JP2014134396A - Measuring method for viscoelasticity coefficient of substance - Google Patents

Measuring method for viscoelasticity coefficient of substance Download PDF

Info

Publication number
JP2014134396A
JP2014134396A JP2013001219A JP2013001219A JP2014134396A JP 2014134396 A JP2014134396 A JP 2014134396A JP 2013001219 A JP2013001219 A JP 2013001219A JP 2013001219 A JP2013001219 A JP 2013001219A JP 2014134396 A JP2014134396 A JP 2014134396A
Authority
JP
Japan
Prior art keywords
change
substance
measuring
solution
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013001219A
Other languages
Japanese (ja)
Other versions
JP6016644B2 (en
Inventor
Atsushi Ito
敦 伊藤
Motoko Ichihashi
素子 市橋
Toshio Kusumoto
淑郎 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2013001219A priority Critical patent/JP6016644B2/en
Publication of JP2014134396A publication Critical patent/JP2014134396A/en
Application granted granted Critical
Publication of JP6016644B2 publication Critical patent/JP6016644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method for a viscoelasticity coefficient that: enables information on the viscoelasticity of an adsorbing substance in the atmosphere and in solution to be represented by a coefficient generally used for representation of viscoelasticity; and further enables viscoelasticity coefficient to be calculated in real time.SOLUTION: A measuring method for a viscoelasticity coefficient measures a frequency change amount, and, with calculation using the change amount and a variable in response to a measurement environment, measures a viscoelasticity coefficient.

Description

本発明は、化学・物理・生化学・薬学・材料など分野で、大気中や圧電素子の両側または片側が溶液に浸された状態で物質の吸着量測定や物性評価に用いられるセンサーを使用し、物質の質量や膜厚及び粘弾性係数の測定方法に関する。   The present invention uses a sensor used in the field of chemistry, physics, biochemistry, pharmacy, materials, etc., for measuring the amount of adsorption of a substance and evaluating physical properties in the atmosphere or with both sides or one side of a piezoelectric element immersed in a solution. The present invention relates to a method for measuring the mass and thickness of a substance and the viscoelastic coefficient.

QCMの吸着による周波数変化ΔFと質量負荷Δmの関係は以下の式で示すSauerbreyの式が用いられる。

Figure 2014134396
ところが、大気中や溶液中で粘弾性の性質を持つ物質の測定においては、Sauerbreyの式が成り立たず、従来のQCMで測定できる共振周波数FSの周波数変化は、吸着物質による質量負荷と吸着物質自体の粘弾性効果を含んだ値、溶液中では更に溶液の粘性負荷も一緒に測定してしまい、それぞれを分離することはできていなかった。
そこで、我々は特許文献1に記載した発明により、上記のFSの周波数変化量に含まれる3つの要素を分離し、それを周波数変化量としてそれぞれ算出することが可能なことを見出した。
しかしながら、分離した質量負荷による周波数変化から上記Sauerbreyの式を使って質量を換算することができても、分離した粘弾性要素から吸着物質の粘弾性係数を算出することはできなかった。
そこで、溶液中においては特許文献1記載の発明により、各N倍波の各周波数変化ΔFS,ΔF2、ΔFWを質量負荷項、粘性負荷項及び粘弾性項にそれぞれ分離して得られた各要素の周波数変化量から、物質の粘弾性を表す変数として一般的なG’、G”値を算出する方法を可能とする発明を先に提案した。(文献2:特願2010-235657)
しかし、文献2においては、溶液中の粘弾性物質の粘弾性係数の算出だけを可能とするもので大気中において適用することは出来なかった。また、溶液中の粘弾性物質の測定においても、粘弾性の性質をあまり持たない剛体に近い物質の場合は、粘弾性係数の算出が出来なかったり、精度よく係数を求めることが困難であった。
また、一般的な粘弾性計測装置では、1μm以下の厚みをもつ試料の粘弾性測定は困難とされていた。
なお、ここでいう剛体とは密に出来たたんぱく質やポリマー等をさすこととする。 The relationship between the frequency change ΔF due to the adsorption of the QCM and the mass load Δm is the Sauerbrey equation shown below.
Figure 2014134396
However, when measuring substances with viscoelastic properties in the atmosphere or in solution, the Sauerbrey equation does not hold, and the frequency change of the resonance frequency F S that can be measured by the conventional QCM The value including the viscoelastic effect of itself and the viscous load of the solution were also measured together in the solution, and each could not be separated.
Accordingly, the present invention described in Patent Document 1, to separate the three elements included in the frequency variation of the above F S, found that it is possible to calculate each of them as a frequency variation.
However, even if the mass can be converted from the change in frequency due to the separated mass load using the Sauerbrey equation, the viscoelastic coefficient of the adsorbed material cannot be calculated from the separated viscoelastic element.
Therefore, in the solution, the frequency changes ΔF S , ΔF 2 , and ΔF W of each N-th harmonic wave were obtained by separating the mass load term, the viscous load term, and the viscoelastic term, respectively, according to the invention described in Patent Document 1. An invention that enables a method for calculating general G ′ and G ″ values as variables representing viscoelasticity of a substance from the frequency variation of each element has been proposed previously (Reference 2: Japanese Patent Application No. 2010-235657).
However, in Document 2, it is only possible to calculate the viscoelastic coefficient of a viscoelastic substance in a solution and cannot be applied in the atmosphere. Also, in the measurement of viscoelastic substances in solution, it was difficult to calculate the viscoelastic coefficient or to obtain the coefficient with high precision in the case of a substance close to a rigid body that does not have viscoelastic properties. .
Moreover, with a general viscoelasticity measuring apparatus, it has been difficult to measure viscoelasticity of a sample having a thickness of 1 μm or less.
The rigid body here refers to a dense protein, polymer, or the like.

特許第4669749号公報Japanese Patent No. 4669649

そこで、本発明は、大気中、溶液中の両方での吸着物質の粘弾性の情報を、粘弾性を表すときに一般的に使われている係数G’ 、G”で表すことを可能とし、更には、粘弾性係数をリアルタイムで算出することが可能な物質の粘弾性係数の測定方法を提供することを目的とする。また、粘弾性の性質をあまり持たない剛体に近い物質の場合でも精度よく粘弾性係数を算出し、更に得られた粘弾性係数から、吸着物質の粘弾性の剛性率及び粘性率を算出し、同時に吸着物質の質量と膜厚を算出することを目的とする。
また、更に、従来の粘弾性計測装置では測定する事が困難な1μm以下の厚みの物質の粘弾性係数を算出する。
Therefore, the present invention makes it possible to represent the viscoelasticity information of the adsorbed material both in the atmosphere and in the solution by the coefficients G ′ and G ″ that are generally used for representing the viscoelasticity. It is another object of the present invention to provide a method for measuring the viscoelastic coefficient of a substance capable of calculating the viscoelastic coefficient in real time, and to provide accuracy even in the case of a substance close to a rigid body that does not have viscoelastic properties. The purpose is to calculate the viscoelastic coefficient well, calculate the viscoelastic rigidity and viscosity of the adsorbed material from the obtained viscoelastic coefficient, and simultaneously calculate the mass and film thickness of the adsorbed material.
Furthermore, the viscoelastic coefficient of a material having a thickness of 1 μm or less, which is difficult to measure with a conventional viscoelasticity measuring apparatus, is calculated.

上記課題を解決するために、本発明の第1の解決手段は、大気中又は溶液中に両側又は片側が浸される圧電素子を用いたセンサーによる、前記溶液中で前記圧電素子表面、或いは、前記圧電素子上に固定化された膜に物質が吸着されて膜が形成される系における粘弾性係数の測定方法であって、以下の(1)〜(4)のステップ、
(1)前記センサーの配置される測定環境変数αの変動範囲として、大気中の変動範囲又は溶液中の変動範囲を設定するステップ、
(2)測定時に前記センサーの基本波の共振周波数の変化ΔFS,1及びN倍波(N=3,5,7・・・)の共振周波数の変化ΔFS,Nを測定し、これらの値ΔFS,1及びΔFS,Nに基づいたN倍波の共振周波数の変化の補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))を得るステップ、
(尚、A(α)は、ΔFS,1及びΔFS,Nと、ΔFS,1及びΔFS,Nにより得られる半値半幅の変化ΔFW,1及びΔFW,Nと、変数αにより得られる関数とする。C(α,A(α))は、変数α及び関数A(α)に基づく関数とする。また、半値半幅FW,k(k=1,3,5,...N)とは、共振周波数FS,kのコンダクタンスの1/2のコンダクタンス値となる周波数F1,k,F2,k(F1,k<F2,k)を求め、共振周波数と前記周波数F1,k又はF2,kとの差をいうものとする。)
(3)測定したN倍波の共振周波数の変化ΔFS,N及びこれから得られた半値半幅の変化ΔFW,Nに対して、最小誤差となる前記N倍波の共振周波数の変化の補正関数ΔFS,N’(C(α,A(α)))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α)))となる値αを算出し、値αを関数C(α,A(α))に代入して値Cを算出するステップ、
(4)以下の場合に分けてステップ(イ)又は(ロ)により粘弾性係数G'及びG''を算出するステップ、
(イ)大気中の場合

Figure 2014134396
Figure 2014134396
(ロ)溶液中の場合
Figure 2014134396
Figure 2014134396
(上記(イ)又は(ロ)において、G’:貯蔵弾性率(動的弾性率)(Pa)、G”:損失弾性率(動的損失)(Pa)、ω:角周波数、h1:吸着した物質の厚み(m)、ρ1:吸着した物質の密度(kg/m3)、η2:溶液の粘度(Pa・s)、ρ2:溶液の密度(kg/m3)、rsw=ΔFs1/ΔFw1である。)
を含むことを特徴とする。
また、請求項2記載の本発明は、請求項1記載の発明において、前記関数A(α)は、以下の数5で表され、
Figure 2014134396
(イ)大気中の場合において、
前記関数C(α,A(α))は以下の数6で表され、
Figure 2014134396
前記補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))は、以下の数7及び数8で表され、
Figure 2014134396
Figure 2014134396
(ロ)溶液中の場合において、
前記関数C(α,A(α))は以下の数9で表され、
Figure 2014134396
補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))は、以下の数10及び数11で表され、
Figure 2014134396
Figure 2014134396
ることを特徴とする。
請求項3記載の本発明は、請求項2記載の発明において、前記N倍波は3倍波とし、大気中の場合の前記測定環境変数αは、9<α≦81であり、溶液中の場合の前記測定環境変数αは、1<α≦9であることを特徴とする。
請求項4記載の本発明は、請求項1乃至3の何れか1項に記載の発明において、前記粘弾性係数G'を使用し、前記物質の剛性率μ及び前記物質の粘性率ηの少なくとも何れかを測定することを特徴とする。
請求項5記載の本発明は、請求項4に記載の発明において、前記剛性率μ又は前記粘性率ηの測定は、前記共振周波数の変化ΔFS,1及び前記N倍波の共振周波数の変化ΔFS,Nの測定とともに行うことを特徴とする。
請求項6記載の本発明は、請求項1乃至5の何れか1項に記載の発明において、前記物質の質量と膜厚とを、前記粘弾性係数G'及びG''とともに算出することを特徴とする。
請求項7記載の本発明は、請求項1乃至6の何れか1項に記載の発明において、前記圧電素子は、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)であることを特徴とする。 In order to solve the above-mentioned problem, the first solving means of the present invention is the surface of the piezoelectric element in the solution by a sensor using a piezoelectric element immersed on the both sides or one side in the atmosphere or in the solution, or A method of measuring a viscoelastic coefficient in a system in which a film is formed by adsorbing a substance to a film fixed on the piezoelectric element, the following steps (1) to (4):
(1) A step of setting a fluctuation range in the atmosphere or a fluctuation range in a solution as a fluctuation range of the measurement environment variable α in which the sensor is arranged;
(2) the change [Delta] F S in the resonant frequency of the change in the resonant frequency of the fundamental wave of said sensor [Delta] F S, 1 and N harmonic (N = 3, 5, 7 · · ·), the N measured during the measurement, these ΔF S, N ′ (C (α, A (α)) of correction function of change in resonance frequency of N harmonic based on values ΔF S, 1 and ΔF S, N and correction function ΔF W of change in half width at half maximum , N ′ (C (α, A (α))
(Note that A (α) is determined by ΔF S, 1 and ΔF S, N , half-width changes ΔF W, 1 and ΔF W, N obtained by ΔF S, 1 and ΔF S , N and a variable α. C (α, A (α)) is a function based on the variable α and the function A (α), and the half width at half maximum F W, k (k = 1, 3, 5,... .N) is a frequency F 1, k , F 2, k (F 1, k <F 2, k ) that is a conductance value that is half the conductance of the resonance frequency F S, k. (The difference from the frequency F 1, k or F 2, k shall be said.)
(3) A correction function for a change in the resonance frequency of the N-th harmonic wave, which is a minimum error, with respect to the change ΔF S, N of the resonance frequency of the N-th harmonic wave and the change in half-width half width ΔF W, N obtained therefrom. ΔF S, N ′ (C (α, A (α))) and half-width change correction function ΔF W, N ′ (C (α, A (α))) Substituting into function C (α, A (α)) to calculate value C,
(4) calculating viscoelastic coefficients G ′ and G ″ according to step (b) or (b) separately for the following cases;
(I) In the atmosphere
Figure 2014134396
Figure 2014134396
(B) In solution
Figure 2014134396
Figure 2014134396
(In the above (a) or (b), G ′: storage elastic modulus (dynamic elastic modulus) (Pa), G ″: loss elastic modulus (dynamic loss) (Pa), ω: angular frequency, h 1 : Adsorbed substance thickness (m), ρ 1 : Adsorbed substance density (kg / m 3 ), η 2 : Solution viscosity (Pa · s), ρ 2 : Solution density (kg / m 3 ), r sw = ΔF s1 / ΔF w1 .)
It is characterized by including.
Further, in the present invention according to claim 2, in the invention according to claim 1, the function A (α) is expressed by the following equation (5):
Figure 2014134396
(I) In the case of the atmosphere,
The function C (α, A (α)) is expressed by the following formula 6,
Figure 2014134396
ΔF S, N ′ (C (α, A (α)) of the correction function and the correction function ΔF W, N ′ (C (α, A (α)) of the change in half width at half maximum are the following equations 7 and 8 and
Figure 2014134396
Figure 2014134396
(B) In solution,
The function C (α, A (α)) is expressed by the following formula 9,
Figure 2014134396
The correction function ΔF S, N ′ (C (α, A (α)) and the half-width half-width change correction function ΔF W, N ′ (C (α, A (α)) are expressed by the following equations 10 and 11. Represented by
Figure 2014134396
Figure 2014134396
It is characterized by that.
According to a third aspect of the present invention, in the second aspect of the present invention, the N harmonic is a third harmonic, and the measurement environment variable α in the atmosphere is 9 <α ≦ 81, In this case, the measurement environment variable α is 1 <α ≦ 9.
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the viscoelastic coefficient G ′ is used, and at least the rigidity μ of the substance and the viscosity η of the substance are at least. Any one of them is measured.
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the rigidity μ or the viscosity η is measured by changing the resonance frequency change ΔF S, 1 and the N harmonic resonance frequency. It is characterized by being carried out together with the measurement of ΔF S, N.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the mass and film thickness of the substance are calculated together with the viscoelastic coefficients G ′ and G ″. Features.
The present invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the piezoelectric element includes a crystal resonator, an APM (ACOUSTIC PLATE MODE SENSOR), and an FPW (FLEXURAL PLATE-WAVE SENSOR). Or SAW (SOURFACE ACOUSTIC-WAVE SENSOR).

従来は吸着による質量負荷と吸着物質の粘弾性の要素を含んだ共振周波数Fのみの測定しかできないため、粘弾性の情報を正確に得られなかった。また、特許文献1に提案した発明により質量、粘性、粘弾性の要素をそれぞれ分離して求めることが可能であったが、周波数変化量として表すことしかできなかった。
しかし、本発明によれば、大気中や溶液中で得られた各要素の周波数変化量から、粘弾性を表す変数として一般的なG'、G''値を算出する方法を可能とした。また、これにより、周波数変化量を測定中にリアルタイムで粘弾性係数G'、G''を求めることが可能となり、周波数以外の物理的情報(損失係数、弾性率、粘性率)も瞬時に取得できることから、吸着物質のより正確な物性評価が可能になった。
Since conventional can only measure only the resonance frequency F S containing elements of viscoelasticity of the adsorbed material with mass load due to the adsorption, it was not accurately obtained information viscoelasticity. Moreover, although it was possible to obtain | require and isolate | separate each element of mass, viscosity, and a viscoelasticity by the invention proposed in patent document 1, it was only able to represent it as a frequency change amount.
However, according to the present invention, it is possible to calculate a general G ′, G ″ value as a variable representing viscoelasticity from the frequency change amount of each element obtained in the air or in a solution. This also makes it possible to obtain viscoelastic coefficients G 'and G''in real time while measuring the amount of frequency change, and instantly acquire physical information other than frequency (loss coefficient, elastic modulus, viscosity). As a result, the physical properties of the adsorbed material can be evaluated more accurately.

本発明の基本波及びN倍波(N=3,5,7・・・)の周波数とコンダクタンスとの関係を示すグラフThe graph which shows the relationship between the frequency and conductance of the fundamental wave of this invention, and N times harmonic (N = 3,5,7 ...) 本発明の実施形態の装置構成の説明図Explanatory drawing of the device configuration of the embodiment of the present invention トリプシンの吸着による周波数変化Frequency change due to trypsin adsorption 文献2(特願2010-235657)による粘弾性解析結果Results of viscoelasticity analysis according to Reference 2 (Japanese Patent Application 2010-235657) 本発明による粘弾性解析結果Results of viscoelasticity analysis according to the present invention

本発明の測定原理について以下に説明する。
(1)図1に示すように、測定により得られる基本波及びN倍波(N=3,5・・・)のそれぞれについて、共振周波数をFs、共振周波数のコンダクタンス値の半分のコンダクタンス値を持つ半値周波数をF1,F2(F2>F)とし、これらのうち2つを使って求められる半値半幅をFW(FW=(F1-F2)/2、FW=F1-FS又はFW=FS-F2)とする。また、これらの値の前に「Δ」を付けたものは、所定の時間での変化量をいうものとする。
(1−a)大気中で測定をする場合、 R.LUCKLUM,et al(Meas,Sci.Techonl,12,1854-1864(2003))によれば、水晶振動子上に薄膜が形成されて、この薄膜による負荷の音響負荷インピーダンス(Acoustic Load Impedance)は、下記の式(4)となる。

Figure 2014134396
式(4)において、
Figure 2014134396
のとき、式(4)のtan項をテーラー展開し、式(4)は、下記の式(5)に近似することができる。
Figure 2014134396
更に、式(5)は、下記の式(6)に変形される。
Figure 2014134396
このとき水晶振動子の直列共振周波数の変化ΔFSは、下記の式(7)で表される。
Figure 2014134396
更に、半値半幅の変化ΔFWは、式(8)で表される。
Figure 2014134396
また式(7)及び式(8)から、F2の変化量ΔF2が求められる。
Figure 2014134396
(1−b)溶液中の測定の場合は、Martin らの伝送理論(V.E.Granstaff,S.J..Martin,J.Appl.Phys. 1994,75,1319)により粘弾性膜が溶液中で水晶振動子に吸着した場合のインピーダンスZの変化は、式(10)で表される。
Figure 2014134396
式(10)から、共振周波数の変化ΔFSは下記の式(11)、半値半幅の変化ΔFWの変化は式(12)で表される。
Figure 2014134396
Figure 2014134396
また、式(11)、式(12)から、周波数変化ΔF2が求められる。
Figure 2014134396
The measurement principle of the present invention will be described below.
(1) As shown in FIG. 1, for each of the fundamental wave and N harmonic wave (N = 3, 5,...) Obtained by measurement, the resonance frequency is F s and the conductance value is half the conductance value of the resonance frequency. F 1 , F 2 (F 2 > F 1 ), and the half width obtained using two of them is F W (F W = (F 1 -F 2 ) / 2, F W = F 1 -F S or F W = F S -F 2 ). Moreover, what added "(DELTA)" before these values shall say the variation | change_quantity in predetermined time.
(1-a) When measuring in the atmosphere, according to R. LUCKLUM, et al (Meas, Sci. Technol, 12, 1854-1864 (2003)) The acoustic load impedance of the load by this thin film is expressed by the following equation (4).
Figure 2014134396
In equation (4),
Figure 2014134396
, The tan term of equation (4) is Taylor-expanded and equation (4) can be approximated to equation (5) below.
Figure 2014134396
Further, the equation (5) is transformed into the following equation (6).
Figure 2014134396
At this time, the change ΔF S in the series resonance frequency of the crystal resonator is expressed by the following equation (7).
Figure 2014134396
Further, the change in half width at half maximum ΔF W is expressed by Expression (8).
Figure 2014134396
Also from equation (7) and (8), the change amount [Delta] F 2 of F 2 is obtained.
Figure 2014134396
(1-b) In the case of measurement in solution, the viscoelastic film is adsorbed on the quartz crystal resonator in solution according to Martin et al.'S transmission theory (VEGranstaff, SJ.Martin, J.Appl.Phys. 1994,75,1319). In this case, the change in impedance Z is expressed by equation (10).
Figure 2014134396
From the equation (10), the change ΔF S in the resonance frequency is expressed by the following equation (11), and the change in the half-value half width ΔF W is expressed by the equation (12).
Figure 2014134396
Figure 2014134396
Further, equation (11), from equation (12), the frequency change [Delta] F 2 is determined.
Figure 2014134396

(2)ここで膜の粘弾性のモデルとしてよく使用されるVoigt モデルをG’、G”に適用する。
弾性要素のばねGとダッシュポットηを並列に接続したVoigtモデルは、以下の式(14)で表される。

Figure 2014134396
(2) Here, the Voigt model often used as a model of the viscoelasticity of the film is applied to G ′ and G ″.
The Voigt model in which the spring G of the elastic element and the dashpot η are connected in parallel is expressed by the following equation (14).
Figure 2014134396

ここで、ωη=Cμとおくことで(C:定数、μ:剛性率、η:粘性率)、CはC=G″/G´の意味を持つことになる。粘弾性解析において、G″/G´はtanδ(損失係数)と呼ばれ、物体の硬軟性を表す粘弾性の変数であることは公知である。   Here, by setting ωη = Cμ (C: constant, μ: rigidity, η: viscosity), C has the meaning of C = G ″ / G ′. In viscoelastic analysis, G ″ / G ′ is called tan δ (loss factor), and is known to be a viscoelastic variable representing the hardness of an object.

その値Cを求める為に、まず、下記の関数A(α)(数25)により値Aを算出する。尚、α(整数に限定しない値とする。)は、センサーが配置される環境に応じて設定される測定環境変数であり、その変動範囲は、大気中と溶液中とで分けて設定されるものであれば特に制限はない。尚、以下に説明する例では、基本波と3倍波とを使用し、大気中の場合の測定環境変数αの設定範囲は、9<α≦81とし、溶液中の場合の測定環境変数αの設定範囲は、1<α≦9としている。
測定時に基本波の共振周波数の変化ΔFS,1及びN倍波(N=3,5,7・・・)の共振周波数の変化ΔFS,Nを測定し、これらの値から基本波の半値半幅の変化ΔFW,1とN倍波の半値半幅の変化ΔFW,Nを算出し、これらの値を、設定された範囲で測定環境変数αを変動させて(値αLとし、Lは1〜Mとする。)を、以下の式(数25)に代入し、M個の値A(α1〜M)を得る。尚、半値半幅FW,k(k=1,3,5,...N)とは、共振周波数FW,kのコンダクタンスの1/2のコンダクタンス値となる周波数F1,k,F2,k(F1,k<F2,k)を求め、共振周波数FW,kと前記周波数F1,k又はF2,kとの差をいうものとする。

Figure 2014134396
この式(数25)で求めた値A(αL)を、測定環境に応じて、下記の式(数26又は数27)に代入することで、関数C(α,A(α))の具体的な値CL(L=1〜M)値が算出される。
(3)大気中で粘弾性係数を測定する場合
Figure 2014134396
(4)溶液中で粘弾性係数を測定する場合
Figure 2014134396
(5)次に、関数C(α,A(α))から、値ΔFS,1及びΔFS,Nに基づいたN倍波の共振周波数の変化の補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))を求める。具体的には、求められた値CL(L=1〜M)を使用してN倍波の共振周波数変化ΔFS,Nの補正値ΔFS,N´と半値半幅の変化ΔFW,Nの補正値ΔFW,N´を求める。それぞれの補正値を求める式(数28又は数29)を以下に示す。尚、以下の式において、C(α,A(α))は具体的な値であるCL(L=1〜M)となる。
(5−a)大気中で粘弾性係数を測定する場合
Figure 2014134396
Figure 2014134396
(5−b)溶液中で粘弾性係数を測定する場合
Figure 2014134396
Figure 2014134396
(6)次に、測定して得られたN倍波の共振周波数の変化ΔFS,Nと半値半幅の変化ΔFW,N、更にα値を各測定雰囲気により各指定範囲内で設定して求めた補正値のΔFS,N´とΔFW,N´から、測定値と補正値の相対誤差を求める。
α値の設定毎の測定値と補正値の相対誤差を求め、その相対誤差が最小になったときのα値で求めた値A,値Cを使用して、測定環境に応じて下記の式(数32及び数33、又は、数34及び数35)から粘弾性係数を算出する。
(6−a)大気中で粘弾性係数を測定する場合
Figure 2014134396
Figure 2014134396
(6−b)溶液中で粘弾性係数を測定する場合
Figure 2014134396
Figure 2014134396
(式中においてG’:貯蔵弾性率(動的弾性率)(Pa)、G”:損失弾性率(動的損失)(Pa)、ω:角周波数、h1:吸着した物質の厚み(m)、ρ1:吸着した物質の密度(kg/m3)、η2:溶液の粘度(Pa・s)、ρ2:溶液の密度(kg/m3)、rsw=ΔFs1/ΔFw1である。) In order to obtain the value C, first, the value A is calculated by the following function A (α) (Equation 25). Α (a value not limited to an integer) is a measurement environment variable that is set according to the environment in which the sensor is arranged, and its variation range is set separately for the atmosphere and the solution. If it is a thing, there will be no restriction | limiting in particular. In the example described below, the fundamental wave and the third harmonic are used, the setting range of the measurement environment variable α in the atmosphere is 9 <α ≦ 81, and the measurement environment variable α in the solution is set. Is set to 1 <α ≦ 9.
Measure the change in the resonance frequency of the fundamental wave ΔF S, 1 and the change in the resonance frequency of the N harmonic (N = 3,5,7 ...) ΔF S, N during the measurement. Half-width change ΔF W, 1 and N half-wave half-width change ΔF W, N are calculated, and these values are changed within the set range by measuring environment variable α (value α L , L is and 1 to M. the) are substituted into equation (25) below, to obtain M values a (alpha 1 to M). The half width at half maximum F W, k (k = 1, 3, 5,... N) is the frequency F 1, k , F 2 at which the conductance value is 1/2 of the conductance at the resonance frequency F W, k. , k (F 1, k <F 2, k ) , and the difference between the resonance frequency F W, k and the frequency F 1, k or F 2, k is assumed.
Figure 2014134396
By substituting the value A (α L ) obtained by this equation (Equation 25) into the following equation (Equation 26 or 27) according to the measurement environment, the function C (α, A (α)) A specific value C L (L = 1 to M) is calculated.
(3) When measuring the viscoelastic coefficient in the atmosphere
Figure 2014134396
(4) When measuring the viscoelastic coefficient in solution
Figure 2014134396
(5) Next, from the function C (α, A (α)), the correction function ΔF S, N ′ (C of the resonance frequency change of the N harmonic based on the values ΔF S, 1 and ΔF S, N A correction function ΔF W, N ′ (C (α, A (α)) for the change of (α, A (α)) and the half width at half maximum is obtained. Specifically, the obtained value C L (L = 1˜1) is obtained. use M) N times wave of the resonant frequency change [Delta] F S, the correction value [Delta] F S of N, N 'change [Delta] F W with half width at half maximum, the correction value [Delta] F W of N, N' Request. the respective correction values The equation (Equation 28 or 29) to be obtained is shown below, where C (α, A (α)) is a specific value C L (L = 1 to M).
(5-a) When measuring the viscoelastic coefficient in the atmosphere
Figure 2014134396
Figure 2014134396
(5-b) When measuring viscoelastic coefficient in solution
Figure 2014134396
Figure 2014134396
(6) Next, the resonance frequency change ΔF S, N and the half-value half-width change ΔF W, N obtained by measurement, and the α value are set within each specified range according to each measurement atmosphere. A relative error between the measured value and the correction value is obtained from ΔF S, N ′ and ΔF W, N ′ of the obtained correction value.
Calculate the relative error between the measured value and the correction value for each α value setting, and use the values A and C calculated with the α value when the relative error is minimized. The viscoelastic coefficient is calculated from (Expression 32 and Expression 33, or Expression 34 and Expression 35).
(6-a) When measuring the viscoelastic coefficient in the atmosphere
Figure 2014134396
Figure 2014134396
(6-b) When measuring viscoelastic coefficient in solution
Figure 2014134396
Figure 2014134396
(In the formula, G ′: storage elastic modulus (dynamic elastic modulus) (Pa), G ″: loss elastic modulus (dynamic loss) (Pa), ω: angular frequency, h 1 : thickness of adsorbed substance (m ), Ρ 1 : Adsorbed substance density (kg / m 3 ), η 2 : Solution viscosity (Pa · s), ρ 2 : Solution density (kg / m 3 ), r sw = ΔF s1 / ΔF w1 .)

尚、上記の測定方法で使用される各N倍波のFS,F1,F2の周波数の測定は、発振回路による方法やインピーダンスアナライザーやネットワークアナライザーなど外部機器からの周波数掃引によって得られる方法など、共振周波数F、共振周波数のコンダクタンス値の半分のコンダクタンス値を持つ半値周波数F1,F2(F2>F1)であれば、その測定方法を制限するものではない。
測定方法に使用する装置についての例を挙げると、図2に示すように、圧電素子を備えたセンサー1をネットワークアナライザー2を介して、ネットワークアナライザー2の制御手段、測定手段、CPU等の演算手段及びメモリ等の記憶手段を備えたパソコン等の制御手段3に接続して構成する。尚、図示した例では、センサー1の温度調整を行うために、ペルチェ素子等の温度制御手段4をセンサー1の下面に備え、温度制御手段4を調整するための温度調整手段5を、同様に制御手段3により制御する構成としている。
また、上記説明した式では、基本波と3倍波を使用したが、1,3,5,7・・・N倍波の何れか2つであれば、本発明を使用することができる。
Note that the frequency measurement of F S , F 1 , F 2 of each N harmonic used in the above measurement method is a method obtained by an oscillation circuit method or a frequency sweep from an external device such as an impedance analyzer or network analyzer. As long as the resonance frequency F s and the half-value frequencies F 1 and F 2 (F 2 > F 1 ) having a conductance value that is half the conductance value of the resonance frequency, the measurement method is not limited.
As an example of an apparatus used for the measurement method, as shown in FIG. 2, a sensor 1 having a piezoelectric element is connected to a network analyzer 2 via a network analyzer 2, a control means for the network analyzer 2, a measurement means, an arithmetic means such as a CPU. And a control means 3 such as a personal computer provided with a storage means such as a memory. In the illustrated example, in order to adjust the temperature of the sensor 1, the temperature control means 4 such as a Peltier element is provided on the lower surface of the sensor 1, and the temperature adjustment means 5 for adjusting the temperature control means 4 is similarly provided. Control is performed by the control means 3.
In the above-described formula, the fundamental wave and the third harmonic wave are used. However, the present invention can be used as long as any two of 1, 3, 5, 7.

また、上記の方法により得られた値Cにより、ωη=Cμ(μ:剛性率、η:粘性率)の関係式から、剛性率μ及び粘性率ηの少なくとも何れかを測定することが可能となる。尚、上記値Cを求める演算、剛性率μ及び粘性率ηの少なくとも何れかの測定は、上記した共振周波数の変化ΔFS,1及び前記N倍波の共振周波数の変化ΔFS,Nの測定と同時に(リアルタイムに)行うことができる。
また、同様に、上記した式(数32〜35)により、吸着した物質の厚み(膜厚)(h 1(m))や吸着した物質の密度(ρ1(kg/m3))も同時に測定を行うことができる。
Further, from the value C obtained by the above method, it is possible to measure at least one of the rigidity μ and the viscosity η from the relational expression of ωη = Cμ (μ: rigidity, η: viscosity). Become. The calculation for obtaining the value C, and the measurement of at least one of the rigidity μ and the viscosity η are the measurement of the change ΔF S, 1 of the resonance frequency and the change ΔF S, N of the resonance frequency of the N harmonic. It can be done at the same time (in real time).
Similarly, the thickness (film thickness) (h 1 (m)) of the adsorbed substance and the density (ρ 1 (kg / m 3 )) of the adsorbed substance are also calculated by the above formula (Equations 32 to 35). Measurements can be made.

また、本発明において使用される圧電素子は、上記対象となる周波数を測定できるものであれば制限はなく、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)も使用することができる。   In addition, the piezoelectric element used in the present invention is not limited as long as it can measure the target frequency, and is a crystal resonator, APM (ACOUSTIC PLATE MODE SENSOR), FPW (FLEXURAL PLATE-WAVE SENSOR) or SAW. (SOURFACE ACOUSTIC-WAVE SENSOR) can also be used.

本実施例では、水晶振動子として、円形状の水晶板の両面それぞれの中央部に円形状の金電極を設けた構成のものを使用し、測定した周波数変化は、基本波と3倍波の周波数とした。尚、以下において付着されるPDMSは、東レ・ダウコーニング社製のSylgard184を使用し、エリプソメーターは、ULVAC社製、Laser Ellipsometer、ESM−1ATを使用した。また、本測定で使用する装置の測定には、図2で示す構成のものを使用した。
(1)大気中の測定例
PDMS膜をスピンコーターで27MHzの水晶振動子の片面全体に薄膜を形成したものをサンプル1〜3とし、また、同じ水晶振動子で薄膜が形成されていないものとを用意し、サンプル1〜3の基本波と3倍波の共振周波数FS,1及びFS,3を測定して記憶手段に記憶した。併せて、基本波と3倍波の半値半幅FW,1及びFW,3を演算手段により求めて記憶手段に記憶した。また、基本波と3倍波の共振周波数の変化ΔFS,1及びΔFS,3並びに基本波と3倍波の半値半幅の変化ΔFW,1及びΔFW,3を求めるために、薄膜を形成していないものとの比較演算をして記憶手段により記憶した。
また、記憶手段に記憶された基本波と3倍波の共振周波数の変化ΔFS,1及びΔFS,3並びに基本波と3倍波の半値半幅の変化ΔFW,1及びΔFW,3を用いて、αLとして、9<αL≦81とし、その範囲で1000等分した値を各αLとして、下記の式(数36)に代入し、A(αL)を求め記憶手段に記憶した。

Figure 2014134396
下記式(数37)にαLを代入してCLを演算手段により求め記憶手段に記憶した。
Figure 2014134396
下記式(数38及び数39)にCLを代入して、3倍波の共振周波数変化ΔFS,3の補正値ΔFS,3´と半値半幅の変化ΔFW,3の補正値ΔFW,3´を演算手段により求め、記憶手段に記憶した。
Figure 2014134396
Figure 2014134396
そして、得られた補正値と、実測値との相対誤差を求めて、その相対誤差が最小になったときのαLから、値A及びCを決定して、上記実施の形態で説明した方法により、粘弾性係数として貯蔵弾性率(動的弾性率)G’(Pa)、損失弾性率(動的損失)G”(Pa)、損失係数(tanδ)及び膜厚(nm)を算出した。その結果を表1に示す。比較の為に同試料の膜厚をエリプソ測定により測定した結果も表1に示した。 In this example, a crystal unit having a circular gold electrode provided at the center of each of both surfaces of a circular crystal plate is used, and the measured frequency change is a fundamental wave and a third harmonic wave. The frequency. In addition, PDMS attached in the following used Sylgard 184 manufactured by Toray Dow Corning, and the ellipsometer used was ULVAC, Laser Ellipsometer, ESM-1AT. Moreover, the thing of the structure shown in FIG. 2 was used for the measurement of the apparatus used by this measurement.
(1) Measurement example in the atmosphere Samples 1 to 3 were obtained by forming a thin film on one side of a 27 MHz quartz crystal resonator with a spin coater, and a thin film was not formed with the same quartz crystal resonator. Were prepared, and the resonance frequencies F S , 1 and F S , 3 of the fundamental wave and the third harmonic wave of Samples 1 to 3 were measured and stored in the storage means. At the same time, the half-widths FW, 1 and FW , 3 of the fundamental wave and the triple wave were obtained by the computing means and stored in the storage means. In addition, in order to obtain the changes ΔF S , 1 and ΔF S , 3 of the resonance frequency of the fundamental wave and the third harmonic, and the changes ΔF W, 1 and ΔF W , 3 of the half wave half width of the fundamental wave and the third harmonic, A comparison operation with the one not formed was performed and stored by the storage means.
Further, the changes ΔF S , 1 and ΔF S , 3 of the resonance frequency of the fundamental wave and the third harmonic stored in the storage means and the changes ΔF W, 1 and ΔF W , 3 of the half width at half maximum of the fundamental wave and the third harmonic are stored. Then, as α L , 9 <α L ≦ 81, and values obtained by equally dividing 1000 within that range are substituted as α L into the following equation (Equation 36) to obtain A (α L ) in the storage means. I remembered it.
Figure 2014134396
Substituting α L into the following equation (Equation 37), C L was obtained by the calculation means and stored in the storage means.
Figure 2014134396
Substituting C L into the following equations (Equation 38 and Equation 39), the correction value ΔF S, 3 ′ of the resonance frequency change ΔF S, 3 of the third harmonic wave and the correction value ΔF W of the half-value half width ΔF W, 3 , 3 'was obtained by the calculation means and stored in the storage means.
Figure 2014134396
Figure 2014134396
Then, the relative error between the obtained correction value and the actual measurement value is obtained, and the values A and C are determined from α L when the relative error is minimized, and the method described in the above embodiment Thus, storage elastic modulus (dynamic elastic modulus) G ′ (Pa), loss elastic modulus (dynamic loss) G ″ (Pa), loss coefficient (tan δ), and film thickness (nm) were calculated as viscoelastic coefficients. The result is shown in Table 1. For comparison, the result of measuring the film thickness of the sample by ellipsometry is also shown in Table 1.

Figure 2014134396
Figure 2014134396

この結果から、本発明によれば、周波数変化を測定することにより、大気中における100nm以下の薄膜の粘弾性値が算出することができることがわかった。また、用意した試料に対して、エリプソ測定を行った結果、本発明の方法で算出した膜厚とほぼ同じ値であることから、従来の粘弾性測定装置では、1μm以下の厚みの物質の粘弾性測定は難しいが、本発明の方法を使用することで、1μm以下の厚みの物質の粘弾性測定が十分可能であることがわかった。   From this result, according to the present invention, it was found that the viscoelastic value of a thin film of 100 nm or less in the atmosphere can be calculated by measuring the frequency change. Further, as a result of performing ellipso measurement on the prepared sample, it is almost the same value as the film thickness calculated by the method of the present invention. Therefore, in the conventional viscoelasticity measuring apparatus, the viscosity of a substance having a thickness of 1 μm or less is obtained. Although it is difficult to measure elasticity, it has been found that viscoelasticity measurement of a substance having a thickness of 1 μm or less is sufficiently possible by using the method of the present invention.

(2)溶液中の測定例
27MHzの水晶振動子の金電極を洗浄した後、セル底部にセンサーとして固定した。そして、セル内に500μLのBuffer溶液を入れて、周波数変化が安定するのを待ち、周波数が安定したら、1mg/mLトリプシン(タンパク質)を5μLを添加して、金電極への吸着量を測定した。
測定及び演算手段による演算により、図3に示すように、基本波の共振周波数((a)ΔFS,1)及び半値半幅((b)ΔFW,1)、並びに3倍波の共振周波数((c)ΔFS,3)及び半値半幅((d)ΔFW,3)について測定又は演算により求め記憶手段に記憶した。
また、リアルタイムで記憶手段に記憶された基本波と3倍波の共振周波数の変化ΔFS,1及びΔFS,3並びに基本波と3倍波の半値半幅の変化ΔFW,1及びΔFW,3を用いて、αLとして、1<αL≦9とし、その範囲を1000等分した値を各αLとして、下記の式(数40)に代入し、A(αL)を求め記憶手段に記憶した。

Figure 2014134396
下記式(数41)にαLを代入してCLを演算手段により求め記憶手段に記憶した。
Figure 2014134396
下記式(数42及び数43)にCLを代入して、3倍波の共振周波数変化ΔFS,3の補正値ΔFS,3´と半値半幅の変化ΔFW,3の補正値ΔFW,3´を演算手段により求め、記憶手段に記憶した。
Figure 2014134396
Figure 2014134396
そして、得られたそれぞれの補正値と、対応する実測値との相対誤差を求めて、その相対誤差が最小になったときのαLから、値A及びCを決定して、上記実施の形態で説明した方法により、粘弾性係数として貯蔵弾性率(動的弾性率)G’(Pa)、損失弾性率(動的損失)G”(Pa)、損失係数(tanδ)及び膜厚(nm)を算出した。
以上の測定、演算をリアルタイムで行い、その結果を図5に示した。
トリプシンは振動のエネルギー損失をほとんど起こさない剛体に近い物質の為、特許文献2(特願2010-235657)に開示した従来の解析方法では解析できない。このことを示すために、貯蔵弾性率(動的弾性率)G’(Pa)及び損失弾性率(動的損失)G”(Pa)の解析を文献2に開示される方法により行った例を図4に示した。
図4及び図5を比較すれば明らかな通り、本発明の方法では、1800秒辺りまで粘弾性の解析ができているのに対して、特許文献1開示の方法では、300秒を経過した時点で解析ができないことがわかった。 (2) Measurement Example in Solution After washing the gold electrode of the 27 MHz crystal resonator, it was fixed as a sensor on the cell bottom. Then, 500 μL of Buffer solution was put into the cell, and it waited for the frequency change to stabilize. When the frequency was stabilized, 5 μL of 1 mg / mL trypsin (protein) was added, and the amount adsorbed on the gold electrode was measured. .
As shown in FIG. 3, the resonance frequency of the fundamental wave ((a) ΔF S, 1 ) and the half width at half maximum ((b) ΔF W, 1 ), and the resonance frequency of the third harmonic wave ( (c) ΔF S, 3 ) and half width at half maximum ((d) ΔF W, 3 ) were obtained by measurement or calculation and stored in the storage means.
Further, the changes ΔF S , 1 and ΔF S , 3 of the fundamental and third harmonic resonance frequencies stored in the memory means in real time and the changes ΔF W, 1 and ΔF W , half-widths of the fundamental and third harmonics, Using 3 as α L , 1 <α L ≦ 9, and values obtained by dividing the range into 1000 equal parts are assigned as α L to the following equation (Equation 40) to obtain and store A (α L ) Memorized in the means.
Figure 2014134396
Substituting α L into the following equation (Equation 41), C L was obtained by the calculation means and stored in the storage means.
Figure 2014134396
Substituting C L into the following equations (Equation 42 and Equation 43), the correction value ΔF S, 3 ′ of the resonance frequency change ΔF S, 3 of the third harmonic and the correction value ΔF W of the change of half width at half maximum ΔF W, 3 , 3 'was obtained by the calculation means and stored in the storage means.
Figure 2014134396
Figure 2014134396
Then, a relative error between each of the obtained correction values and the corresponding actual measurement value is obtained, and values A and C are determined from α L when the relative error is minimized, and the above embodiment is performed. According to the method described above, the storage elastic modulus (dynamic elastic modulus) G ′ (Pa), loss elastic modulus (dynamic loss) G ″ (Pa), loss coefficient (tan δ), and film thickness (nm) are used as viscoelastic coefficients. Was calculated.
The above measurement and calculation were performed in real time, and the results are shown in FIG.
Since trypsin is a substance close to a rigid body that hardly causes vibrational energy loss, it cannot be analyzed by the conventional analysis method disclosed in Patent Document 2 (Japanese Patent Application No. 2010-235657). In order to show this, an example of analyzing the storage elastic modulus (dynamic elastic modulus) G ′ (Pa) and the loss elastic modulus (dynamic loss) G ″ (Pa) by the method disclosed in Reference 2 This is shown in FIG.
As is clear from comparison between FIGS. 4 and 5, the method of the present invention can analyze viscoelasticity up to about 1800 seconds, whereas the method disclosed in Patent Document 1 has a time when 300 seconds have passed. It was found that analysis was not possible.

1 セル
2 測定手段(ネットワークアナライザー)
3 制御手段
4 温度制御手段
5 温調調整手段
6 第1の演算部
7 第2の演算部
8 表示部
1 cell 2 measuring means (network analyzer)
DESCRIPTION OF SYMBOLS 3 Control means 4 Temperature control means 5 Temperature control adjustment means 6 1st calculating part 7 2nd calculating part 8 Display part

Claims (7)

大気中または溶液中に両側又は片側が浸される圧電素子を用いたセンサーによる、前記圧電素子表面、或いは、前記圧電素子上に固定化された膜に物質が吸着されて膜が形成される系における粘弾性係数の測定方法であって、以下の(1)〜(4)のステップ、
(1)前記センサーの配置される測定環境変数αの変動範囲として、大気中の変動範囲又は溶液中の変動範囲を設定するステップ、
(2)測定時に前記センサーの基本波の共振周波数の変化ΔFS,1及びN倍波(N=3,5,7・・・)の共振周波数の変化ΔFS,Nを測定し、これらの値ΔFS,1及びΔFS,Nに基づいたN倍波の共振周波数の変化の補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))を得るステップ、
(尚、A(α)は、ΔFS,1及びΔFS,Nと、ΔFS,1及びΔFS,Nにより得られる半値半幅の変化ΔFW,1及びΔFW,Nと、変数αにより得られる関数とする。C(α,A(α))は、変数α及び関数A(α)に基づく関数とする。また、半値半幅FW,k(k=1,3,5,...N)とは、共振周波数Fs,kのコンダクタンスの1/2のコンダクタンス値となる周波数F1,k,F2,k(F1,k<F2,k)を求め、共振周波数と前記周波数F1,k又はF2,kとの差をいうものとする。)
(3)測定したN倍波の共振周波数の変化ΔFS,N及びこれから得られた半値半幅の変化ΔFW,Nに対して、最小誤差となる前記N倍波の共振周波数の変化の補正関数ΔFS,N’(C(α,A(α)))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α)))となる値αを算出し、値αを関数C(α,A(α))に代入して値Cを算出するステップ、
(4)以下の場合に分けてステップ(イ)又は(ロ)により粘弾性係数G'及びG''を算出するステップ、
(イ)大気中の場合
Figure 2014134396
Figure 2014134396
(ロ)溶液中の場合
Figure 2014134396
Figure 2014134396
(上記(イ)又は(ロ)において、G’:貯蔵弾性率(動的弾性率)(Pa)、G”:損失弾性率(動的損失)(Pa)、ω:角周波数、h1:吸着した物質の厚み(m)、ρ1:吸着した物質の密度(kg/m3)、η2:溶液の粘度(Pa・s)、ρ2:溶液の密度(kg/m3)、rsw=ΔFs1/ΔFw1である。)
を含むことを特徴とする粘弾性係数の測定方法。
A system in which a substance is adsorbed on the surface of the piezoelectric element or a film fixed on the piezoelectric element by a sensor using a piezoelectric element that is immersed in the atmosphere or in a solution on both sides or one side. A method for measuring a viscoelastic coefficient in the following steps (1) to (4):
(1) A step of setting a fluctuation range in the atmosphere or a fluctuation range in a solution as a fluctuation range of the measurement environment variable α in which the sensor is arranged;
(2) the change [Delta] F S in the resonant frequency of the change in the resonant frequency of the fundamental wave of said sensor [Delta] F S, 1 and N harmonic (N = 3, 5, 7 · · ·), the N measured during the measurement, these ΔF S, N ′ (C (α, A (α)) of correction function of change in resonance frequency of N harmonic based on values ΔF S, 1 and ΔF S, N and correction function ΔF W of change in half width at half maximum , N ′ (C (α, A (α))
(Note that A (α) is determined by ΔF S, 1 and ΔF S, N , half-width changes ΔF W, 1 and ΔF W, N obtained by ΔF S, 1 and ΔF S , N and a variable α. C (α, A (α)) is a function based on the variable α and the function A (α), and the half width at half maximum F W, k (k = 1, 3, 5,... .N) is a frequency F 1, k , F 2, k (F 1, k <F 2, k ) that is a conductance value that is half the conductance of the resonance frequency F s, k. (The difference from the frequency F 1, k or F 2, k shall be said.)
(3) A correction function for a change in the resonance frequency of the N-th harmonic wave, which is a minimum error, with respect to the change ΔF S, N of the resonance frequency of the N-th harmonic wave and the change in half-width half width ΔF W, N obtained therefrom. ΔF S, N ′ (C (α, A (α))) and half-width change correction function ΔF W, N ′ (C (α, A (α))) Substituting into function C (α, A (α)) to calculate value C,
(4) calculating viscoelastic coefficients G ′ and G ″ according to step (b) or (b) separately for the following cases;
(I) In the atmosphere
Figure 2014134396
Figure 2014134396
(B) In solution
Figure 2014134396
Figure 2014134396
(In the above (a) or (b), G ′: storage elastic modulus (dynamic elastic modulus) (Pa), G ″: loss elastic modulus (dynamic loss) (Pa), ω: angular frequency, h 1 : Adsorbed substance thickness (m), ρ 1 : Adsorbed substance density (kg / m 3 ), η 2 : Solution viscosity (Pa · s), ρ 2 : Solution density (kg / m 3 ), r sw = ΔF s1 / ΔF w1 .)
A method for measuring a viscoelastic coefficient.
前記関数A(α)は、以下の数5で表され、
Figure 2014134396
(イ)大気中の場合において、
前記関数C(α,A(α))は以下の数6で表され、
Figure 2014134396
前記補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))は、以下の数7及び数8で表され、
Figure 2014134396
Figure 2014134396
(ロ)溶液中の場合において、
前記関数C(α,A(α))は以下の数9で表され、
Figure 2014134396
補正関数のΔFS,N’(C(α,A(α))及び半値半幅の変化の補正関数ΔFW,N’(C(α,A(α))は、以下の数10及び数11で表され、
Figure 2014134396
Figure 2014134396
ることを特徴とする請求項1に記載の粘弾性係数の測定方法。
The function A (α) is expressed by the following formula 5,
Figure 2014134396
(I) In the case of the atmosphere,
The function C (α, A (α)) is expressed by the following formula 6,
Figure 2014134396
ΔF S, N ′ (C (α, A (α)) of the correction function and the correction function ΔF W, N ′ (C (α, A (α)) of the change in half width at half maximum are the following equations 7 and 8 and
Figure 2014134396
Figure 2014134396
(B) In solution,
The function C (α, A (α)) is expressed by the following formula 9,
Figure 2014134396
The correction function ΔF S, N ′ (C (α, A (α)) and the half-width half-width change correction function ΔF W, N ′ (C (α, A (α)) are expressed by the following equations 10 and 11. Represented by
Figure 2014134396
Figure 2014134396
The method for measuring a viscoelastic coefficient according to claim 1.
前記N倍波は3倍波とし、大気中の場合の前記測定環境変数αは、9<α≦81であり、溶液中の場合の前記測定環境変数αは、1<α≦9であることを特徴とする請求項2に記載の粘弾性係数の測定方法。   The N harmonic is a third harmonic, the measurement environment variable α in the atmosphere is 9 <α ≦ 81, and the measurement environment variable α in the solution is 1 <α ≦ 9. The method for measuring a viscoelastic coefficient according to claim 2. 前記粘弾性係数G'を使用し、前記物質の剛性率μ及び前記物質の粘性率ηの少なくとも何れかを測定することを特徴とする請求項1乃至3の何れか1項に記載の物質の粘弾性係数の測定方法。   4. The substance according to claim 1, wherein at least one of a rigidity modulus μ of the substance and a viscosity coefficient η of the substance is measured using the viscoelastic coefficient G ′. 5. Measuring method of viscoelastic coefficient. 前記剛性率μ又は前記粘性率ηの測定は、前記共振周波数の変化ΔFS,1及び前記N倍波の共振周波数の変化ΔFS,Nの測定とともに行うことを特徴とする請求項4に記載の物質の粘弾性係数の測定方法。 5. The measurement of the rigidity μ or the viscosity η is performed together with the measurement of the change ΔF S, 1 of the resonance frequency and the change ΔF S, N of the resonance frequency of the N harmonic wave. Method for measuring the viscoelastic coefficient of a material. 前記物質の質量と膜厚とを、前記粘弾性係数G'及びG''とともに算出することを特徴とする請求項1乃至5の何れか1項に記載の物質の粘弾性係数の測定方法。   The method for measuring a viscoelastic coefficient of a substance according to any one of claims 1 to 5, wherein the mass and the film thickness of the substance are calculated together with the viscoelastic coefficients G 'and G' '. 前記圧電素子は、水晶振動子、APM(ACOUSTIC PLATE MODE SENSOR)、FPW(FLEXURAL PLATE-WAVE SENSOR)又はSAW(SOURFACE ACOUSTIC-WAVE SENSOR)であることを特徴とする請求項1乃至6の何れか1項に記載の物質の粘弾性係数の測定方法。   7. The piezoelectric element according to claim 1, wherein the piezoelectric element is a crystal resonator, an APM (ACOUSTIC PLATE MODE SENSOR), an FPW (FLEXURAL PLATE-WAVE SENSOR), or a SAW (SOURFACE ACOUSTIC-WAVE SENSOR). A method for measuring a viscoelastic coefficient of the substance described in the item.
JP2013001219A 2013-01-08 2013-01-08 Method for measuring the viscoelastic coefficient of a substance Active JP6016644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001219A JP6016644B2 (en) 2013-01-08 2013-01-08 Method for measuring the viscoelastic coefficient of a substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001219A JP6016644B2 (en) 2013-01-08 2013-01-08 Method for measuring the viscoelastic coefficient of a substance

Publications (2)

Publication Number Publication Date
JP2014134396A true JP2014134396A (en) 2014-07-24
JP6016644B2 JP6016644B2 (en) 2016-10-26

Family

ID=51412799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001219A Active JP6016644B2 (en) 2013-01-08 2013-01-08 Method for measuring the viscoelastic coefficient of a substance

Country Status (1)

Country Link
JP (1) JP6016644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118513A (en) * 2019-01-22 2020-08-06 株式会社アルバック Method and device for measuring layer thickness and viscoelastic coefficient
CN114563307A (en) * 2022-03-04 2022-05-31 浙江大学 Device and method for measuring viscosity coefficient of fluid by using step wheel pendulum resonance method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251873A (en) * 2002-12-26 2004-09-09 Ulvac Japan Ltd Analytical method using oscillator
JP2004325257A (en) * 2003-04-24 2004-11-18 Ulvac Japan Ltd Analysis method using oscillator
JP2007010519A (en) * 2005-06-30 2007-01-18 Ulvac Japan Ltd Measuring method using quartz vibrator, and measuring instrument
WO2012053189A1 (en) * 2010-10-20 2012-04-26 株式会社アルバック Method of measuring viscoelasticity coefficients of material and device for measuring viscoelasticity coefficients of material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251873A (en) * 2002-12-26 2004-09-09 Ulvac Japan Ltd Analytical method using oscillator
JP2004325257A (en) * 2003-04-24 2004-11-18 Ulvac Japan Ltd Analysis method using oscillator
JP2007010519A (en) * 2005-06-30 2007-01-18 Ulvac Japan Ltd Measuring method using quartz vibrator, and measuring instrument
WO2012053189A1 (en) * 2010-10-20 2012-04-26 株式会社アルバック Method of measuring viscoelasticity coefficients of material and device for measuring viscoelasticity coefficients of material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118513A (en) * 2019-01-22 2020-08-06 株式会社アルバック Method and device for measuring layer thickness and viscoelastic coefficient
JP7201456B2 (en) 2019-01-22 2023-01-10 株式会社アルバック Method for measuring layer thickness and viscoelastic coefficient, and device for measuring layer thickness and viscoelastic coefficient
CN114563307A (en) * 2022-03-04 2022-05-31 浙江大学 Device and method for measuring viscosity coefficient of fluid by using step wheel pendulum resonance method
CN114563307B (en) * 2022-03-04 2023-11-24 浙江大学 Device and method for measuring fluid viscosity coefficient by using stepping wheel pendulum resonance method

Also Published As

Publication number Publication date
JP6016644B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5372263B2 (en) Method for measuring viscoelastic coefficient of substance and measuring device for viscoelastic coefficient of substance
Stewart et al. Direct piezoelectric measurement: The berlincourt method
JP6355924B2 (en) A method for determining multilayer thin film deposition on piezoelectric crystals.
Cassiède et al. Impedance analysis for characterizing the influence of hydrostatic pressure on piezoelectric quartz crystal sensors
Regmi et al. Molecular weight sensing properties of ionic liquid-polymer composite films: Theory and experiment
JP2007010519A (en) Measuring method using quartz vibrator, and measuring instrument
Bai et al. Using quartz crystal microbalance for field measurement of liquid viscosities
JP6016644B2 (en) Method for measuring the viscoelastic coefficient of a substance
Liu et al. Basic principles of QCM-D
Hu et al. QCM mass sensitivity analysis based on finite element method
WO2011114684A1 (en) Method for measuring viscoelasticity and device for measuring viscoelasticity
Smith et al. Determining the effects of vapor sorption in polymers with the quartz crystal microbalance/heat conduction calorimeter
Stachiv et al. Achievable accuracy of resonating nanomechanical systems for mass sensing of larger analytes in GDa range
Kao et al. Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays
Zainuddin et al. Verification of quartz crystal microbalance array using vector network analyzer and OpenQCM
JP5591167B2 (en) Measuring method of water content
Marxer et al. Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer
Kocourek et al. Evaluation of elastic properties of DLC layers using resonant ultrasound spectroscopy and AFM nanoindentation
Fischerauer et al. A simple model for the effect of nonuniform mass loading on the response of gravimetric chemical sensors
Kazantseva et al. The role of shear modulus and viscosity of thin organic films on the adsorption response of QCM sensors
Ilg et al. Determination of frequency and temperature dependent mechanical material properties by means of an Inverse Method
Viala et al. Identification and monitoring of the material properties of a complex shaped part using a FEMU-3DVF method: Application to wooden rhombicuboctahedron
RU2298781C2 (en) Device for measuring gas moisture
Hempel et al. 5D-2 Application of a Portable RF Impedance Spectrum Analyzer for the Investigation of Lateral Field Excited Acoustic Wave Sensors in a Liquid Environment
Magni Thermally controlled microbalance for contamination monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6016644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250