JP2014137259A - Subcriticality measuring device - Google Patents

Subcriticality measuring device Download PDF

Info

Publication number
JP2014137259A
JP2014137259A JP2013005206A JP2013005206A JP2014137259A JP 2014137259 A JP2014137259 A JP 2014137259A JP 2013005206 A JP2013005206 A JP 2013005206A JP 2013005206 A JP2013005206 A JP 2013005206A JP 2014137259 A JP2014137259 A JP 2014137259A
Authority
JP
Japan
Prior art keywords
neutron
container
neutron absorber
fuel assembly
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013005206A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshioka
研一 吉岡
Hironori Kumanomido
宏徳 熊埜御堂
Satoshi Gunji
智 郡司
Yamato Hayashi
大和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013005206A priority Critical patent/JP2014137259A/en
Publication of JP2014137259A publication Critical patent/JP2014137259A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a subcriticality of a container even when a shape and a dimension of the container including a fissile material is undecided.SOLUTION: A subcriticality measuring device includes: a neutron detector 11 disposed on a side face of a nuclear fuel assembly 1; a neutron absorber 12 possible to be disposed facing another face which forms a right angle with one face on which the neutron detector 11 is disposed in the nuclear fuel assembly 1; an attaching/detaching mechanism 13 for allowing the neutron absorber 12 to approach to or separate from the nuclear fuel assembly 1; and calculation unit including time counting means, neutron source intensity calculation means, and effective multiplication factor calculation means. The neutron source intensity calculation means calculates a neutron source intensity of the nuclear fuel assembly 1 from a temporal change of a neutron counting rate detected by the neutron detector 11 in a state that the neutron absorber 12 approaches the nuclear fuel assembly 1. The effective multiplication factor calculation means is configured to calculate an effective multiplication factor of the neutron in a state that the neutron absorber 12 is separated from the nuclear fuel assembly 1 based on the neutron source intensity.

Description

本発明の実施形態は、核分裂性物質を含む容器(例えば核燃料集合体)における中性子の実効増倍率を求めて、その未臨界度を測定する未臨界度測定装置に関する。   Embodiments of the present invention relate to a subcriticality measuring apparatus for obtaining an effective multiplication factor of neutrons in a container (eg, nuclear fuel assembly) containing a fissile material and measuring the subcriticality thereof.

臨界管理においては、保守性を高めるために、燃焼した燃料であっても新燃料として取り扱う設計が行われ、これは新燃料仮定と呼ばれる。一方、燃料の燃焼による反応度低下を考慎した合理化設計は燃焼度クレジットと呼ばれる。   In criticality management, in order to improve maintainability, a design is made to handle even burned fuel as new fuel, which is called a new fuel assumption. On the other hand, a rationalized design that considers a decrease in reactivity due to fuel combustion is called burnup credit.

再処理工場において燃焼度クレジットを採用する場合、使用済核燃料集合体は、燃焼度モニタと呼ばれる確認装置で燃焼度が確認される。また、燃焼度の代わりに中性子吸収体の着脱により、核燃料集合体における中性子の実効増倍率や核分裂性物質量を測定する場合もある(特許文献1〜3、非特許文献1)。   When the burnup credit is adopted in the reprocessing plant, the burnup of the spent nuclear fuel assembly is confirmed by a confirmation device called a burnup monitor. In some cases, the effective multiplication factor of neutrons and the amount of fissile material in the nuclear fuel assembly are measured by attaching / detaching a neutron absorber instead of the burnup (Patent Documents 1 to 3, Non-Patent Document 1).

非特許文献1には、中性子吸収体としてカドミウム(Cd)を用い、このCdが使用済核燃料集合体の周囲に有る場合と無い場合とで検出される各中性子計数率から、Cdが無い場合の使用済核燃料集合体の実効増倍率を求めると共に、その使用済核燃料集合体に含まれる核分裂性物質の濃度を推定する方法が示されている。   In Non-Patent Document 1, cadmium (Cd) is used as a neutron absorber, and from the respective neutron count rates detected when Cd is around the spent nuclear fuel assembly and when Cd is not present, A method for obtaining an effective multiplication factor of a spent nuclear fuel assembly and estimating a concentration of a fissile material contained in the spent nuclear fuel assembly is shown.

つまり、Cdが無い場合に検出される初期中性子計数率(Φ0)と、この場合の比例係数(α0)、実効増倍率(k0)及び中性子源強度(S)との関係、Cdが有る場合に検出される中性子計数率(φ)と、この場合の比例係数(α)、実効増倍率(k)及び中性子源強度(S)との関係は、それぞれ次式(1)、(2)のようになる。ここで、核燃料集合体の周囲におけるCdの有無は中性子源強度Sに影響を与えないので、この中性子源強度Sは変化しないとした。
φ0=α0・S/(1−k0) ……(1)
φ=α・S/(1−k) ……(2)
That is, the relationship between the initial neutron count rate (Φ0) detected in the absence of Cd and the proportionality coefficient (α0), effective multiplication factor (k0), and neutron source strength (S) in this case, and Cd. The relationship between the detected neutron count rate (φ) and the proportionality coefficient (α), effective multiplication factor (k), and neutron source intensity (S) in this case is expressed by the following equations (1) and (2), respectively. become. Here, since the presence or absence of Cd around the nuclear fuel assembly does not affect the neutron source intensity S, the neutron source intensity S is not changed.
φ0 = α0 · S / (1-k0) (1)
φ = α · S / (1-k) (2)

これらの式(1)と式(2)から次式(3)が得られる。
(φ/φ0)=(α/α0)・(1−k0)/(1−k) ……(3)
この式(3)を変形して、Cdが無い場合の核燃料集合体の実効増倍率k0は次式(4)となる。

Figure 2014137259
From these equations (1) and (2), the following equation (3) is obtained.
(Φ / φ0) = (α / α0) · (1-k0) / (1-k) (3)
By transforming this equation (3), the effective multiplication factor k0 of the nuclear fuel assembly in the absence of Cd is expressed by the following equation (4).
Figure 2014137259

ここで、(α/α0)は、Cdの有無で変化するが比較的1に近く、解析により予め計算することが可能である。また、(k/k0)は、核燃料集合体から熱中性子が漏れない確率の比に等しく、核燃料集合体の形状がわかれば、予め解析により計算することが可能である。従って、検出により求められる(φ/φ0)から、核燃料集合体に含まれる核分裂性物質の濃度を推定できると共に、式(4)を用いることでCdが無い場合の実効増倍率k0を求め、この実効増倍率k0から核燃料集合体の未臨界度を測定することができる。   Here, (α / α0) changes depending on the presence or absence of Cd, but is relatively close to 1, and can be calculated in advance by analysis. Further, (k / k0) is equal to the ratio of the probability that thermal neutrons do not leak from the nuclear fuel assembly, and if the shape of the nuclear fuel assembly is known, it can be calculated in advance by analysis. Accordingly, the concentration of the fissile material contained in the nuclear fuel assembly can be estimated from (φ / φ0) obtained by detection, and the effective multiplication factor k0 in the absence of Cd is obtained by using Equation (4). The subcriticality of the nuclear fuel assembly can be measured from the effective multiplication factor k0.

特開昭54−155393号公報JP 54-155393 A 特開昭62−2192号公報JP-A-62-2192 特開昭62−47590号公報JP-A-62-47590

株式会社東芝 TLR−R001 再処理施設における燃焼度計測装置TOSHIBA CORPORATION TLR-R001 Burnup Measurement System at Reprocessing Facility オーム社 原子力教科書 原子炉動特性とプラント制御Ohmsha Nuclear Textbook Reactor Dynamics and Plant Control H. Taninaka, et al.,“An Extended Rod Drop Method Applicable to Subcritical Reactor System Driven by Neutron Source,”Journal of Nuclear Science and Technology,Vol.47,No.4,p.351−356(2010)H. Taninaka, et al. , “An Extended Rod Drop Method Applicable to Subscriber Reactor System Driven by Neutral Source, Journal of Nuclear Science.” 47, no. 4, p. 351-356 (2010)

上述のような中性子吸収体の有無による実効増倍率の測定は、核燃料集合体のように寸法や形状が既知で、α/α0やk/k0の値が計算可能な場合、または核分裂性物質の含有量や実効増倍率が予めわかった核燃料集合体による校正試験が可能な場合には有効である。   The measurement of the effective multiplication factor with or without a neutron absorber as described above is possible when the dimensions and shape are known and the values of α / α0 and k / k0 can be calculated, as in the case of nuclear fuel assemblies, or This is effective when a calibration test using a nuclear fuel assembly whose content and effective multiplication factor are known in advance is possible.

しかし、シビアアクシデントにより燃料の溶融が生じた場合など、核燃料集合体の形状や寸法等が未定な場合には、上述のような計算や校正が困難であり、核燃料集合体の実効増倍率k0を求めて、この核燃料集合体の未臨界度を測定することができない。   However, when the shape, dimensions, etc. of the nuclear fuel assembly are undecided, such as when the fuel melts due to severe accidents, the calculation and calibration as described above are difficult, and the effective multiplication factor k0 of the nuclear fuel assembly is set. Therefore, the subcriticality of this nuclear fuel assembly cannot be measured.

本発明における実施形態の目的は、上述の事情を考慮してなされたものであり、核分裂性物質を含む容器の形状や寸法等が未定であっても、その容器の未臨界度を確実に測定できる未臨界度測定装置を提供することにある。   The object of the embodiment of the present invention is made in consideration of the above-mentioned circumstances, and the subcriticality of the container is reliably measured even if the shape, size, etc. of the container containing the fissile material is undetermined. An object of the present invention is to provide a subcriticality measuring apparatus that can be used.

本発明の実施形態における未臨界度測定装置は、核分裂性物質を含む容器の一面に対向するよう配置されて、前記容器から放出される中性子数を中性子計数率として検出する中性子検出器と、前記中性子検出器が配置される前記容器の一面と直角をなす前記容器の別の一面に対向して配置可能に設けられる中性子吸収体と、この中性子吸収体を前記容器に接近または離反させるべく着脱移動させる着脱機構と、時間計数手段、中性子源強度演算手段及び実効増倍率演算手段を備えた演算ユニットとを有し、前記時間計数手段は、前記中性子吸収体が前記容器に接近した時点からの経過時間を計測し、前記中性子源強度演算手段は、前記中性子吸収体が前記容器に接近した状態で前記中性子検出器により検出される中性子計数率と前記時間計数手段から出力される時間とから前記容器の中性子源強度を算出し、前記実効増倍率演算手段は、前記中性子吸収体が前記容器から離反した状態において前記中性子検出器により検出される初期中性子計測率と前記中性子源強度とから、前記中性子吸収体が前記容器から離反した状態における中性子の実効増倍率を算出するよう構成されたことを特徴とするものである。   A subcriticality measuring apparatus according to an embodiment of the present invention is disposed so as to face one surface of a container containing a fissile material, and detects a neutron detector emitted from the container as a neutron count rate, A neutron absorber that is disposed so as to be opposed to another surface of the container that is perpendicular to the one surface of the container in which the neutron detector is disposed, and a detachable move to move the neutron absorber closer to or away from the container An attaching / detaching mechanism, and a calculation unit including a time counting means, a neutron source intensity calculating means, and an effective multiplication factor calculating means, wherein the time counting means has elapsed since the neutron absorber approached the container. The time is measured, and the neutron source intensity calculating means is configured such that the neutron count rate detected by the neutron detector in a state where the neutron absorber is close to the container and the time count. The neutron source intensity of the container is calculated from the time output from the stage, and the effective multiplication factor calculating means detects an initial neutron measurement rate detected by the neutron detector in a state where the neutron absorber is separated from the container. And the neutron source intensity, the neutron absorber is configured to calculate an effective multiplication factor of the neutron when the neutron absorber is separated from the container.

上述の如く説明した実施形態によれば、核分裂性物質を含む容器の形状や寸法等が未定であっても、その容器の未臨界度を確実に測定できる。   According to the embodiment described above, even if the shape, size, etc. of the container containing the fissile material is undecided, the subcriticality of the container can be reliably measured.

未臨界度測定装置の第1実施形態を示す側面図。The side view which shows 1st Embodiment of a subcriticality measuring apparatus. 図1のII−II線から目視した矢視図。The arrow line view visually observed from the II-II line of FIG. 図1の演算ユニットを示す構成図。The block diagram which shows the arithmetic unit of FIG. 核分裂が発生している体系に制御棒を挿入した時点からの中性子計数率の時間変化を示すグラフ。The graph which shows the time change of the neutron count rate from the time of inserting a control rod into the system in which fission has occurred. 中性子数N(t)と遅発中性子数Q(t)のそれぞれの値をプロットして得られた直線Pを示すグラフ。The graph which shows the straight line P obtained by plotting each value of the neutron number N (t) and the delayed neutron number Q (t). 未臨界度測定装置の第2実施形態を示す側面図。The side view which shows 2nd Embodiment of a subcriticality measuring apparatus.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図5)
図1は、未臨界度測定装置の第1実施形態を示す側面図である。図1及び図2に示す未臨界度測定装置10は、核分裂性物質を含む容器としての核燃料集合体1、特に原子力発電所のシビアアクシデントにより燃料が溶融して形状や寸法等が未定になった核燃料集合体1から放出される中性子の実効増倍率を、例えば非特許文献2や3に記載の制御棒挿入法を適用して求めて、その核燃料集合体1の未臨界度を測定するものであり、中性子検出器11、中性子吸収体12、着脱機構13及び演算ユニット14を有して構成される。この演算ユニット14は、図3に示すように、時間計数手段15、中性子源強度演算手段16及び実効増倍率演算手段17を備えて構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 5)
FIG. 1 is a side view showing a first embodiment of a subcriticality measuring apparatus. The subcriticality measuring apparatus 10 shown in FIG. 1 and FIG. 2 has a nuclear fuel assembly 1 as a container containing a fissile material, in particular, the fuel has melted due to severe accidents at a nuclear power plant, and its shape, dimensions, etc. are undecided. The effective multiplication factor of the neutron emitted from the nuclear fuel assembly 1 is obtained by applying the control rod insertion method described in Non-Patent Documents 2 and 3, for example, and the subcriticality of the nuclear fuel assembly 1 is measured. And includes a neutron detector 11, a neutron absorber 12, an attachment / detachment mechanism 13, and an arithmetic unit 14. As shown in FIG. 3, the calculation unit 14 includes a time counting unit 15, a neutron source intensity calculation unit 16, and an effective multiplication factor calculation unit 17.

前記制御棒挿入法においては、遅発中性子を1群とした1点炉近似による原子炉の動特性方程式は、中性子数、遅発中性子数、遅発中性子先行数を時間tの関数として、それぞれN(t)、Q(t)、C(t)とし、即発中性子生成時間Λ、遅発中性子先行核崩壊定数λ、制御棒挿入後の反応度ρ、遅発中性子割合β、中性子源強度S、測定の時間間隔Δtを用いると、次式(5)〜(8)のようになる。

Figure 2014137259
In the control rod insertion method, the dynamic characteristic equation of the reactor by the one-point reactor approximation with delayed neutrons as one group is expressed as follows: the number of neutrons, the number of delayed neutrons, and the number of delayed neutrons as a function of time t. N (t), Q (t), C (t), prompt neutron production time Λ, delayed neutron preceding nuclear decay constant λ, reactivity ρ after insertion of control rod, delayed neutron ratio β, neutron source strength S When the measurement time interval Δt is used, the following equations (5) to (8) are obtained.
Figure 2014137259

また、反応度ρは、実効増倍率kを用いて次式(9)のように定義される。
ρ=(k−1)/k …(9)
ここで、実効増倍率は、核分裂が発生している体系において、単位時間に発生する中性子数と、単位時間に消費される中性子数との比をいう。核分裂が発生している体系は、実効増倍率が1であるときに臨界状態にあり、実効増倍率が1未満のときに未臨界状態にあると言える。
Further, the reactivity ρ is defined as the following equation (9) using the effective multiplication factor k.
ρ = (k−1) / k (9)
Here, the effective multiplication factor refers to the ratio between the number of neutrons generated per unit time and the number of neutrons consumed per unit time in a system in which fission occurs. A system in which fission has occurred is in a critical state when the effective multiplication factor is 1, and can be said to be in a subcritical state when the effective multiplication factor is less than one.

核分裂が発生している体系に、中性子吸収体を備えてなる制御棒が挿入されると、実効増倍率kが変化するので、式(9)から反応度ρも変化する。また、核分裂が発生している体系に制御棒が挿入されたときに検出される中性子数N(t)(即ち中性子計数率φ(t))の時間変化は、図4に示すように、核分裂が発生している体系の実効増倍率が高いときに緩やかに変化し、実効増倍率が低いときに急激に変化する。   When a control rod comprising a neutron absorber is inserted into a system in which fission has occurred, the effective multiplication factor k changes, so the reactivity ρ also changes from equation (9). Further, the time change of the neutron number N (t) (that is, the neutron count rate φ (t)) detected when the control rod is inserted into the system in which fission is occurring is shown in FIG. It changes slowly when the effective multiplication factor of the system in which the occurrence is high, and changes abruptly when the effective multiplication factor is low.

この中性子数の時間変化を利用して、時間の経過に伴って変化する中性子数N(t)及び遅発中性子数Q(t)の値を、図5に示すグラフ(横軸が遅発中性子数Q(t)で縦軸が中性子数N(t))にプロットして直線Pを求める。この求めた直線Pの傾きの読取値Aと切片の読取値Bと式(5)とから、次式(10)及び(11)が得られる。
A=−Λ/(ρ−β) ……(10)
B=−Λ・S/(ρ−β) ……(11)
Using this time change in the number of neutrons, the values of the number of neutrons N (t) and the number of delayed neutrons Q (t) that change over time are shown in the graph shown in FIG. A straight line P is obtained by plotting the number Q (t) and the vertical axis with the number of neutrons N (t). The following expressions (10) and (11) are obtained from the read value A of the slope of the straight line P, the read value B of the intercept, and the expression (5).
A = −Λ / (ρ−β) (10)
B = −Λ · S / (ρ−β) (11)

遅発中性子割合β及び即発中性子生成時間Λは、核分裂性物質の種類が分かれば計算可能であるから、まず式(10)から反応度ρの値を算出し、次に、算出した反応度ρの値を式(11)に代入して、中性子源強度Sの値を算出する。   Since the delayed neutron ratio β and the prompt neutron production time Λ can be calculated if the type of fissile material is known, the reactivity ρ is first calculated from the equation (10), and then the calculated reactivity ρ Is substituted into the equation (11) to calculate the value of the neutron source intensity S.

そして、核分裂が発生している体系における制御棒挿入前の初期中性子数N(0)の計測値と、上述のように算出した中性子源強度Sの値とを次式(12)に代入して、核分裂が発生している体系における制御棒挿入前の中性子の実効増倍率k0を算出する。この実効増倍率k0の算出値から、核分裂が発生している体系の未臨界度を測定できる。
N(0)=S/(1−k0) ……(12)
Then, the measured value of the initial neutron number N (0) before insertion of the control rod in the system in which fission occurs and the value of the neutron source intensity S calculated as described above are substituted into the following equation (12). Then, the effective multiplication factor k0 of the neutron before the insertion of the control rod in the system in which fission is occurring is calculated. From the calculated value of the effective multiplication factor k0, the subcriticality of the system in which fission has occurred can be measured.
N (0) = S / (1-k0) (12)

ここで、式(12)は、核分裂が発生している体系において、制御棒が挿入される前の中性子の実効増倍率k0と初期中性子数N(0)との関係を表す式である。初期中性子数N(0)として式(1)で示した初期中性子計数率φ0を用いると、式(12)のSは、式(1)のα0・Sと等価になる。   Here, Expression (12) is an expression representing the relationship between the effective multiplication factor k0 of the neutrons before the control rod is inserted and the initial number of neutrons N (0) in the system in which fission occurs. When the initial neutron count rate φ0 shown in the equation (1) is used as the initial neutron number N (0), S in the equation (12) is equivalent to α0 · S in the equation (1).

ところで、図1に示す未臨界度測定装置10は、核分裂が発生する体系としての核燃料集合体1(特に燃料が溶融して形状や寸法などが未定になった核燃料集合体1)に対して上述の制御棒挿入法を適用するものであり、挿入する制御棒に代えて中性子吸収体12が用いられる。   By the way, the subcriticality measuring apparatus 10 shown in FIG. 1 is described above with respect to a nuclear fuel assembly 1 (particularly a nuclear fuel assembly 1 whose shape and size are undecided due to melting of the fuel) as a system in which fission occurs. The control rod insertion method is applied, and a neutron absorber 12 is used in place of the control rod to be inserted.

この未臨界度測定装置10の中性子検出器11は、図1及び図2に示すように、核燃料集合体1の4つの側面のうちの少なくとも1面、本実施形態では対向する2側面の近傍に配置される。これらの中性子検出器11は、核燃料集合体1から放出される中性子数を中性子計数率として検出し、この中性子計数率がケーブル18を介して演算ユニット14の中性子源強度演算手段16及び実効増倍率演算手段17へ出力される。なお、図では中性子検出器11を円柱形状で示したが、これに限るものではなく、例えば検出面が平面状の立方体形状でも良い。また、図では中性子検出器11は、鉛直方向に長い形状(縦長)で示しているが、水平方向に長い形状(横長)でも良い。   As shown in FIGS. 1 and 2, the neutron detector 11 of the subcriticality measuring apparatus 10 is located near at least one of the four side surfaces of the nuclear fuel assembly 1, in the vicinity of the two opposite side surfaces in this embodiment. Be placed. These neutron detectors 11 detect the number of neutrons emitted from the nuclear fuel assembly 1 as a neutron count rate, and this neutron count rate is connected to the neutron source intensity calculation means 16 and the effective multiplication factor of the calculation unit 14 via the cable 18. It is output to the computing means 17. In the figure, the neutron detector 11 is shown in a columnar shape, but is not limited to this, and for example, the detection surface may be a cube having a planar shape. In the figure, the neutron detector 11 is shown in a shape that is long in the vertical direction (vertically long), but may be in a shape that is long in the horizontal direction (horizontally long).

中性子吸収体12は、その構成金属がカドミウム、ホウ素、ガドリニウムまたはハフニウムであり、核燃料集合体1から放出される中性子を吸収する。この中性子吸収体12は、図2に示すように、核燃料集合体1の平面視において中性子検出器11が配置される核燃料集合体1の一面と直角をなす核燃料集合体1の別の一面に対向して配置可能に少なくとも1つ、本実施形態では一対設けられる。   The constituent metal of the neutron absorber 12 is cadmium, boron, gadolinium, or hafnium, and absorbs neutrons emitted from the nuclear fuel assembly 1. As shown in FIG. 2, the neutron absorber 12 is opposed to another surface of the nuclear fuel assembly 1 perpendicular to one surface of the nuclear fuel assembly 1 where the neutron detector 11 is arranged in a plan view of the nuclear fuel assembly 1. In this embodiment, a pair is provided so that at least one can be arranged.

中性子吸収体12を核燃料集合体1の全周囲に配置したときには、式(12)の中性子源強度Sと等価な、式(1)のα0・Sのうちの比例係数α0が、中性子吸収体12の核燃料集合体1の着脱(後述)によって比例係数αへ変化する変化量が大きくなってしまう。そこで、中性子吸収体12を核燃料集合体1の平面視において中性子検出器11と直角をなす方向に配置することで、比例係数α0、αの変化量を低減できる、これにより、核燃料集合体1における中性子の実効増倍率k0を求めるために行う計算による補正が不要または最小限になるからである。   When the neutron absorber 12 is arranged all around the nuclear fuel assembly 1, the proportionality coefficient α0 of α0 · S in the equation (1) equivalent to the neutron source intensity S in the equation (12) is the neutron absorber 12 When the nuclear fuel assembly 1 is attached or detached (described later), the amount of change to the proportional coefficient α increases. Therefore, by disposing the neutron absorber 12 in a direction perpendicular to the neutron detector 11 in a plan view of the nuclear fuel assembly 1, the amount of change in the proportional coefficients α0 and α can be reduced. This is because correction by calculation to obtain the effective multiplication factor k0 of neutrons is unnecessary or minimized.

燃料の溶融によって形状や寸法が未定になった核燃料集合体1では、上述のような解析による補正が困難になるため、中性子吸収体12を核燃料集合体1の平面視において中性子検出器11と直交なす方向に配置することが特に有効である。   In the nuclear fuel assembly 1 whose shape and dimensions have become undecided due to the melting of the fuel, correction by the analysis as described above becomes difficult, so the neutron absorber 12 is orthogonal to the neutron detector 11 in a plan view of the nuclear fuel assembly 1. It is particularly effective to arrange in the direction formed.

着脱機構13は、図1及び図2に示すように、中性子吸収体12を核燃料集合体1に接近または離反させるべく着脱移動させるものである。この着脱機構13は、一対の中性子吸収体12のそれぞれを収容する2つの収納容器20と、各中性子吸収体12に連結された2本の操作ロッド21を連結する連結ロッド22に接続された1本のワイヤ23と、このワイヤ23を巻き上げ可能な巻上機24と、収容容器20に内蔵されて、この収容容器20内で核燃料集合体1から離反した中性子吸収体12を核燃料集合体1へ接近させる付勢力を発生するスプリング25と、を有して構成される。尚、図1中の符号26は、収容容器20側に固定されてワイヤ23を巻き掛ける滑車27と巻上機24との間でワイヤ23を案内するワイヤ案内管である。   As shown in FIGS. 1 and 2, the attachment / detachment mechanism 13 moves the neutron absorber 12 so as to be attached to or detached from the nuclear fuel assembly 1. This attachment / detachment mechanism 13 is connected to two storage containers 20 that store a pair of neutron absorbers 12 and a connecting rod 22 that connects two operating rods 21 connected to each neutron absorber 12. A wire 23, a hoisting machine 24 that can wind up the wire 23, and a neutron absorber 12 that is built in the container 20 and is separated from the nuclear fuel assembly 1 in the container 20 to the nuclear fuel assembly 1. And a spring 25 that generates an urging force to approach. 1 is a wire guide tube that guides the wire 23 between a pulley 27 that is fixed on the container 20 side and winds the wire 23 and the hoisting machine 24.

上記操作ロッド21、連結ロッド22、ワイヤ23及び巻上機24等が離反機構部13Aを構成する。巻上機24が手動または電導でワイヤ23を巻き上げることにより、一対の中性子吸収体12が同期して、図2の2点鎖線に示すように、収容容器20内を核燃料集合体1から離反する方向に移動する。このとき、収容容器20内でスプリング25が、核燃料集合体1から離反する中性子吸収体12により押圧されて収縮し、中性子吸収体12を核燃料集合体1へ接近させる付勢力を蓄える。このスプリング25、操作ロッド21及び連結ロッド22等が接近機構部13Bを構成する。巻上機24により巻上操作されたワイヤ23が開放されることによって、スプリング25の付勢力により中性子吸収体12が高速で(瞬時に)核燃料集合体1に接近する。   The operation rod 21, the connecting rod 22, the wire 23, the hoisting machine 24, and the like constitute the separation mechanism portion 13A. When the hoisting machine 24 winds up the wire 23 manually or conductively, the pair of neutron absorbers 12 are synchronously moved away from the nuclear fuel assembly 1 in the container 20 as shown by a two-dot chain line in FIG. Move in the direction. At this time, the spring 25 is pressed and contracted by the neutron absorber 12 separated from the nuclear fuel assembly 1 in the storage container 20, and accumulates an urging force that causes the neutron absorber 12 to approach the nuclear fuel assembly 1. The spring 25, the operating rod 21, the connecting rod 22, and the like constitute the approach mechanism portion 13B. By opening the wire 23 operated by the hoisting machine 24, the neutron absorber 12 approaches the nuclear fuel assembly 1 at high speed (instantly) by the urging force of the spring 25.

図1及び図3に示す演算ユニット14の時間計測手段15は、中性子吸収体12が核燃料集合体1に接近した時点からの経過時間tを計測(カウント)し、この計測値を中性子源強度演算手段16へ出力する。また、中性子検出器11は、中性子吸収体12が核燃料集合体1に接近した時点からの時間tとともに変化する中性子計数率φ(t)を検出すると共に、中性子吸収体12が核燃料集合体1に接近する前の離反状態における初期中性子計数率φ(0)を検出する。検出された中性子計数率φ(t)は中性子源強度演算手段16へ出力され、初期中性子計数率φ(0)は中性子源強度演算手段16及び実効増倍率演算手段17へ出力される。   The time measuring means 15 of the arithmetic unit 14 shown in FIGS. 1 and 3 measures (counts) the elapsed time t from the time when the neutron absorber 12 approaches the nuclear fuel assembly 1, and calculates the measured value as the neutron source intensity. Output to means 16. Further, the neutron detector 11 detects a neutron count rate φ (t) that changes with time t from the time when the neutron absorber 12 approaches the nuclear fuel assembly 1, and the neutron absorber 12 becomes a nuclear fuel assembly 1. The initial neutron count rate φ (0) in the separated state before approaching is detected. The detected neutron count rate φ (t) is output to the neutron source intensity calculating means 16, and the initial neutron count rate φ (0) is output to the neutron source intensity calculating means 16 and the effective multiplication factor calculating means 17.

中性子源強度演算手段16は、中性子検出器11にて検出された中性子計数率φ(t)と時間計数手段15にて計測された経過時間tとから、中性子源強度Sを算出する。つまり、中性子源強度演算手段16は、中性子吸収体12を核燃料集合体1に接近した後の中性子検出器11による中性子計数率φ(t)の検出値を、式(5)の中性子数N(t)の値とする。また、中性子源強度演算手段16は、上記中性子計数率φ(t)の検出値を中性子数N(t)の値とし、初期中性子計数率φ(0)の検出値を初期中性子数N(0)の値として、式(7)及び式(8)から遅発中性子先行数C(t)を算出し、この遅発中性子先行数C(t)の算出値から式(6)を用いて遅発中性子数Q(t)を算出する。   The neutron source intensity calculating means 16 calculates the neutron source intensity S from the neutron count rate φ (t) detected by the neutron detector 11 and the elapsed time t measured by the time counting means 15. That is, the neutron source intensity calculation means 16 uses the detected value of the neutron count rate φ (t) by the neutron detector 11 after the neutron absorber 12 approaches the nuclear fuel assembly 1 as the number of neutrons N ( t). The neutron source intensity calculation means 16 sets the detected value of the neutron count rate φ (t) as the value of the neutron number N (t) and sets the detected value of the initial neutron count rate φ (0) as the initial neutron number N (0 ), The delayed neutron leading number C (t) is calculated from the formulas (7) and (8), and the delayed neutron leading number C (t) is calculated from the calculated value of the delayed neutron leading number C (t) using the formula (6). The number of neutrons Q (t) is calculated.

また、精度を向上させるために、遅発中性子を多群とすることもできる。一般に遅発中性子先行核崩壊定数を6群に分けた遅発中性子6群の方程式がしばし使用される。その場合、(6)−(8)式は下記(6)‘−(8)’式のようになる。

Figure 2014137259
In order to improve accuracy, delayed neutrons can be multigrouped. In general, the equation of the delayed neutron 6 group in which the delayed neutron leading nuclear decay constant is divided into 6 groups is often used. In that case, the expression (6)-(8) becomes the following expression (6) ′-(8) ′.
Figure 2014137259

中性子源強度演算手段16は更に、上述のようにして求めた中性子数N(t)の値と遅発中性子数Q(t)の値とを図5に示すようにグラフにプロットして直線Pを得、この直線Pの傾きの読取値A及び切片の読取値Bを得る。中性子源強度演算手段16は、これらの読取値A及びBと式(5)とから式(10)及び式(11)を得て、核燃料集合体1の中性子源強度Sを求める。   The neutron source intensity calculating means 16 further plots the value of the neutron number N (t) and the value of the delayed neutron number Q (t) obtained as described above in a graph as shown in FIG. And the reading A of the slope of the straight line P and the reading B of the intercept are obtained. The neutron source intensity calculating means 16 obtains the expressions (10) and (11) from these readings A and B and the expression (5), and obtains the neutron source intensity S of the nuclear fuel assembly 1.

実効増倍率演算手段17は、中性子吸収体12が核燃料集合体1から離反した状態において中性子検出器11により検出される初期中性子計数率φ(0)の検出値を初期中性子数N(0)の値とし、この初期中性子計数率φ(0)と、中性子源強度演算手段16により算出された核燃料集合体1の中性子源強度Sの値とを式(12)に代入して、中性子吸収体12が核燃料集合体1から離反した状態における核燃料集合体1の中性子の実効増倍率k0を算出する。この実効増倍率k0を用いて核燃料集合体1の未臨界度が測定される。   The effective multiplication factor calculation means 17 calculates the detected value of the initial neutron count rate φ (0) detected by the neutron detector 11 in the state where the neutron absorber 12 is separated from the nuclear fuel assembly 1 as the initial neutron number N (0). The initial neutron count rate φ (0) and the value of the neutron source strength S of the nuclear fuel assembly 1 calculated by the neutron source strength calculation means 16 are substituted into the formula (12), and the neutron absorber 12 The effective multiplication factor k0 of the neutron of the nuclear fuel assembly 1 in a state where is separated from the nuclear fuel assembly 1 is calculated. The subcriticality of the nuclear fuel assembly 1 is measured using this effective multiplication factor k0.

以上のように構成されたことから、本第1実施形態によれば、次の効果を奏する。
核燃料集合体1に中性子吸収体12を接近させた時点からの時間の経過に伴って変化する中性子数N(t)(即ち中性子計数率φ(t))及び遅発中性子数Q(t)を用いて、中性子吸収体12が核燃料集合体1に接近する前の離反状態での核燃料集合体1における中性子の実効増倍率k0を求め、この実効増倍率k0から核燃料集合体1の未臨界度を測定する。この結果、核燃料集合体1の形状や寸法等が未定であっても、その核燃料集合体1の未臨界度を確実に測定できる。
With the configuration as described above, the first embodiment has the following effects.
The number of neutrons N (t) (that is, the neutron count rate φ (t)) and the number of delayed neutrons Q (t) that change with the passage of time from the time when the neutron absorber 12 approaches the nuclear fuel assembly 1 The effective multiplication factor k0 of the neutron in the nuclear fuel assembly 1 in the separated state before the neutron absorber 12 approaches the nuclear fuel assembly 1 is obtained, and the subcriticality of the nuclear fuel assembly 1 is determined from the effective multiplication factor k0. taking measurement. As a result, even if the shape, dimensions, etc. of the nuclear fuel assembly 1 are not yet determined, the subcriticality of the nuclear fuel assembly 1 can be reliably measured.

[B]第2実施形態(図6)
図6は、未臨界度測定装置の第2実施形態を示す側面図である。この第2実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIG. 6)
FIG. 6 is a side view showing a second embodiment of the subcriticality measuring apparatus. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第2実施形態の未臨界度測定装置30が第1実施形態と異なる点は、中性子吸収体12を核燃料集合体1に接近または離反させるべく着脱移動させる着脱機構31の構成である。   The difference between the subcriticality measuring apparatus 30 of the second embodiment and the first embodiment is the configuration of an attachment / detachment mechanism 31 that moves the neutron absorber 12 so as to approach or separate from the nuclear fuel assembly 1.

つまり、着脱機構31は、中性子吸収体12に連結されて鉛直方向に延びるワイヤ32と、このワイヤ32を巻き上げる手動または電動の巻上機33とを有して構成され、ワイヤ32はワイヤ案内管34により鉛直方向に案内される。巻上機33によるワイヤ32の巻上操作により中性子吸収体12が上昇し、この中性子吸収体12を、核燃料集合体1における中性子検出器11の配置位置から離反させる。また、巻上操作されたワイヤ32を開放することにより中性子吸収体12が落下し、この中性子吸収体12を、核燃料集合体1における中性子検出器11の配置位置まで接近させる。   That is, the attachment / detachment mechanism 31 includes a wire 32 that is connected to the neutron absorber 12 and extends in the vertical direction, and a manual or electric hoisting machine 33 that winds the wire 32. The wire 32 is a wire guide tube. 34 is guided in the vertical direction. The neutron absorber 12 is raised by the winding operation of the wire 32 by the hoisting machine 33, and the neutron absorber 12 is moved away from the arrangement position of the neutron detector 11 in the nuclear fuel assembly 1. Moreover, the neutron absorber 12 is dropped by opening the wire 32 that has been operated for winding, and the neutron absorber 12 is brought close to the arrangement position of the neutron detector 11 in the nuclear fuel assembly 1.

本第2実施形態においても、第1実施形態の効果と同様な効果を奏するほか、着脱機構31において中性子吸収体12の接近時に重力を利用するため、スプリング25を省略することができ、着脱機構31の構造を簡素化できる。   In the second embodiment, in addition to the same effect as that of the first embodiment, since the gravity is used when the neutron absorber 12 approaches in the attachment / detachment mechanism 31, the spring 25 can be omitted, and the attachment / detachment mechanism The structure of 31 can be simplified.

以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、その置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、未臨界度の測定対象である核燃料集合体1は、燃料が溶融していない状態の核燃料集合体であってもよい。   As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. It is included in the scope and gist of the invention, and is included in the invention described in the claims and the equivalent scope thereof. For example, the nuclear fuel assembly 1 that is the measurement target of the subcriticality may be a nuclear fuel assembly in which the fuel is not melted.

1 核燃料集合体(核分裂性物質を含む容器)
10 未臨界度測定装置
11 中性子検出器
12 中性子吸収体
13 着脱機構
13A 離反機構部
13B 接近機構部
14 演算ユニット
15 時間計数手段
16 中性子源強度演算手段
17 実効増倍率演算手段
23 ワイヤ
24 巻上機
25 スプリング
30 未臨界度測定装置
31 着脱機構
32 ワイヤ
33 巻上機
k、k0 実効増倍率
S 中性子源強度
t 時間
φ(t) 中性子計数率
φ(0) 初期中性子計数率
1 Nuclear fuel assembly (container containing fissile material)
DESCRIPTION OF SYMBOLS 10 Subcriticality measuring apparatus 11 Neutron detector 12 Neutron absorber 13 Attachment / detachment mechanism 13A Separation mechanism part 13B Approach mechanism part 14 Calculation unit 15 Time counting means 16 Neutron source intensity calculation means 17 Effective multiplication factor calculation means 23 Wire 24 Hoisting machine 25 Spring 30 Subcriticality measuring device 31 Attachment / detachment mechanism 32 Wire 33 Hoisting machine k, k0 Effective multiplication factor S Neutron source strength t Time φ (t) Neutron count rate φ (0) Initial neutron count rate

Claims (4)

核分裂性物質を含む容器の一面に対向するよう配置されて、前記容器から放出される中性子数を中性子計数率として検出する中性子検出器と、
前記中性子検出器が配置される前記容器の一面と直角をなす前記容器の別の一面に対向して配置可能に設けられる中性子吸収体と、
この中性子吸収体を前記容器に接近または離反させるべく着脱移動させる着脱機構と、
時間計数手段、中性子源強度演算手段及び実効増倍率演算手段を備えた演算ユニットとを有し、
前記時間計数手段は、前記中性子吸収体が前記容器に接近した時点からの経過時間を計測し、
前記中性子源強度演算手段は、前記中性子吸収体が前記容器に接近した状態で前記中性子検出器により検出される中性子計数率と前記時間計数手段から出力される時間とから前記容器の中性子源強度を算出し、
前記実効増倍率演算手段は、前記中性子吸収体が前記容器から離反した状態において前記中性子検出器により検出される初期中性子計測率と前記中性子源強度とから、前記中性子吸収体が前記容器から離反した状態における中性子の実効増倍率を算出するよう構成されたことを特徴とする未臨界度測定装置。
A neutron detector arranged to face one surface of a container containing a fissile material and detecting the number of neutrons emitted from the container as a neutron counting rate;
A neutron absorber provided so as to be disposed opposite to another surface of the container perpendicular to one surface of the container in which the neutron detector is disposed;
An attachment / detachment mechanism for attaching / detaching the neutron absorber to approach or leave the container;
Having a time counting means, a neutron source intensity calculating means and an effective multiplication factor calculating means,
The time counting means measures an elapsed time from the time when the neutron absorber approaches the container,
The neutron source intensity calculating means calculates the neutron source intensity of the container from the neutron count rate detected by the neutron detector and the time output from the time counting means in a state where the neutron absorber is close to the container. Calculate
The effective multiplication factor calculating means is configured such that the neutron absorber is separated from the container from the initial neutron measurement rate detected by the neutron detector and the neutron source intensity in a state where the neutron absorber is separated from the container. A subcriticality measuring apparatus configured to calculate an effective multiplication factor of neutrons in a state.
前記中性子吸収体を構成する金属が、カドミウム、ホウ素、ガドリニウムまたはハフニウムであることを特徴とする請求項1に記載の未臨界度測定装置。 The subcriticality measuring apparatus according to claim 1, wherein the metal constituting the neutron absorber is cadmium, boron, gadolinium, or hafnium. 前記核分裂性物質を含む容器に中性子吸収体を近接または離反させる着脱機構は、前記中性子吸収体に連結されたワイヤ、及びこのワイヤを巻き上げる巻上機により前記中性子吸収体を前記容器から離反させる離反機構部と、前記中性子吸収体に押圧されたスプリングの付勢力により前記中性子吸収体を前記容器に接近させる接近機構部と、を有して構成されたこと特徴とする請求項1または2に記載の未臨界度測定装置。 The attachment / detachment mechanism for bringing the neutron absorber close to or away from the container containing the fissile material is a separation mechanism that separates the neutron absorber from the container by a wire connected to the neutron absorber and a hoist that winds the wire. 3. The structure according to claim 1, further comprising: a mechanism portion; and an approach mechanism portion that causes the neutron absorber to approach the container by a biasing force of a spring pressed against the neutron absorber. Subcriticality measuring device. 前記核分裂性物質を含む容器に中性子吸収体を近接または離反させる着脱機構は、前記中性子吸収体に連結されたワイヤ、及びこのワイヤを巻き上げる巻上機を備え、前記巻上機による前記ワイヤの巻上操作により前記中性子吸収体を上昇させて前記容器の中性子検出器配置位置から離反させ、または巻上操作された前記ワイヤの開放により前記中性子吸収体を落下させて前記容器の中性子検出器配置位置に接近させるよう構成されたことを特徴とする請求項1または2に記載の未臨界度測定装置。 The attachment / detachment mechanism for bringing the neutron absorber close to or away from the container containing the fissile material includes a wire connected to the neutron absorber and a hoisting machine that winds the wire, and winding the wire by the hoisting machine. The neutron absorber is raised by the above operation to move away from the neutron detector arrangement position of the container, or the neutron absorber is dropped by opening the wire that has been hoisted, and the neutron detector arrangement position of the container The subcriticality measuring apparatus according to claim 1, wherein the subcriticality measuring apparatus is configured to approach to the subcriticality.
JP2013005206A 2013-01-16 2013-01-16 Subcriticality measuring device Pending JP2014137259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005206A JP2014137259A (en) 2013-01-16 2013-01-16 Subcriticality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005206A JP2014137259A (en) 2013-01-16 2013-01-16 Subcriticality measuring device

Publications (1)

Publication Number Publication Date
JP2014137259A true JP2014137259A (en) 2014-07-28

Family

ID=51414853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005206A Pending JP2014137259A (en) 2013-01-16 2013-01-16 Subcriticality measuring device

Country Status (1)

Country Link
JP (1) JP2014137259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599269A (en) * 2020-09-07 2021-04-02 中核核电运行管理有限公司 650MWe large-scale commercial nuclear power station secondary neutron source-free charging method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312996A (en) * 1986-07-03 1988-01-20 株式会社東芝 Effective multiplication constant measuring method of spent nuclear fuel aggregate
JPS63275997A (en) * 1987-05-07 1988-11-14 Nippon Atom Ind Group Co Ltd Apparatus for measuring effective magnification constant of fuel assembly
JPS63275998A (en) * 1987-05-08 1988-11-14 Nippon Atom Ind Group Co Ltd Method and apparatus for measuring effective magnification constant of fuel assembly
JPS6488296A (en) * 1987-09-30 1989-04-03 Nippon Atomic Ind Group Co Effective multiplication measuring method and device of fuel assembly
JPH06230171A (en) * 1993-02-03 1994-08-19 Mitsubishi Atom Power Ind Inc Control rod value measuring method for nuclear reactor under noncritical state and reaction gauge for measuring value of control rod
JPH06273572A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Measuring equipment of subcritical degree of reactor
JP2001281384A (en) * 2000-03-28 2001-10-10 Toshiba Corp Monitoring method of critical approach and measuring jig for monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312996A (en) * 1986-07-03 1988-01-20 株式会社東芝 Effective multiplication constant measuring method of spent nuclear fuel aggregate
JPS63275997A (en) * 1987-05-07 1988-11-14 Nippon Atom Ind Group Co Ltd Apparatus for measuring effective magnification constant of fuel assembly
JPS63275998A (en) * 1987-05-08 1988-11-14 Nippon Atom Ind Group Co Ltd Method and apparatus for measuring effective magnification constant of fuel assembly
JPS6488296A (en) * 1987-09-30 1989-04-03 Nippon Atomic Ind Group Co Effective multiplication measuring method and device of fuel assembly
JPH06230171A (en) * 1993-02-03 1994-08-19 Mitsubishi Atom Power Ind Inc Control rod value measuring method for nuclear reactor under noncritical state and reaction gauge for measuring value of control rod
JPH06273572A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Measuring equipment of subcritical degree of reactor
JP2001281384A (en) * 2000-03-28 2001-10-10 Toshiba Corp Monitoring method of critical approach and measuring jig for monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599269A (en) * 2020-09-07 2021-04-02 中核核电运行管理有限公司 650MWe large-scale commercial nuclear power station secondary neutron source-free charging method

Similar Documents

Publication Publication Date Title
JP4761829B2 (en) Axial void ratio distribution measuring method and fuel assembly neutron multiplication factor evaluation method before storage device storage
Latge et al. MEGAPIE: the world’s first high-power liquid metal spallation neutron source
CN201378438Y (en) Gamma ray measurement detector for detecting <235>U enrichment and uniformity of <252>Cf neutron-activated nuclear rods
JP2014137259A (en) Subcriticality measuring device
KR101750284B1 (en) Inspection System of Spent Fuel combustion using CZT Detector
US10224122B2 (en) Reactor instrumentation system and reactor
JP2013003001A (en) Subcriticality measuring method and apparatus
CN108828651B (en) Active neutron analysis method for uranium plutonium content in waste cladding
KR101633232B1 (en) method of reducing the error of shape annealing function for ex-core detector of nuclear power plant
JP2014228362A (en) Nuclear fuel subcriticality measuring and monitoring system and method
JP2014070920A (en) Nuclear fuel burnup estimation device, method, and program
JP2012163379A (en) Fuel assembly gamma ray measuring apparatus
Dennis et al. Feasibility of 106Ru peak measurement for MOX fuel burnup analysis
JP6168582B2 (en) Nuclear fuel material criticality monitoring method
WO2016196799A1 (en) Systems and methods for determining an amount of fissile material in a reactor
JP6577308B2 (en) Apparatus for measuring nuclear fuel content and method for measuring the same
JP2013257209A (en) Method for subcritical concentration monitoring using measured value of nuclear fission produced gas
JP2010112726A (en) Method for determining nuclide composition of fissionable material
CN111312417A (en) Method for measuring reactivity
JP2015227817A (en) Burnup measurement apparatus of fuel debris and burnup measurement method of the same
KR101740882B1 (en) Plutonium(Pu) mass measurement system and method of PWR spent fuel rods
KR101523194B1 (en) spent fuel pool subcritical monitoring system and using spent fuel spontaneous neutron source
JP5951538B2 (en) Nuclear fuel burnup evaluation apparatus, evaluation method thereof, and program thereof
JP6249364B2 (en) Analytical method and analytical apparatus for transuranium elements mixed with fission products
KR101142164B1 (en) Axial Burnup Profile Measurement method of PWR Spent Fuel Assembly and thereof System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530