JP2014137326A - Measuring apparatus and measuring method - Google Patents

Measuring apparatus and measuring method Download PDF

Info

Publication number
JP2014137326A
JP2014137326A JP2013007166A JP2013007166A JP2014137326A JP 2014137326 A JP2014137326 A JP 2014137326A JP 2013007166 A JP2013007166 A JP 2013007166A JP 2013007166 A JP2013007166 A JP 2013007166A JP 2014137326 A JP2014137326 A JP 2014137326A
Authority
JP
Japan
Prior art keywords
tire
road surface
ice layer
layer road
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013007166A
Other languages
Japanese (ja)
Inventor
Yoshio Kachi
与志男 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013007166A priority Critical patent/JP2014137326A/en
Publication of JP2014137326A publication Critical patent/JP2014137326A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure grounding characteristics of a tire which runs on a road surface ice layer.SOLUTION: A measuring apparatus includes: a pressure sensor 34 which is embedded in a road surface ice layer 38; and a calculation part 36 which calculates a ground contact pressure, shearing stress in a width direction and the shearing stress in a circumferential direction of a tire 10 when signals are received from a pressure sensor 34 and the tire 10 runs on the road surface ice layer 38.

Description

本発明は、測定装置及び測定方法に関し、特には氷層路面上におけるタイヤの接地特性の測定装置及び測定方法に関する。   The present invention relates to a measuring device and a measuring method, and more particularly, to a measuring device and a measuring method for tire ground contact characteristics on an ice layer road surface.

従来、走行時のタイヤの接地圧、幅方向せん断応力及び周方向せん断応力等の接地特性を測定する方法として、例えば、これらを測定可能な圧力センサをアスファルト舗装の試験路面に埋設し、車両を通過させることによって、圧力センサ上を通過する瞬間のタイヤの接地特性を測定する方法がある(例えば、特許文献1の背景技術参照)。   Conventionally, as a method of measuring ground contact characteristics such as tire contact pressure, width direction shear stress and circumferential direction shear stress during traveling, for example, a pressure sensor capable of measuring these is embedded in a test road surface of asphalt pavement, and a vehicle is mounted. There is a method of measuring the ground contact characteristics of a tire at the moment of passing over the pressure sensor by passing the pressure sensor (for example, refer to the background art of Patent Document 1).

特開2011−203207号公報JP 2011-203207 A

しかしながら、タイヤは様々な路面を走行することがあり、特に氷層路面ではアスファルトの路面に比べてタイヤの接地特性が変化してしまう。   However, tires may travel on various road surfaces, and the ground contact characteristics of tires change particularly on ice layer road surfaces as compared to asphalt road surfaces.

本発明は上記事実を考慮して、氷層路面を走行するタイヤの接地特性を測定可能な測定装置及び測定方法を提供することを課題とする。   In view of the above facts, an object of the present invention is to provide a measuring device and a measuring method capable of measuring the ground contact characteristics of a tire traveling on an ice layer road surface.

本発明の第1態様に係る測定装置は、氷層路面に埋め込まれた圧力センサと、前記圧力センサが発信する信号を受信して、タイヤが氷層路面を走行したときのタイヤの接地圧、幅方向せん断応力及び周方向せん断方力を算出する算出部と、を有する。
この構成によれば、算出部によって、氷層路面を走行するタイヤの接地特性が測定可能となる。
The measuring device according to the first aspect of the present invention includes a pressure sensor embedded in an ice layer road surface, a signal transmitted by the pressure sensor, and a tire contact pressure when the tire travels on an ice layer road surface, A calculation unit that calculates a width direction shear stress and a circumferential direction shear force.
According to this configuration, the calculation unit can measure the ground contact characteristics of the tire traveling on the ice layer road surface.

本発明の第2態様に係る測定装置では、第1態様において、前記圧力センサは、間隔をおいてタイヤ走行方向に複数並べられ、前記タイヤ走行方向の前記圧力センサの長さが3.6mm以下である。
この構成によれば、例えばサイプが3.6mm〜7mmの間隔で刻まれた冬用タイヤのように、タイヤ表面が小ブロックに分割されたタイヤについても、氷層路面に対する小ブロック毎の接地特性を測定することができる。
In the measuring device according to the second aspect of the present invention, in the first aspect, a plurality of the pressure sensors are arranged in the tire traveling direction at intervals, and the length of the pressure sensor in the tire traveling direction is 3.6 mm or less. It is.
According to this configuration, even for a tire in which the tire surface is divided into small blocks, such as a winter tire in which sipes are carved at intervals of 3.6 mm to 7 mm, the ground contact characteristics for each small block with respect to the ice layer road surface. Can be measured.

本発明の第3態様に係る測定方法は、第1態様又は第2態様に記載の測定装置を用意し、前記氷層路面上に車両を通過させ、前記車両に装着されたタイヤの接地圧、幅方向せん断応力及び周方向せん断方力を算出してタイヤの接地特性を測定する。
この方法によれば、氷層路面を走行するタイヤの接地特性が測定される。
A measurement method according to a third aspect of the present invention provides the measurement device according to the first aspect or the second aspect, allows a vehicle to pass on the ice layer road surface, and a contact pressure of a tire mounted on the vehicle. The ground contact characteristics of the tire are measured by calculating the width direction shear stress and the circumferential direction shear force.
According to this method, the ground contact characteristic of the tire traveling on the ice layer road surface is measured.

本発明によれば、氷層路面を走行するタイヤの接地特性を測定することができる。   According to the present invention, it is possible to measure the ground contact characteristics of a tire traveling on an ice layer road surface.

氷層路面の垂直方向断面図である。It is a vertical direction sectional view of an ice layer road surface. 図1に示す氷層路面の上面図である。It is a top view of the ice layer road surface shown in FIG. 本発明の実施形態に係る空気入りタイヤのタイヤ径方向断面図である。1 is a tire radial direction cross-sectional view of a pneumatic tire according to an embodiment of the present invention. 氷層路面上に水膜ができた状態の垂直方向断面図である。It is a vertical direction sectional view of a state where a water film is formed on the ice layer road surface.

以下、添付の図面を参照しながら、本発明の実施形態に係る測定装置及び測定方法について具体的に説明する。   Hereinafter, a measurement apparatus and a measurement method according to embodiments of the present invention will be specifically described with reference to the accompanying drawings.

<空気入りタイヤ>
まず、測定装置及び測定方法の測定対象である空気入りタイヤについて説明する。図3に示すように、空気入りタイヤ(例えばスタッドレスタイヤ)10は、両端部がそれぞれビードコア11で折り返された1層又は複数層で構成されるカーカス12を備えている。
<Pneumatic tire>
First, a pneumatic tire that is a measurement target of the measurement device and the measurement method will be described. As shown in FIG. 3, a pneumatic tire (for example, a studless tire) 10 includes a carcass 12 composed of one layer or a plurality of layers, each end of which is folded by a bead core 11.

カーカス12のクラウン部12Cのタイヤ径方向外側には、複数枚のベルトプライが重ねられたベルト層14が埋設されている。
ベルト層14のタイヤ径方向外側には、溝を配設したトレッド部16が形成されている。トレッド部16には、タイヤ周方向に沿った複数本の周方向主溝22が形成されている。
A belt layer 14 in which a plurality of belt plies are stacked is embedded on the outer side in the tire radial direction of the crown portion 12 </ b> C of the carcass 12.
A tread portion 16 provided with a groove is formed on the outer side of the belt layer 14 in the tire radial direction. A plurality of circumferential main grooves 22 are formed in the tread portion 16 along the tire circumferential direction.

それぞれの周方向主溝22同士の間には、陸部24が形成されている。各陸部24にはタイヤ周方向に沿った複数本の周方向サイプ26が形成されている。周方向サイプ26の溝の深さは、周方向主溝22の深さの50%以上100%未満の範囲とされている。   A land portion 24 is formed between the circumferential main grooves 22. Each land portion 24 is formed with a plurality of circumferential sipes 26 along the tire circumferential direction. The depth of the groove of the circumferential sipe 26 is in a range of 50% or more and less than 100% of the depth of the circumferential main groove 22.

また、図1に示すように、陸部24には、タイヤ幅方向に沿った複数本の幅方向サイプ28が形成されている。   Further, as shown in FIG. 1, a plurality of width direction sipes 28 are formed in the land portion 24 along the tire width direction.

さらに、陸部24には、周方向主溝22や周方向サイプ26、幅方向サイプ28で囲まれる複数の小ブロック30が形成されている。小ブロック30のタイヤ周方向長さ、すなわち幅方向サイプ28同士の間隔は、3.6mm以上7mm以下とされている。小ブロック30のタイヤ幅方向長さ、すなわち周方向サイプ26同士又は周方向サイプ26と周方向主溝22との間隔も、3.6mm以上7mm以下とされている。   Further, the land portion 24 is formed with a plurality of small blocks 30 surrounded by the circumferential main groove 22, the circumferential sipe 26, and the widthwise sipe 28. The length of the small block 30 in the tire circumferential direction, that is, the interval between the widthwise sipes 28 is 3.6 mm or more and 7 mm or less. The length of the small block 30 in the tire width direction, that is, the interval between the circumferential sipes 26 or between the circumferential sipes 26 and the circumferential main groove 22 is also set to 3.6 mm or more and 7 mm or less.

<測定装置>
次に、本実施形態に係る測定装置について説明する。
<Measurement device>
Next, the measuring apparatus according to the present embodiment will be described.

図1に示すように、本実施形態に係る測定装置32は、三分力センサ34と、算出表示部36と、を有している。
三分力センサ34は、円盤状とされ、間隔をおいてタイヤ走行方向P及びタイヤ幅方向に複数並べられたマトリクス状の配置で氷層路面38に埋め込まれている(図1及び図2参照)。
As shown in FIG. 1, the measuring device 32 according to the present embodiment includes a three-component force sensor 34 and a calculation display unit 36.
The three-component force sensor 34 has a disk shape and is embedded in the ice layer road surface 38 in a matrix-like arrangement in which a plurality of them are arranged in the tire running direction P and the tire width direction at intervals (see FIGS. 1 and 2). ).

各三分力センサ34は、氷層路面38が空気入りタイヤ10から受けるタイヤ周方向、タイヤ幅方向及び氷層路面上下方向の三方向それぞれの力の大きさ、すなわちタイヤの周方向せん断応力、幅方向せん断応力及び接地圧を電圧変化や電気抵抗変化の値で測定するものである。   Each of the three component force sensors 34 has three levels of force in the tire circumferential direction, the tire width direction, and the ice layer road surface vertical direction that the ice layer road surface 38 receives from the pneumatic tire 10, that is, the circumferential shear stress of the tire, The width direction shear stress and the ground pressure are measured by the value of voltage change or electric resistance change.

また、タイヤ走行方向Pの各三分力センサ34の受圧面34Aの長さは、幅方向サイプ28同士の間隔以下、すなわち3.6mm以下とされている。同様に、タイヤ幅方向の各三分力センサ34の受圧面34Aの長さも、周方向サイプ26同士の間隔以下、すなわち3.6mm以下とされている。なお、本実施形態では、三分力センサ34は円盤状であるので、受圧面34Aの直径が、タイヤ走行方向Pの受圧面34Aの長さやタイヤ幅方向の受圧面34Aの長さと等しい。   Further, the length of the pressure receiving surface 34A of each three component force sensor 34 in the tire traveling direction P is set to be equal to or less than the interval between the width direction sipes 28, that is, 3.6 mm or less. Similarly, the length of the pressure receiving surface 34A of each of the three component force sensors 34 in the tire width direction is set to be equal to or less than the interval between the circumferential sipes 26, that is, 3.6 mm or less. In the present embodiment, since the three-component force sensor 34 has a disk shape, the diameter of the pressure receiving surface 34A is equal to the length of the pressure receiving surface 34A in the tire running direction P and the length of the pressure receiving surface 34A in the tire width direction.

各三分力センサ34は、有線又は無線で1つの算出表示部36に接続されている。
算出表示部36は、各三分力センサ34から電圧変化や電気抵抗変化の電気信号を受信して、空気入りタイヤ10が氷層路面38を走行したときの空気入りタイヤ10の接地圧、幅方向せん断応力及び周方向せん断応力を三分力センサ34毎に算出する(換算する)。そして、算出表示部36は、算出結果を表示画面36Aに表示するか、或いは、図示しないパーソナルコンピュータと繋がりその表示画面に表示する。
Each three component force sensor 34 is connected to one calculation display unit 36 by wire or wirelessly.
The calculation display unit 36 receives electric signals of voltage change and electric resistance change from each of the three component force sensors 34, and the ground pressure and width of the pneumatic tire 10 when the pneumatic tire 10 travels on the ice layer road surface 38. The directional shear stress and the circumferential shear stress are calculated (converted) for each of the three component force sensors 34. Then, the calculation display unit 36 displays the calculation result on the display screen 36A, or is connected to a personal computer (not shown) and displayed on the display screen.

<測定方法>
次に、本実施形態に係る測定方法について説明する。
<Measurement method>
Next, a measurement method according to this embodiment will be described.

まず、上述の測定装置を用意する。すなわち、複数の三分力センサ34を氷層路面38にマトリクス状に埋め込む。
次に、三分力センサ34を埋め込んだ氷層路面38上を、空気入りタイヤ10を装着した車両で通過する。
そして、車両通過の際、電圧変化又は電気抵抗変化が三分力センサ34により測定されて、空気入りタイヤ10のタイヤの接地圧、幅方向せん断応力及び周方向せん断応力に算出表示部36により換算されて表示される。
First, the above-described measuring apparatus is prepared. That is, a plurality of three component force sensors 34 are embedded in the ice layer road surface 38 in a matrix.
Next, a vehicle equipped with the pneumatic tire 10 is passed over the ice layer road surface 38 in which the three-component force sensor 34 is embedded.
Then, when passing through the vehicle, the voltage change or the electric resistance change is measured by the three component force sensor 34 and converted into the ground contact pressure, the width direction shear stress and the circumferential direction shear stress of the pneumatic tire 10 by the calculation display unit 36. Displayed.

以上の結果、氷層路面38を走行する空気入りタイヤ10の接地特性を測定することができる。   As a result, the ground contact characteristics of the pneumatic tire 10 traveling on the ice layer road surface 38 can be measured.

また、三分力センサ34は、間隔をおいてタイヤ走行方向に複数並べられ、タイヤ走行方向の三分力センサ34の長さが3.6mm以下である。これにより、例えば幅方向サイプ28が3.6mm〜7mmの間隔で刻まれ、タイヤ表面が小ブロックに分割された空気入りタイヤ10が氷層路面38を走行したとき、氷層路面38に対するタイヤ周方向に沿った小ブロック毎の接地特性を測定することができる。   A plurality of the three component force sensors 34 are arranged in the tire traveling direction at intervals, and the length of the three component force sensors 34 in the tire traveling direction is 3.6 mm or less. Thus, for example, when the pneumatic tire 10 in which the width direction sipes 28 are cut at intervals of 3.6 mm to 7 mm and the tire surface is divided into small blocks travels on the ice layer road surface 38, the tire circumference with respect to the ice layer road surface 38 is increased. It is possible to measure the ground characteristics for each small block along the direction.

同様に、三分力センサ34は、間隔をおいてタイヤ幅方向に複数並べられ、タイヤ幅方向の三分力センサ34の長さが3.6mm以下である。これにより、例えば周方向サイプ26が3.6mm〜7mmの間隔で刻まれ、タイヤ表面が小ブロックに分割された空気入りタイヤ10が氷層路面38を走行したとき、氷層路面38に対するタイヤ幅方向に沿った小ブロック毎の接地特性を測定することができる。   Similarly, a plurality of three component force sensors 34 are arranged in the tire width direction at intervals, and the length of the three component force sensors 34 in the tire width direction is 3.6 mm or less. Thereby, for example, when the pneumatic tire 10 in which the circumferential sipe 26 is cut at an interval of 3.6 mm to 7 mm and the tire surface is divided into small blocks travels on the ice layer road surface 38, the tire width with respect to the ice layer road surface 38. It is possible to measure the ground characteristics for each small block along the direction.

<変形例>
以上、本願の開示する技術の複数の実施形態について説明したが、本願の開示する技術は、上記に限定されるものではない。
例えば、本実施形態に係る圧力センサは、三方向の力成分のみを検出する三分力センサ34を用いる場合を説明したが、三方向の力成分とモーメント成分を同時に検出する六分力センサ等のその他のセンサを用いてもよい。
また、複数の三分力センサ34は1つの算出表示部36に接続されている場合を説明したが、三分力センサ34毎に個別の算出表示部36が接続されていてもよい。
また、本実施形態では、氷層路面38上を空気入りタイヤ10が走行する場合を説明したが、図4に示すように、氷層路面38の氷が溶けて、水膜40の上を空気入りタイヤ10が走行する場合、三分力センサ34により水の粘性抵抗力を測定することが可能となる。
<Modification>
As mentioned above, although several embodiment of the technique which this application discloses was described, the technique which this application discloses is not limited above.
For example, the pressure sensor according to the present embodiment has been described using the three-component force sensor 34 that detects only force components in three directions, but a six-component force sensor that simultaneously detects force components and moment components in three directions. Other sensors may be used.
Moreover, although the case where the plurality of three component force sensors 34 are connected to one calculation display unit 36 has been described, an individual calculation display unit 36 may be connected to each of the three component force sensors 34.
Further, in the present embodiment, the case where the pneumatic tire 10 travels on the ice layer road surface 38 has been described. However, as shown in FIG. 4, the ice on the ice layer road surface 38 melts and the air above the water film 40 flows. When the entering tire 10 travels, the viscous resistance of water can be measured by the three-component force sensor 34.

さらに、本願の開示する技術は、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。   Furthermore, it goes without saying that the technology disclosed in the present application can be implemented with various modifications within a range not departing from the gist thereof.

10 空気入りタイヤ(タイヤ)、32 測定装置、34 各三分力センサ、
34 三分力センサ(圧力センサ)、34A 受圧面、36 算出表示部(算出部)、
38 氷層路面
10 pneumatic tires (tires), 32 measuring devices, 34 tri-component force sensors,
34 three-component force sensor (pressure sensor), 34A pressure-receiving surface, 36 calculation display unit (calculation unit),
38 Ice layer road surface

Claims (3)

氷層路面に埋め込まれた圧力センサと、
前記圧力センサから信号を受信して、タイヤが氷層路面を走行したときのタイヤの接地圧、幅方向せん断応力及び周方向せん断方力を算出する算出部と、
を有する測定装置。
A pressure sensor embedded in the ice layer road surface;
A calculation unit that receives a signal from the pressure sensor and calculates a tire contact pressure, a width direction shear stress, and a circumferential direction shear force when the tire travels on an ice layer road surface;
Measuring device.
前記圧力センサは、間隔をおいてタイヤ走行方向に複数並べられ、前記タイヤ走行方向の前記圧力センサの受圧面の長さが4mm以下である、
請求項1に記載の測定装置。
A plurality of the pressure sensors are arranged in the tire running direction at intervals, and the length of the pressure receiving surface of the pressure sensor in the tire running direction is 4 mm or less.
The measuring apparatus according to claim 1.
請求項1又は請求項2に記載の測定装置を用意し、前記氷層路面上を車両で通過し、前記車両に装着されたタイヤの接地圧、幅方向せん断応力及び周方向せん断方力を算出してタイヤの接地特性を測定する測定方法。   A measurement device according to claim 1 or 2 is prepared, and the ground pressure, the width direction shear stress and the circumferential direction shear force of a tire passing through the ice layer road surface by a vehicle and mounted on the vehicle are calculated. To measure the ground contact characteristics of the tire.
JP2013007166A 2013-01-18 2013-01-18 Measuring apparatus and measuring method Pending JP2014137326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007166A JP2014137326A (en) 2013-01-18 2013-01-18 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007166A JP2014137326A (en) 2013-01-18 2013-01-18 Measuring apparatus and measuring method

Publications (1)

Publication Number Publication Date
JP2014137326A true JP2014137326A (en) 2014-07-28

Family

ID=51414902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007166A Pending JP2014137326A (en) 2013-01-18 2013-01-18 Measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP2014137326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036913A (en) * 2017-06-07 2017-08-11 中国空气动力研究与发展中心低速空气动力研究所 A kind of shear strength measuring method between ice sheet and solid material based on icing wind tunnel experimental section
CN112326087A (en) * 2021-01-04 2021-02-05 湖南大学 Vehicle contact time-course force measuring method and device based on video identification
WO2021070410A1 (en) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ Tire testing device
KR20220098988A (en) * 2021-01-05 2022-07-12 한국타이어앤테크놀로지 주식회사 A measurement system for dynamic contact pressure of tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036913A (en) * 2017-06-07 2017-08-11 中国空气动力研究与发展中心低速空气动力研究所 A kind of shear strength measuring method between ice sheet and solid material based on icing wind tunnel experimental section
CN107036913B (en) * 2017-06-07 2023-03-24 中国空气动力研究与发展中心低速空气动力研究所 Method for measuring shear strength between ice layer and solid material in icing wind tunnel experiment section
WO2021070410A1 (en) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ Tire testing device
JP6912686B1 (en) * 2019-10-08 2021-08-04 株式会社エー・アンド・デイ Tire test equipment
CN112326087A (en) * 2021-01-04 2021-02-05 湖南大学 Vehicle contact time-course force measuring method and device based on video identification
CN112326087B (en) * 2021-01-04 2021-04-23 湖南大学 Vehicle contact time-course force measuring method and device based on video identification
KR20220098988A (en) * 2021-01-05 2022-07-12 한국타이어앤테크놀로지 주식회사 A measurement system for dynamic contact pressure of tire
KR102511273B1 (en) * 2021-01-05 2023-03-17 한국타이어앤테크놀로지 주식회사 A measurement system for dynamic contact pressure of tire

Similar Documents

Publication Publication Date Title
JP6563165B2 (en) Tire sidewall load estimation system and method
JP6265375B2 (en) Tire slip angle estimation system and method
WO2016158630A1 (en) Tire wear amount estimating method and tire wear amount estimating device
JP2014137326A (en) Measuring apparatus and measuring method
US8869618B2 (en) Method and apparatus for estimating contact patch shape of tire
JP5902473B2 (en) Tire uneven wear detection method and tire uneven wear detection device
JP2012006472A (en) Tire internal failure determination method
BR102014000804B1 (en) PNEUMATIC
JP2014529070A5 (en)
US8991450B2 (en) Pneumatic tire
US9168906B2 (en) Method of analyzing stopping distance performance efficiency
JP2013221847A (en) Abrasion evaluation method of tire
JP2016540686A (en) Tread band with curved blocks with sipes
CN110770051B (en) Device for evaluating deformation of casing of pneumatic tire
Kubba et al. Modeling of contact patch in dual-chamber pneumatic tires
WO2009116623A1 (en) Tire for winter
KR101790231B1 (en) In-situ measuring system and method of deformation of tire and road surface using tire with conductive tread
JP2010247708A (en) Pneumatic tire
ITTO20110125A1 (en) TREAD STRIP WITH ASYMMETRICAL GROOVES TO REDUCE THE RETENTION OF DEPRESSION
JP2012245858A (en) Pneumatic tire
US20130205884A1 (en) Diagnostic tire test method
BR112021011761A2 (en) TIRE AND WHEEL ASSEMBLY AND METHOD OF PRESSURE ADJUSTMENT IN A TIRE
CN202912536U (en) Dragging wheel of elevator
JP6922727B2 (en) Tire evaluation method
US10814679B2 (en) Sensory misalignment siping