JP2014134462A - Visualization method of structure defect, visualization device for structure defect, and visualization device for air bubbles or lesion region - Google Patents

Visualization method of structure defect, visualization device for structure defect, and visualization device for air bubbles or lesion region Download PDF

Info

Publication number
JP2014134462A
JP2014134462A JP2013002823A JP2013002823A JP2014134462A JP 2014134462 A JP2014134462 A JP 2014134462A JP 2013002823 A JP2013002823 A JP 2013002823A JP 2013002823 A JP2013002823 A JP 2013002823A JP 2014134462 A JP2014134462 A JP 2014134462A
Authority
JP
Japan
Prior art keywords
amplitude
defect
imaging
transmission
video data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002823A
Other languages
Japanese (ja)
Other versions
JP6025049B2 (en
Inventor
Yoshikazu Obara
良和 小原
Ichiji Yamanaka
一司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2013002823A priority Critical patent/JP6025049B2/en
Publication of JP2014134462A publication Critical patent/JP2014134462A/en
Application granted granted Critical
Publication of JP6025049B2 publication Critical patent/JP6025049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a visualization method of a structure defect and a visualization device for a structure defect by which discriminability between a closed crack and an open crack included in a structure can be improved and a defect such as a closed crack can be detected with high discriminability, and to provide a visualization device for air bubbles or a lesion region in which air bubbles or a lesion region included in a tissue can be detected with high discriminability.SOLUTION: Transmission/reception means 1: transmits a plurality of kinds of ultrasonic waves with a predetermined fundamental frequency and having amplitudes different from each other to a structure as transmission signals, respectively; receives ultrasonic waves reflected from the structure; and obtains a plurality of kinds of reception signals corresponding to the transmission signals. A signal processor 2: applies band-pass filtering for passing a component having the fundamental frequency, to the reception signals obtained in the transmission/reception means 1; obtains a plurality of kinds of video data corresponding to the reception signals; performs arithmetic operation based on magnitudes of the amplitudes of the corresponding transmission signals; and obtains a video image of a defect.

Description

本発明は、構造物欠陥の映像化方法、構造物欠陥の映像化装置および気泡や病変部の映像化装置に関する。   The present invention relates to a structure defect imaging method, a structure defect imaging apparatus, and a bubble or lesion imaging apparatus.

原子炉、航空機、鉄道などの重要機器の安全性確保、及び製造された材料、接合された材料の健全性確保には、破壊の原因となるき裂や不完全な接合面を超音波の反射や散乱によって検出し、その大きさを正確に評価しつつ危険性があれば交換するという安全管理が行われている。しかし、き裂閉口応力が大きい閉じたき裂やき裂面に酸化膜が形成された閉じたき裂などにおいては、超音波の反射・散乱が小さく、き裂の長さや深さの計測誤差が大きいことが問題となっている。なお、このような「閉じたき裂」には、開口幅がナノメートルオーダー以下のき裂も含まれる。   In order to ensure the safety of important equipment such as nuclear reactors, aircraft, and railways, and to ensure the soundness of manufactured and joined materials, ultrasonic waves are reflected from cracks and imperfect joint surfaces that cause destruction. Safety management is carried out by detecting it by scattering and scattering and exchanging it if there is a risk while accurately evaluating its size. However, in a closed crack with a large crack closing stress or a closed crack with an oxide film formed on the crack surface, reflection and scattering of ultrasonic waves are small, and the measurement error of the crack length and depth is large. Is a problem. Such a “closed crack” includes a crack having an opening width of nanometer order or less.

受信アレイ素子で得た散乱波に、素子の位置に応じて異なる遅延を与えた信号を加算することによりき裂の映像を得る工程は、フェーズドアレイ法と呼ばれ、非破壊検査の分野では公知である(例えば、非特許文献1参照)。しかし、フェーズドアレイ法による映像によっても、閉じたき裂の正確な計測は困難であるという問題があった。   The process of obtaining an image of a crack by adding a signal with a different delay depending on the position of the element to the scattered wave obtained by the receiving array element is called a phased array method, and is known in the field of nondestructive inspection. (For example, see Non-Patent Document 1). However, there is a problem that it is difficult to accurately measure the closed crack even by the image by the phased array method.

このような背景のもとで、振幅の大きい超音波を照射し、閉じたき裂で発生する高調波や分調波を利用する、閉じたき裂の定量評価法および閉じたき裂の定量評価装置が提案されている(例えば、特許文献1参照)。この評価法および装置では、分調波に対しフェーズドアレイ法を適用することで、閉じたき裂を映像化することができる。この方法は、SPACE(subharmonic phased array for crack evaluation)と命名されている(例えば、非特許文献2参照)。ここで、「subharmonic」は分調波を意味する。   Against this background, a closed crack quantitative evaluation method and a closed crack quantitative evaluation device that uses high-amplitude ultrasonic waves and uses harmonics and subharmonic waves generated by a closed crack are available. It has been proposed (see, for example, Patent Document 1). In this evaluation method and apparatus, a closed crack can be visualized by applying the phased array method to the subharmonic wave. This method is named SPACE (subharmonic phased array for crack evaluation) (see, for example, Non-Patent Document 2). Here, “subharmonic” means subharmonic.

図8に、SPACEの原理図を示す。図8に示すように、SPACEでは、要素技術として、大振幅超音波の発生が可能な、耐圧性に優れたLiNbO単結晶振動子を用いた送信器、映像化を行うためのアレイ受信器、および周波数通過フィルタ(ディジタルフィルタ)を用いる。送信器から大振幅超音波(周波数f)を入射することにより、き裂開口部での基本波(周波数f)の線形散乱に加えて、閉口部ではその閉じたき裂面が大振幅超音波の引張応力で開いて開閉振動することで分調波(周波数f/2)が発生する。これをアレイ受信器で受信し、ディジタルフィルタで各成分を分離することで、基本波像および分調波像が観察できる。図8に示すように、き裂先端が閉じている場合、基本波像では過小評価してしまうき裂深さを、分調波像により正確に計測できる。 FIG. 8 shows the principle of SPACE. As shown in FIG. 8, in SPACE, as an elemental technology, a transmitter using a LiNbO 3 single crystal resonator that can generate large-amplitude ultrasonic waves and has excellent pressure resistance, and an array receiver for performing imaging And a frequency pass filter (digital filter). By entering a large amplitude ultrasonic wave (frequency f) from the transmitter, in addition to the linear scattering of the fundamental wave (frequency f) at the crack opening, the closed crack surface of the closed wave is a large amplitude ultrasonic wave. A subharmonic wave (frequency f / 2) is generated by opening and closing vibration due to tensile stress. By receiving this with an array receiver and separating each component with a digital filter, a fundamental wave image and a subharmonic wave image can be observed. As shown in FIG. 8, when the crack tip is closed, the crack depth which is underestimated in the fundamental wave image can be accurately measured by the subharmonic image.

医療超音波の分野では、バブルなどの非線形散乱体の識別性向上のため、異なる入射波振幅の受信波形から、非線形成分をフィルタで分離して映像を得た後、大振幅の映像と小振幅の映像に振幅比をかけた映像との差分を行う方法が提案されている(例えば、特許文献2参照)。固体中の欠陥検査では、フィルタを使用せずに差分演算を行う方法として、SSM(scaling subtraction method)が提案されている(例えば、非特許文献3参照)。また、特許文献2と同様な方法をSPACEに導入する振幅差分(amplitude diffraction;AD)法が提案され、減衰2重節点(damped double node;DDN)シミュレーション(例えば、非特許文献4参照)と実験により、閉じたき裂の選択性向上が実証されている(例えば、非特許文献5参照)。   In the field of medical ultrasound, in order to improve the discriminability of nonlinear scatterers such as bubbles, images are obtained by separating nonlinear components with filters from received waveforms with different incident wave amplitudes, then large amplitude images and small amplitudes. There has been proposed a method of performing a difference between an image obtained by multiplying an image obtained by multiplying the image by an amplitude ratio (see, for example, Patent Document 2). In defect inspection in a solid, SSM (scaling subtraction method) has been proposed as a method of performing a difference calculation without using a filter (see, for example, Non-Patent Document 3). Further, an amplitude difference (AD) method has been proposed in which a method similar to that of Patent Document 2 is introduced into SPACE, and a damped double node (DDN) simulation (see, for example, Non-Patent Document 4) and an experiment. Has been demonstrated to improve the selectivity of closed cracks (see Non-Patent Document 5, for example).

一方、閉じたき裂の開閉振動では、高調波や分調波だけでなく基本波も発生し、しきい値現象を示すことが報告されている(例えば、非特許文献6参照)。   On the other hand, in the open / close vibration of a closed crack, it is reported that not only a harmonic wave or a subharmonic wave but also a fundamental wave is generated and a threshold phenomenon is shown (for example, see Non-Patent Document 6).

特許第4538629号公報Japanese Patent No. 4538629 特開2002−301072号公報JP 2002-301072 A

T. L. Szabo, “Diagnostic Ultrasound Imaging: Inside Out”,Academic Pr., 2004年9月7日, p.171T. L. Szabo, “Diagnostic Ultrasound Imaging: Inside Out”, Academic Pr., September 7, 2004, p.171 Y. Ohara, S.Yamamoto, T. Mihara, and K. Yamanaka, “Ultrasonic Evaluation of Closed CracksUsing Subharmonic Phased Array”, Japanese Journal of Applied Physics, 2008, 47,pp.3908-3915Y. Ohara, S. Yamamoto, T. Mihara, and K. Yamanaka, “Ultrasonic Evaluation of Closed Cracks Using Subharmonic Phased Array”, Japanese Journal of Applied Physics, 2008, 47, pp. 3908-3915 M.Scalerandi, A. S. Gliozzi, C. L. E. Bruno, D. Masera, and P. Bocca, “A scalingmethod to enhance detection of a nonlinear elastic response”, Applied PhysicsLetters, 2008, 92, pp.101912-1-3M. Scalerandi, A. S. Gliozzi, C. L. E. Bruno, D. Masera, and P. Bocca, “A scalingmethod to enhance detection of a nonlinear elastic response”, Applied PhysicsLetters, 2008, 92, pp.101912-1-3 K.Yamanaka, Y. Ohara, M. Oguma, Y. Shintaku, “Two-Dimensional Analyses ofSubharmonic Generation at Closed Cracks in Nonlinear Ultrasonics”, AppliedPhysics Express, 2011, 4, pp.076601-1-3K. Yamanaka, Y. Ohara, M. Oguma, Y. Shintaku, “Two-Dimensional Analyzes of Subharmonic Generation at Closed Cracks in Nonlinear Ultrasonics”, AppliedPhysics Express, 2011, 4, pp.076601-1-3 Y. Ohara,Y. Shintaku, S. Horinouchi, M. Ikeuchi, and K. Yamanaka, “Enhancement ofSelectivity in Nonlinear Ultrasonic Imaging of Closed Cracks Using AmplitudeDifference Phased Array”, Japanese Journal of Applied Physics, 2012, 51,pp.07GB18-1-6Y. Ohara, Y. Shintaku, S. Horinouchi, M. Ikeuchi, and K. Yamanaka, “Enhancement of Selectivity in Nonlinear Ultrasonic Imaging of Closed Cracks Using AmplitudeDifference Phased Array”, Japanese Journal of Applied Physics, 2012, 51, pp.07GB18 -1-6 小原良和、山本摂、三原毅、山中一司、“超音波の非線形応答による閉じたき裂画像化のための入射波振幅の最適化”、Proceedingsof Ultrasonics Electronics Symposium、2006、27、423-424Yoshikazu Ohara, Satoshi Yamamoto, Atsushi Mihara, Kazushi Yamanaka, “Optimization of incident wave amplitude for closed crack imaging by nonlinear response of ultrasound”, Proceedingsof Ultrasonics Electronics Symposium, 2006, 27, 423-424

図8に示すSPACEでは、高い距離分解能が必要な場合は、サイクル数3以下のバースト波を入射波とする。このとき、周波数分解能が低くなるため、非線形散乱源(き裂閉口部)と線形散乱源(底面・き裂開口部・粗大結晶粒・溶接欠陥)とが接近し、非線形散乱源に比べて線形散乱源からの応答が強い場合、分調波像には、き裂閉口部だけではなく、フィルタで除去しきれなかった基本波成分が現れてしまう。その結果、閉じたき裂と開いたき裂との識別が困難になり、識別性が低下するという課題があった。なお、バースト波とは、複数のサイクル数の正弦波から成る波である。   In the SPACE shown in FIG. 8, when high distance resolution is required, a burst wave having a cycle number of 3 or less is used as an incident wave. At this time, since the frequency resolution is low, the nonlinear scatter source (crack closed portion) and the linear scatter source (bottom surface, crack opening, coarse crystal grain, weld defect) are close to each other and linear compared to the nonlinear scatter source. When the response from the scattering source is strong, not only the crack closed portion but also the fundamental wave component that cannot be removed by the filter appears in the subharmonic image. As a result, there is a problem that it becomes difficult to distinguish between a closed crack and an open crack, and the distinguishability is lowered. The burst wave is a wave composed of a sine wave having a plurality of cycles.

また、非特許文献3〜5に記載の方法では、閉じたき裂で発生した分調波が底面で反射して探触子で受信されることにより、底面にゴーストの応答が現れてしまい、これを完全に除去することができないという課題があった。なお、特許文献2は、医療分野での技術であり、実施例として、分調波や高調波を利用して解析を行う方法のみが記載されており、基本波成分のみで解析を行う方法は記載されていない。このため、仮に閉じたき裂のような欠陥に適用した場合には、非特許文献3〜5と同様に、閉じたき裂で発生した分調波が底面で反射して探触子で受信されるため、底面にゴーストの応答が現れてしまい、これを完全に除去することができない。   In addition, in the methods described in Non-Patent Documents 3 to 5, the subharmonic wave generated by the closed crack is reflected by the bottom surface and received by the probe, so that a ghost response appears on the bottom surface. There is a problem that it cannot be completely removed. Patent Document 2 is a technique in the medical field, and as an example, only a method of performing analysis using subharmonic waves and harmonics is described, and a method of performing analysis using only the fundamental wave component is described. Not listed. For this reason, when applied to a defect such as a closed crack, as in Non-Patent Documents 3 to 5, the subharmonic wave generated by the closed crack is reflected by the bottom surface and received by the probe. For this reason, a ghost response appears on the bottom surface and cannot be completely removed.

本発明は、このような課題に着目してなされたもので、構造物に含まれる閉じたき裂と開いたき裂との識別性を高めることができ、閉じたき裂のような欠陥を高い識別性で検出することができる構造物欠陥の映像化方法および構造物欠陥の映像化装置、ならびに、組織に含まれる気泡や病変部を高い識別性で検出することができる気泡や病変部の映像化装置を提供することを目的とする。   The present invention has been made paying attention to such a problem, and can improve the discrimination between a closed crack and an open crack contained in a structure, and can detect defects such as a closed crack with high discrimination. Structure defect imaging method, structure defect imaging device, and bubble and lesion imaging device capable of detecting bubbles and lesions contained in tissue with high discrimination The purpose is to provide.

上記目的を達成するために、本発明に係る構造物欠陥の映像化方法は、構造物に含まれる閉じたき裂のような欠陥を検出するための構造物欠陥の映像化方法であって、所定の基本周波数で互いに異なる振幅を有する複数種類の超音波をそれぞれ送信信号として前記構造物に送信し、前記構造物から反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得る送受信工程と、前記送受信工程で得られた各受信信号に対して、前記基本周波数を有する成分を通過させる帯域通過フィルタをかけるフィルタ工程と、前記フィルタ工程後の各受信信号に基づいて、各受信信号に対応する複数種類の映像データを得る映像化工程と、前記映像化工程で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、前記欠陥の映像を得る演算工程とを、有することを特徴とする。   In order to achieve the above object, a structure defect imaging method according to the present invention is a structure defect imaging method for detecting a defect such as a closed crack included in a structure. A plurality of types of ultrasonic waves having different amplitudes at the fundamental frequency are transmitted to the structure as transmission signals, and an ultrasonic wave reflected from the structure is received, and a plurality of types of reception corresponding to the transmission signals are received. A transmission / reception step for obtaining a signal, a filtering step for applying a band-pass filter that passes the component having the fundamental frequency to each reception signal obtained in the transmission / reception step, and each reception signal after the filtering step An imaging process for obtaining a plurality of types of video data corresponding to each received signal, and an operation based on the magnitude of the amplitude of each corresponding transmission signal using each video data obtained in the imaging process. It was carried out, and a calculating step of obtaining an image of the defect, characterized in that it has.

特に、本発明に係る構造物欠陥の映像化方法で、前記送受信工程は、各送信信号として、それぞれ振幅uおよび振幅u(u>u)を有する2種類の超音波を送信し、前記映像化工程は、振幅uの送信信号に対応する応答強度Fの映像データと振幅uの送信信号に対応する応答強度Fの映像データとを得、前記演算工程は、ΔF=F−(u/u)×Fにより各映像データの差分応答強度ΔFを算出し、その差分応答強度ΔFの正の部分を選択することにより前記欠陥の映像を得ることが好ましい。 In particular, in the imaging method of a structure defect according to the present invention, the transmission / reception step transmits two types of ultrasonic waves having an amplitude u 1 and an amplitude u 2 (u 2 > u 1 ) as each transmission signal. The imaging step obtains video data of response strength F 1 corresponding to the transmission signal of amplitude u 1 and video data of response strength F 2 corresponding to the transmission signal of amplitude u 2 , and the calculation step includes ΔF It is preferable to obtain a video of the defect by calculating a differential response intensity ΔF of each video data by = F 2 − (u 2 / u 1 ) × F 1 and selecting a positive part of the differential response intensity ΔF. .

また、本発明に係る構造物欠陥の映像化装置は、構造物に含まれる閉じたき裂のような欠陥を検出するための構造物欠陥の映像化装置であって、所定の基本周波数で互いに異なる振幅を有する複数種類の超音波をそれぞれ送信信号として前記構造物に送信し、前記構造物から反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得るよう構成された送受信手段と、前記送受信手段で得られた各受信信号に対して、前記基本周波数を有する成分を通過させる帯域通過フィルタをかけるよう構成されたフィルタ手段と、前記フィルタ手段で処理後の各受信信号に基づいて、各受信信号に対応する複数種類の映像データを得るよう構成された映像化手段と、前記映像化手段で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、前記欠陥の映像を得るよう構成された演算手段とを、有することを特徴とする。   The structure defect imaging apparatus according to the present invention is a structure defect imaging apparatus for detecting a defect such as a closed crack included in a structure, and is different from each other at a predetermined fundamental frequency. A plurality of types of ultrasonic waves having amplitude are transmitted to the structure as transmission signals, respectively, and an ultrasonic wave reflected from the structure is received to obtain a plurality of types of reception signals corresponding to the transmission signals. Transmitting / receiving means, filter means configured to apply a band-pass filter that passes the component having the fundamental frequency to each received signal obtained by the transmitting / receiving means, and each reception after processing by the filter means A plurality of types of video data corresponding to each received signal based on the signal, and each transmission signal corresponding to each of the video data obtained by the video unit using the video data Performs calculation based of the magnitude of the amplitude, and a calculating unit configured to obtain an image of the defect, characterized in that it has.

特に、本発明に係る構造物欠陥の映像化装置で、前記送受信手段は、各送信信号として、それぞれ振幅uおよび振幅u(u>u)を有する2種類の超音波を送信するよう構成され、前記映像化手段は、振幅uの送信信号に対応する応答強度Fの映像データと振幅uの送信信号に対応する応答強度Fの映像データとを得るよう構成され、前記演算手段は、ΔF=F−(u/u)×Fにより各映像データの差分応答強度ΔFを算出し、その差分応答強度ΔFの正の部分を選択することにより前記欠陥の映像を得るよう構成されていることが好ましい。 In particular, in the imaging device of a structure defect according to the present invention, the transmission / reception means transmits two types of ultrasonic waves having amplitude u 1 and amplitude u 2 (u 2 > u 1 ) as transmission signals. The imaging means is configured to obtain video data of response intensity F 1 corresponding to a transmission signal of amplitude u 1 and video data of response intensity F 2 corresponding to a transmission signal of amplitude u 2 ; The calculation means calculates a differential response intensity ΔF of each video data by ΔF = F 2 − (u 2 / u 1 ) × F 1 and selects a positive part of the differential response intensity ΔF to thereby determine the defect. It is preferably configured to obtain an image.

本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置は、送信する超音波の基本周波数を主成分として含む基本波を用い、以下に示す原理に基づいて構造物に含まれる閉じたき裂などの欠陥を検出することができる。   A structure defect imaging method and a structure defect imaging apparatus according to the present invention use a fundamental wave including a fundamental frequency of ultrasonic waves to be transmitted as a main component, and are included in the structure based on the following principle. Defects such as closed cracks can be detected.

すなわち、図1に示すように、閉じたき裂の位置ベクトルをr、線形散乱源である閉じたき裂より前方(図1では左側)の底面の位置ベクトルをr、閉じたき裂より後方(図1では右側)の底面の位置ベクトルをrとする。送信する超音波の入射波振幅が小さい場合、超音波が閉じたき裂を透過してしまうため、閉じたき裂からの応答は微小である。一方、送信する超音波の入射波振幅がしきい値を超えた場合、閉じたき裂が超音波の応力により開閉振動し、分調波や高調波だけではなく基本波の応答も著しく増大する。このとき、閉じたき裂は超音波の入射波振幅に対して非線形応答を示すため、その非線形応答を、図2に示す最も単純な非線形関数である2次関数と仮定する。 That is, as shown in FIG. 1, the position vector of the closed crack is r C , the position vector of the bottom surface in front of the closed crack which is a linear scattering source (left side in FIG. 1) is r F , and the position vector behind the closed crack ( in Figure 1 the position vector of the bottom of the right side) and r R. When the incident wave amplitude of the ultrasonic wave to be transmitted is small, since the ultrasonic wave passes through the closed crack, the response from the closed crack is very small. On the other hand, when the incident wave amplitude of the transmitted ultrasonic wave exceeds the threshold value, the closed crack is opened and closed by the stress of the ultrasonic wave, and the response of the fundamental wave as well as the subharmonic wave and the harmonic wave is remarkably increased. At this time, since the closed crack shows a nonlinear response to the incident wave amplitude of the ultrasonic wave, the nonlinear response is assumed to be a quadratic function which is the simplest nonlinear function shown in FIG.

これにより、閉じたき裂における基本波像の応答強度Fは、(1)式のようになる。
ここで、cは閉じたき裂での基本波の散乱係数、u(r)は閉じたき裂での入射波振幅である。
Thus, the response strength F C of the fundamental wave image in closed crack is as (1).
Here, c 1 is the scattering coefficient of the fundamental wave at the closed crack, and u 0 (r C ) is the incident wave amplitude at the closed crack.

次に、基本波像における底面の応答を考える。き裂の前方の底面rおよび後方の底面rにおける基本波像の応答強度FおよびFは、入射波振幅に対して線形であるため、それぞれ(2)式および(3)式となる。
ここで、bは線形散乱源(底面)での基本波の散乱係数、Tは閉じたき裂rにおける基本波成分の往復の透過率である。ここで、小振幅の場合、基本波はほぼ全て透過するためT≒1となり、大振幅の場合、き裂の開閉振動により基本波のエネルギーが失われるためT<1となる。
Next, consider the bottom response in the fundamental image. Response intensity of the fundamental wave image at the bottom of the front of the crack r F and the rear of the bottom r R F F and F R are the linear to the incident wave amplitude, respectively (2) and (3) Become.
Here, b 1 is the scattering coefficient of the fundamental wave at the linear scattering source (bottom surface), and T is the reciprocal transmittance of the fundamental wave component at the closed crack r T. Here, in the case of small amplitude, almost all of the fundamental wave is transmitted, so that T≈1, and in the case of large amplitude, energy of the fundamental wave is lost due to the opening / closing vibration of the crack, so that T <1.

(1)〜(3)式から、図1(a)に示す入射波振幅が小さい場合、入射波振幅u=uとして、位置rにおける基本波像の応答強度Fは、(4)式となる。
ここで、小振幅では基本波はほぼ全て透過するためT≒1であり、δ(r)はr=0付近で大きな値をもつデルタ関数である。
From the equations (1) to (3), when the incident wave amplitude shown in FIG. 1 (a) is small, the incident wave amplitude u 1 = u 0 and the response intensity F 1 of the fundamental wave image at the position r is (4) It becomes an expression.
Here, since the fundamental wave is almost completely transmitted at a small amplitude, T≈1, and δ (r) is a delta function having a large value near r = 0.

また、(1)〜(3)式から、図1(b)に示す入射波振幅が大きい場合、入射波振幅u=au(a=u/u>1)として、位置rにおける基本波像の応答強度Fは、(5)式となる。
Further, from the equations (1) to (3), when the incident wave amplitude shown in FIG. 1B is large, the incident wave amplitude u 2 = au 0 (a = u 2 / u 1 > 1) is set at the position r. response intensity F 2 of the fundamental wave image is (5).

強度および符号の比較のため、r、r、rを1次元に投影し、各位置における応答強度をガウス関数で表した模式図を、図3に示す。(4)式で表される小振幅の場合の応答強度Fに振幅比aを乗じたものを図3(a)に、(5)式で表される大振幅の場合の応答強度Fを図3(b)に示す。ここで、Fから振幅比aを乗じたFの差分をとると、底面rは除去され、位置rにおけるその差分応答強度ΔFは、(6)式となる。
For comparison of intensity and sign, FIG. 3 shows a schematic diagram in which r F , r C and r R are projected in one dimension and the response intensity at each position is expressed by a Gaussian function. FIG. 3A shows a response intensity F 1 obtained by multiplying the response intensity F 1 in the case of the small amplitude expressed by the expression (4) by the amplitude ratio a, and a response intensity F 2 in the case of the large amplitude expressed by the expression (5). Is shown in FIG. Here, when the difference of F 1 obtained by multiplying F 2 by the amplitude ratio a is taken, the bottom surface r F is removed, and the difference response intensity ΔF at the position r is expressed by equation (6).

ここで、a>1よりA>0である。また、a>1、b>0、T<1よりB<0である。このため、差分応答強度ΔFは、図3(c)に示すようになる。図3(c)に示すように、AとBの符号により、閉じたき裂rでの応答強度と、底面rでの応答強度との判別は可能である。すなわち、0をしきい値として正の応答強度のみを閉じたき裂と判定することにより、図1(c)に示すように、底面の応答は全て除去され、選択的に閉じたき裂の応答のみが(9)式として得られる。
Here, A> 0 from a> 1. Further, B> 0 from a> 1, b 1 > 0, and T <1. Therefore, the differential response intensity ΔF is as shown in FIG. As shown in FIG. 3 (c), by the sign of A and B, and the response intensity in closed crack r C, it is possible distinguish between responses strength at the bottom r R. That is, by determining that only a positive response intensity is a closed crack with 0 as a threshold value, all the bottom surface responses are removed as shown in FIG. Is obtained as equation (9).

次に、比較のため、特許文献2および非特許文献5に記載された、分調波像の振幅差分を用いた既存技術について、同様の処理を行った。この場合、帯域通過フィルタにより基本波成分の漏れが発生し、閉じたき裂rを通過する際に分調波が発生するため、図1(d)に示す入射波振幅u=uの分調波像Sの応答強度、および、図1(e)に示す入射波振幅u=auの分調波像Sの応答強度は、それぞれ図3(d)および図3(e)のようになる。Sから振幅比aを乗じたSの差分をとると、底面rは除去され、位置rにおけるその差分応答強度ΔSは、(10)式となる。
Next, for comparison, the same processing was performed on the existing technology described in Patent Document 2 and Non-Patent Document 5 using the amplitude difference of the subharmonic image. In this case, leakage of the fundamental wave components are generated by the band-pass filter, closed Taki for subharmonics as it passes through the cleft r T is generated, FIG. 1 of the incident wave amplitude u 1 = u 0 shown in (d) of The response intensity of the subharmonic image S 1 and the response intensity of the subharmonic image S 2 with the incident wave amplitude u 2 = au 0 shown in FIG. 1 (e) are shown in FIGS. 3 (d) and 3 (e), respectively. )become that way. Taking the difference of S 1 multiplied by the amplitude ratio a from S 2 , the bottom surface r F is removed, and the differential response intensity ΔS at the position r is given by equation (10).

ここで、cは閉じたき裂rでの分調波の散乱係数である。また、βは帯域通過フィルタの漏れの係数であり、βBは大振幅の短いバースト波を用いる場合に発生する帯域通過フィルタでの基本波成分Bの漏れである。また、cAは、閉じたき裂rを透過する際に発生した分調波である。これは、図1(e)に示すように、u(rに比例するが、ここでは簡単のため、c(rに比例すると仮定した。ここで、cは透過における分調波の発生係数である。 Here, c 2 is the scattering coefficient of the subharmonic waves in closed crack r C. Β is a leak coefficient of the band-pass filter, and βB is a leak of the fundamental wave component B in the band-pass filter that occurs when a burst wave with a large amplitude is used. Further, c 3 A is a subharmonic wave generated when passing through the closed crack r T. As shown in FIG. 1 (e), this is proportional to u 0 (r T ) 2 , but here it is assumed that it is proportional to c 3 u 0 (r C ) 2 for simplicity. Here, c 3 is the generation factor of the subharmonic waves in transmission.

閉じたき裂の応答は、(6)式の場合と同様に、cA>0となる。一方、βB<0だがcA>0のため、βB+cA>0になる場合がある。この場合、図3(f)に示すように、差分応答強度ΔSは、底面の応答が正になり、cAとβB+cAの符号による判別はできない。このため、図1(f)に示すように、閉じたき裂と底面とが正の応答として残り、閉じたき裂と底面の応答とを識別することはできない。 The response of the closed crack is c 2 A> 0, as in the case of equation (6). On the other hand, since βB <0 but c 3 A> 0, there may be βB + c 3 A> 0. In this case, as shown in FIG. 3 (f), the differential response strength ΔS cannot be discriminated by the signs of c 2 A and βB + c 3 A because the response of the bottom surface is positive. For this reason, as shown in FIG. 1F, the closed crack and the bottom surface remain as positive responses, and the closed crack and the bottom surface response cannot be identified.

次に、さらなる比較のため、非特許文献3に記載された、帯域通過フィルタを用いない既存技術について、同様の処理を行った。この場合、応答強度は、基本波像と分調波像との和として表される。このため、入射波振幅u=uの映像U=F+Sの応答強度、および、入射波振幅u=auの映像U=F+Sの応答強度は、それぞれ図3(g)および図3(h)のようになる。Uから振幅比aを乗じたUの差分をとると、底面rは除去され、位置rにおけるその差分応答強度ΔUは、(11)式となる。
Next, the same process was performed for the existing technology described in Non-Patent Document 3 that does not use a band-pass filter for further comparison. In this case, the response intensity is expressed as the sum of the fundamental wave image and the subharmonic image. Therefore, the response intensity of the image U 1 = F 1 + S 1 with the incident wave amplitude u 1 = u 0 and the response intensity of the image U 2 = F 2 + S 2 with the incident wave amplitude u 2 = au 0 are respectively shown in FIG. 3 (g) and FIG. 3 (h). Taking the difference between U 1 multiplied by the amplitude ratio a of U 2, bottom r F is removed, the difference in response strength ΔU at position r is (11).

(11)式では、(6)式および(10)式と同様に、(c+c)A>0となることは自明である。また、帯域通過フィルタでの基本成分の漏れは(β+1)B<0だが、き裂を透過した際に発生した分調波はcA>0であるため、(β+1)B+cA>0になる場合がある。この場合、図3(i)に示すように、差分応答強度ΔUは、底面の応答が正になり、(c+c)Aと(β+1)B+cAの符号による判別はできない。このため、閉じたき裂と底面とが正の応答として残り、閉じたき裂と底面の応答とを識別することはできない。 In the expression (11), it is obvious that (c 1 + c 2 ) A> 0 as in the expressions (6) and (10). Further, the leakage of the basic component in the band pass filter is (β + 1) B <0, but the subharmonic generated when passing through the crack is c 3 A> 0, so (β + 1) B + c 3 A> 0. It may become. In this case, as shown in FIG. 3 (i), the difference response intensity ΔU has a positive bottom response, and cannot be discriminated by the signs of (c 1 + c 2 ) A and (β + 1) B + c 3 A. For this reason, the closed crack and the bottom surface remain as positive responses, and the closed crack and the bottom surface response cannot be distinguished.

このように、本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置は、基本波だけを用いることにより、特許文献2や非特許文献3、非特許文献5のような既存技術よりも、閉じたき裂の識別性に優れているといえる。本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置は、構造物に含まれる閉じたき裂と開いたき裂との識別性を高めることができ、閉じたき裂のような欠陥を高い識別性で検出することができる。   As described above, the structure defect imaging method and the structure defect imaging apparatus according to the present invention use only the fundamental wave, so that existing structures such as Patent Document 2, Non-Patent Document 3, and Non-Patent Document 5 are used. It can be said that closed cracks are more distinguishable than technology. The structure defect imaging method and the structure defect imaging apparatus according to the present invention can enhance the distinction between a closed crack and an open crack included in the structure, and can be a defect such as a closed crack. Can be detected with high discrimination.

本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置は、送信信号として所定の振幅を有する超音波を走査することにより受信信号を得る工程を、送信信号の振幅を変化させながら複数回繰り返すことにより、複数種類の受信信号を得るよう構成されていてもよい。また、送信信号の振幅を所定の周期で変更させながら、複数種類の受信信号を得るよう構成されていてもよい。送信する超音波が、複数のサイクル数の正弦波から成るバースト波、もしくはパルス波から成っていてもよい。また、送信する超音波が、周波数が連続的に変化するチャープ波から成り、受信した信号に対してパルス圧縮処理を施して受信信号を構成してもよい。   The structure defect imaging method and the structure defect imaging apparatus according to the present invention change the amplitude of a transmission signal in a process of obtaining a reception signal by scanning an ultrasonic wave having a predetermined amplitude as a transmission signal. However, it may be configured to obtain a plurality of types of received signals by repeating a plurality of times. Further, a plurality of types of reception signals may be obtained while changing the amplitude of the transmission signal at a predetermined period. The ultrasonic wave to be transmitted may be formed of a burst wave or a pulse wave composed of a sine wave having a plurality of cycles. Further, the ultrasonic wave to be transmitted may be a chirp wave whose frequency changes continuously, and the received signal may be configured by performing pulse compression processing on the received signal.

本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置で、前記欠陥は、送信される送信信号の振幅の大きさに対して、受信信号の反射強度が非線形の応答を示すものから成っていてもよい。非線形の応答を示すものとして、例えば、構造物中の閉じたき裂や、組織中の気泡や病変部がある。欠陥が組織中の気泡や病変部から成る場合には、「構造物」を「組織」、「欠陥」を「気泡や病変部」と読み替えることにより、気泡や病変部の映像化方法および気泡や病変部の映像化装置を構成することができる。この場合、生体組織の造影剤気泡や病変部の識別性を向上することができ、気泡や病変部と他の組織とを識別して、組織に含まれる気泡や病変部を検出することができる。   In the structure defect imaging method and the structure defect imaging apparatus according to the present invention, the defect exhibits a response in which the reflection intensity of the received signal is nonlinear with respect to the amplitude of the transmitted signal to be transmitted. It may consist of things. Examples of non-linear responses include closed cracks in structures, bubbles in tissues, and lesions. If the defect consists of bubbles or lesions in the tissue, replace “structure” with “tissue” and “defect” with “bubbles or lesion” to visualize the bubble or lesion imaging method. An imaging apparatus for a lesion can be configured. In this case, it is possible to improve the distinguishability of contrast medium bubbles and lesions in living tissue, and to detect bubbles and lesions contained in tissues by identifying the bubbles and lesions and other tissues. .

本発明によれば、構造物に含まれる閉じたき裂と開いたき裂との識別性を高めることができ、閉じたき裂のような欠陥を高い識別性で検出することができる構造物欠陥の映像化方法および構造物欠陥の映像化装置、ならびに、組織に含まれる気泡や病変部を高い識別性で検出することができる気泡や病変部の映像化装置を提供することができる。   According to the present invention, it is possible to improve the discrimination between a closed crack and an open crack included in a structure, and it is possible to detect a defect such as a closed crack with high discrimination. It is possible to provide an imaging method, a structure defect imaging apparatus, and a bubble and lesion imaging apparatus capable of detecting bubbles and lesions contained in a tissue with high discrimination.

本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置を示す原理図である。1 is a principle diagram showing a structure defect imaging method and a structure defect imaging apparatus according to an embodiment of the present invention; 本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置の、閉じたき裂の基本波像強度(I)および線形散乱源の基本波像強度(I)の入射波振幅依存性を表すグラフである。The fundamental wave image intensity (I C ) of the closed crack and the fundamental wave image intensity (I S ) of the linear scattering source of the structure defect imaging method and structure defect imaging apparatus according to the embodiment of the present invention It is a graph showing incident wave amplitude dependence. (a)本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置の、小振幅入射における基本波像の応答Fに振幅比aを乗じたもの、(b)大振幅入射における基本波像の応答F、(c)基本波の差分像の応答ΔF、(d)分調波像の振幅差分を用いた既存技術の、小振幅入射における分調波像の応答Sに振幅比aを乗じたもの、(e)大振幅入射における分調波像の応答S、(f)分調波の差分像の応答ΔS、(g)帯域通過フィルタを用いない既存技術の、小振幅入射における映像の応答Uに振幅比aを乗じたもの、(e)大振幅入射における映像の応答U、(f)これらの差分像の応答ΔUを示すグラフである。(A) embodiment of a structure defect imaging device of the imaging method and a structure defect of the present invention, those in response F 1 of the fundamental wave image in the small amplitude enters multiplied by the amplitude ratio a, (b) The response F 2 of the fundamental wave image at the large amplitude incidence, (c) the response ΔF of the difference image of the fundamental wave, and (d) the subharmonic image at the small amplitude incidence of the existing technology using the amplitude difference of the subharmonic image. that the response S 1 multiplied by the amplitude ratio a, not using (e) the subharmonic response S 2 of the wave image at a large amplitude incident, (f) content harmonic of the difference image of the response [Delta] S, (g) bandpass filter existing techniques, multiplied by the amplitude ratio a response U 1 of the video in a small amplitude enters, is a graph illustrating the (e) response U 2 video in large amplitude incident, (f) response ΔU of these difference image . 本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置を示す縦断面図および得られた映像である。It is the longitudinal cross-sectional view which shows the imaging method of the structure defect of embodiment of this invention, and the imaging device of a structure defect, and the image | video obtained. 分調波像の振幅差分を用いた比較実験の、構造物欠陥の映像化方法および構造物欠陥の映像化装置の実験配置を示す縦断面図および得られた映像である。It is the longitudinal cross-sectional view which shows the experiment arrangement | positioning of the imaging method of a structure defect, and the imaging apparatus of a structure defect of the comparative experiment using the amplitude difference of a subharmonic image, and the image | video obtained. 図5に示す比較実験で得られた映像の、閉じたき裂におけるシフト加算波形およびそのウェーブレット変換結果を示すグラフである。It is a graph which shows the shift addition waveform in the closed crack of the image | video obtained by the comparative experiment shown in FIG. 5, and its wavelet transformation result. 本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置の、実験配置を示す縦断面図および得られた映像である。It is the longitudinal cross-sectional view which shows experiment arrangement | positioning, and the image | video obtained by the imaging method of the structure defect of embodiment of this invention and the imaging apparatus of a structure defect. 従来の、分調波に対してフェーズドアレイ法を使用したSPACEの原理図である。It is the principle figure of the conventional SPACE which uses the phased array method with respect to a subharmonic wave.

以下、図面に基づき、本発明の実施の形態について説明する。
図4乃至図7は、本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置を示している。本発明の実施の形態の構造物欠陥の映像化方法は、本発明の実施の形態の構造物欠陥の映像化装置により好適に実施される。
図4に示すように、本発明の実施の形態の構造物欠陥の映像化装置は、送受信手段1と信号処理器2とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
4 to 7 show a structure defect imaging method and a structure defect imaging apparatus according to an embodiment of the present invention. The structure defect imaging method of the embodiment of the present invention is preferably implemented by the structure defect imaging apparatus of the embodiment of the present invention.
As shown in FIG. 4, the structure defect imaging apparatus according to the embodiment of the present invention includes transmission / reception means 1 and a signal processor 2.

送受信手段1は、任意の入射波振幅の超音波を照射可能な超音波送信器と、複数のセンサ素子から成るアレイ受信器とを一体的に有している。送受信手段1は、超音波送信器により、所定の基本周波数で互いに異なる振幅を有する複数種類の超音波を、それぞれ送信信号として構造物の試料S中の閉じたき裂Cに送信可能に構成されている。また、送受信手段1は、アレイ受信器により、超音波送信器から送信された超音波により閉じたき裂Cで生成された非線形散乱波を含む、試料Sから反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得るよう構成されている。   The transmission / reception means 1 integrally has an ultrasonic transmitter capable of irradiating ultrasonic waves having an arbitrary incident wave amplitude and an array receiver composed of a plurality of sensor elements. The transmission / reception means 1 is configured to be capable of transmitting a plurality of types of ultrasonic waves having different amplitudes at a predetermined fundamental frequency to the closed crack C in the sample S of the structure by means of an ultrasonic transmitter. Yes. In addition, the transmission / reception means 1 receives ultrasonic waves reflected from the sample S including nonlinear scattered waves generated by the crack C closed by the ultrasonic waves transmitted from the ultrasonic transmitter by the array receiver, A plurality of types of reception signals corresponding to each transmission signal are obtained.

信号処理器2は、送受信手段1に接続されたコンピュータから成り、フィルタ手段と映像化手段と演算手段とを有している。フィルタ手段は、送受信手段1のアレイ受信器で得られた各受信信号に対して、基本周波数を有する成分を通過させる帯域通過フィルタをかけるよう構成されている。映像化手段は、フィルタ手段で処理後の各受信信号に対して、フェーズドアレイ法を用いて各受信信号に対応する複数種類の映像データを得るよう構成されている。すなわち、映像化手段は、帯域通過フィルタを通過した各受信信号に対して、アレイ受信器の各センサ素子の位置に応じて異なる時間だけシフトさせた後、加算して処理信号を得、得られた処理信号に基づいて、各映像データを得るようになっている。   The signal processor 2 is composed of a computer connected to the transmission / reception means 1, and has a filter means, an imaging means, and a calculation means. The filter unit is configured to apply a band-pass filter that passes a component having a fundamental frequency to each reception signal obtained by the array receiver of the transmission / reception unit 1. The imaging means is configured to obtain a plurality of types of video data corresponding to each received signal using a phased array method for each received signal processed by the filter means. That is, the imaging means shifts each received signal that has passed through the band-pass filter by a different time depending on the position of each sensor element of the array receiver, and then adds them to obtain a processed signal. Each video data is obtained based on the processed signal.

演算手段は、映像化手段で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、閉じたき裂Cの映像を得るよう構成されている。   The computing means is configured to obtain an image of the closed crack C by performing computation based on the amplitude of each corresponding transmission signal using each video data obtained by the imaging means.

図4に示す具体的な一例では、本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置は、(1)式〜(9)式、図1〜図3に示す原理に基づいて、閉じたき裂Cの映像を得るよう構成されている。すなわち、送受信手段1が、各送信信号として、それぞれ振幅u=uおよび振幅u=au(a=u/u>1)を有する2種類の超音波を試料Sに送信し、試料Sの底面Bや閉じたき裂Cなどから反射される超音波を受信する。各受信信号にフィルタ手段の帯域通過フィルタをかけた後、映像化手段が、映像化領域Dについて、小振幅u=uの送信信号に対応する応答強度Fの基本波像(映像データ)I1と、大振幅u=auの送信信号に対応する応答強度Fの基本波像(映像データ)I2とを得る。 In a specific example shown in FIG. 4, the structure defect imaging method and the structure defect imaging apparatus according to the embodiment of the present invention are represented by Equations (1) to (9) and FIGS. 1 to 3. Based on the principle shown, an image of a closed crack C is obtained. That is, the transmission / reception means 1 transmits two types of ultrasonic waves having amplitude u 1 = u 0 and amplitude u 2 = au 0 (a = u 2 / u 1 > 1) to the sample S as transmission signals, respectively. The ultrasonic waves reflected from the bottom surface B of the sample S, the closed crack C, and the like are received. After applying the band-pass filter of the filter means to each received signal, the imaging means for the imaging area D has a fundamental wave image (video data) of response intensity F 1 corresponding to the transmission signal of small amplitude u 1 = u 0. ) and I1, to obtain a large amplitude u 2 = fundamental wave image of the response intensity F 2 corresponding to the transmission signal of au 0 (image data) I2.

このとき、小振幅の基本波像I1では、超音波が閉じたき裂Cを透過するため、破線3の位置の閉じたき裂Cは映像化されず、底面4と底面5のみが現れる。しかし、大振幅の基本波像I2では、閉じたき裂Cの開閉振動により分調波や高調波だけではなく基本波も発生するため、閉じたき裂Cの応答6も現れる。一方、き裂の開閉振動により透過率が低下するため、底面8の振幅は低下する。   At this time, in the fundamental wave image I1 having a small amplitude, since the ultrasonic wave passes through the closed crack C, the closed crack C at the position of the broken line 3 is not visualized, and only the bottom surface 4 and the bottom surface 5 appear. However, in the fundamental wave image I2 having a large amplitude, not only the subharmonic wave and the harmonic wave but also the fundamental wave is generated by the opening / closing vibration of the closed crack C, so that the response 6 of the closed crack C also appears. On the other hand, since the transmittance is reduced by the opening and closing vibration of the crack, the amplitude of the bottom surface 8 is reduced.

次に、演算手段が、小振幅の基本波像I1に振幅比aを乗じ、大振幅の基本波像I2との差分を取る、すなわち、ΔF=F−a×Fにより各基本波像の差分応答強度ΔFを算出する。これにより、その差分像I3では、閉じたき裂Cは増分として現れ、底面10は0となり、底面11は減分として現れる。そこで、差分像I3を増分のみの表示、すなわち差分応答強度ΔFの正の部分を選択することにより、底面11が除去され、閉じたき裂Cの応答9のみを映像化することができる。 Next, the arithmetic means multiplies the small-amplitude fundamental wave image I1 by the amplitude ratio a to obtain a difference from the large-amplitude fundamental wave image I2, that is, each fundamental wave image by ΔF = F 2 −a × F 1. The differential response intensity ΔF is calculated. Thereby, in the difference image I3, the closed crack C appears as an increment, the bottom 10 becomes 0, and the bottom 11 appears as a decrement. Therefore, by displaying only the incremental difference image I3, that is, by selecting a positive portion of the differential response intensity ΔF, the bottom surface 11 is removed, and only the response 9 of the closed crack C can be visualized.

このように、本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置は、基本波だけを用いることにより、構造物に含まれる閉じたき裂と開いたき裂との識別性を高めることができ、閉じたき裂のような欠陥を高い識別性で検出することができる。また、基本波は分調波の2倍の周波数を持つため、従来の分調波像の振幅差分から得られるものと比べて、空間分解能も向上させることができる。   As described above, the structure defect imaging method and the structure defect imaging apparatus according to the embodiment of the present invention use only the fundamental wave to obtain a closed defect and an open crack included in the structure. The discriminability can be improved, and a defect such as a closed crack can be detected with high discriminability. In addition, since the fundamental wave has a frequency twice that of the subharmonic wave, the spatial resolution can be improved as compared with that obtained from the amplitude difference of the conventional subharmonic image.

本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置で、検出対象の欠陥は、閉じたき裂に限らず、送信される送信信号の振幅の大きさに対して、受信信号の反射強度が非線形の応答を示すものであれば、いかなるものであってもよい。この非線形の応答を示すものとして、例えば、構造物中の閉じたき裂の他に、組織中の気泡や病変部がある。欠陥が組織中の気泡や病変部から成る場合には、「構造物」を「組織」、「欠陥」を「気泡や病変部」と読み替えることにより、気泡や病変部の映像化方法および気泡や病変部の映像化装置を構成することができる。この場合、生体組織の造影剤気泡や病変部の識別性を向上することができ、気泡や病変部と他の組織とを識別して、組織に含まれる気泡や病変部を検出することができる。   In the structure defect imaging method and the structure defect imaging apparatus according to the embodiment of the present invention, the defect to be detected is not limited to a closed crack, but the magnitude of the amplitude of a transmitted signal to be transmitted. As long as the reflection intensity of the received signal exhibits a non-linear response, any signal may be used. Examples of the nonlinear response include air bubbles and lesions in the tissue in addition to the closed crack in the structure. If the defect consists of bubbles or lesions in the tissue, replace “structure” with “tissue” and “defect” with “bubbles or lesion” to visualize the bubble or lesion imaging method. An imaging apparatus for a lesion can be configured. In this case, it is possible to improve the distinguishability of contrast medium bubbles and lesions in living tissue, and to detect bubbles and lesions contained in tissues by identifying the bubbles and lesions and other tissues. .

なお、本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置は、送信信号として所定の振幅を有する超音波を走査することにより受信信号を得る工程を、送信信号の振幅を変化させながら複数回繰り返すことにより、複数種類の受信信号を得るよう構成されていてもよい。また、送信信号の振幅を所定の周期で変更させながら、複数種類の受信信号を得るよう構成されていてもよい。送信する超音波が、複数のサイクル数の正弦波から成るバースト波、もしくはパルス波から成っていてもよい。また、送信する超音波が、周波数が連続的に変化するチャープ波から成り、受信した信号に対してパルス圧縮処理を施して受信信号を構成してもよい。   Note that the structure defect imaging method and the structure defect imaging apparatus according to the embodiment of the present invention include a step of obtaining a reception signal by scanning an ultrasonic wave having a predetermined amplitude as a transmission signal. It may be configured to obtain a plurality of types of received signals by repeating a plurality of times while changing the amplitude. Further, a plurality of types of reception signals may be obtained while changing the amplitude of the transmission signal at a predetermined period. The ultrasonic wave to be transmitted may be formed of a burst wave or a pulse wave composed of a sine wave having a plurality of cycles. Further, the ultrasonic wave to be transmitted may be a chirp wave whose frequency changes continuously, and the received signal may be configured by performing pulse compression processing on the received signal.

本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置を使用して、閉じたき裂の検出を行った。試験片の構造物として、3点曲げ疲労試験で作製したオーステナイト系ステンレス鋼SUS316Lを用い、その内部に導入した閉じた疲労き裂の検出を行った。なお、ここで用いた疲労条件は、最大応力拡大係数Kmax=18.6MPa・m1/2、最小応力拡大係数Kmin=0.6MPa・m1/2である。また、比較のため、非特許文献5に記載の分調波像の振幅差分を利用して、同じき裂の検出も行った。 Closed cracks were detected using the structure defect imaging method and structure defect imaging apparatus according to the embodiment of the present invention. An austenitic stainless steel SUS316L produced by a three-point bending fatigue test was used as a test piece structure, and a closed fatigue crack introduced into the austenitic stainless steel was detected. Incidentally, fatigue conditions used here, the maximum stress intensity factor K max = 18.6MPa · m 1/2, which is the minimum stress intensity factor K min = 0.6MPa · m 1/2. For comparison, the same crack was also detected using the amplitude difference of the subharmonic image described in Non-Patent Document 5.

構造物欠陥の映像化装置は、送受信手段1としてPZTアレイ探触子(5MHz、32素子、0.5mmピッチ)を用いた。また、入射波には、周波数7MHz、3サイクルのバースト波を用いた。また、入射波には、小振幅および大振幅として、それぞれ変位8.9nm(応力2.4MPa)および変位26.7nm(応力7.3MPa)を用いた。   The structure defect imaging apparatus uses a PZT array probe (5 MHz, 32 elements, 0.5 mm pitch) as the transmission / reception means 1. As the incident wave, a burst wave having a frequency of 7 MHz and 3 cycles was used. For the incident wave, a displacement of 8.9 nm (stress 2.4 MPa) and a displacement of 26.7 nm (stress 7.3 MPa) were used as a small amplitude and a large amplitude, respectively.

比較実験の分調波像の振幅差分を利用したときの分調波像を、図5に示す。図5に示すように、小振幅の分調波像I11および大振幅の分調波像I12で、閉じたき裂Cの応答が現れた。しかし、閉じたき裂C以外の応答として、底面BやノッチNも帯域通過フィルタでの漏れによるゴーストとして現れた。そこで、信号処理器2で、入射波変位振幅の増幅率a=26.7nm/8.9nm≒3を、小振幅の分調波像I11に乗じた映像を、大振幅の分調波像I12から引いて差分像I13を得た。差分像I13では、底面BやノッチNに対する閉じたき裂Cの強度比である識別性は、大振幅の分調波像I12と比べて7.6dB向上した。しかし、底面BやノッチNを完全には除去できなかった。これは、分調波像では、閉じたき裂Cと同様に、底面Bも増分として現れたためと推定される。   FIG. 5 shows a subharmonic image when the amplitude difference of the subharmonic image of the comparative experiment is used. As shown in FIG. 5, the response of the closed crack C appeared in the small-amplitude subharmonic image I11 and the large-amplitude subharmonic image I12. However, as a response other than the closed crack C, the bottom surface B and the notch N also appeared as ghosts due to leakage in the band pass filter. Therefore, the signal processor 2 multiplies the small-amplitude subharmonic image I11 by the amplification factor a = 26.7 nm / 8.9 nm≈3 of the incident wave displacement amplitude to obtain a large-amplitude subharmonic image I12. To obtain a differential image I13. In the difference image I13, the discriminability, which is the intensity ratio of the closed crack C to the bottom surface B and the notch N, is improved by 7.6 dB compared to the large amplitude subharmonic image I12. However, the bottom surface B and the notch N could not be completely removed. This is presumably because the bottom surface B appeared as an increment in the subharmonic image as well as the closed crack C.

ここで、大振幅の分調波像I12の閉じたき裂Cの位置における、帯域通過フィルタをかける前のシフト加算波形W1とそのウェーブレット変換(時間周波数解析)結果W2とを、図6に示す。図6に示すように、ウェーブレット変換結果W2では、周波数3.5MHzの分調波だけではなく、周波数7MHzの基本波の散乱波も発生していることが分かる。これは、き裂の開閉振動による分調波発生に付随して発生した基本波であると考えられる。   Here, the shift addition waveform W1 before applying the band pass filter and the wavelet transform (time frequency analysis) result W2 at the position of the closed crack C of the large amplitude subharmonic image I12 are shown in FIG. As shown in FIG. 6, in the wavelet transformation result W2, it can be seen that not only the subharmonic wave having the frequency of 3.5 MHz but also the scattered wave of the fundamental wave having the frequency of 7 MHz is generated. This is considered to be a fundamental wave generated accompanying the generation of subharmonic waves due to crack opening and closing vibrations.

次に、本発明の実施の形態の構造物欠陥の映像化方法により得られた基本波像の振幅差分を、図7に示す。小振幅の基本波像I14および大振幅の基本波像I15で、閉じたき裂Cの応答が現れた。しかし、閉じたき裂C以外の応答として、底面Bも現れた。そこで、信号処理器2で、入射波変位振幅の増幅率a=26.7nm/8.9nm≒3を、小振幅の基本波像I14に掛けたものを、大振幅の基本波像I15から引き、その増分のみを表示して差分像I16を得た。差分像I16では、底面BやノッチNが除去され、閉じたき裂Cのみを抽出することができた。差分像I16では、底面Bに対する閉じたき裂Cの強度比である識別性は、大振幅の基本波像I17と比べて34dB向上した。また、空間分解能もI13に比べて、約2倍向上した。これは、基本波の周波数が、分調波の周波数の2倍であるためである。   Next, FIG. 7 shows the amplitude difference of the fundamental wave image obtained by the structure defect imaging method of the embodiment of the present invention. A closed crack C response appeared in the small-amplitude fundamental wave image I14 and the large-amplitude fundamental wave image I15. However, as a response other than the closed crack C, the bottom surface B also appeared. Accordingly, the signal processor 2 subtracts the incident wave displacement amplitude amplification factor a = 26.7 nm / 8.9 nm≈3 from the small amplitude fundamental wave image I14 from the large amplitude fundamental wave image I15. Only the increment was displayed to obtain a differential image I16. In the difference image I16, the bottom surface B and the notch N are removed, and only the closed crack C can be extracted. In the difference image I16, the discriminability, which is the intensity ratio of the closed crack C to the bottom surface B, was improved by 34 dB compared to the large-amplitude fundamental wave image I17. Also, the spatial resolution was improved about twice compared with I13. This is because the frequency of the fundamental wave is twice the frequency of the subharmonic wave.

このように、本発明の実施の形態の構造物欠陥の映像化方法および構造物欠陥の映像化装置は、基本波だけを用いることにより、非特許文献5等の既存技術に対して、閉じたき裂の識別性に優れているといえる。   As described above, the structure defect imaging method and the structure defect imaging apparatus according to the embodiment of the present invention are closed with respect to the existing technology such as Non-Patent Document 5 by using only the fundamental wave. It can be said that it is excellent in crack discrimination.

本発明に係る構造物欠陥の映像化方法および構造物欠陥の映像化装置は、原子炉、航空機、鉄道などの重要機器、及び製造された材料、接合された材料などの非破壊評価の現場において、閉じたき裂のような欠陥を高い識別性で検出するのに利用することができる。   The structure defect imaging method and the structure defect imaging apparatus according to the present invention are used in non-destructive evaluation of important equipment such as nuclear reactors, aircrafts, railways, and manufactured materials and bonded materials. It can be used to detect defects such as closed cracks with high discrimination.

1 送受信手段
2 信号処理器
3、6、9 閉じたき裂(の応答)
4、5、7、8、10、11 底面(の応答)
S 試料
B 底面
C 閉じたき裂
D 映像化領域
N ノッチ
I1、I14 小振幅(入射)の基本波像
I2、I15 大振幅(入射)の基本波像
I3、I16 差分像
I11 小振幅(入射)の分調波像
I12 大振幅(入射)の分調波像
I13 差分像
W1 シフト加算波形
W2 ウェーブレット解析結果
DESCRIPTION OF SYMBOLS 1 Transmission / reception means 2 Signal processor 3, 6, 9 Closed crack (response)
4, 5, 7, 8, 10, 11 Bottom (response)
S Sample B Bottom C Closed crack D Imaging region N Notch I1, I14 Fundamental wave image with small amplitude (incident) I2, I15 Fundamental wave image with large amplitude (incident) I3, I16 Difference image I11 Small amplitude (incident) Subharmonic image I12 Large amplitude (incident) subharmonic image I13 Difference image W1 Shift addition waveform W2 Wavelet analysis result

Claims (8)

構造物に含まれる閉じたき裂のような欠陥を検出するための構造物欠陥の映像化方法であって、
所定の基本周波数で互いに異なる振幅を有する複数種類の超音波をそれぞれ送信信号として前記構造物に送信し、前記構造物から反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得る送受信工程と、
前記送受信工程で得られた各受信信号に対して、前記基本周波数を有する成分を通過させる帯域通過フィルタをかけるフィルタ工程と、
前記フィルタ工程後の各受信信号に基づいて、各受信信号に対応する複数種類の映像データを得る映像化工程と、
前記映像化工程で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、前記欠陥の映像を得る演算工程とを、
有することを特徴とする構造物欠陥の映像化方法。
A structure defect imaging method for detecting a defect such as a closed crack contained in a structure,
A plurality of types of ultrasonic waves having mutually different amplitudes at a predetermined fundamental frequency are transmitted to the structure as transmission signals, and ultrasonic waves reflected from the structure are received, and a plurality of types of ultrasonic waves corresponding to the transmission signals are received. A transmission / reception step for obtaining a received signal;
A filter step of applying a band pass filter that passes the component having the fundamental frequency to each received signal obtained in the transmission / reception step;
An imaging step for obtaining a plurality of types of video data corresponding to each received signal based on each received signal after the filtering step;
Using each video data obtained in the imaging step, performing a calculation based on the magnitude of the amplitude of each corresponding transmission signal, and obtaining a video of the defect,
A method of imaging a structure defect, comprising:
前記送受信工程は、各送信信号として、それぞれ振幅uおよび振幅u(u>u)を有する2種類の超音波を送信し、
前記映像化工程は、振幅uの送信信号に対応する応答強度Fの映像データと振幅uの送信信号に対応する応答強度Fの映像データとを得、
前記演算工程は、ΔF=F−(u/u)×Fにより各映像データの差分応答強度ΔFを算出し、その差分応答強度ΔFの正の部分を選択することにより前記欠陥の映像を得ることを
特徴とする請求項1記載の構造物欠陥の映像化方法。
The transmission / reception step transmits two types of ultrasonic waves having amplitude u 1 and amplitude u 2 (u 2 > u 1 ) as transmission signals,
The imaging step obtains video data of response intensity F 1 corresponding to a transmission signal of amplitude u 1 and video data of response intensity F 2 corresponding to a transmission signal of amplitude u 2 ,
The calculation step calculates a differential response intensity ΔF of each video data by ΔF = F 2 − (u 2 / u 1 ) × F 1 and selects a positive part of the differential response intensity ΔF to thereby determine the defect. The method of imaging a structure defect according to claim 1, wherein an image is obtained.
前記欠陥は、送信される送信信号の振幅の大きさに対して、受信信号の反射強度が非線形の応答を示すものから成ることを特徴とする請求項1または2記載の構造物欠陥の映像化方法。   3. The imaging of a structure defect according to claim 1, wherein the defect comprises a reflection response of the received signal that exhibits a non-linear response with respect to the amplitude of the transmitted signal to be transmitted. Method. 構造物に含まれる閉じたき裂のような欠陥を検出するための構造物欠陥の映像化装置であって、
所定の基本周波数で互いに異なる振幅を有する複数種類の超音波をそれぞれ送信信号として前記構造物に送信し、前記構造物から反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得るよう構成された送受信手段と、
前記送受信手段で得られた各受信信号に対して、前記基本周波数を有する成分を通過させる帯域通過フィルタをかけるよう構成されたフィルタ手段と、
前記フィルタ手段で処理後の各受信信号に基づいて、各受信信号に対応する複数種類の映像データを得るよう構成された映像化手段と、
前記映像化手段で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、前記欠陥の映像を得るよう構成された演算手段とを、
有することを特徴とする構造物欠陥の映像化装置。
A structure defect imaging device for detecting a defect such as a closed crack contained in a structure,
A plurality of types of ultrasonic waves having mutually different amplitudes at a predetermined fundamental frequency are transmitted to the structure as transmission signals, and ultrasonic waves reflected from the structure are received, and a plurality of types of ultrasonic waves corresponding to the transmission signals are received. Transmitting and receiving means configured to obtain a received signal;
Filter means configured to apply a band-pass filter that passes the component having the fundamental frequency to each received signal obtained by the transmission / reception means;
Based on each received signal processed by the filter means, an imaging means configured to obtain a plurality of types of video data corresponding to each received signal;
Using each video data obtained by the imaging means, calculation based on the magnitude of the amplitude of each corresponding transmission signal, and calculation means configured to obtain the image of the defect,
A structure defect imaging apparatus characterized by comprising:
前記送受信手段は、各送信信号として、それぞれ振幅uおよび振幅u(u>u)を有する2種類の超音波を送信するよう構成され、
前記映像化手段は、振幅uの送信信号に対応する応答強度Fの映像データと振幅uの送信信号に対応する応答強度Fの映像データとを得るよう構成され、
前記演算手段は、ΔF=F−(u/u)×Fにより各映像データの差分応答強度ΔFを算出し、その差分応答強度ΔFの正の部分を選択することにより前記欠陥の映像を得るよう構成されていることを
特徴とする請求項4記載の構造物欠陥の映像化装置。
The transmitting / receiving means is configured to transmit two types of ultrasonic waves having amplitude u 1 and amplitude u 2 (u 2 > u 1 ), respectively, as each transmission signal,
The imaging means is configured to obtain video data of response intensity F 1 corresponding to a transmission signal of amplitude u 1 and video data of response intensity F 2 corresponding to a transmission signal of amplitude u 2 ;
The calculation means calculates a differential response intensity ΔF of each video data by ΔF = F 2 − (u 2 / u 1 ) × F 1 and selects a positive part of the differential response intensity ΔF to thereby determine the defect. 5. The structure defect imaging apparatus according to claim 4, wherein the structure defect imaging apparatus is configured to obtain an image.
前記欠陥は、送信される送信信号の振幅の大きさに対して、受信信号の反射強度が非線形の応答を示すものから成ることを特徴とする請求項4または5記載の構造物欠陥の映像化装置。   6. The imaging of a structure defect according to claim 4 or 5, wherein the defect comprises a non-linear response of the reflection intensity of the received signal with respect to the amplitude of the transmitted signal to be transmitted. apparatus. 組織に含まれる気泡や病変部を検出するための気泡や病変部の映像化装置であって、
所定の基本周波数で互いに異なる振幅を有する複数種類の超音波をそれぞれ送信信号として前記組織に送信し、前記組織から反射される超音波を受信して、各送信信号に対応する複数種類の受信信号を得るよう構成された送受信手段と、
前記送受信手段で得られた各受信信号に対して、前記基本周波数を有する成分を通過させる帯域通過フィルタをかけるよう構成されたフィルタ手段と、
前記フィルタ手段で処理後の各受信信号に基づいて、各受信信号に対応する複数種類の映像データを得るよう構成された映像化手段と、
前記映像化手段で得られた各映像データを用いて、対応する各送信信号の振幅の大きさに基づいた演算を行い、前記気泡や病変部の映像を得るよう構成された演算手段とを、
有することを特徴とする気泡や病変部の映像化装置。
A bubble and lesion imaging device for detecting bubbles and lesions contained in tissue,
A plurality of types of received signals corresponding to each transmission signal by transmitting a plurality of types of ultrasonic waves having different amplitudes at a predetermined fundamental frequency to the tissue as transmission signals, receiving ultrasonic waves reflected from the tissue, Transmitting and receiving means configured to obtain
Filter means configured to apply a band-pass filter that passes the component having the fundamental frequency to each received signal obtained by the transmission / reception means;
Based on each received signal processed by the filter means, an imaging means configured to obtain a plurality of types of video data corresponding to each received signal;
Using each video data obtained by the imaging means, performing a calculation based on the magnitude of the amplitude of each corresponding transmission signal, and a calculation means configured to obtain an image of the bubble or lesion,
A bubble or lesion imaging apparatus characterized by having a bubble or a lesion.
前記送受信手段は、各送信信号として、それぞれ振幅uおよび振幅u(u>u)を有する2種類の超音波を送信するよう構成され、
前記映像化手段は、振幅uの送信信号に対応する応答強度Fの映像データと振幅uの送信信号に対応する応答強度Fの映像データとを得るよう構成され、
前記演算手段は、ΔF=F−(u/u)×Fにより各映像データの差分応答強度ΔFを算出し、その差分応答強度ΔFの正の部分を選択することにより前記気泡や病変部の映像を得るよう構成されていることを
特徴とする請求項7記載の気泡や病変部の映像化装置。
The transmitting / receiving means is configured to transmit two types of ultrasonic waves having amplitude u 1 and amplitude u 2 (u 2 > u 1 ), respectively, as each transmission signal,
The imaging means is configured to obtain video data of response intensity F 1 corresponding to a transmission signal of amplitude u 1 and video data of response intensity F 2 corresponding to a transmission signal of amplitude u 2 ;
The calculation means calculates a differential response intensity ΔF of each video data by ΔF = F 2 − (u 2 / u 1 ) × F 1, and selects the positive part of the differential response intensity ΔF to thereby calculate the bubbles and 8. The bubble or lesion imaging device according to claim 7, wherein the imaging device is configured to obtain an image of a lesion.
JP2013002823A 2013-01-10 2013-01-10 Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus Active JP6025049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002823A JP6025049B2 (en) 2013-01-10 2013-01-10 Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002823A JP6025049B2 (en) 2013-01-10 2013-01-10 Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus

Publications (2)

Publication Number Publication Date
JP2014134462A true JP2014134462A (en) 2014-07-24
JP6025049B2 JP6025049B2 (en) 2016-11-16

Family

ID=51412847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002823A Active JP6025049B2 (en) 2013-01-10 2013-01-10 Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus

Country Status (1)

Country Link
JP (1) JP6025049B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133906A (en) * 2016-01-27 2017-08-03 有限会社超音波材料診断研究所 Compact nonlinear ultrasonic non-destructive checkup device
RU2636789C1 (en) * 2016-10-19 2017-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВО "КнАГТУ") Device for examination of construction state
RU2748789C1 (en) * 2020-10-06 2021-05-31 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Structure condition inspection device
WO2023210122A1 (en) * 2022-04-28 2023-11-02 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224939A (en) * 1996-02-06 1997-09-02 Hewlett Packard Co <Hp> Method for increasing sensitivity of nonlinear ultrasonic imaging system
US6099472A (en) * 1998-09-21 2000-08-08 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic system using a nonlinearity of an examined body with respect to propagation of ultrasonic wave
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2002301070A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2003500150A (en) * 1999-05-28 2003-01-07 ゼネラル・エレクトリック・カンパニイ Ultrasound imaging with higher-order nonlinear components
JP2004180784A (en) * 2002-11-29 2004-07-02 Toshiba Corp Ultrasonic diagnostic device
JP4538629B2 (en) * 2004-04-27 2010-09-08 国立大学法人東北大学 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack
JP5344492B2 (en) * 2008-07-18 2013-11-20 国立大学法人東北大学 Structure defect imaging method, structure defect imaging device, bubble imaging method, and bubble or lesion imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224939A (en) * 1996-02-06 1997-09-02 Hewlett Packard Co <Hp> Method for increasing sensitivity of nonlinear ultrasonic imaging system
US6099472A (en) * 1998-09-21 2000-08-08 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnostic system using a nonlinearity of an examined body with respect to propagation of ultrasonic wave
JP2003500150A (en) * 1999-05-28 2003-01-07 ゼネラル・エレクトリック・カンパニイ Ultrasound imaging with higher-order nonlinear components
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2002301070A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2004180784A (en) * 2002-11-29 2004-07-02 Toshiba Corp Ultrasonic diagnostic device
JP4538629B2 (en) * 2004-04-27 2010-09-08 国立大学法人東北大学 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack
JP5344492B2 (en) * 2008-07-18 2013-11-20 国立大学法人東北大学 Structure defect imaging method, structure defect imaging device, bubble imaging method, and bubble or lesion imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016033933; 池内雅子 他: '振幅差分法を用いた非線形超音波映像法による閉じた応力腐食割れの選択制向上' 日本非破壊検査協会大会講演概要集2012 2012号秋季, 20121022, 129-130ページ *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133906A (en) * 2016-01-27 2017-08-03 有限会社超音波材料診断研究所 Compact nonlinear ultrasonic non-destructive checkup device
RU2636789C1 (en) * 2016-10-19 2017-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВО "КнАГТУ") Device for examination of construction state
RU2748789C1 (en) * 2020-10-06 2021-05-31 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Structure condition inspection device
WO2023210122A1 (en) * 2022-04-28 2023-11-02 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Also Published As

Publication number Publication date
JP6025049B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6189227B2 (en) Ultrasonic flaw detector and its evaluation method
Ohara et al. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads
JP5344492B2 (en) Structure defect imaging method, structure defect imaging device, bubble imaging method, and bubble or lesion imaging device
Haupert et al. Ultrasonic imaging of nonlinear scatterers buried in a medium
Shlivinski et al. Defect imaging with elastic waves in inhomogeneous–anisotropic materials with composite geometries
JP6025049B2 (en) Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus
US6732587B2 (en) System and method for classification of defects in a manufactured object
Ohara et al. Nonlinear surface-acoustic-wave phased array with fixed-voltage fundamental wave amplitude difference for imaging closed cracks
Yang et al. Comparative study of ultrasonic techniques for reconstructing the multilayer structure of composites
JP5996415B2 (en) Ultrasonic flaw detection apparatus and method
Remillieux et al. Detecting and imaging stress corrosion cracking in stainless steel, with application to inspecting storage canisters for spent nuclear fuel
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
Fierro et al. Nonlinear imaging (NIM) of flaws in a complex composite stiffened panel using a constructive nonlinear array (CNA) technique
Haupert et al. Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks
Yaacoubi et al. Measurement investigations in tubular structures health monitoring via ultrasonic guided waves: A case of study
Seo et al. Synthetic aperture imaging of contact acoustic nonlinearity to visualize the closing interfaces using tone-burst ultrasonic waves
Rao et al. Ultrasonic array imaging of highly attenuative materials with spatio-temporal singular value decomposition
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
Chang et al. Extended non-stationary phase-shift migration for ultrasonic imaging of irregular surface component
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
Yang et al. Passive detection and localization of fatigue cracking in aluminum plates using Green’s function reconstruction from ambient noise
Zheng et al. Structural-damage localization using ultrasonic guided waves based on the lossless filtering method
WO2010053136A1 (en) Object probing device, object probing program, and object probing method
JP2008107101A (en) Nondestructive inspection method
Malfense Fierro et al. Non-linear Phased Array Imaging of Flaws Using a Dual and Tri Frequency Modulation Technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6025049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250