JP2014139514A - Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material - Google Patents

Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material Download PDF

Info

Publication number
JP2014139514A
JP2014139514A JP2013007960A JP2013007960A JP2014139514A JP 2014139514 A JP2014139514 A JP 2014139514A JP 2013007960 A JP2013007960 A JP 2013007960A JP 2013007960 A JP2013007960 A JP 2013007960A JP 2014139514 A JP2014139514 A JP 2014139514A
Authority
JP
Japan
Prior art keywords
deterioration
insulating material
degree
solution
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013007960A
Other languages
Japanese (ja)
Inventor
Keiko Maruyama
慶子 丸山
Naoko Hosono
奈穂子 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013007960A priority Critical patent/JP2014139514A/en
Publication of JP2014139514A publication Critical patent/JP2014139514A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily measure a deterioration degree of insulating materials of various types and shapes.SOLUTION: An insulating material before deterioration and the insulating material after deterioration are each dissolved in a solvent; and intrinsic viscosities are calculated based on the concentrations and viscosities of the respective solutions. An intrinsic viscosity is calculated based on the Solomon-Ciuta equation. A deterioration degree of an insulating material after deterioration is determined based on the intrinsic viscosity of a solution in which the insulating material before deterioration is dissolved and on the intrinsic viscosity of a solution in which the insulating material after deterioration is dissolved. Otherwise, a ratio of the intrinsic viscosity of the solution in which the insulating material after deterioration is dissolved to the intrinsic viscosity of the solution in which the insulating material before deterioration is dissolved is calculated as a molecular weight retention rate; and a deterioration degree of the insulating material after deterioration is measured based on the molecular weight retention rate.

Description

本発明は、絶縁材料の劣化度合いを計測する劣化度計測方法及び劣化度計測装置に関する。   The present invention relates to a deterioration degree measuring method and a deterioration degree measuring apparatus for measuring a deterioration degree of an insulating material.

合成樹脂等の絶縁材料の最大の弱点は劣化であり、ポリマー成形加工前の製造直後の原料の状態でもわずかであるが劣化が進行する。絶縁材料の劣化とは、絶縁材料を構成する分子の主鎖や側鎖が切断されたり架橋されたりする等の理由により、絶縁材料の性能や機能、外観等の特性が低下することを意味する。   The greatest weakness of an insulating material such as a synthetic resin is deterioration, and the deterioration proceeds slightly even in the state of the raw material immediately after production before polymer molding. The deterioration of the insulating material means that the performance, function, appearance and other characteristics of the insulating material are deteriorated due to the main chain or side chain of the molecule constituting the insulating material being cut or cross-linked. .

絶縁材料の劣化は、応力、温度、酸素、水分、紫外線、放射線、オゾン、薬品等の種々の要因が関与して、促進される。例えば、酸素の存在下では絶縁材料の熱劣化が進行する。また、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の分子骨格にエステル結合を有する絶縁材料は、水分の存在下で加水分解が進行される。   The deterioration of the insulating material is promoted by various factors such as stress, temperature, oxygen, moisture, ultraviolet rays, radiation, ozone, and chemicals. For example, thermal degradation of the insulating material proceeds in the presence of oxygen. In addition, an insulating material having an ester bond in a molecular skeleton such as polycarbonate (PC), polyethylene terephthalate (PET), or polybutylene terephthalate (PBT) is hydrolyzed in the presence of moisture.

絶縁材料の劣化評価は、絶縁材料の種類が多様であること、使用条件が異なること、寿命の判定基準が多様であること等の理由により現在でも困難であり、絶縁材料の劣化評価に関する明確な規定がない。   It is still difficult to evaluate the deterioration of insulating materials due to various types of insulating materials, different usage conditions, and various criteria for determining the service life. There is no provision.

絶縁材料の使用状況は世界でも増加傾向であるため、各種材料毎に劣化評価が行えなければ、使用条件や使用状態により不具合や事故を起こすおそれがある。どの程度の環境や負荷で絶縁材料が劣化するのかを予測することができれば、事故の発生や交換時期に対して先んじて対応することができる。しかし、絶縁材料を使用した製品の使用環境が不明なため、材料メーカは絶縁材料の劣化に対してのデータはほとんど持っていない。   Since the usage situation of insulating materials is increasing in the world, if deterioration evaluation cannot be performed for each material, there is a possibility of causing troubles and accidents depending on usage conditions and usage conditions. If it can be predicted how much the environment and load will cause the insulation material to deteriorate, it will be possible to cope with the occurrence of an accident and the time for replacement in advance. However, since the usage environment of products using insulating materials is unknown, material manufacturers have little data on deterioration of insulating materials.

このように、絶縁材料を使用した製品の信頼性を高めるためには絶縁材料の劣化を診断する技術が必要であるが、簡便に絶縁材料の劣化を評価できる技術はなかった。   As described above, in order to increase the reliability of a product using an insulating material, a technique for diagnosing the deterioration of the insulating material is necessary, but there is no technique that can easily evaluate the deterioration of the insulating material.

絶縁材料の劣化度合いの診断方法として、初期状態の絶縁材料と所定時間劣化後の絶縁材料の引張強度を比較して絶縁材料の劣化度合いを診断する方法がある(例えば、特許文献1)。   As a method for diagnosing the degree of deterioration of the insulating material, there is a method of diagnosing the degree of deterioration of the insulating material by comparing the tensile strength of the insulating material in the initial state and the insulating material after deterioration for a predetermined time (for example, Patent Document 1).

また、絶縁材料の劣化度合いを診断する他の診断方法として、絶縁材料の伸びに基づいて絶縁材料の寿命判断を行う方法がある(例えば、特許文献2)。特許文献2では、ケーブル(絶縁材料)を寿命となる値(例えば、伸びが初期状態の50%となる状態)まで劣化させ、その伸びの値における加速温度と試験期間との関係式であるアレニウスプロットを作成し、このアレニウスプロットに基づいてケーブルの寿命判断を行っている。この診断方法で行われる環境試験では、実機の使用環境条件相当の加速試験が実施される。この加速試験の加速条件は、ケーブルの活性化エネルギーと運転期間とに基づいて設定される。この活性化エネルギーの算出には、少なくとも加速温度の異なる3条件でケーブルを熱劣化させる必要がある。   As another diagnostic method for diagnosing the degree of deterioration of the insulating material, there is a method of determining the life of the insulating material based on the elongation of the insulating material (for example, Patent Document 2). In Patent Document 2, the cable (insulating material) is deteriorated to a value that gives a life (for example, a state where the elongation is 50% of the initial state), and Arrhenius is a relational expression between the acceleration temperature and the test period at the elongation value. A plot is created, and the cable life is determined based on this Arrhenius plot. In the environmental test performed by this diagnostic method, an accelerated test corresponding to the actual environmental conditions of the actual machine is performed. The acceleration condition of this acceleration test is set based on the activation energy of the cable and the operation period. To calculate this activation energy, it is necessary to thermally degrade the cable under at least three conditions with different acceleration temperatures.

このように、絶縁材料の劣化度合いの診断方法としては、絶縁材料を種々の恒温恒湿条件で加速劣化させ絶縁材料の引張強度や破断する伸び等の時間変化を測定し、所定のしきい値(例えば、引張強度や破断する伸びが初期値の50%に低下する時間(半減期)等)を絶縁材料の寿命としている。また、これらの加速劣化の測定結果を温度の逆数に対してプロットするアレニウスプロットを行い、実際の自然環境下で劣化した絶縁材料の引張強度等の測定を行い、アレニウスプロットの結果と比較することにより、劣化した絶縁材料の劣化度合いを判定している。   As described above, as a method for diagnosing the degree of deterioration of an insulating material, an insulating material is accelerated and deteriorated under various constant temperature and humidity conditions, and a temporal change such as tensile strength or breaking elongation of the insulating material is measured. (For example, the time (half-life) during which the tensile strength or elongation at break is reduced to 50% of the initial value) is defined as the life of the insulating material. In addition, the Arrhenius plot that plots the measurement results of these accelerated deteriorations against the reciprocal of the temperature, the tensile strength of the insulating material that has deteriorated in the actual natural environment, etc. are measured and compared with the results of the Arrhenius plots. Thus, the degree of deterioration of the deteriorated insulating material is determined.

なお、絶縁材料の劣化度合いを診断する他の診断方法としては、絶縁材料の表面の絶縁抵抗の測定値を劣化度合いの指標とする診断方法や、絶縁材料が劣化度合いに応じて変色する場合には、絶縁材料の変色の度合いを劣化度合いの指標とする診断方法もある。   Other diagnostic methods for diagnosing the degree of deterioration of the insulating material include a diagnostic method that uses the measured value of the insulation resistance on the surface of the insulating material as an indicator of the degree of deterioration, and when the insulating material changes color according to the degree of deterioration. There is also a diagnostic method using the degree of discoloration of the insulating material as an indicator of the degree of deterioration.

特開平6−308000号公報JP-A-6-308000 特開2001−255262号公報JP 2001-255262 A

しかし、引張強度や破断する伸び等機械的な測定のためには、比較的大きな試験片を採取しなくてはならない。つまり、実際に使用される絶縁材料は、試験片が採取できるほどの大きさや形状を有している必要があり、広く適用することは困難となるおそれがある。   However, for mechanical measurements such as tensile strength and elongation at break, a relatively large specimen must be collected. In other words, the insulating material that is actually used needs to have a size and shape that allow a test piece to be collected, and may be difficult to apply widely.

また、紫外線等の光を要因として劣化が促進する絶縁材料の劣化は、熱劣化や加水分解による劣化とは異なり紫外線が当たった表面の劣化が特に促進される。その結果、紫外線が当たった絶縁材料の表面から深さ方向に劣化度合いが異なる場合があり、この場合、試験片を採取して機械的な強度等を測定しても、正しく劣化度合いを評価できないおそれがある。   In addition, deterioration of an insulating material whose deterioration is accelerated due to light such as ultraviolet rays is particularly accelerated in terms of deterioration of the surface exposed to ultraviolet rays, unlike thermal deterioration or degradation due to hydrolysis. As a result, the degree of deterioration may vary in the depth direction from the surface of the insulating material exposed to ultraviolet rays. In this case, the degree of deterioration cannot be correctly evaluated even if a test piece is taken and measured for mechanical strength. There is a fear.

上記事情に鑑み、本発明は、絶縁材料の劣化度合いの計測方法または計測装置において、計測対象となる絶縁材料の範囲を広げることに貢献する技術を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a technique that contributes to widening the range of an insulating material to be measured in a measuring method or measuring device for the degree of deterioration of an insulating material.

上記目的を達成する本発明の絶縁材料の劣化度計測方法は、絶縁材料の劣化度合いを計測する方法であって、初期状態の絶縁材料を溶媒に溶解し、この溶液の粘度を計測し、所定時間劣化後の絶縁材料を溶媒に溶解し、この溶液の粘度を計測し、前記初期状態の絶縁材料を溶解した溶液の粘度と、前記劣化後の絶縁材料を溶解した溶液の粘度に基づいて、前記劣化後の絶縁材料の劣化度合いを判定することを特徴としている。   A method for measuring the degree of deterioration of an insulating material of the present invention that achieves the above object is a method for measuring the degree of deterioration of an insulating material, wherein the insulating material in an initial state is dissolved in a solvent, the viscosity of this solution is measured, Dissolving the insulating material after time degradation in a solvent, measuring the viscosity of this solution, based on the viscosity of the solution in which the insulating material in the initial state is dissolved, and the viscosity of the solution in which the insulating material after deterioration is dissolved, The degree of deterioration of the insulating material after the deterioration is determined.

また、上記目的を達成する本発明の絶縁材料の劣化度計測装置は、初期状態の絶縁材料を溶解した溶液の固有粘度を保存する手段と、所定時間劣化後の前記絶縁材料を溶解した溶液の粘度を計測する手段と、前記初期状態の絶縁材料を溶解した溶液の固有粘度と、前記劣化後の絶縁材料を溶解した溶液の粘度に基づいて算出される固有粘度とに基づいて、前記劣化後の絶縁材料の劣化度合いを判定する手段と、を有することを特徴としている。   In addition, the degradation measuring apparatus for insulating material according to the present invention that achieves the above object comprises means for preserving the intrinsic viscosity of a solution in which the insulating material in the initial state is dissolved, and a solution for dissolving the insulating material after deterioration for a predetermined time. Based on the means for measuring the viscosity, the intrinsic viscosity of the solution in which the insulating material in the initial state is dissolved, and the intrinsic viscosity calculated based on the viscosity of the solution in which the insulating material after degradation is dissolved, after the deterioration And a means for determining the degree of deterioration of the insulating material.

以上の発明によれば、絶縁材料の劣化度合いを計測する絶縁材料の劣化度計測方法または劣化度計測装置において、計測対象となる絶縁材料の範囲を広げることに貢献することができる。   According to the above invention, in the deterioration degree measuring method or deterioration degree measuring apparatus for an insulating material that measures the degree of deterioration of the insulating material, it is possible to contribute to expanding the range of the insulating material that is a measurement target.

試料を採取する試験片の模式図である。It is a schematic diagram of the test piece which extract | collects a sample. 本発明の実施例1で行った絶縁材料の劣化度計測方法を説明するフロー図(溶媒にヘキサフルオロイソプロパノールを用いた場合)である。It is a flow figure (when hexafluoroisopropanol is used for a solvent) explaining the degradation degree measuring method of the insulating material performed in Example 1 of the present invention. 本発明の実施例1で行った絶縁材料の劣化度計測方法を説明するフロー図(溶媒にトルエンを用いた場合)である。It is a flowchart (when toluene is used for a solvent) explaining the degradation degree measuring method of the insulating material performed in Example 1 of this invention. 落体式自動マイクロ粘度計の測定原理を説明する説明図である。It is explanatory drawing explaining the measurement principle of a falling body type automatic microviscometer. 実施例1の計測結果を示す図であり、PC+PBTの劣化時間に対する分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, and is a characteristic view which shows the change of the molecular weight retention with respect to the deterioration time of PC + PBT. 実施例1の計測結果を示す図であり、PC+PBTの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, and is a characteristic view which shows the change of the tensile strength, elongation, and molecular weight retention with respect to the deterioration time of PC + PBT. 実施例1の計測結果を示す図であり、層状に採取したPC+PBT各層の劣化時間に対する分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, and is a characteristic figure which shows the change of the molecular weight retention with respect to the degradation time of each layer of PC + PBT collected in layers. 実施例1の計測結果を示す図であり、(a)層状に採取したPC各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)PCの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, (a) The characteristic view which shows the change of the molecular weight retention with respect to the degradation time of each PC layer extract | collected in layer form, (b) Tensile strength, elongation, and molecular weight retention with respect to the degradation time of PC It is a characteristic view which shows the change of a rate. 実施例1の計測結果を示す図であり、(a)層状に採取したバイオPC各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)バイオPCの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, (a) The characteristic view which shows the change of the molecular weight retention rate with respect to the degradation time of each layer of bioPC extract | collected in layer form, (b) Tensile strength with respect to the degradation time of bioPC, elongation, and It is a characteristic view which shows the change of molecular weight retention. 実施例1の計測結果を示す図であり、(a)層状に採取したPPE各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)PPEの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 1, (a) The characteristic view which shows the change of the molecular weight retention with respect to the degradation time of each layer of PPE extract | collected in layer form, (b) Tensile strength, elongation, and molecular weight retention with respect to the degradation time of PPE It is a characteristic view which shows the change of a rate. 実施例2の計測結果を示す図であり、PC+PBTの劣化時間に対する分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, and is a characteristic view which shows the change of the molecular weight retention with respect to the deterioration time of PC + PBT. 実施例2の計測結果を示す図であり、PC+PBTの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, and is a characteristic view which shows the change of the tensile strength with respect to the deterioration time of PC + PBT, elongation, and molecular weight retention. 実施例2の計測結果を示す図であり、層状に採取したPC+PBT各層の劣化時間に対する分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, and is a characteristic view which shows the change of the molecular weight retention rate with respect to the deterioration time of each layer of PC + PBT collected in layers. 実施例2の計測結果を示す図であり、(a)層状に採取したPC各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)PCの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, (a) The characteristic view which shows the change of the molecular weight retention with respect to the degradation time of each PC layer extract | collected in layer form, (b) Tensile strength, elongation, and molecular weight retention with respect to the degradation time of PC It is a characteristic view which shows the change of a rate. 実施例2の計測結果を示す図であり、(a)層状に採取したバイオPC各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)バイオPCの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, (a) The characteristic view which shows the change of the molecular weight retention rate with respect to the deterioration time of each layer of bioPC extract | collected in layer form, (b) Tensile strength with respect to the deterioration time of bioPC, elongation, and It is a characteristic view which shows the change of molecular weight retention. 実施例2の計測結果を示す図であり、(a)層状に採取したPC+PET各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)PC+PETの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, (a) The characteristic view which shows the change of the molecular weight retention with respect to the deterioration time of each layer of PC + PET extract | collected in layer form, (b) Tensile strength, elongation, and molecular weight maintenance with respect to deterioration time of PC + PET It is a characteristic view which shows the change of a rate. 実施例2の計測結果を示す図であり、(a)層状に採取したPPE各層の劣化時間に対する分子量保持率の変化を示す特性図、(b)PPEの劣化時間に対する引張強度、伸び及び分子量保持率の変化を示す特性図である。It is a figure which shows the measurement result of Example 2, (a) The characteristic view which shows the change of the molecular weight retention with respect to the deterioration time of each layer of PPE extract | collected in layer form, (b) Tensile strength, elongation, and molecular weight maintenance with respect to the deterioration time of PPE It is a characteristic view which shows the change of a rate. 実施例3の計測結果を示す図であり、劣化条件の異なるPEフィルムの分子量保持率及びPEフィルムの引張強度の計測結果を示す図である。It is a figure which shows the measurement result of Example 3, and is a figure which shows the measurement result of the molecular weight retention of PE film in which deterioration conditions differ, and the tensile strength of PE film. 本発明の実施形態に係る絶縁材料の劣化度計測装置の概略図である。It is the schematic of the degradation degree measuring apparatus of the insulating material which concerns on embodiment of this invention.

本発明の絶縁材料の劣化度計測方法及び劣化度計測装置について、図を参照して詳細に説明する。   The insulating material deterioration degree measuring method and deterioration degree measuring apparatus of the present invention will be described in detail with reference to the drawings.

本発明の実施形態に係る劣化度計測方法及び劣化度計測装置は、劣化前の絶縁材料(初期状態の絶縁材料)と劣化後の絶縁材料をそれぞれ溶媒に溶解し、劣化前の絶縁材料が溶解した溶液の固有粘度と劣化後の絶縁材料が溶解した溶液の固有粘度をそれぞれ算出し、算出された固有粘度に基づいて、絶縁材料の劣化度合いを計測するものである。なお、ここでいう劣化前の絶縁材料とは、劣化後の絶縁材料の劣化度合いの進行具合を判断する基準となる絶縁材料のことを示す。   The deterioration degree measuring method and the deterioration degree measuring apparatus according to the embodiment of the present invention dissolve an insulating material before deterioration (insulating material in an initial state) and an insulating material after deterioration in a solvent, respectively, and dissolve the insulating material before deterioration. The intrinsic viscosity of the solution and the intrinsic viscosity of the solution in which the deteriorated insulating material is dissolved are calculated, and the degree of deterioration of the insulating material is measured based on the calculated intrinsic viscosity. Here, the insulating material before deterioration refers to an insulating material that serves as a reference for judging the progress of the degree of deterioration of the insulating material after deterioration.

また、絶縁材料の劣化度合いの計測において、劣化前の絶縁材料が溶解した溶液の固有粘度に対する劣化後の絶縁材料が溶解した溶液の固有粘度の比率を分子量保持率とし、この分子量保持率を絶縁材料の劣化度合いの指標とすることを特徴としている。   In the measurement of the degree of deterioration of the insulating material, the ratio of the intrinsic viscosity of the solution in which the insulating material after deterioration to the intrinsic viscosity of the solution in which the insulating material before deterioration is dissolved is defined as the molecular weight retention rate. It is characterized by being an index of the degree of material degradation.

絶縁材料を溶解する溶媒は、絶縁材料を溶解できるものを適宜選択して用いればよく、例えば、ギ酸、硫酸、m−クレゾール、フェノール、テトラクロロエタン、シクロヘキサン、テトラヒドロフラン(THF)、デカハイドロナフタレン、ジクロロベンゼン、トリクロロベンゼン、ジクロロメタン、塩化メチレン、トリクロロメタン、クロロフェノール、トルエン、ヘキサフルオロイソプロパノール等の溶媒が単独若しくは組み合わせて用いられる。混合溶媒としては、例えば、フェノールとテトラクロロエタンの混合溶媒やフェノールとジクロロベンゼンの混合溶媒等が用いられる。   As the solvent for dissolving the insulating material, a solvent capable of dissolving the insulating material may be appropriately selected and used. For example, formic acid, sulfuric acid, m-cresol, phenol, tetrachloroethane, cyclohexane, tetrahydrofuran (THF), decahydronaphthalene, di Solvents such as chlorobenzene, trichlorobenzene, dichloromethane, methylene chloride, trichloromethane, chlorophenol, toluene, hexafluoroisopropanol are used alone or in combination. As the mixed solvent, for example, a mixed solvent of phenol and tetrachloroethane, a mixed solvent of phenol and dichlorobenzene, or the like is used.

ここで、絶縁材料の固有粘度[η](極限粘度とも呼ばれる)について説明する。固有粘度[η]は、溶液中に分散する溶質(絶縁材料)の粒径や分子量と関係付けることができる量である。   Here, the intrinsic viscosity [η] (also called intrinsic viscosity) of the insulating material will be described. The intrinsic viscosity [η] is an amount that can be related to the particle size and molecular weight of a solute (insulating material) dispersed in a solution.

固有粘度[η]は、無限希釈溶液での(比粘度ηsp)/(溶液の濃度c)の値である。したがって、ηsp/cをcに対してプロットしてcを0へ外挿した値(外挿値)として求めることができる。比粘度ηspは、溶媒に溶質を溶かしたことによる溶液の粘度の増加分に相当し、絶縁材料を溶媒に溶かした溶液の粘度ηと溶媒の粘度η0との比である相対粘度ηrel(=η/η0)から1を引いた値である。すなわち、比粘度ηspは、式(1)で示される。
ηsp=ηrel−1=η/η0−1=(η−η0)/η0 …(1)
なお、溶液の濃度と粘度に基づいて固有粘度を求める式が種々提案されている。例えば、式(2)に示すSolomon−Ciutaの式があり、固有粘度[η]は、溶液の濃度c、比粘度ηsp及び相対粘度ηrelの関数で表される。このように、1点の溶液の濃度で粘度を測定し、この溶液の濃度と粘度とに基づいて固有粘度を算出する簡便な方法も提案されている。
The intrinsic viscosity [η] is a value of (specific viscosity η sp ) / (solution concentration c) in an infinitely diluted solution. Therefore, η sp / c can be plotted against c and can be obtained as a value obtained by extrapolating c to 0 (extrapolated value). The specific viscosity η sp corresponds to the increase in the viscosity of the solution due to the dissolution of the solute in the solvent, and the relative viscosity η rel is the ratio of the viscosity η of the solution in which the insulating material is dissolved in the solvent and the viscosity η 0 of the solvent. This is a value obtained by subtracting 1 from (= η / η 0 ). That is, the specific viscosity η sp is represented by the formula (1).
η sp = η rel −1 = η / η 0 −1 = (η−η 0 ) / η 0 (1)
Various formulas for obtaining the intrinsic viscosity based on the concentration and viscosity of the solution have been proposed. For example, there is the Solomon-Ciuta equation shown in Equation (2), and the intrinsic viscosity [η] is expressed as a function of the solution concentration c, specific viscosity η sp and relative viscosity η rel . Thus, a simple method has been proposed in which the viscosity is measured at the concentration of one solution and the intrinsic viscosity is calculated based on the concentration and viscosity of the solution.

また、絶縁材料の固有粘度[η]と絶縁材料の分子量Mとの関係には、式(3)に示すMark−Houwink−Sakuradaの関係式が成り立つ。式(3)において、K及びaは、絶縁材料の種類、溶媒の種類によって定まる定数である。したがって、固有粘度[η]に基づいて絶縁材料の分子量(粘度平均分子量)を求めることができる。
[η]=KMa …(3)
このように、固有粘度[η]と絶縁材料の分子量Mには一定の関係性があり、劣化前の絶縁材料が溶解した溶液の固有粘度に対する劣化後の絶縁材料が溶解した溶液の固有粘度の比率を求めることは、劣化前の絶縁材料の分子量と劣化後の絶縁材料の分子量の比を求めることに他ならない。
In addition, the relationship between the intrinsic viscosity [η] of the insulating material and the molecular weight M of the insulating material is the Mark-Houwink-Sakurada relational expression shown in Expression (3). In Equation (3), K and a are constants determined by the type of insulating material and the type of solvent. Therefore, the molecular weight (viscosity average molecular weight) of the insulating material can be obtained based on the intrinsic viscosity [η].
[Η] = KM a (3)
Thus, there is a certain relationship between the intrinsic viscosity [η] and the molecular weight M of the insulating material, and the intrinsic viscosity of the solution in which the insulating material after degradation is dissolved relative to the intrinsic viscosity of the solution in which the insulating material before degradation is dissolved. Obtaining the ratio is nothing but obtaining the ratio between the molecular weight of the insulating material before deterioration and the molecular weight of the insulating material after deterioration.

すなわち、劣化前の絶縁材料が溶解した溶液の固有粘度の測定結果を分子量保持率100%として、劣化前の絶縁材料が溶解した溶液の固有粘度に対する劣化後の絶縁材料が溶解した溶液の固有粘度の割合を分子量保持率として算出し、この分子量保持率を絶縁材料の劣化度合いの指標とすることができる。   That is, the measurement result of the intrinsic viscosity of the solution in which the insulating material before deterioration is taken as the molecular weight retention rate of 100%, and the intrinsic viscosity of the solution in which the insulating material after deterioration is dissolved relative to the intrinsic viscosity of the solution in which the insulating material before deterioration is dissolved. This molecular weight retention rate can be used as an index of the degree of deterioration of the insulating material.

その結果、Mark−Houwink−Sakuradaの関係式において絶縁材料と溶媒に固有な定数であるKとaを、それぞれの絶縁材料に対して、予め複雑な測定や算出作業を通じて求めておかなくても、劣化前の絶縁材料が溶解した溶液の固有粘度と劣化後の絶縁材料が溶解した溶液の固有粘度の比率を求めるだけで、絶縁材料の劣化度合いを計測することができる。   As a result, K and a that are constants specific to the insulating material and the solvent in the Mark-Houwink-Sakurada relational expression may not be obtained in advance through complicated measurement and calculation work for each insulating material. The degree of deterioration of the insulating material can be measured simply by determining the ratio between the intrinsic viscosity of the solution in which the insulating material before deterioration is dissolved and the intrinsic viscosity of the solution in which the insulating material after deterioration is dissolved.

以下、具体的な実施例を挙げて、本発明の実施形態に係る絶縁材料の劣化度計測方法及び劣化度計測装置について詳細に説明する。   Hereinafter, a specific example will be given to describe in detail a deterioration level measuring method and a deterioration level measuring apparatus for an insulating material according to an embodiment of the present invention.

[実施例1]
実施例1に係る絶縁材料の劣化度計測方法では、ポリカーボネートとポリブチレンテレフタレートの混合樹脂(以下、PC+PBTとする)で形成された試験片を恒温恒湿法で加速劣化させ、劣化後のPC+PBTの劣化度合いを測定した。劣化度合いの測定は、試験片を溶解した溶液の粘度測定に基づいて行った。
[Example 1]
In the method for measuring the degree of deterioration of an insulating material according to Example 1, a test piece formed of a mixed resin of polycarbonate and polybutylene terephthalate (hereinafter referred to as PC + PBT) is accelerated and deteriorated by a constant temperature and humidity method. The degree of deterioration was measured. The degree of deterioration was measured based on the measurement of the viscosity of the solution in which the test piece was dissolved.

粘度測定は、アントンパール ジャパン製の粘度測定機(型番:自動マイクロ粘度計 AMVn)を用い、加速劣化試験には、ISUZU製の恒温恒湿試験機(型番:μ SERIES 水晶)を用いた。また、引張試験及び伸び試験は、インストロン ジャパン製の引張試験機(型番:インストロン 33R4206)を用いた。   For the viscosity measurement, a viscosity measuring machine (model number: automatic micro viscometer AMVn) made by Anton Paar Japan was used, and for the accelerated deterioration test, a constant temperature and humidity test machine made by ISUZU (model number: μ SERIES quartz) was used. In addition, a tensile tester (model number: Instron 33R4206) manufactured by Instron Japan was used for the tensile test and the elongation test.

試験片は、PC+PBTの他に、ポリカーボネート(以下、PCとする)、植物由来のPC(以下、バイオPCとする)、ポリカーボネートとポリエチレンテレフタレートの混合樹脂(以下、PC+PETとする)、ポリフェニレンエーテル(以下、PPEとする)で形成された試験片についても同様に試験を行った。   In addition to PC + PBT, the test piece was polycarbonate (hereinafter referred to as PC), plant-derived PC (hereinafter referred to as bio PC), a mixed resin of polycarbonate and polyethylene terephthalate (hereinafter referred to as PC + PET), polyphenylene ether (hereinafter referred to as PC + PBT). The test piece was also tested in the same manner.

図1に示すように、試験片の形状は、本発明の実施例1に係る劣化度診断方法に対する比較試験として引張試験と伸び試験を行うことも考え、JIS規格に規定されているダンベル状(JIS K1113 1号型)とした。   As shown in FIG. 1, the shape of the test piece is a dumbbell shape (as defined in JIS standard, considering that a tensile test and an elongation test are performed as a comparison test for the deterioration diagnosis method according to Example 1 of the present invention). JIS K1113 type 1).

まず、試験片を、温度85℃、相対湿度85%の恒温恒湿装置中で加速劣化させた。劣化時間は、0、144、270、504、1008、2000時間とし、0時間の試料としては加速劣化前の試験片を用いた。   First, the test piece was accelerated and deteriorated in a constant temperature and humidity apparatus having a temperature of 85 ° C. and a relative humidity of 85%. The deterioration time was 0, 144, 270, 504, 1008, 2000 hours, and a test piece before accelerated deterioration was used as the 0-hour sample.

図2、3を参照して、実施例1の劣化度計測方法について説明する。図2は、溶媒としてヘキサフルオロイソプロパノールを用いた場合の劣化度計測方法のフロー図である。また、図3は、溶媒としてトルエンを用いた場合の劣化度計測方法のフロー図である。図2に示す劣化度計測方法と図3に示す劣化度計測方法は、試料溶解工程が異なる以外は同じ工程を行うので、同じ工程については同じ符号を付す。   With reference to FIGS. 2 and 3, the deterioration degree measuring method according to the first embodiment will be described. FIG. 2 is a flowchart of a method for measuring the degree of deterioration when hexafluoroisopropanol is used as a solvent. FIG. 3 is a flow chart of the degradation degree measuring method when toluene is used as the solvent. Since the deterioration degree measuring method shown in FIG. 2 and the deterioration degree measuring method shown in FIG. 3 perform the same steps except for the sample dissolution step, the same steps are denoted by the same reference numerals.

図2、3に示すように、劣化度計測方法は、試料採取工程S1、試料溶解工程S2(試料溶解工程S5)、粘度測定工程S3、劣化度合い判定工程S4を有する。   As shown in FIGS. 2 and 3, the deterioration degree measuring method includes a sample collection step S1, a sample dissolution step S2 (sample dissolution step S5), a viscosity measurement step S3, and a deterioration degree determination step S4.

まず、試料採取工程S1について説明する。試料採取工程S1では、次の手順1から手順4を行うことで試験片から粘度測定用の試料を採取した。
手順1:各試験片の厚みをマイクロメータで3箇所測定し、試験片の厚みを記録した。
手順2:試験片をミニかんな(刃先ダイヤモンド付)または彫刻刀等で0.01g程度削りとり、表面からある程度削ったら、それを薬包紙で包み、粘度測定試料とした。
手順3:試験片を始めの厚みより深さ0.3mm(0.25mm以上〜0.35mm未満)になるようにマイクロメータで測定しながら、やすりで削った。この際、削剥面がなるべく平面になるようにやすりをかけた。なお、試験片を削る深さを0.3mmとしたが、これは、所定のサンプル量(0.01g程度)を削りとることが目的であって、0.3mmに限定されるものではない。しかし、深さが浅すぎては精度良く削り取ることが困難であり、また、深さが深すぎても必要以上にサンプルを採取することになる。また、削り取る面積によっても採取量が左右されることから、0.2〜0.5mmの深さの範囲で削り取るのが好ましい。
手順4:手順1から手順3を繰り返して、試験片の2層目、3層目の試料の採取を行った。
First, the sample collection step S1 will be described. In the sample collection step S1, a sample for viscosity measurement was collected from the test piece by performing the following procedure 1 to procedure 4.
Procedure 1: The thickness of each test piece was measured at three locations with a micrometer, and the thickness of the test piece was recorded.
Procedure 2: About 0.01 g of the test piece was scraped off with a mini planer (with diamond on the cutting edge) or an engraved sword and the like was shaved to some extent from the surface.
Procedure 3: The test piece was shaved with a file while measuring with a micrometer so that the depth was 0.3 mm (from 0.25 mm to less than 0.35 mm) from the initial thickness. At this time, a file was applied so that the scraped surface was as flat as possible. In addition, although the depth which grinds a test piece was 0.3 mm, this is for the purpose of shaving off a predetermined sample amount (about 0.01 g), and is not limited to 0.3 mm. However, if the depth is too shallow, it is difficult to scrape with high accuracy, and if the depth is too deep, a sample is taken more than necessary. Further, since the amount to be collected depends on the area to be scraped, it is preferable to scrape in a depth range of 0.2 to 0.5 mm.
Procedure 4: Procedure 1 to procedure 3 were repeated, and samples of the second and third layers of the test piece were collected.

次に、試料溶解工程S2(試料溶解工程S5)について説明する。試験片から採取した試料を溶媒に溶解するにあたり、試験片を構成する材料である絶縁材料を種々の溶媒に溶解させたところ、一番多くの絶縁材料が溶解したのはヘキサフルオロイソプロパノールであった。この溶媒は、用いた絶縁材料のうちPPE以外の絶縁材料を常温で溶解することが可能であった。試験片を溶解させる溶媒を同じ溶媒で統一できれば、測定値の比較や粘度測定装置のブランク測定において利便性を有するので、実施例では、ヘキサフルオロイソプロパノールを用いた。そして、ヘキサフルオロイソプロパノールに溶解しなかったPPEはトルエンに溶解させた。PPEは、トルエンに対してもやや加温しないと溶解しないので、トルエンにPPEを加えた後に20分間超音波振動により攪拌し、35℃に設定したアルミバスに15分間静置し、溶液の粘度を測定する直前までアルミバス中に保管した。   Next, the sample dissolution step S2 (sample dissolution step S5) will be described. In dissolving the sample collected from the test piece in the solvent, the insulating material, which is the material constituting the test piece, was dissolved in various solvents, and the most insulating material was dissolved in hexafluoroisopropanol. . This solvent was able to dissolve insulating materials other than PPE among the insulating materials used at room temperature. If the solvent in which the test piece is dissolved can be unified with the same solvent, it is convenient for comparison of measured values and blank measurement of a viscosity measuring apparatus, so hexafluoroisopropanol was used in the examples. And PPE which did not melt | dissolve in hexafluoroisopropanol was dissolved in toluene. PPE does not dissolve unless heated slightly in toluene, so after adding PPE to toluene, it was stirred by ultrasonic vibration for 20 minutes and left in an aluminum bath set at 35 ° C. for 15 minutes to obtain the viscosity of the solution. It was stored in an aluminum bath until immediately before measuring.

なお、試料溶解工程S2(試料溶解工程S5)では、絶縁材料が劣化しすぎていると試料の一部が溶解しないことがある。その際は、溶液の上澄み液の固有粘度を測定し、溶解せず沈殿した試料は、ろ過、乾燥させた後にその重量を秤量し、秤量した重量を採取した試料の重さから引いて溶液の濃度計算を行った。   In the sample melting step S2 (sample melting step S5), if the insulating material is excessively deteriorated, a part of the sample may not be dissolved. In that case, the intrinsic viscosity of the supernatant of the solution is measured, and the sample that has not dissolved but precipitated is filtered and dried, and then its weight is weighed, and the weighed weight is subtracted from the weight of the collected sample. Concentration calculation was performed.

図2に示すように、試料溶解工程S2では、採取した試料(PC+PBT、0.01g)を5mLメスフラスコに移し、ヘキサフルオロイソプロパノールでメスアップし、0.2wt%の溶液を作成した。そして、常温で24時間放置し、採取した試料を完全に溶解した。一方、図3に示すように、試料溶解工程S5では、PPE(0.01g)を5mLメスフラスコに移した後トルエンでメスアップし、20分間超音波振動により攪拌した。そして、35℃に設定したアルミバスに15分静置し、溶液の粘度を測定する直前までアルミバス中に保管した。   As shown in FIG. 2, in the sample dissolution step S2, the collected sample (PC + PBT, 0.01 g) was transferred to a 5 mL volumetric flask and diluted with hexafluoroisopropanol to prepare a 0.2 wt% solution. Then, it was allowed to stand at room temperature for 24 hours, and the collected sample was completely dissolved. On the other hand, as shown in FIG. 3, in the sample dissolution step S5, PPE (0.01 g) was transferred to a 5 mL volumetric flask and then diluted with toluene and stirred by ultrasonic vibration for 20 minutes. And it left still for 15 minutes in the aluminum bath set to 35 degreeC, and stored in the aluminum bath until just before measuring the viscosity of a solution.

粘度測定工程S3では、落体式自動マイクロ粘度計を用いて、試料が溶解した溶液(以後、溶液という)の粘度を測定した。まず、図4に示す落体式自動マイクロ粘度計のφ1.6mmキャピラリー2に、溶液を約0.4mL採取した。設定温度は、ヘキサフルオロイソプロパノールが溶媒の場合は30℃、トルエンが溶媒の場合は40℃に設定した。   In the viscosity measurement step S3, the viscosity of the solution in which the sample was dissolved (hereinafter referred to as the solution) was measured using a falling body type automatic micro viscometer. First, about 0.4 mL of the solution was collected in a φ1.6 mm capillary 2 of a falling body type automatic micro viscometer shown in FIG. The set temperature was set to 30 ° C. when hexafluoroisopropanol was the solvent and 40 ° C. when toluene was the solvent.

測定温度の違いは粘度に影響するため一定に保った。測定温度は、溶媒の揮発による影響が粘度の測定結果に影響を及ぼさない温度に設定した。設定温度が低い方が、溶媒の揮発の影響を低減することができる。また、設定温度が高い方が粘度が小さくなり、ボール3が転がる速度が速く測定時間を短縮することができる。ゆえに、測定サンプルの溶解具合によっては室温で測定を行うこともできる。   Since the difference in measurement temperature affects the viscosity, it was kept constant. The measurement temperature was set to a temperature at which the influence of solvent volatilization does not affect the viscosity measurement result. The lower the set temperature, the more the influence of solvent volatilization can be reduced. In addition, the higher the set temperature, the smaller the viscosity, and the faster the ball 3 rolls, the shorter the measurement time. Therefore, measurement can be performed at room temperature depending on how the measurement sample is dissolved.

キャピラリー2の傾斜角度は、30、35、40、45、50、55、60、65、70°に設定し、それぞれのキャピラリー2の傾斜角度でボール3の落下時間を測定した。落体式自動マイクロ粘度計では、少なくとも4点のキャピラリー2の角度でボール3の落下時間の測定を行い、この測定に基づいて粘度が算出される。よって、キャピラリー2の傾斜角度は、実施例に限定されるものではなく、適宜設定したキャピラリー2の傾斜角度毎にボール3の落下時間を計測し、この落下時間に基づいて溶液の粘度を算出すればよい。例えば、キャピラリー2の傾斜角度は、1つの角度の傾斜による測定時間が10〜45秒程度になるように設定するとよい。なお、キャピラリー2の傾斜角度を10°〜20°と設定すると、ボール3の落下時間の測定に時間がかかり過ぎるおそれがある。また、キャピラリー2の傾斜角度が80°〜90°程度となると、ボール3が転がっているのではなく、滑って移動するおそれがあり、正確な粘度の測定結果が得られないおそれが生じる。ゆえに、キャピラリー2の傾斜角度は、30°〜70°に設定することが好ましい。   The inclination angle of the capillary 2 was set to 30, 35, 40, 45, 50, 55, 60, 65, and 70 °, and the falling time of the ball 3 was measured at the inclination angle of each capillary 2. In the falling body type automatic micro viscometer, the drop time of the ball 3 is measured at at least four angles of the capillary 2, and the viscosity is calculated based on this measurement. Therefore, the inclination angle of the capillary 2 is not limited to the embodiment, and the drop time of the ball 3 is measured for each inclination angle of the capillary 2 set as appropriate, and the viscosity of the solution is calculated based on this drop time. That's fine. For example, the inclination angle of the capillary 2 may be set so that the measurement time by the inclination of one angle is about 10 to 45 seconds. If the inclination angle of the capillary 2 is set to 10 ° to 20 °, it may take too much time to measure the drop time of the ball 3. Further, when the inclination angle of the capillary 2 is about 80 ° to 90 °, the ball 3 is not rolled but may slide and move, and there is a possibility that an accurate viscosity measurement result cannot be obtained. Therefore, the inclination angle of the capillary 2 is preferably set to 30 ° to 70 °.

劣化度合い判定工程S4では、計測された溶液の粘度をSolomon−Ciutaの式に代入し、固有粘度[η]を算出した。また、劣化前の試料を溶解した溶液の固有粘度に対する劣化後の試料を溶解した溶液の固有粘度の比率を算出することで、劣化後の試料の分子量保持率を算出した。   In the deterioration degree determination step S4, the measured viscosity of the solution was substituted into the Solomon-Ciuta equation to calculate the intrinsic viscosity [η]. In addition, the ratio of the intrinsic viscosity of the solution in which the sample after degradation was dissolved to the intrinsic viscosity of the solution in which the sample before degradation was dissolved was calculated to calculate the molecular weight retention of the sample after degradation.

図5に、PC+PBT(劣化表面から1層目の採取試料)の劣化時間に対する分子量保持率の変化を示す。図5に示すように、劣化時間の経過にしたがって分子量保持率が低下することが確認された。   FIG. 5 shows the change in the molecular weight retention rate with respect to the deterioration time of PC + PBT (collected sample of the first layer from the deteriorated surface). As shown in FIG. 5, it was confirmed that the molecular weight retention decreased with the passage of deterioration time.

また、図6に、PC+PBTの劣化時間に対する引張試験の測定結果、伸び試験の測定結果及び分子量保持率(劣化表面から1層目の採取試料)の測定結果を示す。試験片の引張試験と伸び試験は、試験片の分子量保持率の低下と試験片の劣化との関係を確認するために行った。なお、図6において、伸び[mm]と引張強度[MPa]の値を示す縦軸は、目盛が同じで、単位が異なる軸である(他の測定結果を示す図についても同様である)。   FIG. 6 shows the measurement results of the tensile test with respect to the deterioration time of PC + PBT, the measurement results of the elongation test, and the measurement results of the molecular weight retention rate (sample collected from the first layer from the deteriorated surface). The tensile test and the elongation test of the test piece were performed in order to confirm the relationship between the decrease in the molecular weight retention rate of the test piece and the deterioration of the test piece. In FIG. 6, the vertical axes indicating the values of elongation [mm] and tensile strength [MPa] are axes having the same scale and different units (the same applies to the figures showing other measurement results).

図6に示すように、劣化時間の経過にしたがって引張強度が低下することが確認された。図6から明らかなように、分子量保持率が低下すると引張強度も低下した。また、伸び試験の結果では、一部劣化時間の経過にしたがって伸びが上昇する点もあったが、概ね分子量保持率が低下すると試料の伸びも低下した。   As shown in FIG. 6, it was confirmed that the tensile strength decreased with the passage of deterioration time. As can be seen from FIG. 6, the tensile strength decreased as the molecular weight retention decreased. Further, as a result of the elongation test, there was a point that the elongation increased with the passage of part of the degradation time. However, when the molecular weight retention rate decreased, the elongation of the sample also decreased.

図7は、試験片から厚さ方向に層状に試料を採取し、それぞれの試料で劣化度合いを測定した結果である。図7に示すように、試験片から層状に試料を採取することにより、劣化時間の経過にしたがって、試験片の内部のどこまで劣化が進行しているのかを計測することができた。つまり、1層目から3層目の試料の分子量保持率を比較することで、同じ恒温恒湿下での加速劣化した場合でも表面に近い層の方が若干であるが劣化がより進行していることわかった。   FIG. 7 shows the results obtained by collecting samples from the test piece in layers in the thickness direction and measuring the degree of deterioration of each sample. As shown in FIG. 7, by collecting samples from the test piece in layers, it was possible to measure how far the deterioration had progressed inside the test piece as the deterioration time passed. In other words, by comparing the molecular weight retention rates of the samples from the first layer to the third layer, even when accelerated deterioration under the same constant temperature and humidity, the layer closer to the surface is slightly more deteriorated, but the deterioration is more advanced. I found out.

実施例1に係る絶縁材料の劣化度計測方法でPCの劣化度合いを測定した結果を、図8(a)及び図8(b)に示す。図8(a)に示すように、劣化時間の経過にしたがって分子量保持率が低下することが確認された。なお、PCでは、1層目、2層目、3層目の計測結果で大きな差は確認できなかった。また、図8(b)に示すように、劣化初期段階で、分子量保持率、引張強度及び伸びが減少しているが、いずれの劣化試験でもその後わずかであるが増加し、その後、再び劣化時間にしたがって減少している。これは、絶縁材料がPCの場合においても、分子量保持率の変化に基づいて絶縁材料の劣化度合いを評価できることを示している。   FIG. 8A and FIG. 8B show the results of measuring the PC deterioration degree by the method for measuring the deterioration degree of the insulating material according to Example 1. FIG. As shown to Fig.8 (a), it was confirmed that a molecular weight retention rate falls with progress of deterioration time. In addition, in PC, the big difference was not able to be confirmed by the measurement result of the 1st layer, the 2nd layer, and the 3rd layer. Further, as shown in FIG. 8B, in the initial stage of deterioration, the molecular weight retention rate, the tensile strength, and the elongation are decreased. It decreases according to. This indicates that even when the insulating material is PC, the degree of deterioration of the insulating material can be evaluated based on the change in the molecular weight retention rate.

実施例1に係る絶縁材料の劣化度計測方法でバイオPCの劣化度合いを測定した結果を、図9(a)及び図9(b)に示す。図9(a)に示すように、劣化時間の経過にしたがって分子量保持率がわずかであるが低下することが確認された。なお、バイオPCでは、1層目、2層目、3層目の計測結果で大きな差は確認できなかった。また、図9(b)に示すように、500時間以降は、劣化時間の経過にしたがって、分子量保持率、引張強度及び伸びがわずかであるが減少している。これは、絶縁材料がバイオPCの場合においても、分子量保持率の変化に基づいて絶縁材料の劣化度合いを評価できることを示している。   FIG. 9A and FIG. 9B show the results of measuring the degree of degradation of bio PC by the method for measuring the degree of degradation of the insulating material according to Example 1. FIG. As shown in FIG. 9 (a), it was confirmed that the molecular weight retention rate slightly decreased as the deterioration time passed. In BioPC, a large difference could not be confirmed in the measurement results of the first, second, and third layers. Further, as shown in FIG. 9B, after 500 hours, the molecular weight retention rate, tensile strength, and elongation are slightly decreased with the passage of deterioration time. This indicates that even when the insulating material is BioPC, the degree of deterioration of the insulating material can be evaluated based on the change in the molecular weight retention rate.

実施例1に係る絶縁材料の劣化度計測方法でPPEの劣化度合いを測定した結果を、図10(a)及び図10(b)に示す。図10(a)に示すように、実施例1の劣化時間では、PPEはほとんど劣化しなかった。また、図10(b)に示すように、引張強度及び伸びの計測結果もPPEが劣化していないことを示した。つまり、絶縁材料がPPEの場合においても、分子量保持率の変化に基づいて絶縁材料の劣化度合いを評価できることがわかった。   FIG. 10A and FIG. 10B show the results of measuring the degree of deterioration of PPE by the method for measuring the degree of deterioration of the insulating material according to Example 1. FIG. As shown in FIG. 10A, the PPE hardly deteriorated during the deterioration time of Example 1. Moreover, as shown in FIG.10 (b), the measurement result of tensile strength and elongation also showed that PPE did not deteriorate. That is, it was found that even when the insulating material is PPE, the degree of deterioration of the insulating material can be evaluated based on the change in the molecular weight retention rate.

[実施例2]
実施例2に係る絶縁材料の劣化度計測方法では、絶縁材料で形成された試験片の耐候性試験として紫外線による促進劣化試験を行い、劣化後の試験片が溶解した溶液の固有粘度を測定した。促進耐候性試験機には、スガ試験機株式会社製のスーパーキセノンウェザーメータSX75(XWOM)を用いた。これは湿温度管理された室内の蛍光灯下での経年劣化を想定したためである。
[Example 2]
In the method for measuring the degree of deterioration of an insulating material according to Example 2, an accelerated deterioration test using ultraviolet rays was performed as a weather resistance test for a test piece formed of an insulating material, and the intrinsic viscosity of a solution in which the deteriorated test piece was dissolved was measured. . As the accelerated weather resistance tester, Super Xenon Weather Meter SX75 (XWOM) manufactured by Suga Test Instruments Co., Ltd. was used. This is because aging deterioration under indoor fluorescent light under controlled humidity temperature is assumed.

キセノンアークランプ式の促進耐候性試験機を用いて紫外線を試験片に照射して、試験片を加速劣化させた。劣化時間は、0、100、200、500、1000、2000時間とし、0時間の試料としては加速劣化前の試験片を用いた。   The test piece was accelerated and deteriorated by irradiating the test piece with ultraviolet rays using a xenon arc lamp type accelerated weathering tester. The deterioration time was 0, 100, 200, 500, 1000, 2000 hours, and a test piece before accelerated deterioration was used as the 0-hour sample.

試験片は、PC+PBTの他に、PC、バイオPC、PC+PET、PPEで形成された試験片についても同様に試験を行った。   The test piece tested similarly about the test piece formed by PC, bio PC, PC + PET, and PPE other than PC + PBT.

試験片の形状は、実施例1と同様に、JIS規格に規定されているダンベル状(JIS K1113 1号型)とした。   The shape of the test piece was a dumbbell shape (JIS K1113 No. 1 type) defined in the JIS standard, as in Example 1.

試験片からの粘度測定用の試料の採取方法は、実施例1と同様であり、劣化表面から層状に深さ0.3mm毎に試料を採取した。ただし、実施例2のように試料の表面に紫外線を照射して紫外線劣化させた試験片は、試験片の片面側に紫外線を照射して試験片を劣化させるので、紫外光が照射された面から試料を採取した。   The method for collecting the sample for measuring the viscosity from the test piece was the same as in Example 1, and samples were collected in layers from the deteriorated surface at a depth of 0.3 mm. However, since the test piece that was irradiated with ultraviolet rays on the surface of the sample as in Example 2 was deteriorated by irradiating ultraviolet rays on one side of the test piece, the test piece was deteriorated. A sample was taken from.

実施例2に係る絶縁材料の劣化度計測方法は、試験片の劣化促進方法が異なること以外は、実施例1に係る絶縁材料の劣化度計測方法と同様の方法で試験片の劣化度合いを評価した。つまり、実施例2の劣化度合い評価方法のフロー図は、図2及び図3に示したものと同様であるので、その詳細な説明は省略する。また、実施例1に係る絶縁材料の劣化度計測方法と同様に、試験片の分子量保持率が低下したことで、試験片が劣化したことを確認するために、同じ試験片を用いて、引張試験と伸び試験を行った。   The method for measuring the degree of deterioration of the insulating material according to Example 2 evaluates the degree of deterioration of the test piece using the same method as the method for measuring the degree of deterioration of insulating material according to Example 1, except that the method for promoting deterioration of the test piece is different. did. That is, the flowchart of the degradation degree evaluation method of the second embodiment is the same as that shown in FIGS. 2 and 3, and detailed description thereof is omitted. Further, in the same manner as the method for measuring the degree of deterioration of the insulating material according to Example 1, in order to confirm that the test piece deteriorated due to the decrease in the molecular weight retention rate of the test piece, Tests and elongation tests were performed.

図11に、紫外線を照射して促進劣化させたPC+PBT(劣化表面から1層目の採取試料)の劣化時間に対する分子量保持率の変化を示す。図11に示すように、劣化時間の経過にしたがって、分子量保持率が低下することが確認された。   FIG. 11 shows the change in the molecular weight retention rate with respect to the deterioration time of PC + PBT (sampled first layer from the deteriorated surface) that was accelerated and deteriorated by irradiation with ultraviolet rays. As shown in FIG. 11, it was confirmed that the molecular weight retention rate decreased with the passage of deterioration time.

また、図12に、PC+PBTの劣化時間に対する引張試験の測定結果、伸び試験の測定結果及び分子量保持率(劣化表面から1層目の採取試料)の測定結果を示す。図12の結果から、試料の表層が劣化すると、引張試験及び伸び試験の結果も低下するが、引張強度や伸びも分子量保持率の低下と同様に劣化時間に対してある程度劣化した時間以後はほとんど劣化度合いが低下しない結果となった。これは、紫外光による絶縁材料の劣化は、試験片の表面から深い層ではあまり進行しないためであると考えられる。   FIG. 12 shows the measurement results of the tensile test with respect to the degradation time of PC + PBT, the measurement results of the elongation test, and the measurement results of the molecular weight retention rate (sample collected in the first layer from the degraded surface). From the results shown in FIG. 12, when the surface layer of the sample deteriorates, the results of the tensile test and the elongation test also decrease. However, the tensile strength and the elongation are almost the same after the time when the deterioration is caused to some extent as well as the decrease in the molecular weight retention. As a result, the degree of deterioration did not decrease. This is presumably because the deterioration of the insulating material due to ultraviolet light does not progress so much in a deep layer from the surface of the test piece.

図13は、試験片から厚さ方向に層状に試料を採取して、それぞれの試料で劣化度合いを測定した結果を示す。図13に示すように、紫外線による促進劣化の場合は、紫外線が直接照射される表面(劣化表面から1層目の採取試料)は、劣化時間とともに分子量保持率が低下し、ある程度の時間が経過すると劣化度合いが飽和するように見える。これに対して、0.3mmより深い2層目と3層目の採取試料は、分子量保持率がほとんど低下しないことが確認された。これらのことから、紫外線による促進劣化では、ごく表層は劣化時間とともに分子量保持率も低下するが、表面からある程度の深さでは、紫外線による劣化はあまり促進されないものと推定できる。図13の結果から明らかなように、試料を層状に採取し、それぞれの試料において固有粘度を測定することで、劣化試料表面からどこの深さまで劣化が進行しているのかも推定することができる。すなわち、絶縁材料の表面から粘度測定用試料を層状に採取することで、絶縁材料の表面からの劣化の進行度合いも確認することができる。   FIG. 13 shows the results obtained by collecting samples from the test piece in layers in the thickness direction and measuring the degree of deterioration of each sample. As shown in FIG. 13, in the case of accelerated deterioration due to ultraviolet rays, the surface directly irradiated with ultraviolet rays (sample collected in the first layer from the deteriorated surface) decreases in molecular weight retention with deterioration time, and a certain amount of time has elapsed. Then, the degree of deterioration seems to be saturated. On the other hand, it was confirmed that the collected samples of the second layer and the third layer deeper than 0.3 mm hardly decreased in molecular weight retention. From these facts, it can be presumed that in the accelerated deterioration by ultraviolet rays, the molecular weight retention rate of the very surface layer decreases with the deterioration time, but at a certain depth from the surface, the deterioration by ultraviolet rays is not promoted much. As is clear from the results of FIG. 13, by collecting samples in layers and measuring the intrinsic viscosity of each sample, it is possible to estimate where the deterioration has progressed from the surface of the deteriorated sample. . That is, the progress of deterioration from the surface of the insulating material can also be confirmed by collecting the viscosity measurement sample in layers from the surface of the insulating material.

なお、紫外線による促進劣化を行うことで絶縁材料の表面の色が変色することが確認された。そこで、予め劣化前と劣化後の試料の劣化表面の色と、その色における分子量保持率との関係を求めておくことにより絶縁材料の色の変化にしきい値を設定し、劣化表面の色から絶縁材料の劣化の進行度合いや劣化表面から絶縁材料の試料内部の劣化進行速度を推定することもできる。   It has been confirmed that the surface color of the insulating material is changed by accelerated deterioration by ultraviolet rays. Therefore, by determining the relationship between the color of the deteriorated surface of the sample before and after deterioration and the molecular weight retention ratio of that color in advance, a threshold is set for the change in the color of the insulating material. It is also possible to estimate the deterioration progress rate inside the sample of the insulating material from the degree of progress of the deterioration of the insulating material and the deterioration surface.

実施例2に係る絶縁材料の劣化度計測方法でPCの劣化度合いを測定した結果を、図14(a)及び図14(b)に示す。図14(a)に示すように、絶縁材料がPCの場合であっても絶縁材料の深さ方向の劣化度合いのを把握することができた。また、図14(b)に示すように、劣化時間の経過に伴う分子量保持率と伸びの測定値は、相関関係があるが、引張強度は、劣化時間の経過に伴ってほとんど変化していない。これは、絶縁材料の表面の劣化度合いが絶縁材料の引張強度に与える影響が少ないためであると考えられる。   FIG. 14A and FIG. 14B show the results of measuring the PC deterioration degree by the method for measuring the deterioration degree of the insulating material according to the second embodiment. As shown in FIG. 14A, it was possible to grasp the degree of deterioration in the depth direction of the insulating material even when the insulating material was PC. Further, as shown in FIG. 14B, the measured values of the molecular weight retention rate and the elongation with the passage of the deterioration time have a correlation, but the tensile strength hardly changes with the passage of the deterioration time. . This is presumably because the degree of deterioration of the surface of the insulating material has little influence on the tensile strength of the insulating material.

実施例2に係る絶縁材料の劣化度計測方法でバイオPCの劣化度合いを測定した結果を、図15(a)及び図15(b)に示す。図15(a)に示すように、絶縁材料がバイオPCの場合、劣化時間の経過にしたがって1層目の劣化が進むものの、2層目や3層目の劣化度合いは比較的緩やかに進むことがわかる。また、図15(b)に示すように、劣化時間の経過にしたがって、分子量保持率、引張強度及び伸びが減少している。これは、絶縁材料がバイオPCの場合においても、分子量保持率の変化に基づいて絶縁材料の劣化度合いを評価できることを示している。   FIG. 15A and FIG. 15B show the results of measuring the degree of bio PC degradation by the method for measuring the degree of degradation of the insulating material according to Example 2. FIG. As shown in FIG. 15 (a), when the insulating material is bio-PC, the deterioration of the first layer progresses as the deterioration time elapses, but the deterioration degree of the second layer and the third layer progresses relatively slowly. I understand. Further, as shown in FIG. 15B, the molecular weight retention rate, the tensile strength, and the elongation decrease as the deterioration time elapses. This indicates that even when the insulating material is BioPC, the degree of deterioration of the insulating material can be evaluated based on the change in the molecular weight retention rate.

実施例2に係る絶縁材料の劣化度計測方法でPC+PETの劣化度合いを測定した結果を、図16(a)及び図16(b)に示す。図16(a)に示すように、絶縁材料がPC+PETの場合においても絶縁材料の深さ方向の劣化度合いを把握することができた。また、図16(b)に示すように、劣化時間の経過にしたがって、分子量保持率、引張強度及び伸びが減少している。特に、劣化時間の経過に伴う分子量保持率と引張試験の低下度合いに相関関係が見られた。これは、絶縁材料がPC+PETの場合においても、分子量保持率の変化に基づいて絶縁材料の劣化度合いを評価できることを示している。   FIG. 16A and FIG. 16B show the results of measuring the degree of PC + PET degradation using the method for measuring the degree of degradation of an insulating material according to Example 2. FIG. As shown in FIG. 16A, the degree of deterioration in the depth direction of the insulating material could be grasped even when the insulating material was PC + PET. Further, as shown in FIG. 16B, the molecular weight retention rate, the tensile strength, and the elongation decrease as the deterioration time elapses. In particular, there was a correlation between the molecular weight retention rate as the deterioration time passed and the degree of decrease in the tensile test. This indicates that even when the insulating material is PC + PET, the degree of deterioration of the insulating material can be evaluated based on the change in the molecular weight retention rate.

実施例2に係る絶縁材料の劣化度計測方法でPPEの劣化度合いを測定した結果を、図17(a)及び図17(b)に示す。図17(a)に示すように、絶縁材料がPPEの場合、劣化時間の経過にしたがって1層目の劣化が進むものの、2層目や3層目の劣化度合いは比較的緩やかに進むことがわかる。また、図17(b)に示すように、劣化時間の経過にしたがって、1層目の分子量保持率は低下するものの、引張強度及び伸びはほとんど減少していない。これは、絶縁材料がPPEの場合、絶縁材料の表面の劣化が引張強度や伸びの測定値に与える影響が少ないことを示している。   FIG. 17A and FIG. 17B show the results of measuring the degree of deterioration of PPE by the method for measuring the degree of deterioration of the insulating material according to Example 2. FIG. As shown in FIG. 17A, when the insulating material is PPE, the deterioration of the first layer progresses as the deterioration time elapses, but the deterioration degree of the second layer and the third layer progresses relatively slowly. Recognize. Further, as shown in FIG. 17B, although the molecular weight retention rate of the first layer decreases as the deterioration time elapses, the tensile strength and elongation hardly decrease. This indicates that when the insulating material is PPE, the surface deterioration of the insulating material has little influence on the measured values of tensile strength and elongation.

[実施例3]
実施例3に係る絶縁材料の劣化度計測方法では、絶縁材料の試料として耐熱ポリエステルのフィルム(以下、PEフィルムとする)の劣化度合いを計測した。加速劣化条件は、140℃で5時間、200℃で5時間、200℃長期保存(200℃で約80時間)恒温槽中に保管し、PEフィルムを加速劣化させた。また、未使用のPEフィルムを劣化前の試料とした。
[Example 3]
In the method for measuring the degree of deterioration of an insulating material according to Example 3, the degree of deterioration of a heat-resistant polyester film (hereinafter referred to as PE film) was measured as a sample of the insulating material. Accelerated deterioration conditions were stored at 140 ° C. for 5 hours, 200 ° C. for 5 hours, 200 ° C. long-term storage (200 ° C. for about 80 hours) in a constant temperature bath, and the PE film was accelerated and deteriorated. Moreover, an unused PE film was used as a sample before deterioration.

試料の劣化度合い計測方法は、実施例1と同様に、図3に示したトルエンを溶媒として用いた劣化度合い計測方法と同様の方法により行った。具体的に説明すると、試料溶解工程S5で、PEフィルムを5mLのメスフラスコに0.01g採取し、トルエンでメスアップした後、20分間超音波振動により攪拌した。その後、35℃に設定したアルミバスに15分間静置し、溶液の粘度を測定する直前までアルミバス中に保管した。   The method for measuring the degree of deterioration of the sample was performed in the same manner as in Example 1 by the same method as the method for measuring the degree of deterioration using toluene as a solvent shown in FIG. Specifically, in the sample dissolution step S5, 0.01 g of PE film was sampled in a 5 mL volumetric flask, diluted with toluene, and then stirred by ultrasonic vibration for 20 minutes. Then, it left still for 15 minutes in the aluminum bath set to 35 degreeC, and stored in the aluminum bath until just before measuring the viscosity of a solution.

なお、試料溶解工程S5において、200℃長期保存(200℃で約80時間)保管したPEフィルムについては劣化による分子構造の変化で、PEフィルムが溶媒に完全には溶解しなかった。そこで、溶液の上澄み液の固有粘度を測定し、溶解せず沈殿した試料は、ろ過、乾燥させた後にその重量を秤量し、秤量した重量を採取した重さから引いて溶液の濃度計算を行った。   In the sample dissolution step S5, the PE film stored at 200 ° C. for a long time (about 80 hours at 200 ° C.) was not completely dissolved in the solvent due to a change in molecular structure due to deterioration. Therefore, the intrinsic viscosity of the supernatant of the solution is measured, and the sample that does not dissolve and precipitates is filtered and dried, and then the weight is weighed. The measured weight is subtracted from the collected weight to calculate the concentration of the solution. It was.

試料溶解工程S5により得られた溶液に対して、粘度測定工程S3、劣化度合い判定工程S4を行い、劣化後のPEフィルムの分子量保持率を算出し、劣化後のPEフィルムの劣化度合いを計測した。そして、実施例1と同様に、分子量保持率が低下したことで、PEフィルムが劣化したことを確認するために、同じ試験片を用いて、引張強度試験を行った。   The viscosity measurement step S3 and the deterioration degree determination step S4 were performed on the solution obtained in the sample dissolution step S5, the molecular weight retention of the deteriorated PE film was calculated, and the deterioration degree of the deteriorated PE film was measured. . And like Example 1, in order to confirm that PE film deteriorated because molecular weight retention rate fell, the tensile strength test was done using the same test piece.

図18は、それぞれのPEフィルムの加速劣化条件における、分子量保持率と引張強度との関係を測定した結果を示す。劣化温度が上昇する(若しくは、劣化時間が長くなる)とともにPEフィルムの分子量保持率も引張強度も低下することが確認された。なお、200℃長期保存(200℃で約80時間)したPEフィルムは劣化が著しく、引張試験を行うことができなかった。   FIG. 18 shows the results of measuring the relationship between the molecular weight retention rate and the tensile strength under the accelerated deterioration conditions of each PE film. It was confirmed that the degradation temperature increased (or the degradation time increased), and the molecular weight retention rate and tensile strength of the PE film decreased. In addition, the PE film which was stored at 200 ° C. for a long time (about 200 hours at 200 ° C.) was significantly deteriorated, and a tensile test could not be performed.

以上、具体的な実施例を挙げて説明したように、本発明の絶縁材料の劣化度計測方法によれば、絶縁材料を溶解した溶液の粘度に基づいて当該溶液の固有粘度を算出し、この固有粘度に基づいて、絶縁材料の劣化度合いを計測することができる。その結果、熱劣化や加水分解等の劣化のように絶縁材料全体が劣化する場合は勿論のこと、紫外線劣化のように絶縁材料の表面から劣化する場合も、局部的な絶縁材料の劣化度合いを計測することができる。   As described above with reference to specific examples, according to the method for measuring the degree of deterioration of an insulating material of the present invention, the intrinsic viscosity of the solution is calculated based on the viscosity of the solution in which the insulating material is dissolved. Based on the intrinsic viscosity, the degree of deterioration of the insulating material can be measured. As a result, not only when the entire insulating material deteriorates, such as thermal deterioration or hydrolysis, but also when it deteriorates from the surface of the insulating material, such as ultraviolet deterioration, the degree of local deterioration of the insulating material is reduced. It can be measured.

また、劣化前の絶縁材料を溶解させた溶液の固有粘度に対する劣化後の絶縁材料を溶解させた固有粘度の比率(分子量保持率)を絶縁材料の劣化度合いの指標とすることで、容易に絶縁材料の劣化度合いを判定することができる。   In addition, the ratio of the intrinsic viscosity of dissolved insulating material to the intrinsic viscosity of the solution in which the insulating material before degradation is dissolved (molecular weight retention) is used as an indicator of the degree of degradation of the insulating material, so that insulation can be easily performed. The degree of deterioration of the material can be determined.

また、本発明の絶縁材料の劣化度計測方法によれば、溶媒に溶解可能な多種類の絶縁材料の劣化度合いを計測することができる。   Further, according to the method for measuring the degree of deterioration of an insulating material of the present invention, the degree of deterioration of many types of insulating materials that can be dissolved in a solvent can be measured.

また、本発明の絶縁材料の劣化度計測方法によれば、例えば、0.01g程度の少量の試料を採取することで絶縁材料の劣化度合いを計測することができる。よって、引張試験(または、伸び試験)を行うことができない絶縁材料に適用することができる。例えば、引張試験用の試験片を採取できないような小型のプラスチック製品や、特に応力の集中する微小部の劣化度合い等も計測することができる。つまり、プラスチック製品の任意の場所の劣化度合いを計測することができる。さらに、劣化度を計測する試料を採取する部位を選択する自由度が高いので、絶縁材料の成型時の熱や、残留水分による成形時の熱分解、加水分解等の劣化が特徴的な部位の劣化度合いの判定も、それぞれ劣化が特徴的なプラスチック製品の部位から試料を採取することにより判定可能となる。   Further, according to the method for measuring the degree of deterioration of an insulating material according to the present invention, for example, the degree of deterioration of the insulating material can be measured by collecting a small amount of a sample of about 0.01 g. Therefore, the present invention can be applied to an insulating material that cannot be subjected to a tensile test (or elongation test). For example, it is possible to measure a small plastic product in which a specimen for a tensile test cannot be collected, a degree of deterioration of a minute part where stress is particularly concentrated, and the like. That is, it is possible to measure the degree of deterioration at any place of the plastic product. Furthermore, since there is a high degree of freedom in selecting the part from which the sample for measuring the degree of degradation is collected, the characteristic part is characterized by heat during molding of the insulating material, degradation due to thermal decomposition, hydrolysis, etc. due to residual moisture. The determination of the degree of deterioration can also be made by taking a sample from a part of the plastic product that is characteristic of deterioration.

プラスチック製品の成形時には当然のことながら絶縁材料を金型へ充填するために、絶縁材料を加熱する。絶縁材料の乾燥不足や長時間の加熱によって成形時に絶縁材料が劣化と同様の分解を起こす場合がある。本発明の絶縁材料の劣化計測方法は、このような成形時の絶縁材料の分解の確認、特に金型の流入口(ゲート)から最も遠い部分であって、ねじ取付け部等応力集中し易い部分の強度(劣化度合い)を判定することもできる。   When molding a plastic product, the insulating material is naturally heated in order to fill the mold with the insulating material. Insulation material may be decomposed in the same manner as deterioration during molding due to insufficient drying of the insulation material or prolonged heating. The method for measuring deterioration of an insulating material according to the present invention is a method for confirming the decomposition of the insulating material at the time of molding, particularly a portion farthest from the inlet (gate) of the mold, and a portion where stress is easily concentrated such as a screw mounting portion It is also possible to determine the strength (degradation degree) of the.

また、本発明の絶縁材料の劣化度計測方法によれば、予め分子量保持率と引張試験や伸び試験との関係を求めておくことにより、引張試験や伸び試験用の試験片を採取できないような小型のプラスチック製品であっても、分子量保持率の測定結果から引張試験や伸び試験による劣化の計測を推定することができる。つまり、分子量保持率の低下と引張強度(または、伸び)の低下に基づいて分子量保持率にしきい値を設定し、分子量保持率に基づいて絶縁材料の寿命を判断することができる。   Further, according to the method for measuring the degree of deterioration of the insulating material of the present invention, it is impossible to collect a test piece for a tensile test or an elongation test by obtaining a relationship between a molecular weight retention rate and a tensile test or an elongation test in advance. Even for a small plastic product, it is possible to estimate the measurement of deterioration by a tensile test or an elongation test from the measurement result of the molecular weight retention rate. That is, it is possible to set a threshold value for the molecular weight retention rate based on the decrease in the molecular weight retention rate and the decrease in the tensile strength (or elongation), and to determine the lifetime of the insulating material based on the molecular weight retention rate.

また、濃度1点法であるSolomon−Ciutaの式を採用すると、試料が少量、短時間で固有粘度を計測して劣化度合いを算出できるので、1回の劣化度合いの測定を30〜45分という短時間で計測できる。   In addition, when the Solomon-Ciuta formula, which is a one-point concentration method, is employed, the degree of deterioration can be calculated by measuring the intrinsic viscosity in a short time and in a short time, so the measurement of the degree of deterioration is called 30 to 45 minutes. It can be measured in a short time.

また、絶縁材料を溶解する溶媒に、ヘキサフルオロイソプロパノールやトルエンを用いると、溶媒を安全に取り扱うことができる常温から40℃で固有粘度を計測することができる。特に、ヘキサフルオロイソプロパノールは、溶解することができる絶縁材料の種類が多いので、測定値の比較やブランク測定が容易になる。   In addition, when hexafluoroisopropanol or toluene is used as a solvent for dissolving the insulating material, the intrinsic viscosity can be measured from room temperature to 40 ° C. where the solvent can be handled safely. In particular, since hexafluoroisopropanol has many types of insulating materials that can be dissolved, comparison of measured values and blank measurement are facilitated.

また、絶縁材料の表面から0.2〜0.5mmの深さ毎に複数回試料を採取すると、絶縁材料の深さ方向の劣化度合いを計測することができる。例えば、紫外線照射による劣化のように、絶縁材料の表面が特に劣化する場合において、絶縁材料の表面から深さ方向の劣化度合いの分布を計測することができる。   Moreover, if a sample is sampled several times from the surface of the insulating material every 0.2 to 0.5 mm, the degree of deterioration of the insulating material in the depth direction can be measured. For example, when the surface of the insulating material is particularly deteriorated, such as deterioration due to ultraviolet irradiation, the distribution of the degree of deterioration in the depth direction from the surface of the insulating material can be measured.

また、予め劣化前の試料と加速劣化後の試料の表面の色と、当該色の変化に対する分子量保持率の変化との関係を求めておくことにより、劣化表面の色から絶縁材料の劣化の進行度合いを推定することができる。すなわち、絶縁材料の色の変化に基づいて、劣化表面から絶縁材料の試料内部の劣化の進行速度を計測することができる。特に、本発明の劣化度計測方法は、絶縁材料の表面近傍の劣化度合いを評価することができるので、絶縁材料の劣化度合いと絶縁材料の色の変化との相関性を精度良く求めることができる。   In addition, by determining the relationship between the color of the surface of the sample before deterioration and the surface of the sample after accelerated deterioration, and the change in the molecular weight retention with respect to the change in the color, the deterioration of the insulating material progresses from the color of the deterioration surface. The degree can be estimated. That is, based on the change in the color of the insulating material, it is possible to measure the progress rate of the deterioration of the insulating material inside the sample from the deteriorated surface. In particular, the degradation degree measuring method of the present invention can evaluate the degree of degradation in the vicinity of the surface of the insulating material, so that the correlation between the degree of degradation of the insulating material and the color change of the insulating material can be obtained with high accuracy. .

また、本発明の劣化度計測装置は、本発明の劣化度計測方法を利用して、絶縁材料の劣化度合いを計測することができる。例えば、図19に示すように、保存手段4と、粘度計測手段5と、劣化度計測手段6と、を有する劣化度計測装置7を用いることで、絶縁材料の劣化度合いを容易に計測することができる。   Moreover, the degradation degree measuring apparatus of this invention can measure the degradation degree of an insulating material using the degradation degree measuring method of this invention. For example, as shown in FIG. 19, by using a deterioration degree measuring device 7 having a storage means 4, a viscosity measuring means 5, and a deterioration degree measuring means 6, the degree of deterioration of the insulating material can be easily measured. Can do.

劣化度計測装置7の各手段について具体的に説明すると、保存手段4は、予め所定の溶媒に劣化前の絶縁材料を溶解した溶液の濃度と粘度との関係若しくは劣化前の絶縁材料が溶解した溶液の固有粘度を保存する手段である。粘度計測手段5は、劣化後の絶縁材料が溶解した溶液の粘度を計測する手段である。劣化度計測手段6は、粘度計測手段5で計測された劣化後の絶縁材料が溶解した溶液の粘度とこの溶液の濃度に基づいて、劣化後の絶縁材料が溶解した溶液の固有粘度を算出し、この固有粘度と保存手段4に保存されたデータにより算出される劣化前の絶縁材料が溶解した溶液の固有粘度とに基づいて、劣化後の絶縁材料の劣化度合いを判定する手段である。   Specifically, each means of the deterioration degree measuring device 7 will be described. The storage means 4 has a relationship between the concentration and viscosity of a solution in which an insulating material before deterioration is dissolved in a predetermined solvent in advance or the insulating material before deterioration is dissolved. It is a means for preserving the intrinsic viscosity of the solution. The viscosity measuring means 5 is a means for measuring the viscosity of the solution in which the insulating material after deterioration is dissolved. The deterioration degree measuring means 6 calculates the intrinsic viscosity of the solution in which the deteriorated insulating material is dissolved based on the viscosity of the solution in which the deteriorated insulating material is dissolved and the concentration of the solution measured by the viscosity measuring means 5. Based on this intrinsic viscosity and the intrinsic viscosity of the solution in which the insulating material before deterioration calculated from the data stored in the storage means 4 is dissolved, the degree of deterioration of the insulating material after deterioration is determined.

このように、本発明の劣化度計測装置7は、予め保存手段4に劣化前の絶縁材料を溶解した溶液の固有粘度(若しくは、固有粘度を算出することができる計測値)を保存することで、劣化後の絶縁材料を溶解した溶液の粘度と濃度に基づいて、簡単に劣化後の絶縁材料の劣化度合いを判定することができる。   As described above, the deterioration degree measuring device 7 of the present invention stores in advance the intrinsic viscosity (or measurement value capable of calculating the intrinsic viscosity) of the solution in which the insulating material before deterioration is dissolved in the storage unit 4. Based on the viscosity and concentration of the solution in which the insulating material after deterioration is dissolved, the degree of deterioration of the insulating material after deterioration can be easily determined.

以上、本発明の絶縁材料の劣化度計測方法及び劣化度計測装置について、具体例を示して詳細に説明したが、本発明の絶縁材料の劣化度計測方法及び劣化度計測装置は、上述した実施形態に限らず、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明の技術的範囲に属する。   As described above, the deterioration degree measuring method and the deterioration degree measuring apparatus of the insulating material according to the present invention have been described in detail with specific examples. However, the deterioration degree measuring method and the deterioration degree measuring apparatus of the insulating material according to the present invention are described above. Not only the form but also the design can be changed as appropriate without departing from the characteristics of the present invention, and such a modified form also belongs to the technical scope of the present invention.

例えば、本発明の絶縁材料は、溶媒に溶解できる絶縁材料であれば適宜適用することができるので、劣化度合いを判定する絶縁材料は実施形態に限定されるものでなく、様々な絶縁材料の劣化度合いの計測に適用することができる。そして、絶縁材料を溶解する溶媒も、絶縁材料に応じて絶縁材料を溶解することができる溶媒が適宜選択される。   For example, since the insulating material of the present invention can be applied as long as it is an insulating material that can be dissolved in a solvent, the insulating material for determining the degree of deterioration is not limited to the embodiment, and various insulating materials deteriorate. It can be applied to measure the degree. As a solvent for dissolving the insulating material, a solvent capable of dissolving the insulating material is appropriately selected according to the insulating material.

また、絶縁材料を溶解した溶液の濃度及び粘度に基づいて固有粘度を算出しているが、絶縁材料が溶解した溶液の固有粘度の算出方法は、Solomon‐Ciuta式に基づいて算出することに限定されるものではなく、他の固有粘度の算出方法を用いてもよい。   In addition, although the intrinsic viscosity is calculated based on the concentration and viscosity of the solution in which the insulating material is dissolved, the calculation method of the intrinsic viscosity of the solution in which the insulating material is dissolved is limited to calculation based on the Solomon-Ciuta equation. However, other intrinsic viscosity calculation methods may be used.

また、分子量保持率に基づいて絶縁材料の劣化度合いを判定することで、劣化度合いの計測が容易になるが、直接溶液の固有粘度の値に基づいて絶縁材料の劣化度合いを判定してもよい。   In addition, although the degree of deterioration can be easily measured by determining the degree of deterioration of the insulating material based on the molecular weight retention rate, the degree of deterioration of the insulating material may be directly determined based on the intrinsic viscosity value of the solution. .

また、絶縁材料を溶解した溶液の粘度は、適宜周知の粘度計測方法を用いた測定することができ、周知の粘度計測方法を用いた計測した粘度に基づいて絶縁材料の評価を行うことができる。しかしながら、溶液の粘度の計測方法に落体式の粘度計測方法を用いることで、微量の試料量で計測を行うことができることや高精度で再現性の良い計測を行うことができること、密閉されていて空気との接触を防止できること、正確な温度制御ができること等の利点がある。特に、落体式の粘度計測方法を用いることで、粘度計測用の試料量が微量で済み、その結果として、層状に試料を採取して、試料の劣化度合いの評価を行うことができる。   Further, the viscosity of the solution in which the insulating material is dissolved can be appropriately measured using a known viscosity measuring method, and the insulating material can be evaluated based on the measured viscosity using a known viscosity measuring method. . However, by using a falling body type viscosity measurement method as a method for measuring the viscosity of a solution, it is possible to perform measurement with a very small amount of sample, and to perform highly accurate and reproducible measurement, which is sealed. There are advantages such as prevention of contact with air and accurate temperature control. In particular, by using a falling body type viscosity measurement method, a small amount of sample is required for viscosity measurement. As a result, the sample can be collected in a layered manner and the degree of deterioration of the sample can be evaluated.

1…試験片
2…キャピラリー
3…ボール
4…保存手段
5…粘度計測手段
6…劣化度計測手段
7…劣化度計測装置
DESCRIPTION OF SYMBOLS 1 ... Test piece 2 ... Capillary 3 ... Ball 4 ... Storage means 5 ... Viscosity measuring means 6 ... Deterioration degree measuring means 7 ... Deterioration degree measuring device

Claims (9)

絶縁材料の劣化度合いを計測する方法であって、
初期状態の絶縁材料を溶媒に溶解し、この溶液の粘度を計測し、
所定時間劣化後の絶縁材料を溶媒に溶解し、この溶液の粘度を計測し、
前記初期状態の絶縁材料を溶解した溶液の粘度と、前記劣化後の絶縁材料を溶解した溶液の粘度に基づいて、前記劣化後の絶縁材料の劣化度合いを判定する
ことを特徴とする絶縁材料の劣化度計測方法。
A method for measuring the degree of deterioration of an insulating material,
Dissolve the initial insulating material in a solvent, measure the viscosity of this solution,
Dissolve the insulating material after deterioration for a predetermined time in a solvent, measure the viscosity of this solution,
The degree of deterioration of the insulating material after deterioration is determined based on the viscosity of the solution in which the insulating material in the initial state is dissolved and the viscosity of the solution in which the insulating material after deterioration is dissolved. Degradation measurement method.
前記溶液の粘度の測定結果に基づいて、当該溶液の固有粘度を算出し、
前記初期状態の絶縁材料が溶解した溶液の固有粘度と、前記劣化後の絶縁材料が溶解した溶液の固有粘度に基づいて、前記劣化後の絶縁材料の劣化度合いを判定する
ことを特徴とする請求項1に記載の絶縁材料の劣化度計測方法。
Based on the measurement result of the viscosity of the solution, calculate the intrinsic viscosity of the solution,
The degree of deterioration of the deteriorated insulating material is determined based on the intrinsic viscosity of the solution in which the insulating material in the initial state is dissolved and the intrinsic viscosity of the solution in which the insulating material after the deterioration is dissolved. Item 2. A method for measuring the degree of deterioration of an insulating material according to Item 1.
前記初期状態の絶縁材料が溶解した溶液の固有粘度に対する前記劣化後の絶縁材料が溶解した溶液の固有粘度の割合を分子量保持率として算出し、
当該分子量保持率に基づいて前記劣化後の絶縁材料の劣化度合いを判定する
ことを特徴とする請求項2に記載の絶縁材料の劣化度計測方法。
Calculate the ratio of the intrinsic viscosity of the solution in which the insulating material after degradation to the intrinsic viscosity of the solution in which the insulating material in the initial state is dissolved as a molecular weight retention rate,
The method for measuring a degree of deterioration of an insulating material according to claim 2, wherein the degree of deterioration of the insulating material after the deterioration is determined based on the molecular weight retention rate.
前記劣化後の絶縁材料の劣化度合いの判定を、当該絶縁材料の表面から0.2〜0.5mmの深さ毎に行う
ことを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁材料の劣化度計測方法。
4. The method according to claim 1, wherein the deterioration degree of the insulating material after the deterioration is determined every 0.2 to 0.5 mm from the surface of the insulating material. 5. Deterioration degree measuring method for the described insulating material.
前記粘度は、落体式粘度法により計測し、
前記落体式粘度法において、前記溶液を保持するキャピラリーの傾斜角度を30°から70°の範囲とする
ことを特徴とする請求項1から請求項4のいずれか1項に記載の絶縁材料の劣化度計測方法。
The viscosity is measured by a falling body viscosity method,
The deterioration of the insulating material according to any one of claims 1 to 4, wherein in the falling body viscosity method, an inclination angle of a capillary for holding the solution is in a range of 30 ° to 70 °. Degree measurement method.
前記固有粘度は、Solomon‐Ciutaの式に基づいて算出する
ことを特徴とする請求項2から請求項5のいずれか1項に記載の絶縁材料の劣化度計測方法。
6. The method for measuring a deterioration level of an insulating material according to claim 2, wherein the intrinsic viscosity is calculated based on a Solomon-Ciuta equation.
前記溶媒は、ヘキサフルオロイソプロパノールであり、
前記絶縁材料がヘキサフルオロイソプロパノールに溶解しない場合は、前記溶媒はトルエンである
ことを特徴とする請求項1から請求項6のいずれか1項に記載の絶縁材料の劣化度計測方法。
The solvent is hexafluoroisopropanol;
The method for measuring a degree of deterioration of an insulating material according to any one of claims 1 to 6, wherein when the insulating material does not dissolve in hexafluoroisopropanol, the solvent is toluene.
前記劣化後の絶縁材料が溶解した溶液の粘度に基づいて判定される劣化度合いと、前記劣化後の絶縁材料の色とを対応付け、
前記絶縁材料の色に基づいて絶縁材料の劣化度合いを判定する
ことを特徴とする請求項1から請求項7のいずれか1項に記載の絶縁材料の劣化度計測方法。
Correlating the degree of deterioration determined based on the viscosity of the solution in which the insulating material after deterioration is dissolved, and the color of the insulating material after deterioration,
The method for measuring a degree of deterioration of an insulating material according to any one of claims 1 to 7, wherein the degree of deterioration of the insulating material is determined based on a color of the insulating material.
初期状態の絶縁材料を溶解した溶液の固有粘度を保存する保存手段と、
所定時間劣化後の絶縁材料を溶解した溶液の粘度を計測する手段と、
前記初期状態の絶縁材料を溶解した溶液の固有粘度と、前記劣化後の絶縁材料を溶解した溶液の粘度に基づいて算出される固有粘度とに基づいて、前記劣化後の絶縁材料の劣化度合いを判定する手段と、を有する
ことを特徴とする絶縁材料の劣化度計測装置。
Storage means for storing the intrinsic viscosity of the solution in which the insulating material in the initial state is dissolved;
Means for measuring the viscosity of a solution in which the insulating material is degraded after a predetermined time;
Based on the intrinsic viscosity of the solution in which the insulating material in the initial state is dissolved and the intrinsic viscosity calculated based on the viscosity of the solution in which the insulating material after deterioration is dissolved, the degree of deterioration of the insulating material after deterioration is determined. And a means for determining the deterioration level of the insulating material.
JP2013007960A 2013-01-21 2013-01-21 Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material Pending JP2014139514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007960A JP2014139514A (en) 2013-01-21 2013-01-21 Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007960A JP2014139514A (en) 2013-01-21 2013-01-21 Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material

Publications (1)

Publication Number Publication Date
JP2014139514A true JP2014139514A (en) 2014-07-31

Family

ID=51416288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007960A Pending JP2014139514A (en) 2013-01-21 2013-01-21 Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material

Country Status (1)

Country Link
JP (1) JP2014139514A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015476A (en) * 2015-06-30 2017-01-19 Jfeスチール株式会社 Sample collection method and deterioration diagnosis method
CN112687360A (en) * 2020-12-28 2021-04-20 珠海格力新材料有限公司 Weather resistance testing method for plastic material, information data processing terminal, medium and application
CN114113937A (en) * 2021-11-19 2022-03-01 天津大学 Experimental method for insulation degradation of polymer material under mechanical stress
CN112687360B (en) * 2020-12-28 2024-04-19 珠海格力新材料有限公司 Plastic material weather-proof test method, information data processing terminal, medium and application

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054642A (en) * 1973-08-21 1975-05-14
JPS61226636A (en) * 1985-04-01 1986-10-08 Tokyo Keiki Co Ltd Falling ball type viscometer
JPH06344368A (en) * 1993-06-10 1994-12-20 Japan Aviation Electron Ind Ltd Method of testing heat deterioration of molding and method of testing performance of molding machine
JPH07246689A (en) * 1994-03-11 1995-09-26 Diafoil Co Ltd Biaxially oriented laminated polyester film
JPH08333442A (en) * 1995-05-31 1996-12-17 Shell Internatl Res Maatschappij Bv Copolyester composition
JP2002257810A (en) * 2001-02-27 2002-09-11 Shiga Pref Gov Material for detecting resin degradation
JP2006089596A (en) * 2004-09-24 2006-04-06 Sumitomo Dow Ltd Polycarbonate resin composition for light diffusion plate and lighting cover composed of the same composition
JP2006123193A (en) * 2004-10-26 2006-05-18 Canon Inc Recycling method of used plastic
JP2006249345A (en) * 2005-03-14 2006-09-21 Idemitsu Kosan Co Ltd Polycarbonate resin composition and its molded article
JP2008083035A (en) * 2006-09-01 2008-04-10 Chubu Electric Power Co Inc Degradation determining method and apparatus for determining degradation of cellulose fibers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054642A (en) * 1973-08-21 1975-05-14
JPS61226636A (en) * 1985-04-01 1986-10-08 Tokyo Keiki Co Ltd Falling ball type viscometer
JPH06344368A (en) * 1993-06-10 1994-12-20 Japan Aviation Electron Ind Ltd Method of testing heat deterioration of molding and method of testing performance of molding machine
JPH07246689A (en) * 1994-03-11 1995-09-26 Diafoil Co Ltd Biaxially oriented laminated polyester film
JPH08333442A (en) * 1995-05-31 1996-12-17 Shell Internatl Res Maatschappij Bv Copolyester composition
JP2002257810A (en) * 2001-02-27 2002-09-11 Shiga Pref Gov Material for detecting resin degradation
JP2006089596A (en) * 2004-09-24 2006-04-06 Sumitomo Dow Ltd Polycarbonate resin composition for light diffusion plate and lighting cover composed of the same composition
JP2006123193A (en) * 2004-10-26 2006-05-18 Canon Inc Recycling method of used plastic
JP2006249345A (en) * 2005-03-14 2006-09-21 Idemitsu Kosan Co Ltd Polycarbonate resin composition and its molded article
JP2008083035A (en) * 2006-09-01 2008-04-10 Chubu Electric Power Co Inc Degradation determining method and apparatus for determining degradation of cellulose fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.MOHAMMADIAN ET AL.: "Environmental Degradation of Poly(ethylene Terephthalate)", TEXT RES J, vol. 61, no. 11, JPN6016036222, November 1991 (1991-11-01), US, pages 690 - 696, ISSN: 0003402742 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015476A (en) * 2015-06-30 2017-01-19 Jfeスチール株式会社 Sample collection method and deterioration diagnosis method
CN112687360A (en) * 2020-12-28 2021-04-20 珠海格力新材料有限公司 Weather resistance testing method for plastic material, information data processing terminal, medium and application
CN112687360B (en) * 2020-12-28 2024-04-19 珠海格力新材料有限公司 Plastic material weather-proof test method, information data processing terminal, medium and application
CN114113937A (en) * 2021-11-19 2022-03-01 天津大学 Experimental method for insulation degradation of polymer material under mechanical stress
CN114113937B (en) * 2021-11-19 2024-03-08 天津大学 Experimental method for insulation degradation of polymer material under mechanical stress

Similar Documents

Publication Publication Date Title
Boubakri et al. Study of UV-aging of thermoplastic polyurethane material
Kahlen et al. Aging behavior and lifetime modeling for polycarbonate
Gu et al. Aging behaviors of natural rubber in isolation bearings
JP2014139514A (en) Method for measuring deterioration degree of insulating material and apparatus for measuring deterioration degree of insulating material
Deshoulles et al. Modelling pure polyamide 6 hydrolysis: Influence of water content in the amorphous phase
CN1580735A (en) Insulation diagnosis method for electric appliance
CN110927050A (en) Method for predicting service life of polystyrene material by utilizing sun tracking light condensation accelerated aging test
Grabmann et al. Effect of thickness and temperature on the global aging behavior of polypropylene random copolymers for seasonal thermal energy storages
Gong et al. Recyclable high-performance glass-fiber/epoxy composites with UV-shielding and intrinsic damage self-reporting properties
Ferreira et al. Failure in automobile headlight lenses
Kanuga Degradation of polyester film exposed to accelerated indoor damp heat aging
JP6943919B2 (en) Deterioration diagnosis method for resin piping system
JP6401010B2 (en) Fracture strength prediction method and tire rubber composition
JP4245080B1 (en) Diagnosis method for resin molded products
CN102445460A (en) Method for testing adhesive force life of steel wire tire cord in radial tire
Makris et al. Extensive testing on PVC sewer pipes towards identifying the factors that affect their operational lifetime
CN104076134B (en) Method for testing shear dispersion performance of glass fibers in thermoplastic plastics
JP2014071057A (en) Deterioration determination device and deterioration determination method for vinyl chloride hose
Pons et al. An Environmental Stress Cracking (ESC) test to study the ageing of biopolymers and biocomposites
JP5604375B2 (en) How to determine the life of overhead power lines
JP6592405B2 (en) A method for estimating the lifetime of thermoplastic polyester due to reduced ductility.
Shi et al. Outdoor weathering behavior of polyamide 6 under various climates in C hina
Marks et al. Techniques for predicting the weathering performance of rigid PVC
JP2011038945A (en) Nondestructive inspection method of rubber material
Grabmann et al. Aging and lifetime assessment of polyethylene liners for heat storages–Effect of liner thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328