragm 42 has a dome shape that protrudes toward the inside of the battery, and is deformed in a direction in which the height of the central portion, which is the top, becomes lower due to an increase in battery internal pressure, so that the junction of the positive electrode current collector plate 53 53a is urged toward the battery outer side (upward in FIG. 4) which is a direction orthogonal to the base 53d, the fragile portion 53b is broken to separate the joint 53a from the base 53d, and between the positive electrode current collector plate 53 It is configured to cut off the electrical connection.

次に、本実施形態における正極端子構成部50の構成について詳細に説明する。
正極接続端子52は、図4に示すように、電池蓋21の外側である上面に沿って配置される平板部52aと、平板部52aに開口して正極外部端子51を挿通支持する挿通孔52bと、電池蓋21の開口部21bに挿通されて電池蓋21を貫通し先端が電池蓋21の裏面側である電池内側に突出する固定軸52cを有しており、固定軸52cには、その中心を軸方向に貫通する貫通孔52dが設けられている。
Next, the structure of the positive electrode terminal structure part 50 in this embodiment is demonstrated in detail.
As shown in FIG. 4, the positive electrode connection terminal 52 includes a flat plate portion 52 a disposed along the upper surface that is outside the battery lid 21, and an insertion hole 52 b that opens into the flat plate portion 52 a and supports the positive external terminal 51. And a fixed shaft 52c that is inserted through the opening 21b of the battery cover 21 and penetrates the battery cover 21, and the tip protrudes into the battery on the back side of the battery cover 21, and the fixed shaft 52c includes A through hole 52d penetrating the center in the axial direction is provided.

正極外部端子51は、正極接続端子52の挿通孔52bに挿通される軸部51aと、平板部52aと正極外部絶縁部材22との間に介在されて支持される矩形平板状のヘッド部51bとを有している。軸部51aは、ナットと螺合してバスバーを締結可能なネジ山が螺設されている。   The positive electrode external terminal 51 includes a shaft portion 51a inserted into the insertion hole 52b of the positive electrode connection terminal 52, and a rectangular flat plate head portion 51b interposed and supported between the flat plate portion 52a and the positive electrode external insulating member 22. have. The shaft 51a is screwed with a thread that can be screwed into a nut to fasten the bus bar.

正極外部絶縁部材22は、正極外部端子51のヘッド部51bと電池蓋21の上面との間に介在される絶縁性の板状部材からなり、電池蓋21の開口部21bに連通して正極接続端子52の固定軸52cを挿通するための開口部22aを有している。   The positive electrode external insulating member 22 is an insulating plate-like member interposed between the head portion 51 b of the positive electrode external terminal 51 and the upper surface of the battery lid 21, and communicates with the opening 21 b of the battery lid 21 to be positively connected. An opening 22a for inserting the fixed shaft 52c of the terminal 52 is provided.

ガスケット26は、正極接続端子52の固定軸52cに外嵌される断面L字状のリング形状を有しており、電池蓋21の開口部21bに挿入されて正極接続端子52の固定軸52cと電池蓋21との間を絶縁しかつシールする端子封止部を構成する。ガスケット26は、正極接続端子52の固定軸52cの先端をかしめることによって、所定の圧縮力で圧縮された状態で正極接続端子52の平板部52aと電池蓋21との間に介在される。   The gasket 26 has a ring shape with an L-shaped cross section that is fitted around the fixed shaft 52 c of the positive electrode connection terminal 52. The gasket 26 is inserted into the opening 21 b of the battery lid 21 and is fixed to the fixed shaft 52 c of the positive electrode connection terminal 52. The terminal sealing part which insulates and seals between the battery cover 21 is comprised. The gasket 26 is interposed between the flat plate portion 52a of the positive electrode connection terminal 52 and the battery lid 21 in a compressed state with a predetermined compression force by caulking the tip of the fixed shaft 52c of the positive electrode connection terminal 52.

正極内部絶縁部材24は、電池蓋21の下面に沿って配置される合成樹脂製材料からなる絶縁性の板状部材によって構成されており、電池蓋21とリード41との間、及び、電池蓋21と正極集電板53との間に介在されて、これらの間を絶縁する。正極内部絶縁部材24は、所定の板厚を有しており、電池蓋21の開口部21bに連通して固定軸52cが挿通される貫通孔24cが設けられている。正極内部絶縁部材24は、その一部がリード41と電池蓋21との間に介在されており、固定軸52cの先端をかしめることによって、正極接続端子52と共に電池蓋21に一体にかしめ固定されている。   The positive electrode internal insulating member 24 is configured by an insulating plate-like member made of a synthetic resin material disposed along the lower surface of the battery lid 21, and is provided between the battery lid 21 and the lead 41 and between the battery lid and the battery lid 21. 21 and the positive electrode current collector plate 53 to insulate them. The positive electrode internal insulating member 24 has a predetermined plate thickness, and is provided with a through hole 24 c that communicates with the opening 21 b of the battery lid 21 and through which the fixed shaft 52 c is inserted. A part of the positive electrode internal insulating member 24 is interposed between the lead 41 and the battery lid 21, and is caulked and fixed to the battery lid 21 together with the positive electrode connection terminal 52 by caulking the tip of the fixed shaft 52 c. Has been.

そして、正極内部絶縁部材24には、貫通孔24cに連通しかつリード41とダイアフラム42が収容される凹部24dが設けられている。凹部24dは、図7に示すように、正極内部絶縁部材24の下面に凹設されており、電池内側の他の空間部分と連通している。   The positive electrode internal insulating member 24 is provided with a recess 24d communicating with the through hole 24c and accommodating the lead 41 and the diaphragm 42. As shown in FIG. 7, the recess 24 d is recessed in the lower surface of the positive electrode internal insulating member 24 and communicates with other space portions inside the battery.

正極内部絶縁部材24は、図4に示すように、その上面に、正極内部絶縁部材24を電池蓋21に固定するための固定孔24bが複数設けられており、電池蓋21の下面でかつ固定孔24bに対向する位置には、固定孔24bに挿通される凸部21aが設けられている。   As shown in FIG. 4, the positive electrode internal insulating member 24 is provided with a plurality of fixing holes 24 b for fixing the positive electrode internal insulating member 24 to the battery lid 21 on the upper surface thereof. At a position facing the hole 24b, a convex portion 21a inserted through the fixed hole 24b is provided.

正極内部絶縁部材24は、固定孔24bに電池蓋21の凸部21aを挿入して、正極内部絶縁部材24の上面を電池蓋21の下面に接面させた状態で、固定孔24bから突出する凸部21aの先端を加圧変形させて拡径することにより電池蓋21にかしめて係合される(図6を参照)。電池蓋21の凸部21aは、予めプレス加工により電池外側を凹にして、その分だけ、電池内側を凸にすることによって形成される。   The positive electrode internal insulating member 24 protrudes from the fixing hole 24b in a state where the convex portion 21a of the battery lid 21 is inserted into the fixing hole 24b and the upper surface of the positive electrode internal insulating member 24 is in contact with the lower surface of the battery lid 21. The tip of the convex portion 21a is crimped and engaged with the battery lid 21 by expanding the diameter by pressure deformation (see FIG. 6). The convex portion 21a of the battery lid 21 is formed by making the outer side of the battery concave by pressing in advance and making the inner side of the battery convex by that amount.

正極内部絶縁部材24の下面には、正極集電板53を固定するための保持部24aが複数凸設されている(図4及び図6を参照)。複数の保持部24aは、正極集電板53の基部53dに設けられている複数の支持穴53cにそれぞれ挿入され、各支持穴53cから突出した先端を加熱変形させて拡径させることによりかしめられる。また、複数の保持部24aを加熱する際に、集電板53も一緒に加熱して基部53dを正極内部絶縁部材24に熱溶着する。したがって、正極集電板53は、正極内部絶縁部材24に一体に固定される。   A plurality of holding portions 24a for fixing the positive electrode current collector plate 53 are provided on the lower surface of the positive electrode internal insulating member 24 (see FIGS. 4 and 6). The plurality of holding portions 24a are respectively inserted into the plurality of support holes 53c provided in the base portion 53d of the positive electrode current collector plate 53, and are crimped by expanding the diameter by heating and deforming the tips protruding from the support holes 53c. . Further, when heating the plurality of holding portions 24 a, the current collector plate 53 is also heated together to thermally weld the base portion 53 d to the positive electrode internal insulating member 24. Therefore, the positive electrode current collecting plate 53 is integrally fixed to the positive electrode internal insulating member 24.

ダイアフラム42は、軸方向に移行するにしたがって漸次縮径するドーム状の湾曲面部42aと、湾曲面部42aの外周縁部から径方向外側に向かって拡がるフランジ部42bとを有している。フランジ部42bは、径方向外側に向かって一平面上に沿って拡がり、全周に亘って一定幅で連続し、後述するリード41の凹溝41b内に配置されるリング形状を有している。   The diaphragm 42 has a dome-shaped curved surface portion 42a that gradually decreases in diameter as it moves in the axial direction, and a flange portion 42b that expands radially outward from the outer peripheral edge of the curved surface portion 42a. The flange portion 42b expands along one plane toward the radially outer side, continues at a constant width over the entire circumference, and has a ring shape that is disposed in a groove 41b of the lead 41 described later. .

ダイアフラム42は、湾曲面部42aが固定軸52cの下端に開口する貫通孔52dの開口端に対向してこれを覆い、フランジ部42bがリード41にかしめ固定されて、リードとの間を密閉封止し、貫通孔52dによって連通されている電池外側の空間と電池内側の空間との間を区画している。   The diaphragm 42 has a curved surface portion 42a facing and covering the opening end of the through hole 52d that opens to the lower end of the fixed shaft 52c, and the flange portion 42b is caulked and fixed to the lead 41 so as to hermetically seal between the leads. The space outside the battery and the space inside the battery communicated by the through hole 52d is partitioned.

湾曲面部42aは、電池容器2の内圧が予め設定された上限値よりも上昇した場合に、電池容器2の外部との圧力差により、中央部の高さが低くなる方向に塑性変形し、正極集電板53の脆弱部53bを破断させ、内圧が低下した後も接合部53aを正極集電板53の基部53dから完全に切り離した位置に保持するように、材料、板厚、断面形状等が設定されている。湾曲面部42aの頂部である中央部は、レーザー溶接によって正極集電板53の接合部53aに接合されている。中央部の接合は、レーザー溶接の他、抵抗溶接、超音波溶接によって行ってもよい。   When the internal pressure of the battery case 2 rises above a preset upper limit value, the curved surface portion 42a is plastically deformed in a direction in which the height of the central portion is lowered due to a pressure difference from the outside of the battery case 2, and the positive electrode The fragile portion 53b of the current collector plate 53 is broken, and the material, plate thickness, cross-sectional shape, etc. are maintained so that the joint portion 53a is held at a position completely separated from the base portion 53d of the positive electrode current collector plate 53 even after the internal pressure is reduced. Is set. The central portion, which is the top of the curved surface portion 42a, is joined to the joint portion 53a of the positive electrode current collector plate 53 by laser welding. The joining of the central portion may be performed by resistance welding or ultrasonic welding in addition to laser welding.

湾曲面部42aは、フランジ部42bに連続して中心軸方向に沿ってリード41から離反する方向に移行するにしたがって漸次縮径し、断面が直線形状となる第1傾斜面部と、第1傾斜面部に連続して折曲されて第1傾斜面部とは異なる傾斜角度で延在し断面が直線形状となる第2傾斜面部とを軸方向に並べて組み合わせた立体形状を有している。   The curved surface portion 42a is gradually reduced in diameter as it moves in a direction away from the lead 41 along the central axis direction continuously to the flange portion 42b, and a first inclined surface portion having a linear cross section, and a first inclined surface portion And a second inclined surface portion that is bent continuously and extends at an inclination angle different from that of the first inclined surface portion and has a linear cross section.

湾曲面部42aは、電池内圧の上昇により第1傾斜面部が拡径する方向に移動し、第2傾斜面部が中央部の高さ位置を低くする方向に移動するように変形する。第1傾斜面部は、湾曲面部42aの中心軸方向に対して45°よりも小さくなる傾斜角度を有しており、第2傾斜面部は、第1傾斜面部に対して外角が180°よりも大きくなる傾斜角度を有している。   The curved surface portion 42a is deformed so as to move in the direction in which the first inclined surface portion expands due to the increase of the battery internal pressure, and the second inclined surface portion moves in the direction in which the height position of the central portion is lowered. The first inclined surface portion has an inclination angle smaller than 45 ° with respect to the central axis direction of the curved surface portion 42a, and the second inclined surface portion has an outer angle larger than 180 ° with respect to the first inclined surface portion. The inclination angle is as follows.

正極集電板53は、図4に示すように、電池蓋21の下面に対向して平行に延在する平板状の基部53dを有しており、複数の支持穴53cが例えば四隅位置など、互いに所定間隔をおいて配置されるように貫通して形成されている。   As shown in FIG. 4, the positive electrode current collector plate 53 has a flat plate-like base portion 53 d that extends in parallel to face the lower surface of the battery lid 21, and a plurality of support holes 53 c have four corner positions, for example, They are formed so as to penetrate each other at a predetermined interval.

これら複数の支持穴53cには、正極内部絶縁部材24の下面に凸設されている複数の保持部24aがそれぞれ挿入されてかしめられており、正極集電板53が正極内部絶縁部材24に一体にかしめ固定されている。   A plurality of holding portions 24 a protruding from the lower surface of the positive electrode internal insulation member 24 are inserted into the plurality of support holes 53 c and caulked, and the positive electrode current collector plate 53 is integrated with the positive electrode internal insulation member 24. It is fixed by caulking.

基部53dには、一対の長辺に沿って電池蓋21から離反する方向に折り曲げて形成された一対のエッジが設けられており、平面形状を保つように剛性の向上が図られている。正極集電板53の一対の接合片53eは、各エッジに連続して突出するように設けられている。   The base 53d is provided with a pair of edges formed by bending in a direction away from the battery lid 21 along the pair of long sides, and the rigidity is improved so as to maintain a planar shape. The pair of joining pieces 53e of the positive electrode current collector plate 53 is provided so as to protrude continuously from each edge.

正極集電板53には、ダイアフラム42の中央部に接合される接合部53aが設けられている。接合部53aは、図9に示すように、基部53dの一部を薄肉化した薄肉部によって構成されている。脆弱部53bは、接合部53aの周囲を囲むように薄肉部に溝部を設けることによって構成されており、電池内圧が上昇したときに電池外方向(図9では上側)に変形するダイアフラム42によって脆弱部53bで破断されて、基部53dから接合部53aを分離できるようになっている。   The positive electrode current collector plate 53 is provided with a joint portion 53 a that is joined to the central portion of the diaphragm 42. As shown in FIG. 9, the joint portion 53a is configured by a thin portion in which a part of the base portion 53d is thinned. The fragile portion 53b is configured by providing a groove portion in a thin portion so as to surround the periphery of the joint portion 53a, and is fragile by a diaphragm 42 that deforms in the battery outward direction (upward in FIG. 9) when the battery internal pressure rises. The joint portion 53a can be separated from the base portion 53d by being broken at the portion 53b.

脆弱部53bは、電池容器2の内圧の上昇によるダイアフラム42の変形に伴い、電池蓋21側に引っ張る方向の力が作用した際に破断する一方、走行中の振動などの通常の使用環境下では破断しない強度となるように、その寸法形状等が設定されている。ダイアフラム42の中央部と正極集電板53の接合部53aとの接合は、レーザー溶接により行われるが、その他に、抵抗溶接、超音波溶接なども可能である。   The fragile portion 53b breaks when a force in the pulling direction is applied to the battery lid 21 side due to the deformation of the diaphragm 42 due to the increase in the internal pressure of the battery case 2, while it is broken under normal use environment such as vibration during traveling. The dimensions and the like are set so that the strength does not break. Joining of the center part of the diaphragm 42 and the joint part 53a of the positive electrode current collector plate 53 is performed by laser welding, but resistance welding, ultrasonic welding, and the like are also possible.

上記構成を有する電流遮断構造は、電池容器2の内圧が予め設定された上限値よりも上昇した場合に、電池容器2の外部との圧力差により、突出高さが低くなる方向にダイアフラム42が変形し、正極集電板53の脆弱部53bで囲まれた接合部53aを基部53dに直交する方向に引っ張り、正極集電板53の脆弱部53bを破断させる。そして、図10に示すように、接合部53aを基部53dから分離して、正極接続端子52と正極集電板53との間の電流経路を遮断する。   In the current interrupting structure having the above-described configuration, when the internal pressure of the battery container 2 rises above a preset upper limit value, the diaphragm 42 is arranged in a direction in which the protrusion height decreases due to a pressure difference with the outside of the battery container 2. The joint 53a surrounded by the weak part 53b of the positive current collector plate 53 is pulled in a direction orthogonal to the base part 53d, and the weak part 53b of the positive current collector 53 is broken. And as shown in FIG. 10, the junction part 53a is isolate | separated from the base 53d, and the electric current path between the positive electrode connection terminal 52 and the positive electrode current collecting plate 53 is interrupted | blocked.

リード41は、導電性の円板部材からなり、その中心位置には、電池蓋21の開口部21bに連通して正極接続端子52の固定軸52cを挿通するための開口部41a(図4を参照)が設けられている。   The lead 41 is made of a conductive disk member, and has an opening 41 a (see FIG. 4) through which the fixed shaft 52 c of the positive electrode connection terminal 52 passes through the opening 21 b of the battery lid 21. Reference) is provided.

リード41は、図7及び図9に示すように、電池蓋21との間に正極内部絶縁部材24を介在させた状態で電池蓋21の下面に対向して配置されており、開口部41aから突出する固定軸52cの先端を径方向外側に拡げてかしめることにより、正極接続端子52に電気的に接続され且つ電池蓋21から絶縁された状態で電池蓋21に一体に固定されている。リード41は、開口部41aから固定軸52cの先端のかしめ部52eが突出しており、電池外側に連通する貫通孔52dが電池内側に向かって開口している。   As shown in FIGS. 7 and 9, the lead 41 is disposed to face the lower surface of the battery lid 21 with the positive electrode internal insulating member 24 interposed between the lead 41 and the battery lid 21. By extending and caulking the tip of the protruding fixed shaft 52c radially outward, it is integrally fixed to the battery lid 21 while being electrically connected to the positive electrode connection terminal 52 and insulated from the battery lid 21. In the lead 41, a caulking portion 52e at the tip of the fixed shaft 52c protrudes from the opening 41a, and a through hole 52d communicating with the outside of the battery opens toward the inside of the battery.

図11は、第1実施の形態におけるかしめ部の構成例を説明する断面図であり、図9のB部を拡大して示す図である。
リード41には、図11に示すように、ダイアフラム42をかしめ固定するかしめ部41dが設けられている。かしめ部41dは、ダイアフラム42のフランジ部42bをダイアフラム42の軸方向両側から挟み込むことによってかしめ固定している。
FIG. 11 is a cross-sectional view illustrating a configuration example of a caulking portion in the first embodiment, and is an enlarged view of a portion B in FIG.
As shown in FIG. 11, the lead 41 is provided with a caulking portion 41 d for caulking and fixing the diaphragm 42. The caulking portion 41 d is caulked and fixed by sandwiching the flange portion 42 b of the diaphragm 42 from both sides in the axial direction of the diaphragm 42.

リード41は、電池内側に露出する平坦面41gに周状に連続して凹設されてダイアフラム42のフランジ部42bが挿入される凹溝41bと、凹溝41bの径方向外側位置でフランジ部42bの外周端面に対向して立ち上がる外周壁部41cを有している。   The lead 41 is continuously recessed in a circumferential shape on a flat surface 41g exposed to the inside of the battery, and the groove 41b into which the flange portion 42b of the diaphragm 42 is inserted, and the flange portion 42b at a radially outer position of the groove 41b. The outer peripheral wall portion 41c rises to face the outer peripheral end face.

かしめ部41dは、フランジ部42bとの間にシール部材43を介して、凹溝41bにフランジ部42bを挿入し、外周壁部41cの先端側を全周に亘って径方向内側に折り曲げることによって形成される。かしめ部41dは、凹溝41bの溝底と平行に延在し、凹溝41bの溝底との間にフランジ部42bを挟み込む。   The caulking portion 41d is inserted between the flange portion 42b and the flange portion 42b via the seal member 43, and the flange portion 42b is inserted into the groove 41b, and the distal end side of the outer peripheral wall portion 41c is bent radially inward over the entire circumference. It is formed. The caulking portion 41d extends in parallel with the groove bottom of the concave groove 41b, and sandwiches the flange portion 42b between the groove bottom of the concave groove 41b.

リード41は、かしめ部41dによってフランジ部42bをかしめ固定することにより、ダイアフラム42との間が密閉封止される。リード41は、フランジ部42bの内周端部42cに当接する当接面41fを有しており、ダイアフラム42と電気的に接続されている。   The lead 41 is hermetically sealed between the lead 42 and the diaphragm 42 by caulking and fixing the flange portion 42b with the caulking portion 41d. The lead 41 has an abutment surface 41f that abuts on the inner peripheral end portion 42c of the flange portion 42b, and is electrically connected to the diaphragm 42.

シール部材43は、フランジ部42bをダイアフラム42の軸方向両側から挟み込む断面コ字状を有しており、フランジ部42bと凹溝41bの溝底との間、フランジ部42bと外周壁部41cとの間、フランジ部42bとかしめ部41dとの間に介在される。シール部材43のうち、フランジ部42bとかしめ部41dとの間に介在される部分は、かしめ部41dの先端よりも湾曲面部42a側に突出する大きさを有している。   The seal member 43 has a U-shaped cross-section that sandwiches the flange portion 42b from both axial sides of the diaphragm 42. Between the flange portion 42b and the groove bottom of the concave groove 41b, the flange portion 42b and the outer peripheral wall portion 41c Between the flange portion 42b and the caulking portion 41d. A portion of the seal member 43 interposed between the flange portion 42b and the caulking portion 41d has a size that protrudes toward the curved surface portion 42a from the tip of the caulking portion 41d.

かしめ部41dは、かしめ部41dの基端側よりもフランジ部42bに接近する側に折り曲げられた先端部41eを有しており、先端部41eの一部をシール部材43に食い込ませている(図11に矢印で示す)。したがって、最もシール部材43を押圧する押圧ポイントを形成し、凹溝41bから押圧ポイントまでの間に亘ってシール部材43をフランジ部42bに押圧することができ、確実にシールすることができる。   The caulking portion 41d has a distal end portion 41e that is bent closer to the flange portion 42b than the proximal end side of the caulking portion 41d, and a part of the distal end portion 41e is bitten into the seal member 43 ( (Indicated by arrows in FIG. 11). Therefore, a pressing point that most presses the sealing member 43 can be formed, and the sealing member 43 can be pressed against the flange portion 42b from the concave groove 41b to the pressing point, so that the sealing can be ensured.

図12から図15は、ダイアフラムをリードにかしめ固定する方法を説明する断面図である。
リード41は、正極接続端子52のかしめ部52eによって電池蓋21との間に正極内部絶縁部材24を介してかしめ固定されている。
12 to 15 are sectional views for explaining a method of caulking and fixing the diaphragm to the lead.
The lead 41 is caulked and fixed between the battery lid 21 and the battery lid 21 by caulking portions 52 e of the positive electrode connection terminal 52 via the positive electrode internal insulating member 24.

図12に示すように、リード41の下側から、シール部材43とダイアフラム42を接近させ、図13に示すように、間にシール部材43を介して凹溝41b内にダイアフラム42のフランジ部42bを挿入する。シール部材43は、図12及び図13に示すように、フランジ部42bの上面に接面する平面部と、平面部の外周端縁で折曲されて起立する外周壁部とを有する、断面が略L字状のリング形状を有している。   As shown in FIG. 12, the seal member 43 and the diaphragm 42 are approached from the lower side of the lead 41, and as shown in FIG. 13, the flange portion 42b of the diaphragm 42 is inserted into the concave groove 41b via the seal member 43 therebetween. Insert. As shown in FIGS. 12 and 13, the seal member 43 has a flat surface portion that is in contact with the upper surface of the flange portion 42 b and an outer peripheral wall portion that is bent and rises at the outer peripheral edge of the flat surface portion. It has a substantially L-shaped ring shape.

そして、図14に示すように、外周壁部41cの先端側を全周に亘って径方向内側に折り曲げて、フランジ部42bを軸方向両側から挟み込み、図15に示すように、凹溝41bの溝底とかしめ部41dとの間に挟持する。   14, the distal end side of the outer peripheral wall portion 41c is bent radially inward over the entire circumference, and the flange portion 42b is sandwiched from both sides in the axial direction. As shown in FIG. It is clamped between the groove bottom and the caulking portion 41d.

上記した構成によれば、ダイアフラム42のフランジ部42bをかしめにより固定したので、ダイアフラム42をリード41に簡単且つ確実に固定し、密閉封止することができる。   According to the configuration described above, since the flange portion 42b of the diaphragm 42 is fixed by caulking, the diaphragm 42 can be easily and reliably fixed to the lead 41 and hermetically sealed.

例えばダイアフラムとリードとの間を周状に溶接する従来方法の場合は、溶接距離が長く、溶接不良が発生しやすいという問題がある。また、ダイアフラムの真円度や溶接箇所の径のずれによって密閉の信頼性が損なわれるおそれがあるという問題がある。これに対して、本実施の形態では、かしめにより固定しているので、上記した溶接時の問題が発生することはなく、密閉の信頼性が高いという特徴を有している。   For example, in the case of the conventional method in which the diaphragm and the lead are welded in a circumferential shape, there is a problem that the welding distance is long and poor welding is likely to occur. Moreover, there exists a problem that the reliability of sealing may be impaired by the roundness of a diaphragm and the shift | offset | difference of the diameter of a welding location. On the other hand, in this embodiment, since it is fixed by caulking, the above-described problem during welding does not occur, and the sealing reliability is high.

次に、上記構成を有する正極端子構成部50を作製する方法について説明する。
(1)正極接続端子52、正極外部絶縁部材22、正極内部絶縁部材24等と電池蓋21との接合
まず、電池蓋21の電池外側にて、正極外部絶縁部材22とガスケット26を電池蓋21の開口部21bに位置合わせして配置する。そして、正極外部端子51のヘッド部51bを正極外部絶縁部材22に設けられた凹部に挿入し、正極接続端子52の挿通孔52bに正極外部端子51の軸部51aを挿入する。
Next, a method for producing the positive electrode terminal component 50 having the above configuration will be described.
(1) Joining of the positive electrode connection terminal 52, the positive electrode external insulating member 22, the positive electrode internal insulating member 24, and the like and the battery lid 21 First, the positive electrode external insulating member 22 and the gasket 26 are connected to the battery lid 21 outside the battery lid 21. It arranges and aligns with the opening part 21b. Then, the head portion 51 b of the positive electrode external terminal 51 is inserted into a recess provided in the positive electrode external insulating member 22, and the shaft portion 51 a of the positive electrode external terminal 51 is inserted into the insertion hole 52 b of the positive electrode connection terminal 52.

そして、電池蓋21の電池内側にて、電池蓋21とリード41との間に正極内部絶縁部材24を介在させて重ね合わせ、正極内部絶縁部材24の貫通孔24cとリード41の開口部41aが同心円上に配置されるように、正極内部絶縁部材24とリード41とを配置する。そして、電池蓋21の凸部21aを正極内部絶縁部材24の固定孔24bに挿入して、凸部21aの先端を固定孔24bから突出させた状態とする。   Then, inside the battery lid 21, the positive electrode internal insulating member 24 is interposed between the battery lid 21 and the lead 41 so that the through hole 24 c of the positive electrode internal insulating member 24 and the opening 41 a of the lead 41 are formed. The positive electrode internal insulating member 24 and the lead 41 are arranged so as to be arranged on a concentric circle. And the convex part 21a of the battery cover 21 is inserted in the fixing hole 24b of the positive electrode internal insulation member 24, and the front-end | tip of the convex part 21a is made to protrude from the fixing hole 24b.

そして、正極接続端子52を電池蓋21の電池外側である上方から接近させて、正極外部絶縁部材22の上に正極接続端子52の平板部52aを重ね合わせ、かつ、正極接続端子52の固定軸52cを電池蓋21の外側から順番に、正極外部絶縁部材22の開口部22a、ガスケット26、電池蓋21の開口部21b、正極内部絶縁部材24の貫通孔24c、リード41の開口部41aに挿通してから、固定軸52cの先端をかしめる。ガスケット26は、固定軸52cと電池蓋21との間に介在されて、これらの間を絶縁及びシールする。   Then, the positive electrode connection terminal 52 is approached from the upper side which is the battery outer side of the battery lid 21, the flat plate portion 52 a of the positive electrode connection terminal 52 is superimposed on the positive electrode external insulating member 22, and the fixed shaft of the positive electrode connection terminal 52 is fixed. 52c is inserted from the outside of the battery lid 21 into the opening 22a of the positive electrode external insulating member 22, the gasket 26, the opening 21b of the battery lid 21, the through hole 24c of the positive electrode internal insulating member 24, and the opening 41a of the lead 41. After that, the tip of the fixed shaft 52c is caulked. The gasket 26 is interposed between the fixed shaft 52c and the battery lid 21 to insulate and seal between them.

固定軸52cのかしめ加工と共に、電池蓋21の凸部21aをかしめる加工が行われる。凸部21aは、正極内部絶縁部材24の固定孔24bから突出している先端がかしめにより拡径され、正極内部絶縁部材24を電池蓋21に固定する。正極内部絶縁部材24は、固定軸52cのかしめと、凸部21aのかしめとの2種類のかしめによって電池蓋21に固定される。   Along with the caulking of the fixed shaft 52c, the caulking of the convex portion 21a of the battery lid 21 is performed. The projecting portion 21 a has a tip that protrudes from the fixing hole 24 b of the positive electrode internal insulating member 24 and has its diameter expanded by caulking to fix the positive electrode internal insulating member 24 to the battery lid 21. The positive electrode internal insulating member 24 is fixed to the battery lid 21 by two types of caulking, that is, caulking of the fixed shaft 52c and caulking of the convex portion 21a.

(2)リード41とダイアフラム42との接合
リード41の凹溝41b内に、ダイアフラム42のフランジ部42bを挿入し、かしめにより互いに接合し、密閉封止する。リード41は、正極接続端子52のかしめ部52eを避けるようにドーム形状をしており、より少ないスペースでダイアフラム42の表面積を、より大きく確保できるようになっている。したがって、電池容器2の内圧が上昇したときに、ダイアフラム42が変形しやすくなり、より低圧にて確実な電流遮断が可能になる。
(2) Joining between the lead 41 and the diaphragm 42 The flange portion 42b of the diaphragm 42 is inserted into the concave groove 41b of the lead 41, joined together by caulking, and hermetically sealed. The lead 41 has a dome shape so as to avoid the caulking portion 52e of the positive electrode connection terminal 52, and a larger surface area of the diaphragm 42 can be secured in a smaller space. Therefore, when the internal pressure of the battery container 2 rises, the diaphragm 42 is easily deformed, and a reliable current interruption can be performed at a lower pressure.

(3)正極集電板53と正極内部絶縁部材24、ダイアフラム42との接合
正極集電板53は、基部53dに数箇所の支持穴53cが設けられており、正極内部絶縁部材24の下面である電池内側平面部でかつ支持穴53cに対向する位置には、支持穴53cに挿通される保持部24aが設けられている。正極集電板53は、保持部24aを支持穴53cに挿入して保持部24aの先端を加熱変形させて拡径する熱溶着により、正極内部絶縁部材24に係合され、基部53dの上面が正極内部絶縁部材24の下面に接面した状態で固定される。
(3) Joining of the positive electrode current collector plate 53 to the positive electrode internal insulating member 24 and the diaphragm 42 The positive electrode current collector plate 53 is provided with several support holes 53c in the base 53d. A holding portion 24a that is inserted through the support hole 53c is provided at a position facing the support hole 53c on a certain battery inner plane portion. The positive electrode current collector plate 53 is engaged with the positive electrode internal insulating member 24 by inserting the holding portion 24a into the support hole 53c and heat-deforming the tip of the holding portion 24a to expand the diameter, and the upper surface of the base portion 53d is The positive inner insulating member 24 is fixed in contact with the lower surface.

そして、正極集電板53の接合部53aをダイアフラム42の中央部に接合する。正極集電板53の接合部53aは、ダイアフラム42の中央部に溶接によって接合される。このダイアフラム42の中央部と正極集電板53の接合部53aとの接合は、レーザー溶接、抵抗溶接、超音波溶接、摩擦攪拌接合などが可能である。正極端子構成部50は、上記した(1)、(2)、(3)の工程を経て作製される。   Then, the joint portion 53 a of the positive electrode current collector plate 53 is joined to the center portion of the diaphragm 42. The joint portion 53a of the positive electrode current collector plate 53 is joined to the center portion of the diaphragm 42 by welding. Laser welding, resistance welding, ultrasonic welding, friction stir welding, or the like is possible for joining the central portion of the diaphragm 42 and the joint portion 53a of the positive electrode current collector plate 53. The positive electrode terminal component 50 is manufactured through the steps (1), (2), and (3) described above.

正極集電板53は、保持部24aによって正極内部絶縁部材24に固定され、正極内部絶縁部材24は、凸部21aによって電池蓋21に係合されているので、正極集電板53に加わる外部からの振動や衝撃を、正極集電板53から正極内部絶縁部材24に伝達し、正極内部絶縁部材24から電池蓋21に伝達して電池容器2全体に拡散することができ、ガスケット26、脆弱部53b、接合部53aなどの脆弱箇所への悪影響を抑えることが可能である。   The positive electrode current collecting plate 53 is fixed to the positive electrode internal insulating member 24 by the holding portion 24a, and the positive electrode internal insulating member 24 is engaged with the battery lid 21 by the convex portion 21a. Vibration and shock from the positive current collector 53 can be transmitted to the positive electrode internal insulation member 24, and can be transmitted from the positive electrode internal insulation member 24 to the battery lid 21 to be diffused throughout the battery container 2. It is possible to suppress the adverse effect on the weak parts such as the part 53b and the joint part 53a.

なお、正極集電板53と正極内部絶縁部材24の固定に関しては、加工工程が容易であることから保持部24aを加熱変形させて係合させ、熱溶着する場合を例に述べたが、さらに強固な固定が必要である場合は、加熱変形の代わりに、あるいは加熱変形と併せて、ネジやリベット、接着剤の少なくともいずれか一つを使用して固定することも可能である。同様に、電池蓋21と正極内部絶縁部材24の固定に関しては、電池蓋21に設けた凸部21aを正極内部絶縁部材24の固定孔24bに挿入して凸部21a先端を加圧変形させることによって正極内部絶縁部材24を係合する場合を例に説明したが、凸部21a先端の加圧変形の代わりに、あるいは加圧変形と併せて、ネジやリベット、接着剤の少なくともいずれか一つを使用して正極内部絶縁部材24を固定することも可能である。   In addition, regarding the fixing of the positive electrode current collector plate 53 and the positive electrode internal insulating member 24, since the processing step is easy, the case where the holding portion 24a is thermally deformed and engaged and thermally welded is described as an example. If firm fixation is required, it is also possible to fix using at least one of a screw, a rivet, and an adhesive instead of or in combination with heat deformation. Similarly, regarding the fixation of the battery lid 21 and the positive electrode internal insulating member 24, the convex portion 21a provided on the battery lid 21 is inserted into the fixing hole 24b of the positive electrode internal insulating member 24 and the tip of the convex portion 21a is pressurized and deformed. The case where the positive electrode internal insulating member 24 is engaged is described as an example, but at least one of a screw, a rivet, and an adhesive is used instead of or in addition to the pressure deformation at the tip of the convex portion 21a. It is also possible to fix the positive electrode internal insulating member 24 using

本実施形態では、正極集電板53、ダイアフラム42、リード41は、アルミニウム、またはアルミニウム合金により形成されている。リチウムイオン二次電池1は、正極側がアルミニウム合金により構成され、負極側が銅合金により構成されている場合、アルミニウム合金の方が銅合金よりも変形し易く、破断も容易である。したがって、本実施形態では、正極側に電流遮断構造を設けている。   In the present embodiment, the positive electrode current collector plate 53, the diaphragm 42, and the lead 41 are formed of aluminum or an aluminum alloy. In the lithium ion secondary battery 1, when the positive electrode side is made of an aluminum alloy and the negative electrode side is made of a copper alloy, the aluminum alloy is more easily deformed and broken easily than the copper alloy. Therefore, in this embodiment, the current interruption structure is provided on the positive electrode side.

リチウムイオン二次電池1を組み立てるには、上記方法により作製された正極端子構成部50を有する蓋組立体4を組み立てた後に、正極集電板53の接合片53eと負極集電板63の接合片63eに、捲回電極群3を接合し、発電要素組立体5を組み立てる。そして、捲回電極群3の周りを、正極集電板53、負極集電板63ごと、絶縁シート(図示せず)で覆って電池缶11に挿入し、電池缶11の開口部11aを電池蓋21で閉塞して、レーザー溶接によって電池蓋21を電池缶11に接合して封止する。   In order to assemble the lithium ion secondary battery 1, the lid assembly 4 having the positive electrode terminal component 50 manufactured by the above method is assembled, and then the bonding piece 53 e of the positive current collector 53 and the negative current collector 63 are joined. The wound electrode group 3 is joined to the piece 63e, and the power generation element assembly 5 is assembled. Then, the periphery of the wound electrode group 3 is covered with an insulating sheet (not shown) together with the positive electrode current collector plate 53 and the negative electrode current collector plate 63 and inserted into the battery can 11, and the opening 11 a of the battery can 11 is connected to the battery. The lid 21 is closed, and the battery lid 21 is joined and sealed to the battery can 11 by laser welding.

そして、注液口72から電池容器2内に電解液を注液し、注液口72を注液栓73で閉塞してレーザー溶接により電池蓋21に接合して封止する。上記した組立作業により組み立てられたリチウムイオン二次電池1は、正極接続端子52と正極外部端子51、および負極接続端子62と負極外部端子61によって接続された外部電子機器に対して、充放電が可能となる。   Then, an electrolytic solution is injected into the battery container 2 from the liquid injection port 72, the liquid injection port 72 is closed with a liquid injection plug 73, and the battery lid 21 is joined and sealed by laser welding. The lithium ion secondary battery 1 assembled by the above-described assembly work is charged / discharged with respect to the external electronic device connected by the positive electrode connection terminal 52 and the positive electrode external terminal 51 and the negative electrode connection terminal 62 and the negative electrode external terminal 61. It becomes possible.

リチウムイオン二次電池1は、次の作用効果を奏することができる。
本実施形態のリチウムイオン二次電池1は、リード41にダイアフラム42をかしめ固定して、リード41とダイアフラム42との間を密閉封止する構成を有している。したがって、従来と比較して、簡単且つ確実に密閉することができ、密閉の信頼性を向上させることができる。そして、フランジ部42bと凹溝41bの溝底との間、及び、フランジ部42bとかしめ部41dとの間の両方にシール部材43が介在されているので、高いシール性を有する。
The lithium ion secondary battery 1 can have the following effects.
The lithium ion secondary battery 1 of the present embodiment has a configuration in which a diaphragm 42 is caulked and fixed to a lead 41 and the lead 41 and the diaphragm 42 are hermetically sealed. Therefore, as compared with the conventional case, the sealing can be performed easily and reliably, and the sealing reliability can be improved. And since the sealing member 43 is interposed both between the flange part 42b and the groove bottom of the recessed groove 41b and between the flange part 42b and the caulking part 41d, it has high sealing performance.

そして、かしめ部41dは、かしめ部41dの基端側よりもフランジ部42bに接近する側に折り曲げられた先端部41eを有しており、先端部41eの一部をシール部材43に食い込ませている。したがって、最もシール部材43を押圧する押圧ポイントを形成することができ、凹溝41bから押圧ポイントまでの間に亘ってシール部材43をフランジ部42bに押圧することができ、シール性を高めることができる。   The caulking portion 41d has a distal end portion 41e that is bent closer to the flange portion 42b than the proximal end side of the caulking portion 41d, and a part of the distal end portion 41e is bitten into the seal member 43. Yes. Therefore, a pressing point that most presses the sealing member 43 can be formed, and the sealing member 43 can be pressed against the flange portion 42b from the recessed groove 41b to the pressing point, thereby improving the sealing performance. it can.

本実施形態のリチウムイオン二次電池1は、ダイアフラム42の湾曲面部42aがドーム形状を有しているので、平板状のものと比較して、電池内圧上昇によってより広い面積で圧力を受けることができ、限られたスペースの中でダイアフラム42を変形させて脆弱部53bを破断させるだけの応力を容易に得ることができる。したがって、同じ破断圧力の設定でも脆弱部53bの剛性を比較的強くすることができ、振動や衝撃によって脆弱部53bが破断するのを防ぐとともに、内圧が上昇した際には確実に安定して電流経路を遮断することができる。   In the lithium ion secondary battery 1 of the present embodiment, the curved surface portion 42a of the diaphragm 42 has a dome shape. It is possible to easily obtain a stress sufficient to deform the diaphragm 42 in a limited space and break the fragile portion 53b. Accordingly, the rigidity of the fragile portion 53b can be made relatively strong even when the same breaking pressure is set, and the fragile portion 53b is prevented from being broken by vibration or impact, and when the internal pressure rises, the current is reliably and stably maintained. The route can be blocked.

リチウムイオン二次電池1は、電池蓋21を貫通する正極接続端子52の固定軸52cをかしめて、電池蓋21の外側の正極接続端子52と電池蓋21の内側の正極集電板53との間を電気的に接続すると共に、これら正極接続端子52と正極集電板53とを電池蓋21に一体に固定する構造を有している。そして、固定軸52cによるかしめ固定に加えて、凸部21aによって電池蓋21に正極内部絶縁部材24を係合し、保持部24aによって正極内部絶縁部材24に正極集電板53を固定する構造を有している。   In the lithium ion secondary battery 1, the fixed shaft 52 c of the positive electrode connection terminal 52 that penetrates the battery lid 21 is caulked, and the positive electrode connection terminal 52 outside the battery lid 21 and the positive electrode current collector plate 53 inside the battery lid 21 are connected. The positive electrode connection terminal 52 and the positive electrode current collector plate 53 are integrally fixed to the battery lid 21 while being electrically connected to each other. Further, in addition to caulking and fixing by the fixed shaft 52c, a structure in which the positive electrode internal insulating member 24 is engaged with the battery lid 21 by the convex portion 21a and the positive electrode current collecting plate 53 is fixed to the positive electrode internal insulating member 24 by the holding portion 24a. Have.

したがって、正極集電板53に加わる外部からの振動や衝撃を正極集電板53から正極内部絶縁部材24に伝達し、正極内部絶縁部材24から電池蓋21に伝達することができ、正極接続端子52の固定軸52cによるかしめ固定のみの場合と比較して、ガスケット26やかしめ部52eなどの脆弱箇所に負荷が与えられるのを防ぐことができ、密閉性を維持することができる。   Therefore, external vibration and impact applied to the positive electrode current collector plate 53 can be transmitted from the positive electrode current collector plate 53 to the positive electrode internal insulating member 24, and can be transmitted from the positive electrode internal insulating member 24 to the battery lid 21. Compared with the case of only caulking and fixing by the fixing shaft 52c of 52, it is possible to prevent a load from being applied to a fragile portion such as the gasket 26 and the caulking portion 52e, and to maintain hermeticity.

正極内部絶縁部材24は、電池外部側が電池蓋21に固定され、電池内部側が正極集電板53に固定されており、このような正極内部絶縁部材24の電池内外両面での固定は、リチウムイオン二次電池1に加わる外圧からの振動や衝撃が、正極集電板53を通じて電流遮断構造の脆弱部53bや密閉性を保っているガスケット26の圧縮部に悪影響を与えるときの抑止として、大きな効果となる。   The positive electrode internal insulating member 24 is fixed to the battery lid 21 on the battery outer side, and is fixed to the positive electrode current collector plate 53 on the battery inner side. As a deterrent when vibration or impact from external pressure applied to the secondary battery 1 adversely affects the fragile portion 53b of the current interrupting structure through the positive electrode current collector plate 53 or the compression portion of the gasket 26 that keeps hermeticity. It becomes.

電流遮断構造は、捲回電極群3と正極接続端子52との間の電流経路に介在されており、例えば過充電などの不測の事態に電流遮断構造の脆弱部が破断することによって、高い安全性を保つことができるが、脆弱部や溶接接合した部分のみで固定されている場合、脆弱部や溶接接合した部分が外部からの振動や衝撃により破断するなどして密閉性を損ねてしまい、誤動作や品質劣化を起こす可能性もある。   The current interrupting structure is interposed in the current path between the wound electrode group 3 and the positive electrode connection terminal 52. For example, the fragile part of the current interrupting structure breaks due to an unexpected situation such as overcharge. However, if it is fixed only at the fragile part or welded part, the fragile part or welded part may break due to external vibration or impact, resulting in loss of sealing performance. There is also a possibility of causing malfunction and quality degradation.

本実施の形態によれば、正極内部絶縁部材24の電池内外両面での固定により、基部53dの脆弱部53bや接合部53aに振動や衝撃が加えられるのを抑制して、意図しない状況での接合部53aの剥離や脆弱部53bの破断の発生を防止することができる。したがって、振動、衝撃に対して剛性を高めた電流遮断構造を持ったリチウムイオン二次電池1を得ることができる。   According to the present embodiment, by fixing the positive electrode internal insulating member 24 on both the inside and outside of the battery, it is possible to suppress the vibration and impact from being applied to the weakened portion 53b and the joint portion 53a of the base portion 53d, and in an unintended situation. Generation | occurrence | production of peeling of the junction part 53a and a fracture | rupture of the weak part 53b can be prevented. Therefore, it is possible to obtain the lithium ion secondary battery 1 having a current blocking structure with increased rigidity against vibration and impact.

本実施形態では、正極端子構成部50に、電流遮断構造を設けた場合について述べてきたが、同様に負極端子構成部60に電流遮断構造を設けることも可能である。   In the present embodiment, the case where the positive electrode terminal component 50 is provided with the current interruption structure has been described, but the negative electrode terminal component 60 may be similarly provided with the current interruption structure.

[第2実施の形態]
次に、第2実施の形態について図16を用いて以下に説明する。なお、第1実施の形態と同様の構成要素については、同様の符号を付することでその詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described below with reference to FIG. In addition, about the component similar to 1st Embodiment, the detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図16は、第2実施の形態におけるかしめ部の構成例を説明する断面図であり、図9のB部に対応する図である。
本実施の形態において特徴的なことは、フランジ部42bの湾曲面部42a側にのみシール部材44を介在させた構成としたことである。
FIG. 16 is a cross-sectional view illustrating a configuration example of a caulking portion in the second embodiment, and corresponds to a portion B in FIG.
What is characteristic in the present embodiment is that the seal member 44 is interposed only on the curved surface portion 42a side of the flange portion 42b.

シール部材44は、フランジ部42bの湾曲面部42a側の面である下面に沿って周状に連続する断面矩形のリング形状を有している。シール部材44は、フランジ部42bの下面とかしめ部41dとの間にのみ介在される。リード41は、凹溝41bの溝底にフランジ部42bの上面が当接しており、ダイアフラム42に電気的に接続されている。   The seal member 44 has a ring shape with a rectangular cross section that is circumferentially continuous along a lower surface that is a surface of the flange portion 42b on the curved surface portion 42a side. The seal member 44 is interposed only between the lower surface of the flange portion 42b and the caulking portion 41d. In the lead 41, the upper surface of the flange portion 42b is in contact with the groove bottom of the concave groove 41b and is electrically connected to the diaphragm 42.

上記した構成によれば、第1実施の形態と同様に、ダイアフラム42のフランジ部42bをかしめにより固定したので、ダイアフラム42をリード41に簡単且つ確実に固定し、密閉封止することができる。そして、第1実施の形態と比較して、かしめ荷重を小さくすることができ、組立作業を容易化することができる。また、シール部材44が正規の位置に配置されていることを確認しながら、リード41をかしめることができ、シール部材44の位置ずれを防ぐことができる。したがって、密閉の信頼性をさらに高めることができる。   According to the configuration described above, as in the first embodiment, the flange portion 42b of the diaphragm 42 is fixed by caulking, so that the diaphragm 42 can be easily and reliably fixed to the lead 41 and hermetically sealed. As compared with the first embodiment, the caulking load can be reduced, and the assembling work can be facilitated. In addition, the lead 41 can be caulked while confirming that the seal member 44 is disposed at the regular position, and the positional deviation of the seal member 44 can be prevented. Therefore, the reliability of sealing can be further improved.

[第3実施の形態]
次に、第3実施の形態について図17を用いて以下に説明する。なお、第1及び第2実施の形態と同様の構成要素については、同様の符号を付することでその詳細な説明を省略する。
[Third Embodiment]
Next, a third embodiment will be described below with reference to FIG. In addition, about the component similar to 1st and 2nd embodiment, the detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図17は、第3実施の形態におけるかしめ部の構成例を説明する断面図であり、図9のB部に対応する図である。
本実施の形態において特徴的なことは、フランジ部42bと凹溝41bの溝底との間にのみシール部材45を介在させた構成としたことである。
FIG. 17 is a cross-sectional view illustrating a configuration example of a caulking portion in the third embodiment, and corresponds to a portion B in FIG.
What is characteristic in the present embodiment is that the seal member 45 is interposed only between the flange portion 42b and the groove bottom of the concave groove 41b.

シール部材45は、フランジ部42bの湾曲面部42aと反対側の面である上面に沿って周状に連続する断面矩形のリング形状を有している。シール部材45は、フランジ部42bの上面と凹溝41bの溝底との間にのみ介在される。リード41は、かしめ部41dにフランジ部42bの下面が当接しており、ダイアフラム42に電気的に接続されている。   The seal member 45 has a ring shape with a rectangular cross section that is circumferentially continuous along an upper surface that is a surface opposite to the curved surface portion 42a of the flange portion 42b. The seal member 45 is interposed only between the upper surface of the flange portion 42b and the groove bottom of the concave groove 41b. In the lead 41, the lower surface of the flange portion 42b is in contact with the caulking portion 41d and is electrically connected to the diaphragm 42.

上記した構成によれば、第1及び第2実施の形態と同様に、ダイアフラム42のフランジ部42bをかしめにより固定したので、ダイアフラム42をリード41に簡単且つ確実に固定し、密閉封止することができる。そして、シール部材45は、第2実施の形態と比較して、フランジ部42bの上面と凹溝41bの溝底という、いずれもフラットな面の間に介在されるので、均一に押圧され、高いシール性を得ることができる。   According to the configuration described above, as in the first and second embodiments, the flange portion 42b of the diaphragm 42 is fixed by caulking, so that the diaphragm 42 is easily and reliably fixed to the lead 41 and hermetically sealed. Can do. Since the seal member 45 is interposed between the flat surfaces of the upper surface of the flange portion 42b and the groove bottom of the concave groove 41b as compared with the second embodiment, the seal member 45 is uniformly pressed and is high. Sealability can be obtained.

また、ダイアフラム42の第1傾斜面部にシール部材45が当接するおそれがないので、シール部材45の寸法形状や位置の精度を高める必要がなく、製造コストを抑え、実施を容易化することができる。   Further, since there is no possibility that the seal member 45 comes into contact with the first inclined surface portion of the diaphragm 42, it is not necessary to increase the accuracy of the dimensional shape and position of the seal member 45, and the manufacturing cost can be reduced and the implementation can be facilitated. .

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 角形二次電池
2 電池容器
3 電極群
4 蓋組立体
5 発電要素組立体
11 電池缶
11a 開口部
21 電池蓋
22 正極外部絶縁部材
23 負極外部絶縁部材
24 正極内部絶縁部材
24a 保持部
25 負極内部絶縁部材
26 ガスケット
31 負極板
31a 負極塗工部
31b 負極未塗工部
32 セパレータ
33 正極板
33a 正極塗工部
33b 正極未塗工部
34 セパレータ
35 テープ
41 リード
42 ダイアフラム
43、44、45 シール部材
51 正極外部端子
52 正極接続端子
52a 平板部
53 正極集電板
53a 接合部
53b 脆弱部
61 負極外部端子
62 負極接続端子
63 負極集電板
71 ガス排出弁
72 注液口
73 注液栓
DESCRIPTION OF SYMBOLS 1 Square secondary battery 2 Battery container 3 Electrode group 4 Lid assembly 5 Power generation element assembly 11 Battery can 11a Opening part 21 Battery cover 22 Positive electrode external insulation member 23 Negative electrode external insulation member 24 Positive electrode internal insulation member 24a Holding part 25 Negative electrode inside Insulating member 26 Gasket 31 Negative electrode plate 31a Negative electrode coated portion 31b Negative electrode uncoated portion 32 Separator 33 Positive electrode plate 33a Positive electrode coated portion 33b Positive electrode uncoated portion 34 Separator 35 Tape 41 Lead 42 Diaphragms 43, 44, 45 Seal member 51 Positive electrode external terminal 52 Positive electrode connection terminal 52a Flat plate portion 53 Positive electrode current collector plate 53a Joint portion 53b Weak portion 61 Negative electrode external terminal 62 Negative electrode connection terminal 63 Negative electrode current collector plate 71 Gas discharge valve 72 Injection port 73 Injection plug

Claims (8)

扁平の電極群を内蔵する電池容器と、該電池容器を密閉する電池蓋と、該電池蓋に開口する開口部に挿通される接続端子と、を有する角形二次電池であって、
前記電池容器内に配置されて前記接続端子に接続されるリードと、
該リードに接続されて前記接続端子を貫通する貫通孔を閉塞し、前記電池容器の内部圧力の上昇により変形するダイアフラムと、
を有し、
前記ダイアフラムは、前記リードにかしめ固定されていることを特徴とする角形二次電池。
A prismatic secondary battery having a battery container containing a flat electrode group, a battery lid for sealing the battery container, and a connection terminal inserted into an opening opened in the battery lid,
A lead disposed in the battery container and connected to the connection terminal;
A diaphragm that is connected to the lead and closes the through-hole penetrating the connection terminal, and is deformed by an increase in internal pressure of the battery container;
Have
The rectangular secondary battery, wherein the diaphragm is fixed by caulking to the lead.
前記ダイアフラムは、軸方向に移行するにしたがって漸次縮径するドーム状の湾曲面部と、該湾曲面部の外周縁部から径方向外側に向かって拡がるフランジ部を有し、
前記リードは、前記フランジ部を前記ダイアフラムの軸方向両側から挟み込むことによってかしめ固定するかしめ部を有することを特徴とする請求項1に記載の角形二次電池。
The diaphragm has a dome-shaped curved surface portion that gradually decreases in diameter as it moves in the axial direction, and a flange portion that expands radially outward from the outer peripheral edge of the curved surface portion,
2. The prismatic secondary battery according to claim 1, wherein the lead includes a caulking portion that is caulked and fixed by sandwiching the flange portion from both axial sides of the diaphragm.
前記リードは、該リードの平坦面に周状に連続して凹設されて前記フランジ部が挿入される凹溝と、該凹溝の径方向外側位置で前記フランジ部の外周端面に対向して立ち上がる外周壁部とを有し、
前記かしめ部は、前記凹溝に前記フランジ部を挿入し、前記外周壁部の先端側を径方向内側に折り曲げることによって形成されることを特徴とする請求項2に記載の角形二次電池。
The lead is continuously recessed in a flat shape on the flat surface of the lead so that the flange portion is inserted, and the lead is opposed to the outer peripheral end surface of the flange portion at a radially outer position of the groove. An outer peripheral wall that rises,
3. The prismatic secondary battery according to claim 2, wherein the caulking portion is formed by inserting the flange portion into the concave groove and bending the distal end side of the outer peripheral wall portion radially inward.
前記フランジ部と前記かしめ部との間に介在されるシール部材を有することを特徴とする請求項3に記載の角形二次電池。   The prismatic secondary battery according to claim 3, further comprising a sealing member interposed between the flange portion and the caulking portion. 前記フランジ部と前記凹溝の溝底との間に介在されるシール部材を有することを特徴とする請求項3に記載の角形二次電池。   The prismatic secondary battery according to claim 3, further comprising a seal member interposed between the flange portion and a groove bottom of the concave groove. 前記フランジ部と前記凹溝の溝底との間、及び、前記フランジ部と前記かしめ部との間の両方に介在されるシール部材を有することを特徴とする請求項3に記載の角形二次電池。   The square secondary according to claim 3, further comprising a sealing member interposed between the flange portion and the groove bottom of the concave groove and between the flange portion and the caulking portion. battery. 前記かしめ部は、前記かしめ部の基端側よりも前記フランジ部に接近する側に折り曲げられた先端部を有することを特徴とする請求項4又は6に記載の角形二次電池。   7. The prismatic secondary battery according to claim 4, wherein the caulking portion has a distal end portion bent toward a side closer to the flange portion than a proximal end side of the caulking portion. 前記ダイアフラムと前記電極群との間を接続し、前記ダイアフラムの変形により破断して前記ダイアフラムと前記電極群との間の導通を遮断する集電板を有することを特徴とする請求項1に記載の角形二次電池。   2. The current collecting plate according to claim 1, further comprising a current collecting plate that connects between the diaphragm and the electrode group, breaks due to deformation of the diaphragm, and interrupts conduction between the diaphragm and the electrode group. Square rechargeable battery.
JP2013008771A 2013-01-21 2013-01-21 Square secondary battery Pending JP2014139904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008771A JP2014139904A (en) 2013-01-21 2013-01-21 Square secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008771A JP2014139904A (en) 2013-01-21 2013-01-21 Square secondary battery

Publications (1)

Publication Number Publication Date
JP2014139904A true JP2014139904A (en) 2014-07-31

Family

ID=51416518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008771A Pending JP2014139904A (en) 2013-01-21 2013-01-21 Square secondary battery

Country Status (1)

Country Link
JP (1) JP2014139904A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141879A (en) * 2014-01-30 2015-08-03 トヨタ自動車株式会社 Secondary battery, and method of manufacturing secondary battery
JP2016046158A (en) * 2014-08-25 2016-04-04 日立オートモティブシステムズ株式会社 Secondary battery
JP2016119214A (en) * 2014-12-19 2016-06-30 株式会社豊田自動織機 Power storage device
JP2016219177A (en) * 2015-05-18 2016-12-22 トヨタ自動車株式会社 Current cutoff device
JP2017027779A (en) * 2015-07-22 2017-02-02 株式会社豊田自動織機 Method of manufacturing power storage device
WO2017119421A1 (en) * 2016-01-06 2017-07-13 株式会社Gsユアサ Electricity storage element
JP2018085178A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Sealed battery
WO2019026455A1 (en) * 2017-08-04 2019-02-07 株式会社豊田自動織機 Current interrupting device and electricity storage device
JP2019135705A (en) * 2018-02-05 2019-08-15 トヨタ自動車株式会社 Sealed battery
CN113972449A (en) * 2021-10-25 2022-01-25 珠海冠宇电池股份有限公司 Battery and electronic product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224658A (en) * 1998-02-06 1999-08-17 Fuji Elelctrochem Co Ltd Current cut-off element and battery having current cut-off element
JPH11329405A (en) * 1998-05-21 1999-11-30 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2012513098A (en) * 2008-12-19 2012-06-07 ボストン−パワー,インコーポレイテッド Modular CID assembly for lithium ion batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224658A (en) * 1998-02-06 1999-08-17 Fuji Elelctrochem Co Ltd Current cut-off element and battery having current cut-off element
JPH11329405A (en) * 1998-05-21 1999-11-30 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2012513098A (en) * 2008-12-19 2012-06-07 ボストン−パワー,インコーポレイテッド Modular CID assembly for lithium ion batteries

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141879A (en) * 2014-01-30 2015-08-03 トヨタ自動車株式会社 Secondary battery, and method of manufacturing secondary battery
JP2016046158A (en) * 2014-08-25 2016-04-04 日立オートモティブシステムズ株式会社 Secondary battery
JP2016119214A (en) * 2014-12-19 2016-06-30 株式会社豊田自動織機 Power storage device
JP2016219177A (en) * 2015-05-18 2016-12-22 トヨタ自動車株式会社 Current cutoff device
JP2017027779A (en) * 2015-07-22 2017-02-02 株式会社豊田自動織機 Method of manufacturing power storage device
JPWO2017119421A1 (en) * 2016-01-06 2018-11-01 株式会社Gsユアサ Electricity storage element
WO2017119421A1 (en) * 2016-01-06 2017-07-13 株式会社Gsユアサ Electricity storage element
JP2018085178A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Sealed battery
US10381631B2 (en) 2016-11-21 2019-08-13 Toyota Jidosha Kabushiki Kaisha Sealed-type battery having a current interrupt device
WO2019026455A1 (en) * 2017-08-04 2019-02-07 株式会社豊田自動織機 Current interrupting device and electricity storage device
JP2019135705A (en) * 2018-02-05 2019-08-15 トヨタ自動車株式会社 Sealed battery
JP7022316B2 (en) 2018-02-05 2022-02-18 トヨタ自動車株式会社 Sealed battery
CN113972449A (en) * 2021-10-25 2022-01-25 珠海冠宇电池股份有限公司 Battery and electronic product
CN113972449B (en) * 2021-10-25 2024-01-30 珠海冠宇电池股份有限公司 Battery and electronic product

Similar Documents

Publication Publication Date Title
JP5970079B2 (en) Prismatic secondary battery
JP6005172B2 (en) Prismatic secondary battery
JP2014139904A (en) Square secondary battery
US10388939B2 (en) Secondary battery
US11303002B2 (en) Secondary battery
JP5734096B2 (en) Secondary battery
JP2014096225A (en) Square secondary battery
JP5986510B2 (en) Prismatic secondary battery
US10224535B2 (en) Rectangular secondary battery
JP6235435B2 (en) Secondary battery
JP2023134644A (en) battery
JP6577998B2 (en) Prismatic secondary battery
JP6235419B2 (en) Secondary battery
JP2018125109A (en) Secondary battery and battery pack
JP2016173907A (en) Square secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531