JPH11329405A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11329405A
JPH11329405A JP10139556A JP13955698A JPH11329405A JP H11329405 A JPH11329405 A JP H11329405A JP 10139556 A JP10139556 A JP 10139556A JP 13955698 A JP13955698 A JP 13955698A JP H11329405 A JPH11329405 A JP H11329405A
Authority
JP
Japan
Prior art keywords
diaphragm
terminal plate
internal terminal
secondary battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139556A
Other languages
Japanese (ja)
Inventor
Yasutake Kurata
健剛 倉田
Yoji Ishihara
洋司 石原
Yoshiaki Asami
義明 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
FDK Twicell Co Ltd
AT Battery KK
Original Assignee
Toshiba Battery Co Ltd
A&T Battery Corp
AT Battery KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, A&T Battery Corp, AT Battery KK filed Critical Toshiba Battery Co Ltd
Priority to JP10139556A priority Critical patent/JPH11329405A/en
Publication of JPH11329405A publication Critical patent/JPH11329405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To ensure a current interruption without the leakage of electrolyte to the outside, and prevent the opening of a current path due to a falling electric shock by forming a diaphragm and an internal terminal plate by use of aluminum, and specifying the thickness of the internal terminal plate situated in the connecting part. SOLUTION: The thickness of an internal terminal plate situated in the connecting part between a diaphragm and the internal terminal plate in a nonaqueous electrolyte secondary battery is set to 90% or less of the thickness of the diaphragm situated in the connecting part. The lower end periphery of metal case 13 is bent inward, and a circular diaphragm 18 consisting of aluminum is supported and fixed to the bent part 17 with electric conduction and airtightness. The internal terminal plate 21 consisting of aluminum is formed of a disk part 23 situated on the lower surface of an insulating plate 20 and having a raise part 22 on the periphery and a strip lead through part 24 integrated thereto and having the other end extended to the lower face near the left side of a plate gasket 10. A circular thin part 25 is formed near the center of the disk part 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、特に電流経路遮断機構を備えた非水電解液二
次電池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having a current path interrupting mechanism.

【0002】[0002]

【従来の技術】近年、パソコンなどの電子機器の小型
化、軽量化、コードレス化に伴い、その駆動電源として
小型、軽量でエネルギー密度が高く、繰り返し充放電が
可能な電池が要望されている。
2. Description of the Related Art In recent years, with the miniaturization, weight reduction, and cordlessness of electronic devices such as personal computers, there is a demand for a small, lightweight, high energy density, repetitive charge / discharge battery as a driving power source.

【0003】この種の二次電池としては、負極活物質に
リチウム、リチウム合金等を用い、正極活物質としてバ
ナジウム、チタン、モリブデン、ニオブなどの酸化物、
硫化物、セレン化物を用いたものが知られている。最近
では負極活物質にカーボンを用い、正極活物質にはリチ
ウムコバルト酸化物、リチウムニッケル酸化物、リチウ
ムマンガン酸化物を用いたリチウムイオン二次電池の開
発、商品化がなされている。
A secondary battery of this type uses lithium, a lithium alloy, or the like as a negative electrode active material, and oxides such as vanadium, titanium, molybdenum, and niobium as positive electrode active materials.
Those using sulfides and selenides are known. Recently, lithium ion secondary batteries using carbon as the negative electrode active material and lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide as the positive electrode active material have been developed and commercialized.

【0004】具体的には、前記正負極の活物質に導電剤
を結着剤と共に混合し、これらのペーストを集電体にそ
れぞれ圧着、シート化して正極および負極を作製する。
つづいて、これら正負極間にポリエチレン等からなる多
孔質フィルムを介在し、捲回して発電要素を作製する。
この後、前記発電要素を外装缶内に収納し、非水電解液
を収容し、蓋体を前記外装缶の開口部に気密に取付ける
ことにより密閉形のリチウムイオン二次電池のような非
水電解液は二次電池を製造する。
[0004] Specifically, a conductive agent is mixed with a binder in the active material of the positive and negative electrodes, and these pastes are respectively pressed and formed into a current collector to form a positive electrode and a negative electrode.
Subsequently, a porous film made of polyethylene or the like is interposed between the positive and negative electrodes and wound to produce a power generating element.
Thereafter, the power generating element is housed in an outer can, a non-aqueous electrolyte is housed therein, and a lid is hermetically attached to the opening of the outer can to provide a non-aqueous solution such as a sealed lithium ion secondary battery. The electrolyte produces a secondary battery.

【0005】また、電池形状としてはコイン形、筒形の
他に機器の薄型化、省スペース化の要請から角形、長円
形などの収納時の体積効率の優れた電池の要求も高まっ
ている。
[0005] In addition to the coin shape and the cylindrical shape, there is a growing demand for a battery having excellent volumetric efficiency when stored, such as a rectangular shape or an oval shape, due to a demand for thinner and space-saving equipment.

【0006】ところで、前述した非水電解液二次電池に
おいて充放電時に過充電・過放電の状態になると発電要
素の活物質や電解液の分解等により電池内にガスが発生
して内圧上昇が起こる。この内圧上昇を放置すると、電
池の破裂や電解液の飛散を招き、電池が搭載された電子
機器を損傷する。
When the above-described non-aqueous electrolyte secondary battery is overcharged or overdischarged during charging and discharging, gas is generated in the battery due to decomposition of the active material of the power generation element and the electrolyte, and the internal pressure rises. Occur. If this internal pressure rise is left, the battery will burst or the electrolyte will be scattered, and the electronic equipment on which the battery is mounted will be damaged.

【0007】このようなことから、従来の非水電解液二
次電池は発電要素と外部端子の間の電流経路に内部端子
板およびこれと接続する変形可能なダイヤフラムを有す
る電流経路遮断機構が組込まれている。この電流経路遮
断機構は、通常時、前記内部端子板と前記ダイヤフラム
とが接続され、内圧上昇時に前記ダイヤフラムが変形し
て前記内部端子板から分離されることにより電流経路を
遮断する。
For this reason, the conventional non-aqueous electrolyte secondary battery incorporates a current path breaking mechanism having an internal terminal plate and a deformable diaphragm connected thereto in a current path between the power generating element and the external terminal. Have been. In this current path cutoff mechanism, the internal terminal plate and the diaphragm are normally connected, and when the internal pressure rises, the diaphragm is deformed and separated from the internal terminal plate to cut off the current path.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
電流経路遮断機構はダイヤフラムと内部端子板との接続
構造に起因して内圧上昇時にダイヤフラムが破断し、そ
の破断部から電解液が漏れ出したり、ダイヤフラムに穴
が開いて内圧が開放され、電流遮断機能が働かなくなっ
たり、或いは落下等により前記ダイヤフラムと内部端子
板とが外れて内部経路がオープンになったりする問題が
あった。
However, in the conventional current path breaking mechanism, the diaphragm is broken when the internal pressure rises due to the connection structure between the diaphragm and the internal terminal plate, and the electrolyte leaks from the broken part, There has been a problem that a hole is opened in the diaphragm to release the internal pressure and the current cutoff function does not work, or the diaphragm and the internal terminal plate are detached due to a drop or the like and the internal path is opened.

【0009】本発明は、過充電・過放電時にのガス発生
に伴って内圧が上昇した場合、電解液が外部に漏れ出す
ことなく、電流遮断を確実に行なうことが可能で、かつ
落下衝撃による電流経路のオープン化を防止し得る非水
電解液二次電池を提供しようとするものである。
According to the present invention, when the internal pressure rises due to the generation of gas during overcharge / overdischarge, the current can be reliably shut off without the electrolyte leaking to the outside, and the drop impact can be prevented. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can prevent an open current path.

【0010】本発明は、内部短絡時のガス発生に伴って
内圧上昇した場合、ガスを外部に放出して爆発を未然に
防止する安全弁機構をさらに備えた非水電解液二次電池
を提供しようとするものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery further provided with a safety valve mechanism for releasing a gas to the outside to prevent an explosion when an internal pressure rises due to gas generation during an internal short circuit. It is assumed that.

【0011】[0011]

【課題を解決するための手段】本発明に係わる非水電解
液二次電池は、 前記ダイヤフラムおよび前記内部端子
板はアルミニウムから作られ、かつ前記接合部に位置す
る前記内部端子板の厚さは、同接合部に位置する前記ダ
イヤフラムの厚さの90%以下であることを特徴とする
ものである。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery according to the present invention, wherein the diaphragm and the internal terminal plate are made of aluminum, and the thickness of the internal terminal plate located at the junction is: The thickness is not more than 90% of the thickness of the diaphragm located at the joint.

【0012】本発明に係わる非水電解液二次電池におい
て、前記電流経路遮断機構に対して極性の異なる部材に
内圧を開放するための安全弁機構をさらに設けることを
許容する。
[0012] In the nonaqueous electrolyte secondary battery according to the present invention, it is possible to further provide a safety valve mechanism for releasing internal pressure to a member having a different polarity with respect to the current path cutoff mechanism.

【0013】[0013]

【発明の実施の形態】以下、本発明に係わる非水電解液
二次電池を角型非水電解液二次電池を例として図面を参
照して詳細に説明する。ここで、角型とは外装缶を発電
要素を含む面で切断したときの形状が長方形であること
を意味するが、コーナ部においてアールが付けられるこ
とを許容するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to the present invention will be described below in detail with reference to the drawings, taking a rectangular non-aqueous electrolyte secondary battery as an example. Here, the square shape means that the shape when the outer can is cut at the surface including the power generation element is a rectangle, but allows the corner to be rounded.

【0014】図1は、本発明に係わる非水電解液二次電
池、例えば角型リチウムイオン二次電池を示す斜視図、
図2は図1の要部拡大断面図である。
FIG. 1 is a perspective view showing a non-aqueous electrolyte secondary battery according to the present invention, for example, a prismatic lithium ion secondary battery.
FIG. 2 is an enlarged sectional view of a main part of FIG.

【0015】金属からなる有底矩形筒状をなす外装缶1
は、例えば負極端子を兼ね、底部内面に図示しない絶縁
フィルムが配置されている。発電要素である電極体2
は、前記外装缶1内に収納されている。前記電極体2
は、負極とセパレータと正極とを前記負極が最外周に位
置するように渦巻状に捲回した後、扁平状にプレス成形
することにより作製したものである。中心付近にリード
取り出し穴3 を有する有底矩形筒状をなす合成樹脂製の
保護部材4は、前記外装缶1内の前記電極体2上に配置
されている。
An outer can 1 in the form of a bottomed rectangular tube made of metal
Has, for example, a negative electrode terminal, and an insulating film (not shown) is arranged on the inner surface of the bottom. Electrode body 2 as power generation element
Are stored in the outer can 1. The electrode body 2
Is manufactured by spirally winding a negative electrode, a separator, and a positive electrode such that the negative electrode is positioned at the outermost periphery, and then press-molding the flat electrode into a flat shape. A protective member 4 made of a synthetic resin and having a bottomed rectangular cylindrical shape having a lead extraction hole 3 near the center is disposed on the electrode body 2 in the outer can 1.

【0016】金属製蓋体5は、前記外装缶1の上端開口
部に例えばレーザ溶接により気密に接合されている。前
記蓋体5の中心付近には、電解液の注液孔6が開口さ
れ、かつこの注液孔6から右側に離れた前記蓋体5の箇
所には正極端子取出用円形穴7が開口されている。栓体
8は、前記外装缶1内に電解液を注液した後の前記注液
孔6に挿着されている。環状の薄膜部からなる安全弁9
は、前記蓋体5の前記注液孔6から左側に位置する部分
に形成されている。
The metal lid 5 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding. An electrolyte injection hole 6 is opened near the center of the lid 5, and a circular hole 7 for taking out a positive electrode terminal is opened at a location of the lid 5 away from the injection hole 6 to the right. ing. The plug 8 is inserted into the injection hole 6 after the electrolyte is injected into the outer can 1. Safety valve 9 consisting of an annular thin film
Is formed in a portion of the lid 5 located on the left side of the liquid injection hole 6.

【0017】合成樹脂製の板状絶縁ガスケット10は、
前記蓋体5の前記注液孔6付近から右側全体の裏面に固
定され、かつ前記正極端子取出用円形穴7と合致するよ
うに円形穴11が開口されている。上部に円形穴12を
有する帽子形のアルミニウムもしくはアルミニウム合金
製のケース13は、前記板状絶縁ガスケット10裏面に
前記円形穴12が前記ガスケット10の円形穴11に対
向するように配置されている。上端にフランジ14を有
する筒状外部端子15は、前記蓋体5の正極端子取出用
円形穴7、前記板状ガスケット10の円形穴11および
前記ケース13の円形穴12に合成樹脂製の筒状絶縁ガ
スケット16を介して挿入され、例えば前記外部端子1
5の下端を前記金属ケース13の内面に折り曲げること
により前記ケース13を前記蓋体5にかしめ固定すると
ともに、前記ケース13に前記外部端子15を電気的に
接続している。
The plate-shaped insulating gasket 10 made of synthetic resin is
A circular hole 11 is fixed to the entire back surface of the right side from the vicinity of the liquid injection hole 6 of the lid 5 and coincides with the circular hole 7 for taking out the positive electrode terminal. A cap-shaped aluminum or aluminum alloy case 13 having a circular hole 12 at the top is arranged on the back surface of the plate-shaped insulating gasket 10 such that the circular hole 12 faces the circular hole 11 of the gasket 10. A cylindrical external terminal 15 having a flange 14 at an upper end is provided with a synthetic resin cylindrical hole in the circular hole 7 for taking out the positive electrode terminal of the lid 5, the circular hole 11 of the plate gasket 10, and the circular hole 12 of the case 13. For example, the external terminal 1 is inserted through an insulating gasket 16.
By bending the lower end of 5 to the inner surface of the metal case 13 to fix the case 13 to the lid 5, the case 13 is electrically connected to the external terminal 15.

【0018】前記ケース13は、その下端周縁が内側に
屈曲され、この屈曲部17にアルミニウムからなる円形
のダイヤフラム18が電気的導通および気密性を持って
支持固定されている。中心付近に円形穴19が開口され
た円形絶縁板20は、前記ケース13の底面からその屈
曲部17上面に亘ってに配置されている。
The case 13 has a lower peripheral edge bent inward, and a circular diaphragm 18 made of aluminum is supported and fixed to the bent portion 17 with electrical conduction and airtightness. A circular insulating plate 20 having a circular hole 19 opened in the vicinity of the center is disposed from the bottom surface of the case 13 to the upper surface of the bent portion 17.

【0019】アルミニウムからなる内部端子板21は、
前記絶縁板20の下面に位置し、周縁に立ち上がり部2
2を有する円板部23と、この円板部23に一体化さ
れ、他端が前記板状ガスケット10の左端付近の下面ま
で延出された帯状導出部24とからなる。前記円板部2
3は、その立ち上がり部22を前記金属ケース13の屈
曲部17に前記絶縁板20を介して内側に屈曲させるこ
とにより前記ケース13に支持、固定されている。前記
円板部23の中心付近には、前記ダイヤフラム18の厚
さの90%以下の厚さを持つ円形肉薄部25が形成さ
れ、この円形肉薄部25上面は前記絶縁板20の円形穴
19を通して前記ダイヤフラム18下面と例えば超音波
溶接、抵抗溶接、レーザ溶接により接合されている。前
記円板部23には、複数のガス流通穴26が前記円形肉
薄部25を中心にして同心円状に開口されている。
The internal terminal plate 21 made of aluminum is
It is located on the lower surface of the insulating plate 20 and has a rising portion 2 at the periphery.
2 and a strip-shaped lead-out portion 24 integrated with the disc portion 23 and having the other end extending to the lower surface near the left end of the plate-like gasket 10. The disk part 2
3 is supported and fixed to the case 13 by bending the rising portion 22 inward at the bent portion 17 of the metal case 13 via the insulating plate 20. Near the center of the disk portion 23, a circular thin portion 25 having a thickness of 90% or less of the thickness of the diaphragm 18 is formed, and the upper surface of the circular thin portion 25 passes through the circular hole 19 of the insulating plate 20. The lower surface of the diaphragm 18 is joined by, for example, ultrasonic welding, resistance welding, or laser welding. The disk portion 23 has a plurality of gas flow holes 26 concentrically opened around the circular thin portion 25.

【0020】正極リード27は、前記電極体2の正極
(図示せず)に一端が接続され、かつ他端が前記保持部
材4のリード取り出し穴3を通して前記内部端子板21
の帯状導出部24に接続されている。
The positive electrode lead 27 has one end connected to the positive electrode (not shown) of the electrode body 2 and the other end connected to the internal terminal plate 21 through the lead extraction hole 3 of the holding member 4.
Is connected to the strip-shaped lead-out section 24.

【0021】このような構造において、前記電極体2の
正極(図示せず)は前記正極リード27、内部端子板2
1の帯状導出部24、円形部22、前記ダイヤフラム1
8、前記ケース13を通して前記外部端子15に接続さ
れる。
In such a structure, the positive electrode (not shown) of the electrode body 2 is connected to the positive electrode lead 27 and the internal terminal plate 2.
1, the band-shaped lead-out portion 24, the circular portion 22, and the diaphragm 1
8. Connected to the external terminal 15 through the case 13.

【0022】また、前記電極体2の正極と外部端子15
の電流経路に配置された内部端子板21、絶縁板20お
よびダイヤフラム18により電流経路遮断機構を構成し
ている。
The positive electrode of the electrode body 2 and the external terminal 15
The current path cut-off mechanism is constituted by the internal terminal plate 21, the insulating plate 20, and the diaphragm 18 arranged in the current path.

【0023】なお、前記注液孔6に対向する前記板状ガ
スケット10および帯状導出部24にはそれぞれ孔2
8,29が開口されている。
The plate-shaped gasket 10 and the strip-shaped lead-out portion 24 facing the liquid injection hole 6 have holes 2 respectively.
8, 29 are open.

【0024】前記外装缶は、例えばステンレスまたは鉄
から作られる。
The outer can is made of, for example, stainless steel or iron.

【0025】前記負極は、例えばリチウムイオンが出し
入れされる炭素質物質を含むペーストを銅薄板のような
集電体に保持させた構造を有する。
The negative electrode has a structure in which, for example, a paste containing a carbonaceous substance through which lithium ions are taken in and out is held on a current collector such as a thin copper plate.

【0026】前記正極は、例えばリチウムニッケル酸化
物、リチウムコバルト酸化物、リチウムマンガン酸化物
のような活物質を含むペーストをアルミニウム薄板のよ
うな集電体に保持させた構造を有する。
The positive electrode has a structure in which a paste containing an active material such as lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide is held on a current collector such as an aluminum thin plate.

【0027】前記セパレータとしては、例えばポリエチ
レンのような合成樹脂からなる多孔性フィルムが用いら
れる。
As the separator, for example, a porous film made of a synthetic resin such as polyethylene is used.

【0028】前記電解液としては、例えば過塩素酸リチ
ウム、ホウフッ化リチウム、六フッ化リチウム、六フッ
化燐リチウム等の電解質をエチレンカーボネート、プロ
ピレンカーボネートのような有機溶媒で溶解したもの等
が用いられる。
As the electrolyte, for example, a solution obtained by dissolving an electrolyte such as lithium perchlorate, lithium borofluoride, lithium hexafluoride, and lithium hexafluoride in an organic solvent such as ethylene carbonate or propylene carbonate is used. Can be

【0029】前記ダイヤフラム18および内部端子板2
1に用いられるアルミニウムとしては、例えばA105
0,A1070,A1100,A1200,A1N30
等を挙げることができる。
The diaphragm 18 and the internal terminal plate 2
Examples of aluminum used for A1 include A105
0, A1070, A1100, A1200, A1N30
And the like.

【0030】前記ダイヤフラム18と接合される前記内
部端子板21の前記円形肉薄部25の厚さを前記ダイヤ
フラム18の厚さの90%以下に規定したのは、次のよ
うな理由によるものである。前記肉薄部25の厚さが前
記ダイヤフラム18の厚さの90%を超えると、前記肉
薄部25の接合部における破断強度を前記ダイヤフラム
18の破断強度より小さくすることが困難になり、良好
な電流経路の遮断を行なうことが困難になる。より好ま
しい前記円形肉薄部25の厚さは前記ダイヤフラム18
の厚さの40〜80%である。
The reason why the thickness of the circular thin portion 25 of the internal terminal plate 21 joined to the diaphragm 18 is specified to be 90% or less of the thickness of the diaphragm 18 is as follows. . If the thickness of the thin portion 25 exceeds 90% of the thickness of the diaphragm 18, it becomes difficult to make the breaking strength at the joint of the thin portion 25 smaller than the breaking strength of the diaphragm 18. It becomes difficult to cut off the route. More preferably, the thickness of the circular thin portion 25 is the same as that of the diaphragm 18.
40 to 80% of the thickness.

【0031】前記安全弁9の作動圧は、前記電流遮断機
構の作動圧より高めに設定される。
The operating pressure of the safety valve 9 is set higher than the operating pressure of the current interrupt mechanism.

【0032】このような構成によれば、充放電に際して
の過充電時や過放電時に外装缶1内の電極体2を構成す
る正負極中の活物質の分解や非水電解液の分解によりガ
スが発生して内圧が上昇すると、前記ガスは保護部材4
のリード取り出し穴3を通して内部端子板21の円形部
23に開口した複数のガス流通穴26に流入し、さらに
絶縁板20の円形穴19を通してダイヤフラム18を加
圧するため、その加圧力により前記ダイヤフラム18が
前記内部端子板21の円板部23から離れるように上方
に湾曲する。
According to such a configuration, the gas is generated by the decomposition of the active material in the positive and negative electrodes constituting the electrode body 2 in the outer can 1 and the decomposition of the non-aqueous electrolyte at the time of overcharge or overdischarge during charge and discharge. When the internal pressure rises due to the generation of the gas, the gas flows into the protective member 4.
Flows into a plurality of gas flow holes 26 opened in the circular portion 23 of the internal terminal board 21 through the lead extraction holes 3 of the internal terminal board 21, and further presses the diaphragm 18 through the circular holes 19 of the insulating plate 20. Are bent upward away from the disk portion 23 of the internal terminal plate 21.

【0033】この時、前記内部端子板21は前記ダイヤ
フラム18の厚さ90%以下の厚さを有する円形肉薄部
25の部位で前記ダイヤフラム18と接合されているた
め、その接合部における前記円形肉薄部25の破断強度
が前記ダイヤフラム18の破断強度より小さくなる。そ
の結果、図3および図4に示すように前記肉薄部25の
みが破断されてその破断片30がダイヤフラム18の下
面に移行され、ダイヤフラム18自体の破断を防止でき
る。したがって、前記内部端子板21とダイヤフラム1
8との導通が遮断され、外装缶1内の電極体2の正極と
蓋体5に筒状絶縁ガスケット16を介してかしめ固定さ
れた筒状外部端子14の電流経路が断たれるため、過充
電状態または過放電状態を停止させて過度の内圧上昇を
未然に防止することができる。
At this time, since the internal terminal plate 21 is joined to the diaphragm 18 at a portion of the circular thin portion 25 having a thickness of 90% or less of the thickness of the diaphragm 18, the circular thin portion at the joint portion is formed. The breaking strength of the portion 25 is smaller than the breaking strength of the diaphragm 18. As a result, as shown in FIG. 3 and FIG. 4, only the thin portion 25 is broken, and the broken pieces 30 are transferred to the lower surface of the diaphragm 18, so that the diaphragm 18 itself can be prevented from being broken. Therefore, the internal terminal plate 21 and the diaphragm 1
8 is cut off, and the current path of the cylindrical external terminal 14 fixed to the positive electrode of the electrode body 2 in the outer can 1 and the lid 5 via the cylindrical insulating gasket 16 is cut off. The charge state or the overdischarge state is stopped to prevent an excessive increase in the internal pressure.

【0034】また、前記内部端子板21とダイヤフラム
18との導通遮断においてダイヤフラム18自体の破断
を防止できるため、外装缶1内の電解液が破断箇所から
漏れ出して電池を搭載した電子機器の破損を防止でき
る。
Also, since the diaphragm 18 itself can be prevented from being broken when the conduction between the internal terminal plate 21 and the diaphragm 18 is interrupted, the electrolyte in the outer can 1 leaks out of the broken portion and damages the electronic equipment on which the battery is mounted. Can be prevented.

【0035】さらに、前記電流経路遮断機構は前記内部
端子板21の円形部23の肉薄部25と前記ダイヤフラ
ム18とはアルミニウムからなり、それらの部材が電気
的かつ機械的に良好な接続状態で接合されているため、
落下等の衝撃によりそれら接合部が外れて電気的にオー
プン状態になるのを防止できる。
Further, in the current path interrupting mechanism, the thin portion 25 of the circular portion 23 of the internal terminal plate 21 and the diaphragm 18 are made of aluminum, and these members are joined in good electrical and mechanical connection. Has been
It is possible to prevent the joints from coming off due to an impact such as dropping and becoming electrically open.

【0036】さらに、蓋体5に環状の薄膜部からなる安
全弁9を形成することにより前記過充電・過放電におけ
る内圧上昇が急激であったり、電流経路遮断機構では対
処し得ない内部短絡が生じて内圧が上昇した場合、図3
に示すように前記安全弁9で蓋体5が開放状態になる。
その結果、急激な内圧上昇や電流経路遮断機構では対処
し得ない内部短絡が生じて外装缶1が破裂する等の事故
を未然に防止することができる。
Further, by forming the safety valve 9 composed of an annular thin film portion on the cover 5, an internal pressure rise during the overcharge / overdischarge is sharp, or an internal short circuit which cannot be dealt with by the current path interruption mechanism occurs. When the internal pressure rises,
As shown in the figure, the lid 5 is opened by the safety valve 9.
As a result, it is possible to prevent an accident such as an abrupt increase in the internal pressure or an internal short circuit that cannot be dealt with by the current path cutoff mechanism, causing the outer can 1 to burst or the like.

【0037】[0037]

【実施例】以下、本発明の実施例を前述した図1、図2
に示す角型リチウムイオン二次電池を参照して詳細に説
明する。
FIG. 1 and FIG. 2 show an embodiment of the present invention.
This will be described in detail with reference to the prismatic lithium ion secondary battery shown in FIG.

【0038】(実施例1)まず、鉄からなる有底角形の
外装缶1内の底面に絶縁紙(図示せず)を配置し、この
外装缶1内に電極体2を収納した後、中央部にリード取
出用穴3が開口された有底矩形筒状の保護部材4を前記
電極体2上に配置した。
(Example 1) First, insulating paper (not shown) is placed on the bottom surface of a rectangular outer can 1 made of iron, and the electrode body 2 is housed in the outer can 1 and then placed in the center. A rectangular tubular protective member 4 with a bottom and a lead extraction hole 3 opened at the portion was disposed on the electrode body 2.

【0039】前記電極体2は、次のような方法により作
製した。まず、リチウムコバルト複合酸化物、導電剤お
よび結着剤を溶媒の存在下で混合してペーストを調製
し、このペーストをアルミニウム基板に塗布、乾燥、圧
縮することにより正極を得た。また、グラファイトおよ
び結着剤を溶剤の存在下で混合してペーストを調製し、
このペーストを銅基板に塗布、乾燥、圧縮することによ
り負極を得た。つづいて、これら正負極間にポリエチレ
ン製の多孔質フィルムからなるセパレー5を介在させて
渦巻き状に捲回し、扁平状に成形することにより電極体
を作製した。
The electrode body 2 was manufactured by the following method. First, a paste was prepared by mixing a lithium-cobalt composite oxide, a conductive agent, and a binder in the presence of a solvent, and the paste was applied to an aluminum substrate, dried, and compressed to obtain a positive electrode. Also, a paste is prepared by mixing graphite and a binder in the presence of a solvent,
This paste was applied to a copper substrate, dried and compressed to obtain a negative electrode. Subsequently, an electrode body was manufactured by spirally winding the separator 5 made of a porous film made of polyethylene between the positive and negative electrodes and forming the spirally flat shape.

【0040】次いで、前記外装缶1の開口部に鉄製の蓋
体5をレーザ溶接により気密に接合した。なお、前記蓋
体5は中心に開口された注液孔6と、作動圧力が18.
0〜30.0kgfの環状薄膜部からなる安全弁9と、
アルミニウムからなるケース13、ダイヤフラム18お
よび内部端子板21を有する電流経路遮断機構と、前記
遮断機構に接続された外部端子15とを備える。また、
前記蓋体5のレーザ溶接に先立って前記電極体2の正極
リード27を前記内部端子板21に接続した。
Next, an iron lid 5 was hermetically joined to the opening of the outer can 1 by laser welding. The lid 5 has an injection hole 6 opened at the center and an operating pressure of 18.
A safety valve 9 comprising an annular thin film portion of 0 to 30.0 kgf;
It includes a current path cutoff mechanism having a case 13 made of aluminum, a diaphragm 18 and an internal terminal plate 21, and an external terminal 15 connected to the cutoff mechanism. Also,
Prior to laser welding of the lid 5, the positive electrode lead 27 of the electrode body 2 was connected to the internal terminal plate 21.

【0041】前記電流経路遮断機構を構成するダイヤフ
ラム18としては、A1100、厚さ130μmのアル
ミニウム板を使用した。同遮断機構を構成する内部端子
板21としては、A1050、厚さ250μmのアルミ
ニウム板を使用し、前記ダイヤフラム18との接合部に
圧潰により厚さ70μmの円形肉薄部25を形成した。
前記ダイヤフラム18と前記内部端子板21の肉薄部2
5とは超音波溶接により接合した。このような構造の電
流経路遮断機構は電流遮断圧力が7.0〜12.0kg
fの範囲あった。
As the diaphragm 18 constituting the current path interrupting mechanism, an aluminum plate of A1100 having a thickness of 130 μm was used. As the internal terminal plate 21 constituting the blocking mechanism, an A1050 aluminum plate having a thickness of 250 μm was used, and a circular thin portion 25 having a thickness of 70 μm was formed by crushing the joint with the diaphragm 18.
Thin portion 2 of diaphragm 18 and internal terminal plate 21
5 was joined by ultrasonic welding. The current path interruption mechanism having such a structure has a current interruption pressure of 7.0 to 12.0 kg.
f.

【0042】次いで、六フッ化燐リチウムの電解質をエ
チレンカーボネートとメチルエチルカーボネートで溶解
した非水溶媒系電解液を前記蓋体5の注液孔6を通して
前記外装缶1内に注液した後、前記注液孔6をステンレ
ス(SUS304)からなる栓8を溶接し、密閉するこ
とにより前述した図1、図2に示す構造の角型リチウム
イオン二次電池を製造した。
Next, a non-aqueous solvent-based electrolyte obtained by dissolving an electrolyte of lithium hexafluoride in ethylene carbonate and methyl ethyl carbonate was injected into the outer can 1 through the injection hole 6 of the lid 5. The injection hole 6 was welded to a stopper 8 made of stainless steel (SUS304) and sealed, thereby producing the rectangular lithium ion secondary battery having the structure shown in FIGS. 1 and 2 described above.

【0043】(比較例1)内部端子板として、円形肉薄
部のないA1050、厚さ250μmのアルミニウム板
を使用した以外、実施例1と同様な電流経路遮断機構を
有する角型リチウムイオン二次電池を製造した。なお、
前記電流経路遮断機構は電流遮断圧力が7.0〜12.
0kgfの範囲あった。
(Comparative Example 1) A prismatic lithium ion secondary battery having a current path cutoff mechanism similar to that of Example 1 except that an A1050 without a circular thin portion and an aluminum plate having a thickness of 250 µm were used as internal terminal plates. Was manufactured. In addition,
The current path cutoff mechanism has a current cutoff pressure of 7.0 to 12.
The range was 0 kgf.

【0044】(比較例2)内部端子板として、円形肉薄
部のないA5052、厚さ250μmのアルミニウム合
金板を使用した以外、実施例1と同様な電流経路遮断機
構を有する角型リチウムイオン二次電池を製造した。な
お、前記電流経路遮断機構は電流遮断圧力が7.0〜1
2.0kgfの範囲あった。
(Comparative Example 2) A square lithium ion secondary battery having the same current path interrupting mechanism as in Example 1 except that an A5052 without a circular thin portion and an aluminum alloy plate having a thickness of 250 µm were used as internal terminal plates. A battery was manufactured. The current path cutoff mechanism has a current cutoff pressure of 7.0-1.
The range was 2.0 kgf.

【0045】得られた実施例1および比較例1,2の1
5個の二次電池について、過充電試験を行なった。その
結果を下記表1に示す。
Example 1 and Comparative Examples 1 and 2
An overcharge test was performed on five secondary batteries. The results are shown in Table 1 below.

【0046】また、実施例1および比較例1,2の15
個の二次電池について150cmの高さから樫の木面に
落下させる試験を行なった。その結果を下記表1に示
す。
Further, 15 of Example 1 and Comparative Examples 1 and 2
A test of dropping the secondary batteries from a height of 150 cm onto the oak wood surface was performed. The results are shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】前記表1から明らかなように実施例1で
は、全ての二次電池の電流経路遮断機構が作動するとと
もに、電解液の漏れを生じることなく非常に安全な状態
に終息した。また、発熱温度もすべて70℃以下であっ
た。さらに、いずれの電池も100回の落下試験後にお
いてもダイヤフラムと内部端子板との接続性に起因する
内部抵抗の大きな変化が認められなかった。
As is clear from Table 1, in Example 1, the current path cutoff mechanisms of all the secondary batteries were activated, and the operation was terminated in a very safe state without leakage of the electrolyte. The exothermic temperatures were all 70 ° C. or less. Furthermore, no significant change in the internal resistance due to the connectivity between the diaphragm and the internal terminal plate was observed in any of the batteries even after 100 drop tests.

【0049】これに対し、比較例1では15個中5個の
二次電池において破裂し、残りの10個の二次電池にお
いて電流経路遮断機構と接続された外部端子付近から電
解液の漏れ出しを生じた。外部端子付近から電解液の漏
れ出しを生じた二次電池を分解して調べた。その結果、
ダイヤフラムが変形して破損されることにより電流遮断
がなされ、その破損箇所から電解液が漏れ出したことが
確認された。
On the other hand, in Comparative Example 1, the battery exploded in 5 out of 15 rechargeable batteries, and leaked out of the remaining 10 rechargeable batteries from the vicinity of the external terminal connected to the current path cutoff mechanism. Occurred. The secondary battery in which the electrolyte leaked from the vicinity of the external terminal was disassembled and examined. as a result,
It was confirmed that current was interrupted by the diaphragm being deformed and damaged, and that the electrolyte leaked from the damaged part.

【0050】また、比較例2の二次電池では全ての二次
電池の電流経路遮断機構が作動するとともに、電解液の
漏れを生じることがなかったが、落下試験において10
回の落下後に2個の電池が内部抵抗の増大を生じ、50
回の落下後に残りの13個の電池が内部抵抗の増大を生
じた。内部抵抗が増大した電池を分解して調べた。その
結果、ダイヤフラムと内部端子板との接合部が外れてオ
ープンになっていることが確認された。
Further, in the secondary battery of Comparative Example 2, the current path cutoff mechanisms of all the secondary batteries were activated, and the electrolyte did not leak.
After each drop, the two cells cause an increase in internal resistance, resulting in a 50
After 13 drops, the remaining 13 cells had increased internal resistance. The battery with increased internal resistance was disassembled and examined. As a result, it was confirmed that the joint between the diaphragm and the internal terminal plate was detached and opened.

【0051】なお、実施例1では外装缶および蓋体を鉄
により作り、電極体の正極と電流系遮断機構を通して接
続される正極外部端子を前記蓋体に絶縁ガスケットを介
して取付けた構造の二次電池について説明したが、これ
に限定されない。例えば、外装缶および蓋体をアルミニ
ウムまたはアルミニウム合金により作り、電極体の正極
と電流経路遮断機構を通して接続される正極外部端子を
前記蓋体に直接取付け、かつ前記蓋体に負極外部端子を
絶縁ガスケットを介して取り付け、この外部端子に電極
体の負極をリードを通して接続した構造にしてもよい。
In the first embodiment, the outer can and the lid are made of iron, and a positive electrode external terminal connected to the positive electrode of the electrode body through a current system cutoff mechanism is attached to the lid via an insulating gasket. Although the secondary battery has been described, the present invention is not limited to this. For example, the outer can and the lid are made of aluminum or an aluminum alloy, a positive electrode external terminal connected to the positive electrode of the electrode body through a current path breaking mechanism is directly attached to the lid, and a negative electrode external terminal is attached to the lid with an insulating gasket. And the external terminal may be connected to the negative electrode of the electrode body through a lead.

【0052】実施例1では角形リチウムイオン二次電池
を例にして説明したが、円筒形リチウムイオン二次電池
等にも同様に適用できる。
Although the first embodiment has been described by taking a rectangular lithium ion secondary battery as an example, the present invention can be similarly applied to a cylindrical lithium ion secondary battery and the like.

【0053】[0053]

【発明の効果】以上詳述したように、本発明によれば過
充電・過放電時にのガス発生に伴って内圧が上昇した場
合、電解液が外部に漏れ出すことなく、電流遮断を確実
に行なうことが可能で、かつ落下衝撃による電流経路の
オープン化を防止し得る高信頼性の非水電解液二次電池
を提供できる。
As described above in detail, according to the present invention, when the internal pressure rises due to the generation of gas during overcharge / overdischarge, the current is reliably shut off without the electrolyte leaking out. It is possible to provide a highly reliable non-aqueous electrolyte secondary battery which can be performed and can prevent the current path from being opened by a drop impact.

【0054】また、本発明によれば内部短絡時のガス発
生に伴って内圧上昇した場合、ガスを外部に放出して爆
発を未然に防止する安全弁機構をさらに備えたより信頼
性の高い非水電解液二次電池を提供できる。
Further, according to the present invention, when the internal pressure rises due to gas generation at the time of internal short circuit, a more reliable non-aqueous electrolysis is further provided with a safety valve mechanism for releasing gas to the outside to prevent explosion. A liquid secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる角型リチウムイオン二次電池を
示す部分切欠断面図。
FIG. 1 is a partially cutaway sectional view showing a prismatic lithium ion secondary battery according to the present invention.

【図2】図1の二次電池の要部拡大断面図。FIG. 2 is an enlarged sectional view of a main part of the secondary battery of FIG.

【図3】図1の角型リチウムイオン二次電池の電流経路
遮断機構および安全弁の作動状態を示す部分切欠断面
図。
FIG. 3 is a partially cutaway sectional view showing an operation state of a current path cutoff mechanism and a safety valve of the rectangular lithium ion secondary battery of FIG. 1;

【図4】図3の二次電池の要部拡大断面図。FIG. 4 is an enlarged sectional view of a main part of the secondary battery of FIG. 3;

【符号の説明】[Explanation of symbols]

1…外装缶、 2…電極体、 5…蓋体、 6…注液孔、 9…安全弁、 13…金属ケース、 18…ダイヤフラム、 21…内部端子板、 25…円形肉薄部、 26…ガス流通孔、 27…正極リード。 DESCRIPTION OF SYMBOLS 1 ... Outer can, 2 ... Electrode body, 5 ... Lid body, 6 ... Liquid injection hole, 9 ... Safety valve, 13 ... Metal case, 18 ... Diaphragm, 21 ... Internal terminal board, 25 ... Circular thin part, 26 ... Gas circulation Hole 27, positive electrode lead.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿左美 義明 神奈川県川崎市幸区堀川町72番地 株式会 社エイ・ティーバッテリー内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshiaki Azami 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside AT Battery Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内圧上昇に伴うダイヤフラムの変形によ
り、このダイヤフラムと所望の部位で電気的かつ機械的
に接合される内部端子板から分離して電流経路を遮断す
る機構を具備し、 前記ダイヤフラムおよび前記内部端子板はアルミニウム
から作られ、かつ前記接合部に位置する前記内部端子板
の厚さは、同接合部に位置する前記ダイヤフラムの厚さ
の90%以下であることを特徴とする非水電解液二次電
池。
1. A mechanism for disconnecting a current path by separating the diaphragm from an internal terminal plate electrically and mechanically joined to a desired portion by a deformation of the diaphragm due to a rise in internal pressure, the mechanism comprising: The internal terminal plate is made of aluminum, and the thickness of the internal terminal plate located at the joint is 90% or less of the thickness of the diaphragm located at the joint. Electrolyte secondary battery.
【請求項2】 前記内部端子板は、前記ダイヤフラムと
の接合部の厚さがその周囲部分のそれより薄いことを特
徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the internal terminal plate has a smaller thickness at a joint with the diaphragm than at a peripheral portion thereof.
【請求項3】 内圧を開放するための安全弁機構は、前
記電流経路遮断機構に対して極性の異なる部材に形成さ
れることを特徴とする請求項1記載の非水電解液二次電
池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the safety valve mechanism for releasing the internal pressure is formed in a member having a different polarity with respect to the current path cutoff mechanism.
JP10139556A 1998-05-21 1998-05-21 Nonaqueous electrolyte secondary battery Pending JPH11329405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139556A JPH11329405A (en) 1998-05-21 1998-05-21 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139556A JPH11329405A (en) 1998-05-21 1998-05-21 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11329405A true JPH11329405A (en) 1999-11-30

Family

ID=15248021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139556A Pending JPH11329405A (en) 1998-05-21 1998-05-21 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11329405A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134201A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2005011673A (en) * 2003-06-19 2005-01-13 Shin Kobe Electric Mach Co Ltd Sealed battery
JP2005149861A (en) * 2003-11-14 2005-06-09 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2008066255A (en) * 2006-08-11 2008-03-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009543293A (en) * 2006-06-27 2009-12-03 ボストン−パワー,インコーポレイテッド Integrated current interrupt device for lithium ion cells
JP2010157451A (en) * 2008-12-27 2010-07-15 Sanyo Electric Co Ltd Power supply device for vehicle
US7781088B2 (en) 2006-08-11 2010-08-24 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2010146701A1 (en) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 Battery, vehicle and apparatus mounting battery
WO2012011470A1 (en) * 2010-07-21 2012-01-26 株式会社 東芝 Battery and battery pack
JP2012028008A (en) * 2010-07-20 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery
JP2012230905A (en) * 2006-08-11 2012-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013041839A (en) * 2006-08-11 2013-02-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013157104A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Rectangular secondary battery
JP2013243020A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Secondary battery
JP2014035831A (en) * 2012-08-07 2014-02-24 Toyota Motor Corp Sealed battery
JP2014063745A (en) * 2013-11-13 2014-04-10 Sanyo Electric Co Ltd Sealed battery and manufacturing method therefor
JP2014139904A (en) * 2013-01-21 2014-07-31 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014235943A (en) * 2013-06-04 2014-12-15 シャープ株式会社 Secondary battery
US8980469B2 (en) 2012-01-27 2015-03-17 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2015053140A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2015099669A (en) * 2013-11-18 2015-05-28 株式会社豊田自動織機 Power storage device
JP2015115327A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015115326A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015115328A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015122334A (en) * 2015-03-16 2015-07-02 株式会社豊田自動織機 Power storage device comprising current breaking device
US9099734B2 (en) 2012-01-27 2015-08-04 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2016004704A (en) * 2014-06-18 2016-01-12 株式会社豊田自動織機 Power storage device
JP2016039016A (en) * 2014-08-07 2016-03-22 三洋電機株式会社 Square secondary battery and manufacturing method for the same
EP2903056A4 (en) * 2012-09-28 2016-06-01 Hitachi Automotive Systems Ltd Rectangular secondary battery
US9368764B2 (en) 2009-03-10 2016-06-14 Sanyo Electric Co., Ltd. Sealed battery and method for manufacturing the same
WO2016093100A1 (en) * 2014-12-11 2016-06-16 株式会社 豊田自動織機 Electric power storage device
JP2016219122A (en) * 2015-05-15 2016-12-22 三洋電機株式会社 Square secondary battery, battery pack using the same, and method for manufacturing square secondary battery
JP2016219123A (en) * 2015-05-15 2016-12-22 三洋電機株式会社 Square secondary battery and battery pack using the same
JP2017027779A (en) * 2015-07-22 2017-02-02 株式会社豊田自動織機 Method of manufacturing power storage device
JP2017068969A (en) * 2015-09-29 2017-04-06 三洋電機株式会社 Square secondary battery
JP2018060662A (en) * 2016-10-05 2018-04-12 トヨタ自動車株式会社 Battery manufacturing method

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134201A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Non-aqueous electrolyte secondary battery
JP2005011673A (en) * 2003-06-19 2005-01-13 Shin Kobe Electric Mach Co Ltd Sealed battery
JP4581378B2 (en) * 2003-11-14 2010-11-17 新神戸電機株式会社 Non-aqueous electrolyte secondary battery
JP2005149861A (en) * 2003-11-14 2005-06-09 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
KR101295037B1 (en) * 2006-06-27 2013-08-09 보스톤-파워, 인크. Integrated current―interrupt device for lithium―ion cells
JP2009543293A (en) * 2006-06-27 2009-12-03 ボストン−パワー,インコーポレイテッド Integrated current interrupt device for lithium ion cells
JP2008066255A (en) * 2006-08-11 2008-03-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US7781088B2 (en) 2006-08-11 2010-08-24 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP2012230905A (en) * 2006-08-11 2012-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013041839A (en) * 2006-08-11 2013-02-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9666846B2 (en) 2006-08-11 2017-05-30 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2010157451A (en) * 2008-12-27 2010-07-15 Sanyo Electric Co Ltd Power supply device for vehicle
US8748019B2 (en) 2008-12-27 2014-06-10 Sanyo Electric Co., Ltd. Car power source apparatus
US9368764B2 (en) 2009-03-10 2016-06-14 Sanyo Electric Co., Ltd. Sealed battery and method for manufacturing the same
KR101059664B1 (en) 2009-06-19 2011-08-25 도요타지도샤가부시키가이샤 Batteries, vehicles and devices equipped with them
JP5083326B2 (en) * 2009-06-19 2012-11-28 トヨタ自動車株式会社 Batteries, vehicles and devices equipped with the batteries
US20110268999A1 (en) * 2009-06-19 2011-11-03 Hiroki Nagai Battery, vehicle mounting the battery, and device mounting the battery
CN101983447A (en) * 2009-06-19 2011-03-02 丰田自动车株式会社 Battery, vehicle and apparatus mounting battery
WO2010146701A1 (en) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 Battery, vehicle and apparatus mounting battery
US9159983B2 (en) 2009-06-19 2015-10-13 Toyota Jidosha Kabushiki Kaisha Battery, vehicle mounting the battery, and device mounting the battery
JP2012028008A (en) * 2010-07-20 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery
CN105304835A (en) * 2010-07-21 2016-02-03 株式会社东芝 Battery and battery assembly
US8956755B2 (en) 2010-07-21 2015-02-17 Kabushiki Kaisha Toshiba Battery and battery assembly
WO2012011470A1 (en) * 2010-07-21 2012-01-26 株式会社 東芝 Battery and battery pack
CN102918680A (en) * 2010-07-21 2013-02-06 株式会社东芝 Battery and battery pack
JP5558569B2 (en) * 2010-07-21 2014-07-23 株式会社東芝 Battery and battery pack
JPWO2012011470A1 (en) * 2010-07-21 2013-09-09 株式会社東芝 Battery and battery pack
US8980468B2 (en) 2012-01-27 2015-03-17 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2013157104A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Rectangular secondary battery
US8980469B2 (en) 2012-01-27 2015-03-17 Sanyo Electric Co., Ltd. Prismatic secondary battery
US9099734B2 (en) 2012-01-27 2015-08-04 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP2013243020A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Secondary battery
JP2014035831A (en) * 2012-08-07 2014-02-24 Toyota Motor Corp Sealed battery
US9741994B2 (en) 2012-09-28 2017-08-22 Hitachi Automotive Systems, Ltd. Secondary battery with current breaking mechanism
EP2903056A4 (en) * 2012-09-28 2016-06-01 Hitachi Automotive Systems Ltd Rectangular secondary battery
JP2014139904A (en) * 2013-01-21 2014-07-31 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014235943A (en) * 2013-06-04 2014-12-15 シャープ株式会社 Secondary battery
JP2015053140A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device
JP2014063745A (en) * 2013-11-13 2014-04-10 Sanyo Electric Co Ltd Sealed battery and manufacturing method therefor
JP2015099669A (en) * 2013-11-18 2015-05-28 株式会社豊田自動織機 Power storage device
JP2016004704A (en) * 2014-06-18 2016-01-12 株式会社豊田自動織機 Power storage device
JP2016039016A (en) * 2014-08-07 2016-03-22 三洋電機株式会社 Square secondary battery and manufacturing method for the same
JPWO2016093100A1 (en) * 2014-12-11 2017-09-07 株式会社豊田自動織機 Power storage device
DE112015005573B4 (en) 2014-12-11 2018-07-12 Kabushiki Kaisha Toyota Jidoshokki ELECTRICAL POWER STORAGE DEVICE WITH POWER INTERRUPTION MECHANISM
WO2016093100A1 (en) * 2014-12-11 2016-06-16 株式会社 豊田自動織機 Electric power storage device
US10096815B2 (en) 2014-12-11 2018-10-09 Kabushiki Kaisha Toyota Jidoshokki Electric power storage device
JP2015115326A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015122334A (en) * 2015-03-16 2015-07-02 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015115328A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2015115327A (en) * 2015-03-16 2015-06-22 株式会社豊田自動織機 Power storage device comprising current breaking device
JP2016219123A (en) * 2015-05-15 2016-12-22 三洋電機株式会社 Square secondary battery and battery pack using the same
JP2016219122A (en) * 2015-05-15 2016-12-22 三洋電機株式会社 Square secondary battery, battery pack using the same, and method for manufacturing square secondary battery
JP2017027779A (en) * 2015-07-22 2017-02-02 株式会社豊田自動織機 Method of manufacturing power storage device
JP2017068969A (en) * 2015-09-29 2017-04-06 三洋電機株式会社 Square secondary battery
JP2018060662A (en) * 2016-10-05 2018-04-12 トヨタ自動車株式会社 Battery manufacturing method

Similar Documents

Publication Publication Date Title
JPH11329405A (en) Nonaqueous electrolyte secondary battery
JP4402637B2 (en) Secondary battery
EP1926161A2 (en) Cylindrical secondary battery
KR100601548B1 (en) Secondary battery
JP4009019B2 (en) Battery cap assembly
WO2009078680A2 (en) Pouch type secondary battery with improved safety
KR20060118957A (en) Li secondary battery
KR20040022716A (en) Cylindrical type lithium secondary battery and the fabrication method of the same
KR20210021842A (en) Rechargeable battery
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JPH07254402A (en) Sealed battery
KR101264425B1 (en) Cap assembly and rechargeable battery using the same
JP2006080066A (en) Lithium-ion secondary battery
JP2008192414A (en) Sealed battery
KR101453783B1 (en) Cap assembly and secondary battery using the same
KR101121205B1 (en) Secondary battery
KR100709871B1 (en) Secondary battery
KR100889767B1 (en) Lithium secondary battery having protection plate
JPH06231743A (en) Non-aqueous electrolyte battery
JP4688605B2 (en) Cylindrical secondary battery
KR100760754B1 (en) Secondary battery
KR100614385B1 (en) Cap Assembly and Lithium Secondary Battery with the same
KR20040022718A (en) Jelly-roll type electrode assembly and secondary battery applying the same
KR20060112746A (en) Cap assembly and lithium ion secondary battery with the same
KR20150051516A (en) Cap assembly and secondary battery comprising the same