JP2014135840A - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
JP2014135840A
JP2014135840A JP2013002380A JP2013002380A JP2014135840A JP 2014135840 A JP2014135840 A JP 2014135840A JP 2013002380 A JP2013002380 A JP 2013002380A JP 2013002380 A JP2013002380 A JP 2013002380A JP 2014135840 A JP2014135840 A JP 2014135840A
Authority
JP
Japan
Prior art keywords
battery
value
power
limit value
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002380A
Other languages
English (en)
Other versions
JP6047407B2 (ja
Inventor
Keisuke Suzuki
圭介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013002380A priority Critical patent/JP6047407B2/ja
Publication of JP2014135840A publication Critical patent/JP2014135840A/ja
Application granted granted Critical
Publication of JP6047407B2 publication Critical patent/JP6047407B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】
バッテリを含む電源系の複数の構成要素を温度上昇から保護することができる車両制御システムを提供すること。
【解決手段】
車両の状態に基づき、主バッテリ2の出力電力を用いて車両の駆動用の動力を発生可能なモータジェネレータ6を制御する車両制御システムであって、主バッテリ2を含む電源系の複数の構成要素の保護のため、主バッテリ2の出力電力を制限する最終の電力制限値として、複数の構成要素間で共通する値を設定する。
【選択図】 図1

Description

本発明は、車両制御システムに関する。
従来、バッテリの出力電力を用いて車両を駆動可能なモータを制御する車両制御システムが知られている。例えば特許文献1に記載のシステムは、バッテリの入出力可能電力を演算し、この入出力可能電力に応じて制限したモータの要求トルクに従ってモータの回転を制御する。また、バッテリの温度を推定し、推定した温度に基づきバッテリの入出力可能電力を補正する。
特開2004−328905号
従来の技術では、バッテリを含む電源系の複数の構成要素を温度上昇から保護することができなかった。本発明の目的とするところは、これら複数の構成要素を温度上昇から保護することができる車両制御システムを提供することにある。
上記目的を達成するため、本発明の車両制御システムは、バッテリを含む電源系の複数の構成要素間で共通する電力制限値を設定する。
よって、これら複数の構成要素を温度上昇から保護することができる。
実施例1の車両制御システムが適用される車両のシステム図である。 実施例1の電力制限制御を達成するための各コントローラ10〜30の連携の一例を示すシステム図である。 実施例1の車両コントローラ10内で実行される第2の電力制限値の算出ロジックの一例を示すブロック線図である。 実施例1の主バッテリ2を含む電源系を構成する要素毎の短時間定格値の一例を示す表である。 実施例1の電力制限制御における主バッテリ2の出力電流(バッテリ電流値)の時間変化の一例を示すタイムチャートである。 比較例2の電力制限制御における主バッテリ2の出力電流(バッテリ電流値)の時間変化の一例を示すタイムチャートである。
以下、本発明の車両制御システムを実現する形態を、図面に基づき説明する。
[実施例1]
[構成]
まず、構成を説明する。図1は、本実施例の車両制御システムが適用される車両のシステム図である。車両は、後輪8c,8dがモータジェネレータ6により駆動される電動車両(電気自動車)である。車両の電源系は、高電圧バッテリである主バッテリ2と、DC-DCコンバータ3と、低電圧バッテリである副バッテリ4と、図外のリレーやヒューズ等の構成要素(構成部品)と、バッテリコントローラ(BMS)20とを有している。主バッテリ2は、車両の駆動系の電源として機能する蓄電装置であり、例えばリチウムイオンバッテリを用いることができる。
副バッテリ4は、ブレーキ制御装置40の電源としてのほか、照明や表示等のための車載補機の電源として機能する蓄電装置である。DC-DCコンバータ3は、主バッテリ2からの電圧を降圧して副バッテリ4に供給する。バッテリコントローラ20は、主バッテリ2の充電状態(入力)及び出力を制御する電子制御装置(バッテリ制御装置)である。
車両の駆動系は、モータジェネレータ6とインバータ5とモータコントローラ(MC)30とを有している。モータジェネレータ6は、例えばロータに永久磁石を埋設しステータにコイルが巻き付けられた交流同期電動機である。ロータの出力軸60は、減速ギア7a及びディファレンシャルギア7bを介して車軸(後輪8c,8dの駆動軸7c)に連結されている。モータジェネレータ6は、主バッテリ2からの電力の供給を受けて回転駆動する電動機として動作することもできるし(この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能して主バッテリ2を充電することもできる(この状態を「回生」と呼ぶ)。モータジェネレータ6がトルクを発生せず車両イナーシャによって回され、外部のトルクを消費している場合、モータジェネレータ6は発電機として機能する。モータジェネレータ6は、モータ制御装置としてのモータコントローラ30からの制御指令に基づいて、インバータ5により作り出された三相交流を印加することにより制御される。インバータ5は、半導体スイッチング素子であり、モータコントローラ30からの駆動指令(インバータ駆動信号としての指令信号)に基づいて、主バッテリ2の直流電力を交流電力に変換しモータジェネレータ6に供給することで、モータジェネレータ6を力行運転する。一方、インバータ5は、モータコントローラ30からの回生指令(インバータ駆動信号としての指令信号)に基づいて、モータジェネレータ6で発生する交流電力を直流電力に変換してモータジェネレータ6を回生運転することで、主バッテリ2を充電する。
車両の制動系は、各車輪8a〜8dに設けられたホイルシリンダ42a〜42dと、油圧配管41a〜41dを介してホイルシリンダ42a〜42dに接続されたブレーキ制御装置40と、図外のブレーキ操作ユニット(ブレーキペダル及びマスタシリンダ)とを有している。ブレーキ制御装置40は、運転者のブレーキ操作とは独立に液圧を発生可能な液圧装置と、液圧装置の作動を制御するブレーキコントローラとを有し、副バッテリ4から供給される電力により作動する。ホイルシリンダ42a〜42dは、マスタシリンダないしブレーキ制御装置40(液圧装置)から供給されるブレーキ液によりブレーキ液圧(ホイルシリンダ圧)を発生する。各車輪8a〜8dにおいて、ホイルシリンダ圧によりブレーキパッドがブレーキロータ43a〜43dに押し付けられることで、摩擦制動力が発生する。
車両コントローラ10、バッテリコントローラ20、モータコントローラ30、及びブレーキ制御装置40(ブレーキコントローラ)は、情報交換が可能な車内通信ライン(CAN通信線50)を介して互いに接続されている。バッテリコントローラ20は、主バッテリ2の充電状態を示すバッテリSOCを監視する。また、主バッテリ2と接続する電源ライン(電気回路)1には、主バッテリ2とインバータ5との間に、主バッテリ2の充放電電流を検出する電流センサ1aが設けられており(図2参照)、電流センサ1aの検出信号はバッテリコントローラ20に入力される。バッテリSOCは、CAN通信線50を介して車両コントローラ10等に供給され、モータジェネレータ6の制御情報に用いられる。
モータジェネレータ6には、ロータの回転角(回転位置)を検出するレゾルバ61が設けられており、レゾルバ61の検出信号はモータコントローラ30に入力される。モータコントローラ30は、レゾルバ61の検出信号、及び(車両コントローラ10において演算される)目標モータジェネレータトルク等の信号の入力を受け、これらに基づきモータジェネレータ6の動作点(回転数、トルク)を制御する指令信号をインバータ5へ出力する。これにより、インバータ5によりモータジェネレータ6へ供給する電圧と電流を調節してその回転(回転数、トルク)を制御する。各車輪8a〜8dには、その回転速度(車輪速)を検出する車輪速検出手段として車輪速センサ9a〜9dが設けられており、車輪速センサ9a〜9dの検出信号はブレーキコントローラに入力される。ブレーキコントローラは、車輪速センサ9a〜9dの検出信号等に基づきブレーキ液圧を制御する指令信号を液圧装置へ出力し、液圧装置の作動を制御する。
車両コントローラ(VCM)10は、車両全体を統合制御する電子制御ユニットである。車両コントローラ10には、各センサ(車輪速センサ9a〜9d等)からの検出信号が入力されると共に、CAN通信線50を介して情報が入力される。車両コントローラ10は、これらの入力情報に基づき車両の状態を検出し、検出した車両の状態に基づき、ブレーキ制御装置40(ブレーキコントローラ)、バッテリコントローラ20、及びモータコントローラ30へ制御信号を出力することで、ブレーキ制御装置40(液圧装置)、主バッテリ2、及びモータジェネレータ6の状態をそれぞれ制御する。車両の状態を示すパラメータには、車両の挙動を示すパラメータ(ホイルシリンダ圧等)のみでなく、運転者によるアクセルペダルやブレーキペダルの操作状態を示すパラメータが含まれる。例えば、車両コントローラ10は、アクセルペダル操作量(踏込み量)等に基づき運転者の要求する車両の駆動力を算出し、この要求駆動力に応じてモータジェネレータ6の目標トルクを算出して、モータコントローラ30へ出力する。
車両制御システムは、電源系を構成する各要素(主バッテリ2、リレー、ヒューズ等)を過度な温度上昇から保護するため、主バッテリ2が電源ライン1へ出力する電力を制限する電力制限制御を行う。図2は、電力制限制御を達成するための各コントローラ10〜30の連携の一例を示すシステム図である。バッテリコントローラ20は、電流センサ1aの検出信号を基に、第1の電力制限値を算出する。この第1の電力制限値は、主バッテリ2が温度上昇により損傷することを抑制するための、主バッテリ2の出力電力の制限値である。バッテリコントローラ20は、算出した第1の電力制限値と、入力された電流センサ1aの検出信号(以下、バッテリ電流値)とを車両コントローラ10へ出力する。
車両コントローラ10は、バッテリコントローラ20から入力されるバッテリ電流値を基に、第2の電力制限値を算出する。この第2の電力制限値は、主バッテリ2を含む電源系を構成する各要素が温度上昇により損傷することを抑制するための、主バッテリ2の出力電力の制限値である。また、第2の電力制限値は、電力制限制御により主バッテリ2の出力電力が変動し、これによりモータジェネレータ6のトルクが変動して車両動作に異常が起きる(車両挙動が乱れる)ことを抑制するための電力制限値でもある。車両コントローラ10は、バッテリコントローラ20から入力される第1の電力制限値と、算出した第2の電力制限値とを比較して、いずれか小さい値をモータコントローラ30へ最終の電力制限値として出力する。
モータコントローラ30は、車両コントローラ10から入力される最終の電力制限値を基に、インバータ駆動信号を算出してインバータ5へ出力する。これにより、主バッテリ2の出力電力が最終の電力制限値を越えないように、モータジェネレータ6の回転(トルク等)を制御する。具体的には、例えば力行時には、(車両コントローラ10において演算される)運転者が要求する車両の駆動力に応じたモータジェネレータ6の目標トルクを実現するような主バッテリ2の出力電力値を、運転者要求電力値として算出する。そして、運転者要求電力値と最終の電力制限値とを比較し、いずれか小さい値を選択して主バッテリ2の最終的な出力電力値とし、これを実現すべくインバータ5への駆動信号を決定する。なお、モータコントローラ30の代わりに、車両コントローラ10が、運転者要求電力値を算出すると共にこれと最終の電力制限値とを比較し、いずれか小さい値を選択して主バッテリ2の最終的な出力電力値として、モータコントローラ30へ出力するようにしてもよい。
本実施例では、車両コントローラ10が算出する第2の電力制限値のほうが、バッテリコントローラ20が算出する第1の電力制限値よりも小さくなるように、第2の電力制限値の算出ロジックにおける設定値(パラメータ)を予め調整しておく。これにより、最終の電力制限値として第1の電力制限値ではなく第2の電力制限値が選択され、モータコントローラ30へ出力される。よって、第2の電力制限値により主バッテリ2の出力電力が制限されることで、電源系の各構成要素の損傷は抑制される。なお、第1の電力制限値は、車両コントローラ10の電力制御が狙い通りに動作しなくても主バッテリ2を保護するためのバックアップとして機能する。
図3は、車両コントローラ10内で実行される第2の電力制限値の算出ロジックの一例を示すブロック線図である。温度負荷率推定部101は、主バッテリ2を含む電源系の複数の構成要素において共通して負荷となる温度(温度負荷率)を推定する温度推定部である。温度負荷率は、特定の部位の温度を想定しているのではなく、電源系を構成する各要素を一体とみなした全体の(各構成要素に共通の)推定温度とも言える。具体的には、バッテリ電流値を時間積分(累積)し、その積分出力を温度負荷率とみなす。すなわち、バッテリ電流値を時間積分することで温度負荷率上昇分(発熱量)を推定する。そして、温度負荷率初期値をベースとして、上記推定された温度負荷率上昇分(発熱量)を加算し、後述する温度負荷率下降分推定部100により推定された温度負荷率下降分(放熱量)を減算することで、(後述するリミッタ処理前の)温度負荷率推定値αを算出する。温度負荷率初期値は、車両コントローラ10の起動時に読み込まれる温度負荷率の初期値であり、例えば主バッテリ2のセルの温度や外気温度、又は前回制御していたときの温度負荷率推定値等から求めることができる。例えば、車両が長時間放置された場合には外気温度相当を温度負荷率初期値とし、長時間放置されない場合には前回制御時の温度負荷率推定値から放置時間に応じて低下した値を温度負荷率初期値としてもよい。
温度負荷率下降分推定部100は、例えばニュートンの冷却法則に従い、後述するリミッタ処理部102からフィードバック入力される(後述するリミッタ処理後の)温度負荷率推定値βと、放熱係数(熱伝達率)との積算値に基づき、温度負荷率下降分(放熱量)を推定する。すなわち、温度負荷率推定値βが高いほど放熱も進むため、これをフィードバックして温度負荷率下降分(放熱量)の推定に用いる。放熱係数は、主バッテリ2のみでなく、電源系を構成する各要素を一体とみなした全体の(各構成要素に共通の)放熱係数として、実験等により予め設定された値を用いる。リミッタ処理部102は、上記算出された温度負荷率推定値αと所定の温度負荷率最大値とを比較し、いずれか小さい値を選択して温度負荷率推定値βとする。すなわち、温度負荷率推定値のリミッタ処理を行う。温度負荷率最大値は、後述する許容電流推定部104が当該温度負荷率最大値を用いて許容電流値を算出する際、その許容電流値が、主バッテリ2含む電源系を構成する各要素の短時間定格値の全てを越えないように、実験等により予め設定された値を用いる。
図4は、主バッテリ2のシステムを構成する要素毎の短時間定格値の一例を示す表である。短時間定格値は、要素の温度保護の観点から、当該要素の温度上昇を余裕のある範囲に収めるための、主バッテリ2の充放電電流の定格値である。なお、主バッテリ2のセルについては連続定格値も併せて示す。主バッテリ2のシステムを構成する要素としては、バッテリセルの他、例えばリレーやヒューズ等がある。これらリレーやヒューズは、主バッテリ2(バッテリセル)以外の電源系を構成する要素A,Bでもある。主バッテリ2のシステムはこれらの構成要素が一体のパッケージとして構成されている。これら各構成要素は、構成要素毎に大きさや設置場所が異なり、これにより熱マス(同じ電流に対する温度の変化速度ないし応答性)が相違する。よって、各構成要素の短時間定格値は、図4のようにそれぞれ異なって設定されている。例えば、構成要素Aであれば、主バッテリ2の5[sec]における許容電流が平均して300[A]に設定されている(なお、許容時間5[sec]内に瞬間的に電流が許容電流値300[A]を越えても温度保護の観点から許容される)。
温度負荷率余裕分算出部103は、温度負荷率最大値から(上記リミッタ処理後の)温度負荷率推定値βを減算することで、温度負荷率余裕分を算出する。温度負荷率余裕分は、温度負荷率推定値βが温度負荷率最大値に対してどれだけ到達しているか、言い換えると、温度負荷率最大値に対してどれだけの温度負荷率の余裕分があるかを示す。許容電流算出部104は、温度負荷率最大値に対する温度負荷率余裕分の割合を算出し、その割合に応じて(後述するリミッタ処理前の)主バッテリ2の許容電流値aを算出する。具体的には、温度負荷率余裕分を温度負荷率最大値で除算することで上記割合を算出し、算出した上記割合と電流制限初期値とを積算することで、許容電流値aを算出する。電流制限初期値は、これを用いて算出される許容電流値aが、電源系を構成する各要素(本実施例では主バッテリ2のシステムを構成するリレー等)の短時間定格値の全てを越えないように、実験等により予め設定された値を用いる。リミッタ処理部105は、算出された許容電流値aと所定の最低電流制限値とを比較し、いずれか大きい値を選択して許容電流値bとする。すなわち、許容電流値のリミッタ処理を行う。最低電流制限値は、電源系を構成する各要素に最低限流す必要がある下限電流値であり、予め設定される。電力制限値算出部106は、許容電流値bと主バッテリ2の電圧値とを積算することで、第2の電力制限値を算出する。
[作用]
次に、作用を説明する。図5は、本実施例の車両制御システムにより電力制限制御を行った場合の主バッテリ2の出力電流(バッテリ電流値)の時間変化の一例を示すタイムチャートである。以下、説明を簡単にするため、許容電流値aは最低電流制限値よりも常に大きく(許容電流値bは許容電流値aであり)、第2の電力制限値は第1の電力制限値よりも常に小さい(最終の電力制限値は第2の電力制限値である)ものとする。また、主バッテリ2の電流と電力とを同等に扱うことができるものとする。
点線で示す運転者要求電流値(運転者要求電力値に相当)は、時刻t1以前では略一定の比較的低い値(例えばゼロ)であり、時刻t1からt2まで略一定の勾配で増加し、時刻t2以後は比較的高い略一定値であるものとする。時刻t2まで、一点鎖線で示す許容電流値b(第2の電力制限値に相当)よりも運転者要求電流値(運転者要求電力値に相当)のほうが小さい。このため、運転者要求電流値のほうが主バッテリ2の最終的な出力電流値(出力電力値に相当)に設定され、バッテリ電流値は運転者要求電流値となるように制御される。時刻t2後、許容電流値bのほうが運転者要求電流値よりも小さくなる。このため、許容電流値bのほうが主バッテリ2の最終的な(制限後の)出力電流値に設定され、バッテリ電流値は許容電流値bとなる(許容電流値bを越えない)ように制御される。
温度負荷率(推定値β)は、時刻t1以前では略一定の低い値(例えば温度負荷率初期値)であり、時刻t1後、バッテリ電流値が累積するのに応じて、上昇する。温度負荷率は、バッテリ電流値の時間積分に基づき推定される。また、温度負荷率は、その上昇が放熱量の増大としてフィードバック的に反映するよう推定されるため、時刻t2後しばらくして略一定値に収束する。よって、温度負荷率はS字曲線状に時間変化する。すなわち、時刻t1後、徐々に勾配が急になるように上昇した後、徐々に勾配が緩やかになるように上昇する。温度負荷率による電流制限値である許容電流値bは、時刻t1以前では略一定の高い値(例えば電流制限初期値)であり、時刻t1後、温度負荷率が上昇するのに応じて、低下する。許容電流値bは、温度負荷率最大値に対する温度負荷率(推定値β)の余裕分に基づき算出されるため、温度負荷率と相補的な逆S字曲線状に時間変化する。すなわち、時刻t1後、温度負荷率の上昇に対応して、徐々に勾配が急になるように低下した後、徐々に勾配が緩やかになるように低下する。時刻t2後しばらくして略一定値に収束する。バッテリ電流値は、時刻t2後、許容電流値bとなるように制限制御されることで、許容電流値bと同様、徐々に(滑らかに)低下した後、略一定値となるように時間変化する。
以下、比較例との対比において、本実施例の車両制御システムの作用効果を説明する。比較例1は、バッテリコントローラ20が、主バッテリ2の温度推定モデルを用意し、このモデルに基づき主バッテリ2のみの温度を推定して、この推定温度に基づき電力制限値を設定する。この電力制限値を満足するように主バッテリ2の出力電流を制御する。他の構成は本実施例と同様である。この比較例1では、温度推定が対象としている要素(主バッテリ2)以外の電源系の構成要素(リレーやヒューズ等)を温度上昇から保護することができない。言い換えると、比較例1では、主バッテリ2以外の電源系の複数の構成要素について電力制限値を設定していないため、これら複数の構成要素を適切に保護することができない。
これに対し、本実施例の車両制御システムは、主バッテリ2を含む電源系の複数の構成要素について第2の電力制限値を設定する。よって、これら複数の構成要素を温度上昇から保護することができる。具体的には、車両コントローラ10は、バッテリコントローラ20が主バッテリ2の保護のため設定する第1の電力制限値より小さい第2の電力制限値を設定する。この第2の電力制限値は、主バッテリ2だけでなく、主バッテリ2以外の電源系の構成要素(リレーやヒューズ等)を温度上昇から保護するため、第1の電力制限値より小さく設定される。よって、モータコントローラ30が、主バッテリ2の出力電力が第2の電力制限値を越えないようモータジェネレータ6の回転を制御することで、主バッテリ2を含む電源系の複数の構成要素を温度上昇から適切に保護することができる。
より具体的には、車両コントローラ10は、主バッテリ2を含む電源系の複数の構成要素のそれぞれの短時間定格値をいずれも越えないように、第2の電力制限値を設定する。このように設定された第2の電力制限値により主バッテリ2の出力電力を制限することで、各構成要素の短時間定格値(熱マス)が相違していても、これらの構成要素をより確実に温度上昇から保護することができる。このように、主バッテリ2の短時間定格値だけでなく、主バッテリ2以外の電源系の構成要素(リレーやヒューズ等)の短時間定格値を越えないような共通の第2の電力制限値を設定すると、第2の電力制限値は第1の電力制限値よりも小さい値となる(第2の電力制限値による制限量のほうが第1の電力制限値による制限量よりも大きくなる)。なお、本実施例では、主バッテリ2以外の電源系を構成する要素としてリレーやヒューズを例に説明したが、構成要素はこれらに限られないことは言うまでもない。
比較例2は、本実施例と同様、主バッテリ2を含む電源系の複数の構成要素について電力制限値を設定する。本実施例と異なり、構成要素毎に個別に電力制限値(許容電流値)を設定し、これらの制限値を用いて主バッテリ2の出力電力値を制限する。すなわち、比較例2では、車両コントローラ10は、本実施例のような温度負荷率に基づく第2の電力制限値を算出しない。一方、バッテリコントローラ20は、構成要素毎に電力制限値(許容電流値)を設定する。具体的には、比較例1と同様の温度推定モデルを構成要素毎に用意し、このモデルに基づき構成要素毎の温度を推定して、この推定温度に基づき構成要素毎の電力制限値を設定する。モータコントローラ30は、バッテリコントローラ20から入力される各電力制限値を主バッテリ2の出力電力が越えないように、モータジェネレータ6のトルクを制御する。他の構成は本実施例と同様である。
図6は、比較例2の電力制限制御における主バッテリ2の出力電流(バッテリ電流値)の時間変化の一例を示すタイムチャートである。運転者要求電流値(運転者要求電力値に相当)は図5と同様に変化するものとする。各構成要素(A,B,主バッテリ2のセル)の短時間定格値(に表わされる熱マス)の相違に対応して、構成要素毎の許容電流値(電力制限値に相当)の変化速度は互いに異なる。例えば構成要素Aは、他の構成要素よりも熱マスが小さい(同じ電流に対する温度変化速度が大きい)。これに伴い、構成要素Aの許容電流値の変化速度は他の構成要素の許容電流値の変化速度よりも大きい。二点差線で示す構成要素Aの許容電流値は、他の構成要素よりも速い時刻t3で、運転者要求電流値(運転者要求電力値に相当)より小さくなる。構成要素Bは、構成要素Aよりも熱マスが大きい。これに伴い、時刻t3よりも遅い時刻t5で、一点鎖線で示す要素Bの許容電流値が運転者要求電流値より小さくなる。主バッテリ2(のセル)は、構成要素Bよりも熱マスが大きい。これに伴い、時刻t5よりも遅い時刻t7で、点線で示すバッテリセルの許容電流値が運転者要求電流値より小さくなる。
時刻t3まで、各構成要素の許容電流値よりも運転者要求電流値(運転者要求電力値に相当)のほうが小さい。このため、運転者要求電流値のほうが主バッテリ2の最終的な出力電流値(出力電力値に相当)に設定され、バッテリ電流値は運転者要求電流値となるように制御される。時刻t3後、構成要素Aの許容電流値のほうが運転者要求電流値よりも小さくなる。このため、構成要素Aの許容電流値のほうが主バッテリ2の最終的な出力電流値に設定され、バッテリ電流値は構成要素Aの許容電流値となる(構成要素Aの許容電流値を越えない)ように制御される。バッテリ電流値が構成要素Aの許容電流値により制限されて低下すると、バッテリ電流値(主バッテリ2の発熱量に相当)に応じて算出される構成要素Aの許容電流値が低下から上昇に転じ、これに伴い、バッテリ電流値も上昇に転じる。時刻t4後、構成要素Aの許容電流値が運転者要求電流値より大きくなり、バッテリ電流値が再び運転者要求電流値となるように制御される。
時刻t5後、構成要素Bの許容電流値が運転者要求電流値より小さくなるため、バッテリ電流値は構成要素Bの許容電流値となるように制御される。バッテリ電流値が構成要素Bの許容電流値により制限されて低下すると、バッテリ電流値に応じて算出される構成要素Bの許容電流値が低下から上昇に転じ、これに伴い、バッテリ電流値も上昇に転じる。時刻t6後、構成要素Bの許容電流値が運転者要求電流値より大きくなり、バッテリ電流値が再び運転者要求電流値となるように制御される。時刻t7後、バッテリセルの許容電流値が運転者要求電流値より小さくなるため、バッテリ電流値はバッテリセルの許容電流値となるように制限制御されて、バッテリセルの許容電流値と共に低下する。
以上のように、比較例2では、バッテリ電流値(出力電力値に相当)が各構成要素の許容電流値(電力制限値に相当)を上回らないよう、各構成要素で個別に制御される。すなわち、バッテリ電流値が各構成要素間で連携を持たずに独立して制限される。よって、バッテリ電流値は、時刻t3以後、各構成要素の許容電流値により制限される度に変動する。すなわち、短時間の間に低下と上昇を繰り返す。よって、バッテリ電流値に応じたモータジェネレータ6のトルクが変動(振動)し、車両挙動が急変する等、車両挙動に影響を与えるおそれがある。また、比較例2のように、主バッテリ2に適用している温度推定方法を、その他の構成要素にも適用した場合、構成要素毎に温度推定モデルを用意することになり、電力制限値の設定が複雑になる。また、構成要素毎に詳細な実験データが必要になって煩雑である。
これに対し、本実施例では、主バッテリ2を含む電源系の複数の構成要素の保護のため、主バッテリ2の出力電力を制限する電力制限値として、複数の構成要素間で共通する値(第2の電力制限値)を設定する。よって、各構成要素の温度保護制御の際に用いる電力制限値(許容電流値)が複数の構成要素間で連携して設定されるためその変動が抑制される。例えば図5に示すように、電力制限値(許容電流値)の変化を変動(低下と上昇の繰り返し)のない滑らかなものにすることができる。よって、電力制限値(許容電流値)により制限される主バッテリ2の出力電力(バッテリ電流値)の変動も抑制される。したがって、電力制限に起因してモータジェネレータ6のトルクが変動し、車両動作に異常が起きる(車両挙動が乱れる)ことを抑制することができる。
具体的には、主バッテリ2を含む電源系の複数の構成要素に共通して負荷となる温度(温度負荷率)を推定し、推定された温度負荷率に基づき第2の電力制限値(=最終の電力制限値)を設定する。このように、複数の構成要素に共通して負荷となる温度(温度負荷率)に基づき電力制限値を設定することで、これらの構成要素をより確実に温度上昇から保護することができる。本実施例では、バッテリ電流値の累積に応じて温度負荷率が上昇する簡単な温度推定モデル(図3参照)を用意し、このモデルを用いて推定した温度負荷率に基づき第2の電力制限値(=最終の電力制限値)を設定する。よって、1つの温度推定モデルのみを用いて全ての構成要素の電力制限値を設定可能となるため、構成要素毎に温度推定モデルを用意する必要がなく、電力制限値の設定が容易である。また、温度推定モデルが1つであるため、構成要素毎に詳細な実験データが必要になることもない。また、温度推定モデル自体が比較的簡単な構成であるため、温度負荷率を比較的容易に推定でき、これにより電力制限値をより容易に設定することができる。
このとき、上記モデルの設定値(パラメータ)の適合を行い、全ての構成要素の短時間定格値を満足するように第2の電力制限値(=最終の電力制限値)を設定する。例えば、推定された温度負荷率と温度負荷率最大値との差が大きいほど第2の電力制限値を大きく設定し、この第2の電力制限値が複数の構成要素のそれぞれの短時間定格値をいずれも越えないように、温度負荷率最大値(パラメータ)を予め設定する。よって、これらの構成要素をより確実に温度上昇から保護することができる。また、上記モデルを用いた第2の電力制限値の設定がより容易となる。なお、温度負荷率最大値以外のパラメータ(電流制限初期値や放熱係数等)についても同様である。すなわち、これらのパラメータの設定を実験やシミュレーションにより適合することで、各構成要素の短時間定格値を越えず、また変動(低下と上昇の繰り返し)も抑制できる適当な特性の第2の電力制限値(=最終の電力制限値)を設定することが可能である。
[効果]
以下、本実施例の車両制御システムの効果を列挙する。
(0)車両の状態に基づき、主バッテリ2の出力電力を用いて車両の駆動用の動力を発生可能なモータジェネレータ6を制御する車両制御システムであって、主バッテリ2を含む電源系の複数の構成要素の保護のため、主バッテリ2の出力電力を制限する最終の電力制限値として、複数の構成要素間で共通する値(第2の電力制限値)を設定する。
よって、主バッテリ2を含む電源系の複数の構成要素を温度上昇から適切に保護することができる。また、より安定した車両挙動を得ることができる。
(1)車両を駆動するモータジェネレータ6と、モータジェネレータ6を駆動するための電力を出力する主バッテリ2と、モータジェネレータ6の回転を制御するモータコントローラ30と、車両の状態に基づきモータジェネレータ6の制御信号をモータコントローラ30へ出力する車両コントローラ10と、主バッテリ2の出力電力を制限するための第1の電力制限値を設定するバッテリコントローラ20と、を備え、車両コントローラ10は、主バッテリ2の出力電力を制限するため、第1の電力制限値より小さい第2の電力制限値を設定してモータコントローラ30へ出力し、モータコントローラ30は、主バッテリ2の出力電力が第2の電力制限値を越えないようモータジェネレータ6の回転を制御する。
よって、主バッテリ2を含む電源系の複数の構成要素を温度上昇から適切に保護することができる。また、より安定した車両挙動を得ることができる。
(2)車両コントローラ10は、主バッテリ2を含む電源系の複数の構成要素のそれぞれの短時間定格値をいずれも越えないように、第2の電力制限値を設定する。
よって、これらの構成要素をより確実に温度上昇から保護することができる。
(3)車両コントローラ10は、温度負荷率(主バッテリ2を含む電源系の複数の構成要素に共通して負荷となる温度)を推定する温度負荷率推定部101を備え、推定された温度負荷率に基づき第2の電力制限値を設定する。
よって、これらの構成要素をより確実に温度上昇から保護することができる。
(4)温度負荷率推定部101は、主バッテリ2の出力電流値の累積に応じて温度負荷率が上昇する所定のモデルを用いて温度負荷率を推定する。
よって、電力制限値をより容易に設定することができる。
(5)車両コントローラ10は、推定された温度負荷率と温度負荷率最大値(最大温度)との差が大きいほど第2の電力制限値を大きく設定し、第2の電力制限値が主バッテリ2を含む電源系の複数の構成要素のそれぞれの短時間定格値をいずれも越えないように温度負荷率最大値を予め設定する。
よって、これらの構成要素をより確実に温度上昇から保護することができる。また、上記モデルを用いた電力制限値の設定を容易化することができる。
[他の実施例]
以上、本発明を実現するための形態を、実施例に基づいて説明してきたが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。例えば、本発明の車両制御システムが適用される車両は、モータと内燃機関を駆動力源として備えるハイブリッド車等であってもよい。実施例では、電力制限制御をモータジェネレータ6の力行時(主バッテリ2の放電時)に行う場合を例として説明したが、電力制限制御をモータジェネレータ6の回生時(主バッテリ2の充電時)に行ってもよい。
2 主バッテリ
6 モータジェネレータ
10 車両コントローラ
101 温度負荷率推定部
20 バッテリコントローラ
30 モータコントローラ

Claims (5)

  1. 車両を駆動するモータと、
    前記モータを駆動するための電力を出力するバッテリと、
    前記モータの回転を制御するモータコントローラと、
    前記車両の状態に基づき前記モータの制御信号を前記モータコントローラへ出力する車両コントローラと、
    前記バッテリの出力電力を制限するための第1の電力制限値を設定するバッテリコントローラと、を備え、
    前記車両コントローラは、前記バッテリの出力電力を制限するため、前記第1の電力制限値より小さい第2の電力制限値を設定して前記モータコントローラへ出力し、
    前記モータコントローラは、前記バッテリの出力電力が前記第2の電力制限値を越えないよう前記モータの回転を制御する
    ことを特徴とする車両制御システム。
  2. 請求項1に記載の車両制御システムにおいて、
    前記車両コントローラは、前記バッテリを含む電源系の複数の構成要素のそれぞれの短時間定格値をいずれも越えないように、前記第2の電力制限値を設定することを特徴とする車両制御システム。
  3. 請求項1または2に記載の車両制御システムにおいて、
    前記車両コントローラは、前記バッテリを含む電源系の複数の構成要素に共通して負荷となる温度を推定する温度推定部を備え、前記推定された温度に基づき前記第2の電力制限値を設定することを特徴とする車両制御システム。
  4. 請求項3に記載の車両制御システムにおいて、
    前記温度推定部は、前記バッテリの出力電流値の累積に応じて温度が上昇する所定のモデルを用いて、前記バッテリを含む電源系の複数の構成要素に共通して負荷となる温度を推定することを特徴とする車両制御システム。
  5. 請求項3または4に記載の車両制御システムにおいて、
    前記車両コントローラは、
    前記推定された温度と最大温度との差が大きいほど前記第2の電力制限値を大きく設定し、
    前記第2の電力制限値が前記バッテリを含む電源系の複数の構成要素のそれぞれの短時間定格値をいずれも越えないように前記最大温度を予め設定する
    ことを特徴とする車両制御システム。
JP2013002380A 2013-01-10 2013-01-10 車両制御システム Active JP6047407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002380A JP6047407B2 (ja) 2013-01-10 2013-01-10 車両制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002380A JP6047407B2 (ja) 2013-01-10 2013-01-10 車両制御システム

Publications (2)

Publication Number Publication Date
JP2014135840A true JP2014135840A (ja) 2014-07-24
JP6047407B2 JP6047407B2 (ja) 2016-12-21

Family

ID=51413744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002380A Active JP6047407B2 (ja) 2013-01-10 2013-01-10 車両制御システム

Country Status (1)

Country Link
JP (1) JP6047407B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103972A (ja) * 2015-12-04 2017-06-08 いすゞ自動車株式会社 バッテリーの制御システム、ハイブリッド車両及びバッテリーの制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326023A (en) * 1976-08-19 1978-03-10 Nippon Denso Co Ltd Means for locking vehicle door
JP2009005577A (ja) * 2007-05-18 2009-01-08 Toyota Motor Corp 電源システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2009207312A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd 車両用の電源装置とその電流制御方法
JP2012096712A (ja) * 2010-11-04 2012-05-24 Toyota Motor Corp 車両の制御装置
JP2012147592A (ja) * 2011-01-13 2012-08-02 Toyota Motor Corp 電気自動車
JP2012192769A (ja) * 2011-03-15 2012-10-11 Toyota Motor Corp 電動車両
WO2012169062A1 (ja) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 電池制御装置、電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326023A (en) * 1976-08-19 1978-03-10 Nippon Denso Co Ltd Means for locking vehicle door
JP2009005577A (ja) * 2007-05-18 2009-01-08 Toyota Motor Corp 電源システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2009207312A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd 車両用の電源装置とその電流制御方法
JP2012096712A (ja) * 2010-11-04 2012-05-24 Toyota Motor Corp 車両の制御装置
JP2012147592A (ja) * 2011-01-13 2012-08-02 Toyota Motor Corp 電気自動車
JP2012192769A (ja) * 2011-03-15 2012-10-11 Toyota Motor Corp 電動車両
WO2012169062A1 (ja) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 電池制御装置、電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103972A (ja) * 2015-12-04 2017-06-08 いすゞ自動車株式会社 バッテリーの制御システム、ハイブリッド車両及びバッテリーの制御方法

Also Published As

Publication number Publication date
JP6047407B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
CN110239356B (zh) 搭载于车辆的燃料电池系统及其控制方法
JP5514661B2 (ja) 電動車両の駆動制御装置
US10680540B2 (en) Apparatus for controlling motorized vehicle
JP7102782B2 (ja) 制御装置
JP5942958B2 (ja) 電動車両
US20170137031A1 (en) Vehicle control apparatus for a regenerative braking system based on the battery input power
US20140300296A1 (en) Method for controlling the operation of an arrangement of at least two electric machines, and motor vehicle
US11065966B2 (en) Apparatus for controlling motorized vehicle
JP2017061871A (ja) 電源制御装置、車両及び電源の制御方法
US8928263B2 (en) Control apparatus in motor drive system and method of controlling motor drive system
JP2015080350A (ja) 電動車両
JP7107435B2 (ja) 電動車両制御方法及び電動車両制御システム
JP7459752B2 (ja) 回生制御方法及び回生制御装置
KR102119047B1 (ko) 하이브리드 차량용 제어장치 및 제어 방법
JP6047407B2 (ja) 車両制御システム
WO2018066624A1 (ja) 電源システム制御装置
JP2016119746A (ja) モータ制御システム
JP2015154632A (ja) 電動車両
JPWO2020137567A1 (ja) モータ制御装置
JP7484672B2 (ja) 車両のモータ制御システム、および、車両のモータ制御方法
JP6075284B2 (ja) 車両用電源制御装置
JP6259312B2 (ja) 昇圧コンバータの制御装置及び昇圧コンバータの制御方法
KR20170116403A (ko) 전기차 모터 제어 장치 및 방법
TW201640766A (zh) 永磁馬達直流鏈電壓回升抑制控制模組及其控制方法
WO2018066625A1 (ja) 回転電機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250