JP2014136246A - Repairing structure and repairing method of fillet weld zone - Google Patents

Repairing structure and repairing method of fillet weld zone Download PDF

Info

Publication number
JP2014136246A
JP2014136246A JP2013006597A JP2013006597A JP2014136246A JP 2014136246 A JP2014136246 A JP 2014136246A JP 2013006597 A JP2013006597 A JP 2013006597A JP 2013006597 A JP2013006597 A JP 2013006597A JP 2014136246 A JP2014136246 A JP 2014136246A
Authority
JP
Japan
Prior art keywords
countersink
weld metal
existing
repair
creep damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013006597A
Other languages
Japanese (ja)
Inventor
Toshiyuki Imazato
敏幸 今里
Nobuhiko Saito
伸彦 齋藤
Yusuke Ayukawa
雄介 鮎川
Toshiaki Nishio
敏昭 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013006597A priority Critical patent/JP2014136246A/en
Publication of JP2014136246A publication Critical patent/JP2014136246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide repairing means capable of attaining the long-term life prolongation effect by inexpensive and short-term construction with respect to creep damage having occurred in a fillet weld zone.SOLUTION: A fillet weld zone w1 is formed by welding a nozzle stub 12 to a header 10 which is a hollow cylindrical member and in which hoop stress due to internal pressure is generated, the welding being performed in a direction in which the nozzle stub 12 intersects with the header 10. A surface of an area including existing weld metal Mof the fillet weld zone w1 where a creep damage d1 has occurred and an existing heat-affected zone Hformed on the periphery of the existing weld metal M, is counter-bored up to the depth including a creep damage occurrence area, a bottom surface 14 of a counter-bored part formed after being counter-bored is formed along the action direction of the hoop stress F and in the inclined direction to the axis of the header 10, and a counter-bored space (s) formed in the counter-bored part is filled with new repairing weld metal M.

Description

本発明は、例えば、ボイラ管のように高温環境下に曝される部材の隅肉溶接部に発生したクリープ損傷を補修するための補修構造及び補修方法に関する。   The present invention relates to a repair structure and a repair method for repairing creep damage occurring in a fillet weld of a member exposed to a high temperature environment such as a boiler pipe.

9〜12重量%のCrを含有させた9〜12Cr系高Crフェライト鋼は、500〜650℃の温度域で強度、耐食・耐酸化性が低合金鋼より優れ、オーステナイト鋼に比べて熱伝導度が高く、熱膨張係数が小さいという長所を有する。そのため、火力発電用ボイラの蒸気配管や管寄せ等に広く用いられている。一方、高温高圧蒸気に長時間曝される耐熱材料にとって重要な特性は、クリープ破断強度である。クリープ破断とは、ある温度環境下で一定応力を付加して放置し続けた場合、材料の引張強度以下の応力でも材料の変形が進む現象である。即ち、クリープボイドの発生や結晶粒の粗大化、さらには微視き裂を含むき裂等のクリープ損傷が起り、遂には破断に至る場合もある。   9-12Cr high Cr ferritic steel containing 9-12 wt% Cr is superior in strength, corrosion resistance and oxidation resistance to low alloy steel in the temperature range of 500-650 ° C, and is more thermally conductive than austenitic steel. It has the advantages of high degree and low thermal expansion coefficient. Therefore, it is widely used for steam piping and headers of boilers for thermal power generation. On the other hand, an important characteristic for a heat-resistant material exposed to high-temperature and high-pressure steam for a long time is the creep rupture strength. Creep rupture is a phenomenon in which deformation of a material proceeds even when the stress is lower than the tensile strength of the material when a constant stress is applied and left to stand under a certain temperature environment. That is, the generation of creep voids, the coarsening of crystal grains, and further creep damage such as cracks including microcracks may occur, eventually leading to fracture.

ボイラの管寄せ等の厚肉配管には、多数の小口径の蒸気配管を接続するための管台やガンマプラグが隅肉溶接されている。ガンマプラグは、プラント建設時に配管溶接部の検査を行うために、ガンマ線源を挿入する円筒形の短管であり、プラント建設後施栓される。高Crフェライト鋼からなる部材を溶接したとき、溶接熱影響部が軟化現象を起して母材よりも強度が低下する。そのため、クリープひずみが熱影響部に集中的に蓄積することで、クリープ破断強度が母材と比べて大きく低下することがわかっている。   A thick tube such as a header of a boiler is welded with fillet welds and gamma plugs for connecting a large number of small-diameter steam pipes. The gamma plug is a cylindrical short pipe into which a gamma ray source is inserted in order to inspect the pipe welded part at the time of plant construction, and is plugged after the plant construction. When a member made of high Cr ferritic steel is welded, the weld heat-affected zone causes a softening phenomenon and the strength is lower than that of the base material. For this reason, it has been found that creep rupture strength is greatly reduced compared to the base material due to the intensive accumulation of creep strain in the heat affected zone.

図4(A)は、管寄せ100に溶接部w1で管台102が隅肉溶接されている状態を示し、図4(B)は溶接部w1の拡大図である。図5(A)は、厚肉配管104に溶接部w2でガンマプラグ106が隅肉溶接されている状態を示し、図5(B)は溶接部w2の拡大図である。これら溶接部w1又はw2に、クリープ損傷d1又はd2が発生した場合、クリープ損傷の度合いによって、応急対策又は恒久対策に分けて工事が実施される。   4A shows a state in which the nozzle 102 is fillet welded to the header 100 at the welded portion w1, and FIG. 4B is an enlarged view of the welded portion w1. FIG. 5 (A) shows a state where the gamma plug 106 is fillet welded to the thick-walled pipe 104 at the welded portion w2, and FIG. 5 (B) is an enlarged view of the welded portion w2. When creep damage d1 or d2 occurs in these welds w1 or w2, the construction is carried out separately for emergency measures or permanent measures depending on the degree of creep damage.

応急処置として補修工事を実施する場合、クリープ損傷d1又はd2が発生した領域を除去し、図6の(A)及び(B)に示すように、座繰り空間を、溶接部w3として示す補修溶接を行う。これによって、次の定期点検までの期間正常運転を維持させる。クリープ損傷が多数発生した場合、恒久対策を施す。即ち、溶接部w1、w2の全体を座繰りし、新たに管台102を溶接し直す。   When repair work is performed as an emergency measure, the region where the creep damage d1 or d2 has occurred is removed, and repair welding is performed in which the countersink space is indicated as a welded portion w3 as shown in FIGS. 6A and 6B. I do. As a result, normal operation is maintained until the next periodic inspection. If many creep damages occur, take permanent measures. That is, the entire welded portions w1 and w2 are countersunk and the nozzle 102 is newly welded.

特許文献1には、ボイラの高温配管における突合せ溶接部に、クリープ損傷が発生した場合の補修方法が開示されている。この補修方法は、溶接部とその両側の母材とを含み、母材の表面からクリープボイドを含む深さまで座繰りを行い、座繰り空間に補修溶接により溶接金属を充填するものである。この場合、母材や溶接部の表面に対して座繰り部の底面をほぼ平行になるように形成することで、配管に発生するフープ応力の作用方向とクリープ損傷の発生方向とをほぼ平行にしている。これによって、フープ応力(引張応力)がクリープ損傷全体に作用しないようにし、クリープ損傷の進展を抑制するようにしている。   Patent Document 1 discloses a repair method when creep damage occurs in a butt weld in a high-temperature pipe of a boiler. This repair method includes a welded portion and base materials on both sides of the welded portion, performs countersink from the surface of the base material to a depth including creep voids, and fills the countersink space with weld metal by repair welding. In this case, by forming the bottom surface of the countersink portion substantially parallel to the surface of the base material or welded portion, the direction of action of the hoop stress generated in the pipe and the direction of occurrence of creep damage are made substantially parallel. ing. This prevents hoop stress (tensile stress) from acting on the entire creep damage and suppresses the progress of creep damage.

特開2011−194458号公報JP 2011-194458 A

前述の応急対策により、クリープ損傷発生域を除去し、座繰り空間に補修溶接を行った場合、既設の溶接金属内に補修溶接による熱影響部が形成される。最近の試験結果から、溶接金属内に形成された熱影響部は、クリープ破断強度が顕著に低下することが確認されつつある。従って、この応急対策では延命効果が期待できない。また、前述の恒久対策は多大のコストと工事期間を要し、発電プラントの停止期間が長期になるため、簡単に採用できない。   When the creep damage occurrence area is removed by the above-mentioned emergency measures and repair welding is performed in the countersink space, a heat-affected zone by repair welding is formed in the existing weld metal. From recent test results, it has been confirmed that the creep rupture strength of the heat-affected zone formed in the weld metal is significantly reduced. Therefore, this emergency measure cannot be expected to prolong life. In addition, the above-mentioned permanent countermeasures require a great deal of cost and construction period, and the power plant stop period is long, so it cannot be easily adopted.

また、特許文献1に開示された補修方法は、突合せ溶接に適用されるものであり、特許文献1に開示された補修方法を、隅肉溶接部に発生したクリープ損傷の補修にそのまま適用することができない。   Further, the repair method disclosed in Patent Document 1 is applied to butt welding, and the repair method disclosed in Patent Document 1 is applied as it is to repair of creep damage occurring in the fillet weld. I can't.

図7(A)は、管寄せ100の外周面に管台102が直角方向に隅肉溶接された場合を示す。図7(B)は隅肉溶接された溶接部w1の断面図であり、既存溶接金属Mの周囲に形成された熱影響部Hに、クリープ損傷d1が発生した場合を示している。
図7(B)に、隅肉溶接部に働くフープ応力Fの分布を2点鎖線で示している。フープ応力F(引張応力)が管寄せ100の軸方向(矢印a方向)に対し傾斜した方向に働いている。管寄せ100の内部に発生する内圧と、隅肉溶接部の形状とによって、フープ応力Fは、管寄せ100の内面より外表面近傍で高い値となる。特に、囲み部Bでフープ応力Fの応力集中が起こるため、領域Bでクリープ損傷が発生しやすいことがわかった。
FIG. 7A shows a case where the nozzle 102 is fillet welded in the perpendicular direction to the outer peripheral surface of the header 100. Figure 7 (B) is a sectional view of the weld portions w1 which is fillet welded, the heat affected zone H 0, which is formed around the existing weld metal M 0, shows the case where the creep damage d1 occurs.
In FIG. 7B, the distribution of the hoop stress F acting on the fillet weld is indicated by a two-dot chain line. The hoop stress F (tensile stress) works in a direction inclined with respect to the axial direction (arrow a direction) of the header 100. The hoop stress F is higher in the vicinity of the outer surface than the inner surface of the header 100 due to the internal pressure generated inside the header 100 and the shape of the fillet weld. In particular, it has been found that creep damage is likely to occur in the region B because stress concentration of the hoop stress F occurs in the surrounding portion B.

この場合の従来の補修方法を図8により説明する。図8(A)において、まず、クリープ損傷dが発生した領域を座繰りして取り除く。
次に、図8(B)に示すように、座繰り後の座繰り空間sに新たな溶接金属Mを充填する補修溶接を行う。この場合、新溶接金属Mの周囲に新たな熱影響部Hが形成されるが、この新熱影響部Hが既存溶接金属Mの内部にも形成される。
A conventional repair method in this case will be described with reference to FIG. In FIG. 8A, first, a region where the creep damage d has occurred is removed by scrambling.
Next, as shown in FIG. 8 (B), it performs the repair weld to fill the new weld metal M 1 in counterbored space s after repeated seat. In this case, a new heat affected zone H 1 is formed around the new weld metal M 1 , but this new heat affected zone H 1 is also formed inside the existing weld metal M 0 .

前述のように、最近の試験結果から、既存溶接金属Mの内部に形成された新熱影響部Hは、最もクリープ破断強度が低下することが確認されつつある。こうして、既存溶接金属Mの内部に形成された新熱影響部Hは、フープ応力Fの作用方向に対し直角に近い方向に分布することになる。そのため、クリープ損傷発生域の全体にフープ応力F(引張応力)が作用し、クリープ損傷dはき裂となって進展する。 As described above, from the recent test results, it is being confirmed that the creep rupture strength of the new heat-affected zone H 1 formed inside the existing weld metal M 0 is the lowest. Thus, the new heat-affected zone H 1 formed inside the existing weld metal M 0 is distributed in a direction close to a right angle to the direction of action of the hoop stress F. Therefore, the hoop stress F (tensile stress) acts on the entire creep damage occurrence region, and the creep damage d propagates as a crack.

本発明は、かかる従来技術の課題に鑑み、隅肉溶接部に発生したクリープ損傷に対し、低コストかつ短期の施工で長期の延命効果を達成できる補修手段を実現することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to realize a repair means that can achieve a long-life extension effect with low cost and short-term construction against creep damage occurring in a fillet weld.

本発明の隅肉溶接部の補修構造は、中空筒状部材であって内部圧によりフープ応力が発生する第1の被溶接部材に対し第2の被溶接部材が交差した方向で溶接されて形成された隅肉溶接部にクリープ損傷が発生した場合に適用される。「中空筒状部材」とは、例えば、ボイラ設備で高温蒸気が流れる蒸気配管や管寄せ等の厚肉配管である。また、「クリープ損傷」とは、クリープボイドの発生や結晶粒の粗大化、又はこれらがさらに進展して発生する微視き裂を含むき裂等を言う。   The fillet weld repair structure according to the present invention is formed by welding a second member to be welded to a first member to be welded which is a hollow cylindrical member and generates hoop stress due to internal pressure. This is applied when creep damage occurs in the welded fillet. The “hollow tubular member” is, for example, a thick pipe such as a steam pipe or a header where high-temperature steam flows in a boiler facility. Further, “creep damage” means generation of creep voids, coarsening of crystal grains, or cracks including microcracks that are generated by further progress.

前記目的を達成するため、本発明の補修構造は、クリープ損傷が発生した隅肉溶接部の既存溶接金属及び該既存溶接金属の周囲に形成された既存熱影響部を含む領域の表面が、クリープ損傷発生域を含む深さまで座繰りされ、座繰り後に形成される座繰り部の底面が、第1の被溶接部材の軸線に対して傾斜した方向であって、かつフープ応力の作用方向に沿って形成され、座繰り部に形成された座繰り空間に新たな補修用溶接金属が充填されてなるものである。   In order to achieve the above object, the repair structure of the present invention is such that the surface of the region including the existing weld metal of the fillet weld where the creep damage has occurred and the existing heat affected zone formed around the existing weld metal is creeped. The bottom surface of the countersunk portion that is countersunk to a depth that includes the damage occurrence area and that is formed after the countersink is a direction that is inclined with respect to the axis of the first welded member and that is along the direction of action of the hoop stress. In this case, a new repair weld metal is filled in the countersink space formed in the countersink portion.

本発明によれば、クリープ損傷が起きやすい既存溶接金属及び既存熱影響部の表面及び表面近傍の領域は、新たに充填された溶接金属と置き換わるので、新設溶接部と同様の延命効果を獲得できる。また、既存溶接金属の内部に形成された新熱影響部は座繰り部の底面に沿って形成される。そのため、新熱影響部の分布はフープ応力の作用方向に沿って形成されるため、新熱影響部の全体に大きな引張応力が作用することはなくなる。従って、新熱影響部にクリープ損傷が発生したとしても、クリープ損傷の進展は遅く、長期の延命効果を達成できる。   According to the present invention, the surface of the existing weld metal and the existing heat-affected zone where creep damage is likely to occur and the area near the surface are replaced with the newly filled weld metal, so that the same life-prolonging effect as that of the newly-installed weld can be obtained. . Moreover, the new heat affected zone formed inside the existing weld metal is formed along the bottom surface of the countersunk portion. Therefore, since the distribution of the new heat affected zone is formed along the direction of action of the hoop stress, no large tensile stress acts on the entire new heat affected zone. Therefore, even if creep damage occurs in the new heat-affected zone, the progress of creep damage is slow, and a long-lived effect can be achieved.

本発明の補修構造において、第1の被溶接部材及び第2の被溶接部材が、9重量%以上12重量%以下のCrを含有する9〜12Cr系高Crフェライト鋼からなる場合、本発明の目的である長期延命効果を顕著に達成できる。前述のように、9〜12Cr系高Crフェライト鋼は、火力発電用ボイラで発生する高温蒸気の温度帯で、強度、耐食・耐酸化性が優れ、熱伝導度が高く、熱膨張係数が小さい等の長所を有し、火力発電用ボイラの蒸気配管や管寄せ等に広く用いられている。   In the repair structure of the present invention, when the first welded member and the second welded member are made of 9-12Cr high Cr ferritic steel containing 9 wt% or more and 12 wt% or less of Cr, The long-term life-prolonging effect that is the purpose can be achieved significantly. As mentioned above, 9-12Cr high Cr ferritic steel is excellent in strength, corrosion resistance / oxidation resistance, high thermal conductivity, and low thermal expansion coefficient in the temperature range of high-temperature steam generated in boilers for thermal power generation. It is widely used for steam piping and headers of boilers for thermal power generation.

一方、高Crフェライト鋼からなる母材を溶接する場合、通常、母材と同種の溶接金属が用いられる。9〜12Cr系高Crフェライト鋼を溶接金属として、クリープ損傷が発生した隅肉溶接部を補修する場合、前述のように、既存熱影響部Hや既存溶接金属Mの内部に形成された新熱影響部Hにクリープ破断強度がかなり低下するという問題があった。これに対し、本発明方法を適用することで、施工後の延命効果を向上できる。 On the other hand, when welding a base material made of high Cr ferritic steel, a weld metal of the same type as the base material is usually used. The 9~12Cr based high Cr ferritic steel as a weld metal, if to repair the fillet weld creep damage occurs, as described above, is formed inside an existing heat affected zone H 0 or existing weld metal M 0 new HAZ H creep rupture strength 1 there was a problem that significantly decreases. On the other hand, the life extension effect after construction can be improved by applying the method of the present invention.

また、本発明の隅肉溶接部の補修方法は、前記目的を達成するため、隅肉溶接部の既存溶接金属及び該既存溶接金属の周囲に形成された既存熱影響部を含む領域の表面を、クリープ損傷発生域を含む深さまで座繰りすると共に、座繰り後に形成される座繰り部の底面が第1の被溶接部材の軸線に対して傾斜した方向であって、かつフープ応力の作用方向に沿って形成される座繰り工程と、座繰り部に形成された座繰り空間に新たな補修用溶接金属を充填する補修溶接工程とからなるものである。   Further, the fillet weld repair method according to the present invention provides the surface of the region including the existing weld metal of the fillet weld and the existing heat affected zone formed around the existing weld metal in order to achieve the above object. The countersinks to the depth including the creep damage occurrence area, and the bottom surface of the countersink formed after the countersink is inclined with respect to the axis of the first welded member, and the direction of action of the hoop stress. And a repair welding process in which a new repair weld metal is filled in the countersink space formed in the countersink portion.

これによって、クリープ損傷が起きやすい既存溶接金属及び既存熱影響部の表面及び表面近傍の領域は、新たに充填された溶接金属と置き換わるので、新品同様の延命効果を獲得できる。また、既存溶接金属の内部に形成された新熱影響部は座繰り部の底面に沿って形成され、新熱影響部の分布はフープ応力の作用方向に沿って形成されるため、新熱影響部の全体に大きな引張応力が作用することはなくなる。従って、新熱影響部にクリープ損傷が発生したとしても、クリープ損傷の進展は遅く、長期の延命効果を達成できる。   As a result, the existing weld metal and the surface of the existing heat-affected zone where the creep damage is likely to occur and the area in the vicinity of the surface are replaced with the newly filled weld metal. In addition, the new heat-affected zone formed inside the existing weld metal is formed along the bottom surface of the countersink, and the distribution of the new heat-affected zone is formed along the direction of the hoop stress. Large tensile stress does not act on the entire portion. Therefore, even if creep damage occurs in the new heat-affected zone, the progress of creep damage is slow, and a long-lived effect can be achieved.

本発明方法において、既存溶接金属及び既存熱影響部の表面からの深さと、この深さに応じて分布されるフープ応力との関係を示すフープ応力マップを予め作成するマップ作成工程をさらに含み、座繰り工程は、フープ応力マップからクリープ損傷が発生した深さを推定し、この推定した深さに基づいて座繰り深さを決定する座繰り深さ決定ステップを含むようにすることができる。これによって、クリープ損傷の深さを従来の方法によって逐一検出することなく、座繰り深さを設定できるので、補修工事が容易になる。従って、補修工事に有する期間を大幅に短縮できるので、発電プラント等の停止期間を大幅に短縮できる。   In the method of the present invention, the method further includes a map creation step of creating a hoop stress map in advance showing a relationship between the depth from the surface of the existing weld metal and the existing heat affected zone and the hoop stress distributed according to the depth, The countersink step may include a countersink depth determination step of estimating a depth at which creep damage has occurred from the hoop stress map and determining a countersink depth based on the estimated depth. As a result, the depth of creep damage can be set without detecting the depth of creep damage by a conventional method one by one, and repair work is facilitated. Therefore, since the period of repair work can be greatly shortened, the stop period of the power plant and the like can be significantly shortened.

本発明によれば、クリープ損傷を受けた隅肉溶接部の補修後の延命期間を大幅に延ばすことができる。これによって、隅肉溶接部の保守管理が容易になると共に、機器の隅肉溶接部を有する機器の停止期間を短縮し、稼働効率を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, the life extension period after repair of the fillet weld part which received the creep damage can be extended significantly. This facilitates maintenance management of the fillet welded portion, shortens the stop period of the device having the fillet welded portion of the device, and improves the operation efficiency.

本発明の補修方法の一実施形態に係り、(A)は隅肉溶接部の座繰り加工を示す断面図であり、(B)は同じく補修溶接工程を示す断面図である。(A) is sectional drawing which shows the countersink process of a fillet weld part, (B) is sectional drawing which similarly shows a repair welding process in one embodiment of the repair method of this invention. 前記実施形態で、隅肉溶接部に発生するフープ応力分布を模式的に示す断面図である。It is sectional drawing which shows typically the hoop stress distribution which generate | occur | produces in a fillet weld part in the said embodiment. 前記実施形態による補修後の隅肉溶接部の余寿命を示す線図である。It is a diagram which shows the remaining life of the fillet weld part after the repair by the said embodiment. (A)は厚肉配管の管台溶接部を示す斜視図であり、(B)は前記管台溶接部の一部拡大図である。(A) is a perspective view which shows the nozzle weld part of thick-walled piping, (B) is a partially expanded view of the said nozzle weld part. (A)は厚肉配管に設けられたガンマプラグ溶接部を示す斜視図であり、(B)は前記ガンマプラグ溶接部の一部拡大図である。(A) is a perspective view which shows the gamma plug weld part provided in thick-walled piping, (B) is a partially expanded view of the said gamma plug weld part. 従来の隅肉溶接部の補修方法を示し、(A)は管台溶接部の補修方法を示し、(B)はガンマプラグ溶接部の補修方法を示す斜視図である。The repair method of the conventional fillet weld part is shown, (A) shows the repair method of a nozzle weld part, (B) is a perspective view which shows the repair method of a gamma plug weld part. (A)は管台溶接部に発生したクリープ損傷を示す斜視図であり、(B)は(A)中のA―A線に沿う断面図である。(A) is a perspective view which shows the creep damage which generate | occur | produced in the nozzle stub welding part, (B) is sectional drawing which follows the AA line in (A). 従来の補修方法に係り、(A)は隅肉溶接部の座繰り加工を示す断面図であり、(B)は同じく補修溶接工程を示す断面図である。(A) is sectional drawing which shows the countersink processing of a fillet weld part, (B) is sectional drawing which similarly shows a repair welding process in connection with the conventional repair method.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明の一実施形態を図1〜図3に基づいて説明する。図1は本実施形態による補修工事開始後の状態を示し、図2は本実施形態による補修工事開始前の状態を示す。中空円筒形の断面を有する管寄せ10と、管寄せ10より小径で、同様に中空円筒形の断面を有する管台12とが溶接部wで結合されている。管寄せ10及び管台12は、9〜12重量%のCrを含有する9〜12Cr系高Crフェライト鋼で構成されている。管台12の軸線は管寄せ10の軸線に対してほぼ直角に配置され、管台12の端面が管寄せ10に植え込まれた状態で、溶接部w1によって隅肉溶接されている。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a state after the start of repair work according to this embodiment, and FIG. 2 shows a state before the start of repair work according to this embodiment. A header 10 having a hollow cylindrical cross section and a nozzle 12 having a smaller diameter than that of the header 10 and also having a hollow cylindrical cross section are joined by a weld w. The header 10 and the nozzle 12 are made of 9-12Cr high Cr ferritic steel containing 9-12% by weight of Cr. The axis of the nozzle 12 is arranged substantially perpendicular to the axis of the header 10, and the fillet welded by the welded portion w <b> 1 with the end face of the nozzle 12 implanted in the header 10.

本実施形態は、図2に示すように、例えば、図7(B)に示すクリープ損傷d1と同様の位置、即ち、クリープ損傷d1が既存溶接金属Mの周囲に存在する既存熱影響部Hに発生した場合を想定している。以下、図1により本実施形態に係る補修工事を説明する。 This embodiment, as shown in FIG. 2, for example, the same position as the creep damage d1 shown in FIG. 7 (B), i.e., the existing heat-affected zone H creep damage d1 is present around the existing weld metal M 0 The case where the error occurs at 0 is assumed. Hereinafter, the repair work according to the present embodiment will be described with reference to FIG.

まず、図1に示すように、既存溶接金属M及び既存熱影響部Hの全域を座繰り加工する。座繰り深さは、クリープ損傷d1の発生域を座繰りできる深さとする必要がある。レプリカ法、超音波探傷又はガンマ線照射法等、従来の検出方法を用いて、発生したクリープ損傷d1の深さを検出することで決定することもできる。しかし、これらの検出方法は、クリープ損傷d1の数が少数の場合は対応できるが、クリープ損傷d1の数が多いときは多大の時間を要する。そこで、本実施形態では、以下説明する方法を用いて、座繰り深さを決定する。 First, as shown in FIG. 1, the spot facing machining the entire area of the existing weld metal M 0 and existing heat-affected zone H 0. The countersink depth needs to be a depth at which the creep damage d1 generation region can be countersunk. It can also be determined by detecting the depth of the generated creep damage d1 using a conventional detection method such as a replica method, ultrasonic flaw detection or gamma ray irradiation method. However, these detection methods can cope with a small number of creep damages d1, but a long time is required when the number of creep damages d1 is large. Therefore, in the present embodiment, the countersink depth is determined using a method described below.

図1に示す管寄せ10及び管台12の構成では、溶接部w1に発生する引張方向のフープ応力Fは、図2に示すように、管寄せ10の軸線方向(矢印a方向)に対して傾斜した方向に発生する。そこで、予め、溶接部w1の表面から深さ方向に向かう、管寄せ10に発生するフープ応力Fの分布を計測しておく。そして、その計測値に基づいて、このフープ応力分布をマップ化しておく。図2は、本実施形態による補修工事を施す前の状態を示すと共に、フープ応力分布を示すマップを図示している。フープ応力マップの横軸は、溶接部w1の表面からの深さDであり、縦軸は、フープ応力Fである。   In the configuration of the header 10 and the nozzle 12 shown in FIG. 1, the hoop stress F in the tensile direction generated in the welded portion w <b> 1 is relative to the axial direction (arrow a direction) of the header 10 as shown in FIG. 2. Occurs in an inclined direction. Therefore, the distribution of the hoop stress F generated in the header 10 in the depth direction from the surface of the welded portion w1 is measured in advance. Then, based on the measured value, this hoop stress distribution is mapped. FIG. 2 shows a map showing the state before the repair work according to the present embodiment is performed and the hoop stress distribution. The horizontal axis of the hoop stress map is the depth D from the surface of the welded portion w1, and the vertical axis is the hoop stress F.

図2から、高いフープ応力Fが発生する領域は、溶接部w1の表面付近に集中していることがわかる。本発明者等は、管寄せ10に発生するフープ応力Fの値とクリープ損傷dの発生とがほぼ相関関係にあることを見い出している。そこで、クリープ損傷d1が発生する確率が少なくなるフープ応力Fの閾値Dを設定し、溶接部w1の表面から閾値Dまでの間でクリープ損傷d1が発生したと推定する。 As can be seen from FIG. 2, the region where the high hoop stress F is generated is concentrated near the surface of the welded portion w1. The present inventors have found that the value of the hoop stress F generated in the header 10 and the occurrence of creep damage d are substantially correlated. Therefore, by setting a threshold D 0 of hoop stress F probability of creep damage d1 is generated is reduced, creep damage d1 is estimated to have occurred between the surface of the weld portions w1 to a threshold D 0.

これによって、座繰り加工の底面の深さを閾値Dと決定する。こうして決定された座繰り深さDに基づいて座繰り加工を行う。座繰り領域は、溶接部w1の既存溶接金属M及び既存熱影響部Hを含む範囲とする。例えば、座繰り深さを1〜3mmとし、座繰り幅を10〜20mmとする。座繰り加工により形成された底面14は、フープ応力Fの作用方向とほぼ平行な方向に形成される。 Thus, determining the threshold D 0 the depth of the bottom surface of the counterbore processed. Thus based on the determined counterbore depth D 0 performing spot facing machining. Counterbore region, a range including the existing weld metal M 0 and existing heat-affected zone H 0 of the weld w1. For example, the countersink depth is 1 to 3 mm, and the countersink width is 10 to 20 mm. The bottom surface 14 formed by countersinking is formed in a direction substantially parallel to the direction of action of the hoop stress F.

次に、図1(B)に示すように、座繰り空間sに溶融した補修用溶接金属Mを充填し固化させる。これで補修作業は終了する。 Next, as shown in FIG. 1 (B), is filled with a repair weld metal M 1 melted in counterbore space s solidified. This completes the repair work.

本実施形態によれば、溶接部w1の既存溶接金属M及び既存熱影響部Hの表面は全面に亘り座繰りされ、座繰り空間sには新たな溶接金属Mが充填される。そのため、クリープ損傷が起きやすい溶接部w1の表面は全面に亘り新溶接金属Mと置き換わるので、クリープ損傷に対する寿命評価は、新設溶接部と同様となる。 According to the present embodiment, the existing weld metal M 0 and the surface of the existing heat-affected zone H 0 of the weld portions w1 are repeated seat over the entire surface, a new weld metal M 1 is filled in the counterbore space s. Therefore, since the surface of the creep damage is prone weld portions w1 is replaced with the new weld metal M 1 over the entire surface, the life evaluation of creep damage is the same as new weld.

本実施形態でも、新溶接金属Mの周囲に新たな熱影響部Hが形成され、既存溶接金属M及び既存熱影響部Hに新熱影響部Hが形成される。しかし、既存熱影響部Hに形成される新熱影響部Hの領域は微小であり、クリープ損傷が発生しり確率は極めて少ない。また、既存溶接金属Mの内部に形成される新熱影響部Hは、座繰り部の底面14に沿って形成されている。そのため、既存溶接金属Mの内部における新熱影響部Hの分布はフープ応力Fの作用方向に沿って形成される。従って、新熱影響部Hの全体に引張応力が大きく作用することはなくなり、新熱影響部Hにクリープ損傷が発生したとしても、クリープ損傷の進展は遅く、長期の延命効果を達成できる。 In the present embodiment, the new weld HAZ H 1 new around the metal M 1 is formed, Shin'netsu affected zone H 1 is formed into an existing weld metal M 0 and existing heat-affected zone H 0. However, the area of the new heat-affected zone H 1 formed in the existing heat-affected zone H 0 is very small, and creep damage occurs and the probability is extremely small. Further, the new heat affected zone H 1 formed inside the existing weld metal M 0 is formed along the bottom surface 14 of the countersunk portion. Therefore, the distribution of the new heat affected zone H 1 inside the existing weld metal M 0 is formed along the direction of action of the hoop stress F. Thus, no longer the entire tensile stress in the new HAZ H 1 acts greatly, even creep damage in New HAZ H 1 occurs, the progress of creep damage is slow and can achieve survival benefit of long-term .

また、溶接部w1の表面からのクリープ損傷d1の深さを逐一計測することなく、予め作成されたフープ応力マップに基づいて決定するので、補修工事を短縮でき、発電プラント等の停止期間を短縮できる。   Also, since the depth of creep damage d1 from the surface of the welded portion w1 is determined based on the hoop stress map created in advance, the repair work can be shortened and the stoppage period of the power plant etc. can be shortened it can.

図3は、従来の補修方法による管寄せに形成された溶接部w1と、本実施形態の補修方法による管寄せに形成され溶接部w1の補修工事施工後の余寿命を示す。図3から、本実施形態による補修方法のほうが2倍以上の延命効果を達成できていることがわかる。
なお、本実施形態は、既存熱影響部Hにクリープ損傷d1が発生した場合の例であるが、既存溶接金属Mにクリープ損傷d1が発生した場合でも、本発明を適用できる。
FIG. 3 shows the remaining life of the welded portion w1 formed in the header by the conventional repair method and the repaired life of the welded portion w1 formed in the header by the repair method of the present embodiment. From FIG. 3, it can be seen that the repair method according to the present embodiment can achieve the life extension effect of twice or more.
The present embodiment is creep damage to the existing heat affected zone H 0 d1 is an example of a case of occurrence, even when the creep damage d1 occurs in existing weld metal M 0, the present invention can be applied.

本発明によれば、隅肉溶接部に発生したクリープ損傷に対し、低コストかつ短期の施工で長期の延命効果を達成できる補修手段を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the repair means which can achieve a long-term life-prolonging effect by low-cost and short-term construction with respect to the creep damage which generate | occur | produced in the fillet weld part is realizable.

10,100 管寄せ
12,102 管台
14 底面
104 厚肉配管
106 ガンマプラグ
閾値
F フープ応力
既存熱影響部
新熱影響部
既存熱影響部
新溶接金属
d1、d2 クリープ損傷
s 座繰り空間
w1、w2、w3 溶接部
10,100 header 12,102 nozzle 14 bottom surface 104 thick pipe 106 gamma plug D 0 threshold F hoop stress H 0 existing heat affected zone H 1 new heat affected zone M 0 existing heat affected zone M 1 new weld metal d1, d2 Creep damage s Countersink space w1, w2, w3 Welded part

Claims (4)

中空筒状部材であって内部圧によりフープ応力が発生する第1の被溶接部材に対し、第2の被溶接部材が交差した方向で溶接されて形成された隅肉溶接部であって、
クリープ損傷が発生した前記隅肉溶接部の既存溶接金属及び該既存溶接金属の周囲に形成された既存熱影響部を含む領域の表面が、クリープ損傷発生域を含む深さまで座繰りされ、座繰り後に形成される座繰り部の底面が、前記第1の被溶接部材の軸線に対して傾斜した方向であって、かつ前記フープ応力の作用方向に沿って形成され、
前記座繰り部に形成された座繰り空間に新たな補修用溶接金属が充填されてなることを特徴とする隅肉溶接部の補修構造。
A fillet weld formed by welding in a direction in which the second welded member intersects the first welded member that is a hollow cylindrical member and generates hoop stress due to internal pressure,
The surface of the area including the existing weld metal of the fillet weld where the creep damage has occurred and the existing heat affected zone formed around the existing weld metal is countersunk to a depth including the creep damage generation area, The bottom surface of the counterbore formed later is formed in a direction inclined with respect to the axis of the first welded member and along the direction of action of the hoop stress,
A repair structure for fillet welds, wherein a new weld metal for repair is filled in a countersink space formed in the countersink.
前記第1の被溶接部材、前記第2の被溶接部材、前記既存溶接金属及び前記新たな補修用溶接金属が、9〜12Cr系の高Crフェライト鋼で構成されていることを特徴とする請求項1に記載の隅肉溶接部の補修構造。   The first welded member, the second welded member, the existing weld metal, and the new repair weld metal are made of 9-12Cr high Cr ferritic steel. Item 2. A fillet weld repair structure according to Item 1. 中空筒状部材であって内圧によりフープ応力が発生する第1の被溶接部材に対し第2の被溶接部材が交差した方向で溶接されて形成され、クリープ損傷が発生した隅肉溶接部の補修方法において、
前記隅肉溶接部の既存溶接金属及び該既存溶接金属の周囲に形成された既存熱影響部を含む領域の表面を、クリープ損傷発生域を含む深さまで座繰りすると共に、座繰り後に形成される座繰り部の底面が前記第1の被溶接部材の軸線に対して傾斜した方向であって、かつ前記フープ応力の作用方向に沿って形成される座繰り工程と、
前記座繰り部に形成された座繰り空間に新たな補修用溶接金属を充填する補修溶接工程とからなることを特徴とする隅肉溶接部の補修方法。
Repair of fillet welds that are hollow cylindrical members that are welded in the direction in which the second welded member intersects the first welded member that generates hoop stress due to internal pressure, and where creep damage has occurred In the method
The surface of the region including the existing weld metal of the fillet weld and the existing heat-affected zone formed around the existing weld metal is countersunk to a depth including the creep damage generation region and is formed after the countersink. A countersink step formed in a direction in which the bottom surface of the countersink portion is inclined with respect to the axis of the first welded member and along the direction of action of the hoop stress;
A repair method for a fillet weld, comprising a repair welding step of filling a new repair weld metal in a countersink space formed in the countersink.
前記既存溶接金属及び前記既存熱影響部の表面からの深さと、前記表面からの深さに応じて分布されるフープ応力との関係を示すフープ応力マップを予め作成するマップ作成工程をさらに含み、
前記座繰り工程は、前記フープ応力マップから前記クリープ損傷が発生した深さを推定し、この推定した深さに基づいて座繰り深さを決定する座繰り深さ決定ステップを含むことを特徴とする請求項3に記載の隅肉溶接部の補修方法。
A map creating step of creating a hoop stress map in advance showing a relationship between a depth from the surface of the existing weld metal and the existing heat affected zone and a hoop stress distributed according to the depth from the surface;
The countersink step includes a countersink depth determination step of estimating a depth at which the creep damage has occurred from the hoop stress map and determining a countersink depth based on the estimated depth. The method for repairing a fillet weld according to claim 3.
JP2013006597A 2013-01-17 2013-01-17 Repairing structure and repairing method of fillet weld zone Pending JP2014136246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006597A JP2014136246A (en) 2013-01-17 2013-01-17 Repairing structure and repairing method of fillet weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006597A JP2014136246A (en) 2013-01-17 2013-01-17 Repairing structure and repairing method of fillet weld zone

Publications (1)

Publication Number Publication Date
JP2014136246A true JP2014136246A (en) 2014-07-28

Family

ID=51414077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006597A Pending JP2014136246A (en) 2013-01-17 2013-01-17 Repairing structure and repairing method of fillet weld zone

Country Status (1)

Country Link
JP (1) JP2014136246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231720A (en) * 2021-06-18 2021-08-10 深圳中广核工程设计有限公司 Internal and external combined surfacing maintenance method for BOSS head weld joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231720A (en) * 2021-06-18 2021-08-10 深圳中广核工程设计有限公司 Internal and external combined surfacing maintenance method for BOSS head weld joint
CN113231720B (en) * 2021-06-18 2022-09-13 深圳中广核工程设计有限公司 Internal and external combined surfacing maintenance method for BOSS head weld joint

Similar Documents

Publication Publication Date Title
Saito et al. Development of materials for use in A-USC boilers
CN103901097A (en) Method for detecting incomplete root penetration of ferromagnetic thin wall pipe
JP2014136246A (en) Repairing structure and repairing method of fillet weld zone
JP2011194458A (en) Repair welding method
JP2013148540A (en) METHOD FOR EVALUATING CREEP DAMAGE SUITED TO STRESS CONCENTRATION PART OF HIGH Cr STEEL
CN205103105U (en) Xenogenesis pipe welding connects high temperature strength and notch sensitivity test sample
CN108723631B (en) Method for determining cracking mechanism of pipe welding joint based on rigidity adjustable constraint test
JP2013158823A (en) Inspection hole closure structure and repairing method of inspection hole closure structure
US11872663B2 (en) Repair welding method
JP6071867B2 (en) Repair welding method and repair weld structure of welded part
Veiga et al. Residual stress evolution in repair welds
Kubushiro et al. Performance and causes of failure for circumferential welds and welded branch connections for 23Cr-45Ni-7W alloy under internal pressure conditions
Dean Recent developments in the R5 procedures for assessing the high temperature response of structures
JP2014190792A (en) Defect detection method and inspection method for turbine wing
Qi et al. Crack Propagation Analysis of Dissimilar Metal Weld for Steam Generator Nozzle Safety End
Grin’ et al. Estimate of the allowable dimensions of diagnosed defects in category III and IV welded pipeline joints1
Chellapandi et al. Qualification of creep, fatigue and fracture design of PFBR components based on tests
Ariffin et al. Investigation on the effect of direct welding heat for on-stream repair of stainless steel piping
CN112305073A (en) Ultrasonic detection method for crack of sliding pair weld toe of boiler heated surface pipe
Zhang et al. Creep damage evaluation for welded pipe of Ni based alloy HR6W using full thickness specimen
HAMADA et al. F101 APPLICATION OF POTENTIAL DROP TECHNIQUE TO THE INSPECTION OF WELDED BOILER PRESSURE PAPTS
El kouifat et al. Investigation of the Damage of the Welded Stainless Steel Tube used in the Solar Power Plants
Moody et al. Potential effects of haz hardness on use of T24 tubing for water wall applications
CIOFU THE INFLUENCE OF THE DESIGN OF PIPES USED IN THE ENERGY INDUSTRY ON THE SLOWLY OF EROSION/CORROSION PROCESSES.
JP2016079470A (en) Defect progress suppression method