JP2014134315A - Filler for heat exchanger - Google Patents

Filler for heat exchanger Download PDF

Info

Publication number
JP2014134315A
JP2014134315A JP2013001319A JP2013001319A JP2014134315A JP 2014134315 A JP2014134315 A JP 2014134315A JP 2013001319 A JP2013001319 A JP 2013001319A JP 2013001319 A JP2013001319 A JP 2013001319A JP 2014134315 A JP2014134315 A JP 2014134315A
Authority
JP
Japan
Prior art keywords
heat exchange
eliminator
filler
fillers
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013001319A
Other languages
Japanese (ja)
Inventor
Kenzo Shiraishi
健蔵 白石
Isao Okamoto
勲 岡本
Yuta Kinugasa
祐太 絹笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuken Kogyo Co Ltd
Original Assignee
Kuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuken Kogyo Co Ltd filed Critical Kuken Kogyo Co Ltd
Priority to JP2013001319A priority Critical patent/JP2014134315A/en
Publication of JP2014134315A publication Critical patent/JP2014134315A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a filler used for gas-liquid heat exchange and capable of suppressing a liquid droplet of a liquid-phase heat exchange medium from scattering to outside without need of an eliminator as a separate component by allowing a part of a filter to function as the eliminator.SOLUTION: An eliminator portion 12 is formed on an end side portion that is a gas-phase heat exchange medium outlet of a filler 10, and a non-abutment portion 13 is provided between a heat exchange portion 11 of the filler 10 and the eliminator portion 12 thereof. In a state of integrally superimposing a plurality of fillers 10, an air flow passage 14 is generated among the eliminator portions 12 of this filler group, and a cavity is generated among the non-abutment portions 13 of the fillers. It is, therefore, possible to collect liquid droplets transported while being carried on a gas-phase heat exchange medium passing through the air flow passage 14 by contacting the liquid droplets with surfaces of the eliminator portions 12, to ensure flowing down liquid derived from the liquid droplets and generated on the surfaces of the eliminator portions 12 via the cavity to outside, and to suppress the liquid from scattering as new liquid droplets on the air flow passage 14.

Description

本発明は、冷却塔等の熱交換装置における熱交換部分として用いられる熱交換装置用充填材に関する。   The present invention relates to a heat exchange device filler used as a heat exchange part in a heat exchange device such as a cooling tower.

一般に、工場や空気調和設備などで循環使用する水の冷却を目的として屋外に設置される冷却塔には、冷却塔内部の熱交換部分で空気と水を直接接触させ、水と空気の温度差を利用する熱伝達すなわち顕熱による冷却作用、及び、水自体の蒸発すなわち潜熱(蒸発熱)による冷却作用を合せ持つ開放式冷却塔と、冷却塔内部の熱交換器で空気と循環水とを直接接触させずに間接熱交換させる密閉式冷却塔とがある。   Generally, for cooling towers installed outdoors for the purpose of cooling water used for circulation in factories and air conditioning equipment, air and water are brought into direct contact at the heat exchange part inside the cooling tower, resulting in a temperature difference between the water and air. The open-type cooling tower that combines the heat transfer utilizing sensible heat, that is, the cooling action by sensible heat, and the cooling action by evaporation of the water itself, that is, latent heat (evaporation heat), and the air and circulating water in the heat exchanger inside the cooling tower There are closed cooling towers that exchange heat indirectly without direct contact.

これらの冷却塔では、開放式冷却塔の場合は循環水、密閉式冷却塔の場合は熱交換器外表面に散布されて潜熱による冷却効果を付加する散布水が、それぞれ直接大気と接触して一部蒸発しつつ熱交換するため、多数の充填材が配設され、各充填材表面に沿って循環水や散布水を広く膜状に流下させることで外気との接触を生じやすくし、熱交換効率を高める仕組みが用いられていた。   In these cooling towers, circulating water in the case of open type cooling towers, and in the case of closed type cooling towers, sprayed water that is sprayed on the outer surface of the heat exchanger and adds a cooling effect due to latent heat is in direct contact with the atmosphere. A large number of fillers are arranged to exchange heat while partially evaporating, and circulating water and sprayed water flow down in a film form along the surface of each filler, making it easier to make contact with the outside air. A mechanism to increase exchange efficiency was used.

こうした冷却塔においては、大量の循環水や散布水が空気流と交差して流れることから、熱交換部分を通過した後の空気は水蒸気を多く含むだけでなく、充填材に沿って流れる循環水や散布水の水滴を含む場合があり、これらが空気と共にファンを通過して冷却塔外部に飛散する現象が生じていた。こうした水滴の飛散は、周囲環境へ水中の雑菌を拡散させるおそれのある点が近年指摘されるなど、あまり好ましくないことであり、冷却塔を使用する上での大きな問題として、対策が強く求められていた。   In such a cooling tower, a large amount of circulating water and spray water flow intersecting the air flow, so the air after passing through the heat exchange part contains not only a lot of water vapor but also the circulating water flowing along the packing material. And water droplets of sprayed water may be included, and the phenomenon of these passing through the fan together with air and scattering outside the cooling tower has occurred. Such splashing of water droplets is not so desirable, as it has been pointed out in recent years that there is a possibility of spreading germs in the water to the surrounding environment, and countermeasures are strongly demanded as a major problem when using cooling towers. It was.

このような水滴の冷却塔外への飛散を防止するために、従来から、表面を水が流下する充填材群の空気出口側にエリミネータを設けて、水滴のさらに下流側への到達を抑えた冷却塔が種々用いられている。このようなエリミネータを用いた冷却塔の一例としては、特開2001−208486号公報や特開2007−24464号公報に開示されるものがある。   In order to prevent such water droplets from splashing outside the cooling tower, an eliminator has been provided on the air outlet side of the filler group where water flows down the surface to suppress the arrival of water droplets further downstream. Various cooling towers are used. As an example of a cooling tower using such an eliminator, there are those disclosed in Japanese Patent Application Laid-Open Nos. 2001-208486 and 2007-24464.

特開2001−208486号公報JP 2001-208486 A 特開2007−24464号公報JP 2007-24464 A

従来の冷却塔は前記各特許文献に示される構成とされ、エリミネータにより冷却塔外部への水滴の飛散は抑えられるものの、充填材とは別の部品であるエリミネータを新たに設けることに伴い、部品としてのエリミネータのコストが冷却塔の導入コストに加わることとなる。また、追加されるエリミネータは熱交換に直接寄与しない一方で、設置スペースを必要とすることから、水と空気との接触をもたらす充填材の大きさをエリミネータを用いない従前の場合と同様のものとして、熱交換性能を維持しようとすると、例えば単純にエリミネータの設置スペース分、冷却塔のサイズ増大を余儀なくされ、冷却塔全体のコスト上昇を招いてしまうという課題を有していた。   The conventional cooling tower is configured as shown in each of the above patent documents, and although the scattering of water droplets to the outside of the cooling tower can be suppressed by the eliminator, the eliminator which is a part different from the filler is newly provided. The cost of the eliminator is added to the cost of introducing the cooling tower. In addition, since the added eliminator does not directly contribute to heat exchange, it requires installation space, so the size of the filler that brings water into contact with air is the same as in the previous case where no eliminator is used. If the heat exchange performance is to be maintained, for example, the size of the cooling tower is simply increased by the installation space of the eliminator, and the cost of the entire cooling tower is increased.

さらに、エリミネータの取付け支持に係る制約から、充填材群とエリミネータとの間には隙間が介在する場合があり、こうした隙間があると、そこから水滴がエリミネータをバイパスする形でファン側に達する場合があり、外部への水滴飛散の完全な抑制が難しくなるという課題を有していた。   Furthermore, due to restrictions on the mounting support of the eliminator, there may be a gap between the filler group and the eliminator. If such a gap exists, water droplets will reach the fan side in a form that bypasses the eliminator. There is a problem that it becomes difficult to completely suppress the splashing of water droplets to the outside.

この他、従来のエリミネータでは、回収した水分を適切に流下させられない場合があり、こうした場合、水の滞留を招くことから、水の滞留に伴ってスケールが発生しやすくなり、スケールが滞積したり、スケールが原因となって金属部分の腐食が進行し、それらに対するメンテナンスの手間やコストがさらに生じるという課題を有していた。   In addition, the conventional eliminator may not allow the collected water to flow down properly.In such a case, the water is retained, so that the scale is likely to occur as the water stays and the scale is stagnant. In other words, the corrosion of the metal part has progressed due to the scale, and there has been a problem that maintenance work and cost for the metal part further arise.

本発明は前記課題を解消するためになされたもので、気液の熱交換に使用される充填材の一部がエリミネータの機能を果たすようにして、別部品としてのエリミネータを必要とせずに、排出される気相熱交換媒体と液相熱交換媒体の液滴を適切に分離し、外部への液滴の飛散を抑制できる熱交換装置用充填材を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problem, so that a part of the filler used for gas-liquid heat exchange fulfills the function of an eliminator, and without requiring an eliminator as a separate part, It is an object of the present invention to provide a filler for a heat exchange device that can appropriately separate the droplets of the gas phase heat exchange medium and the liquid phase heat exchange medium to be discharged and suppress the scattering of the droplets to the outside.

本発明に係る熱交換装置用充填材は、表面に所定の凹凸を繰返しのパターン形状として多数設けた略板状体からなり、起立させた複数を重ねて一体化させた状態で熱交換装置の一部として配設され、前記凹凸のある表面部分に沿って流下する液相の熱交換媒体と、当該液相熱交換媒体の流下方向と直交する向きに流れる気相の熱交換媒体とを直接接触させて熱交換させる、熱交換装置用の充填材において、当該充填材が、略矩形状とされ、少なくとも前記凹凸のある領域を熱交換部とされると共に、前記熱交換装置の一部として配設される状態で気相熱交換媒体の流出側となる端辺部に、前記熱交換部における前記凹凸とは異なる所定の凹凸が前記端辺方向に沿って繰返すパターン形状のエリミネータ部を形成され、前記充填材の熱交換部とエリミネータ部との間に、充填材が複数重ねられて一体化された状態で隣合う充填材と相互に当接しない非当接部を、エリミネータ部のある端辺と平行に連続させて設け、前記エリミネータ部の各凹凸が、前記端辺から前記非当接部及び熱交換部のある側に向って下がる傾斜を伴って連続する形状として形成され、前記充填材が、エリミネータ部における凹凸の位置関係が互いに入れ替った、対となる形状の他の充填材と交互に重ねられて複数を一体化された状態で、隣合う充填材のエリミネータ部同士が凸部と凹部の裏側凸部分とを接合させつつ、凹部と凸部の裏側凹部分との間に気相熱交換媒体を通過させる気流通路部を生じさせ、且つ、隣合う充填材における非当接部の間に、前記端辺と平行に連続する空隙部を生じさせるものである。   The filler for a heat exchange device according to the present invention is composed of a substantially plate-like body provided with a large number of predetermined irregularities on the surface as a repeated pattern shape. A liquid phase heat exchange medium disposed as a part and flowing down along the uneven surface portion and a gas phase heat exchange medium flowing in a direction perpendicular to the flow direction of the liquid phase heat exchange medium In the filler for a heat exchange device that is brought into contact and exchanges heat, the filler has a substantially rectangular shape, and at least the uneven region is used as a heat exchange part, and as a part of the heat exchange device A pattern-shaped eliminator is formed on the end side that is the outflow side of the gas-phase heat exchange medium in a state of being arranged, and the predetermined unevenness different from the unevenness in the heat exchange portion is repeated along the end side direction. And a heat exchange part of the filler A non-contact portion that does not contact each other with the adjacent filler in a state where a plurality of fillers are stacked and integrated is provided in parallel with the end of the eliminator portion. Each unevenness of the eliminator part is formed as a continuous shape with an inclination descending from the end side toward the side where the non-contact part and the heat exchange part are located, and the filling material is a position of the unevenness in the eliminator part. In a state in which the relationship is interchanged with each other and the other fillers in a pair of shapes are alternately overlapped and integrated into a plurality, the eliminator parts of the adjacent fillers are the convex part and the convex part on the back side of the concave part. An air flow passage portion that allows the gas phase heat exchange medium to pass between the concave portion and the concave portion on the back side of the convex portion while being bonded, and between the non-contact portion in the adjacent filler, It creates voids that continue in parallel.

このように本発明によれば、熱交換装置の一部をなす充填材の気相熱交換媒体出口側となる端辺部に、所定の凹凸を有するエリミネータ部を形成すると共に、充填材における熱交換部とエリミネータ部との間には非当接部を設け、複数の充填材を重ねて一体化した状態では、この充填材群における各エリミネータ部の凹凸が組合わさって、気相熱交換媒体を通過させられる気流通路部が生じる一方、隣合う充填材の非当接部の間には空隙部を生じさせ、各気流通路部から空隙部に液体が流れ込み、さらに液体が空隙部を流下可能としている。これにより、熱交換のために通風される気相熱交換媒体が気流通路部を通過する中、気相熱交換媒体に乗って運ばれる液相熱交換媒体の液滴をエリミネータ部の凹凸表面に接触させて、液滴をエリミネータ部で回収可能となり、さらにエリミネータ部における凹凸の表面に生じた液滴由来の液体を気流通路部から空隙部を通じて外部へ確実に流下させ、気流通路部に液体を滞留させないようにすることができ、滞留した液体が新たに液滴として飛散するのを抑えられ、通風に伴う液滴の熱交換装置外部への拡散と、これに伴う悪影響を抑えられる。また、充填材とは別途にエリミネータを設置することなく液滴の飛散を抑制できることから、熱交換装置における液滴飛散防止機能導入に係る各種コストの抑制が図れる。   As described above, according to the present invention, the eliminator portion having the predetermined unevenness is formed on the end side of the filler forming the part of the heat exchange device on the gas phase heat exchange medium outlet side, and the heat in the filler is formed. In a state where a non-contact portion is provided between the exchange portion and the eliminator portion and a plurality of fillers are stacked and integrated, the concavities and convexities of each eliminator portion in this filler group are combined to form a gas phase heat exchange medium An airflow passage that allows the air to pass through is generated, and a gap is formed between the non-contacting portions of the adjacent fillers, so that liquid can flow from each airflow passage to the gap, and liquid can flow down the gap. It is said. As a result, while the gas phase heat exchange medium that is ventilated for heat exchange passes through the airflow passage part, the liquid phase heat exchange medium droplets carried on the gas phase heat exchange medium are transferred to the uneven surface of the eliminator part. The droplets can be collected by the eliminator unit by contacting the liquid, and the liquid derived from the droplets generated on the uneven surface of the eliminator unit is surely allowed to flow down from the airflow passage part to the outside through the gap part, and the liquid is allowed to flow It is possible to prevent the liquid from staying, and it is possible to prevent the staying liquid from being newly scattered as liquid droplets, and to suppress the diffusion of liquid droplets to the outside of the heat exchange device due to ventilation and the adverse effects associated therewith. In addition, since it is possible to suppress droplet scattering without installing an eliminator separately from the filler, it is possible to reduce various costs related to the introduction of the droplet scattering prevention function in the heat exchange device.

また、本発明に係る熱交換装置用充填材は必要に応じて、前記エリミネータ部が、凸部の裏側凹部分に囲まれた空間部分及び凹部に囲まれた空間部分の各横断面形状が略台形状となる凹凸パターンを有する形状に形成され、前記充填材が複数重ねられて一体化された状態で、隣合う充填材のエリミネータ部の凹部と凸部の裏側凹部分との間に生じる前記気流通路部の横断面形状が略六角形とされるものである。   Further, the filler for a heat exchange device according to the present invention has, as necessary, the cross-sectional shape of the space portion surrounded by the back side concave portion of the convex portion and the space portion surrounded by the concave portion as the eliminator portion is approximately. Formed in a shape having a concavo-convex pattern that becomes a trapezoidal shape, in a state where a plurality of the fillers are stacked and integrated, the gap generated between the concave portion of the eliminator portion of the adjacent filler and the back side concave portion of the convex portion The cross-sectional shape of the airflow passage portion is substantially hexagonal.

このように本発明によれば、エリミネータ部の凹凸を、複数充填材の一体化状態で気流通路部の横断面形状が略六角形をなすように、凹部や凸部裏側に囲まれる空間部分の横断面形状が略台形となる形状として形成することにより、気相熱交換媒体の通過する気流通路部周囲の壁面が略六角形に配置されて強度的に安定した状態を維持でき、気流の力を受けても振動等を発生させにくく、適切にエリミネータとしての機能を発揮させられると共に、充填材使用状態でエリミネータ部の各面を斜面もしくは垂直面として、エリミネータ部に付着した液相熱交換媒体の液滴の流下を促し、液滴を気流通路部から速やかに非当接部間の空隙部へ移行させることができ、気流通路部における液滴の再飛散を確実に防止できる。   As described above, according to the present invention, the unevenness of the eliminator part is formed in the space part surrounded by the recesses and the back side of the convex part so that the cross-sectional shape of the airflow passage part is substantially hexagonal in a state where a plurality of fillers are integrated. By forming the cross-sectional shape as a substantially trapezoidal shape, the wall surface around the airflow passage section through which the gas phase heat exchange medium passes can be arranged in a substantially hexagonal shape and maintain a strong and stable state. The liquid-phase heat exchange medium that adheres to the eliminator part with the surfaces of the eliminator part as slopes or vertical surfaces when the filler is in use, is less likely to generate vibration, etc. It is possible to prompt the liquid droplets to flow down, and to quickly transfer the liquid droplets from the airflow passage portion to the space between the non-contact portions, thereby reliably preventing the droplets from re-scattering in the airflow passage portion.

本発明の一実施形態に係る熱交換装置用充填材を用いた冷却塔の概略構成図である。It is a schematic block diagram of the cooling tower using the filler for heat exchange apparatuses which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換装置用充填材の正面図である。It is a front view of the filler for heat exchange devices concerning one embodiment of the present invention. 本発明の一実施形態に係る熱交換装置用充填材の右側面図である。It is a right view of the filler for heat exchange apparatuses which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換装置用充填材の左側面図である。It is a left view of the filler for heat exchange apparatuses which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換装置用充填材の平面図(図5(A))及び底面図(図5(B))である。It is a top view (Drawing 5 (A)) and a bottom view (Drawing 5 (B)) of a filler for heat exchange equipment concerning one embodiment of the present invention. 本発明の一実施形態に係る熱交換装置用充填材における右上部分の拡大正面図(図6(A))、拡大平面図(図6(B))、及び拡大右側面図(図6(C))である。The enlarged front view (FIG. 6 (A)) of the upper right part in the filler for heat exchange devices which concerns on one Embodiment of this invention (FIG. 6 (A)), an enlarged plan view (FIG. 6 (B)), and an enlarged right side view (FIG. 6 (C) )). 本発明の一実施形態に係る熱交換装置用充填材における右下部分の拡大正面図(図7(A))、拡大底面図(図7(B))、及び拡大右側面図(図7(C))である。An enlarged front view (FIG. 7 (A)), an enlarged bottom view (FIG. 7 (B)), and an enlarged right side view (FIG. 7 (FIG. 7 (B)) of the lower right portion of the filler for a heat exchange device according to an embodiment of the present invention. C)). 本発明の一実施形態に係る熱交換装置用充填材における右下部分の気流通路部連続方向から見た側面図(図8(A))、及び充填材の複数一体化状態説明図(図8(B))である。The side view (FIG. 8 (A)) seen from the air flow path part continuation direction of the lower right part in the filler for heat exchange apparatuses which concerns on one Embodiment of this invention, and multiple integrated state explanatory drawing of a filler (FIG. 8) (B)).

以下、本発明の一実施形態を前記図1ないし図8に基づいて説明する。本実施形態では、熱交換装置としての開放式冷却塔における、液相熱交換媒体である循環水と気相熱交換媒体である空気とを熱交換させる熱交換ユニットを構成する、充填材の例について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In this embodiment, an example of a filler that constitutes a heat exchange unit that exchanges heat between circulating water that is a liquid phase heat exchange medium and air that is a gas phase heat exchange medium in an open cooling tower as a heat exchange device. Will be described.

前記各図に示すように、本実施形態に係る充填材10は、強化プラスチック等を材料とする薄い略板状体として形成され、起立状態で多数重ねて一体化させて、冷却塔20の熱交換ユニット21をなすものである。   As shown in the respective drawings, the filler 10 according to the present embodiment is formed as a thin substantially plate-like body made of reinforced plastic or the like, and is stacked and integrated in a standing state so as to heat the cooling tower 20. The exchange unit 21 is formed.

本実施形態に係る充填材10を用いる冷却塔20は、循環水と空気とを熱交換させる充填材10製の熱交換ユニット21と、この熱交換ユニット21の上側に配設されて循環水を供給され、この循環水を熱交換ユニット21各部へ分配滴下させる上部水槽22と、熱交換部21下側に配設されて熱交換ユニット21を通過した循環水を回収する下部水槽23と、下部水槽23中央上方に配設されて熱交換ユニット21の各充填材10間に誘引通風で外気を通すファン24とを備える、公知の開放式冷却塔の構成である。   The cooling tower 20 using the filler 10 according to the present embodiment includes a heat exchange unit 21 made of the filler 10 for exchanging heat between the circulating water and air, and the circulating water disposed on the upper side of the heat exchange unit 21. An upper water tank 22 that distributes and drops this circulating water to each part of the heat exchange unit 21, a lower water tank 23 that is disposed below the heat exchange part 21 and collects the circulating water that has passed through the heat exchange unit 21, This is a configuration of a known open-type cooling tower provided with a fan 24 that is disposed above the center of the water tank 23 and allows the outside air to pass between the fillers 10 of the heat exchange unit 21 by an induced draft.

前記熱交換ユニット21は、多数の充填材10を重ねて一体化して形成され、前記ファン24下方の空間を挟んで下部水槽23上側に一対配設され、充填材10間の隙間に循環水を滴下されると共に横方向へ外気を通過させて、充填材10表面近傍で循環水と空気との直接熱交換を行わせる公知の構成であり、詳細な説明を省略する。   The heat exchanging unit 21 is formed by integrating a large number of fillers 10 and is disposed in a pair above the lower water tank 23 with a space below the fan 24 interposed therebetween. Circulating water is provided in a gap between the fillers 10. It is a well-known configuration in which outside air is passed in the horizontal direction while being dropped, and direct heat exchange between circulating water and air is performed in the vicinity of the surface of the filler 10, and detailed description thereof is omitted.

前記上部水槽22は、底部に多数の小孔を有する浅い箱状体で形成され、熱交換ユニット21の上側において、前記下部水槽23を出て冷凍機や空気調和機器等に通じる所定の循環経路を経由してきた循環水の供給を受け、この循環水を底部の多数の孔から熱交換ユニット21各部へ向けて一様に所定の水量で分配滴下させる公知の構成であり、詳細な説明を省略する。   The upper water tank 22 is formed of a shallow box-like body having a large number of small holes at the bottom, and on the upper side of the heat exchange unit 21, a predetermined circulation path that exits the lower water tank 23 and leads to a refrigerator, an air conditioner, and the like. This is a well-known configuration in which circulating water is supplied via the circulatory water, and this circulating water is distributed and dripped uniformly at a predetermined amount of water from a large number of holes at the bottom toward each part of the heat exchange unit 21, and detailed description thereof is omitted. To do.

前記下部水槽23は、固定設置される支持枠25上に配設され、流下した循環水を受けて一時貯溜しつつ回収するものであり、循環水減少時に補給される補給水の給水部(図示を省略)や、循環水の導入及び送出し用の管路(図示を省略)等をそれぞれ接続される公知の構成であり、詳細な説明を省略する。   The lower water tank 23 is disposed on a support frame 25 that is fixedly installed. The lower water tank 23 receives the circulating water that has flowed down and collects it while temporarily storing it. Is omitted), and pipes for introducing and delivering circulating water (not shown) are connected to each other, and detailed description thereof is omitted.

また、前記ファン24は、その下方で一対の熱交換ユニット21に挟まれた中央の空間を介して誘引通風で各熱交換ユニット21に横方向から外気を通し、熱交換ユニット21を横に通過した排気を上方へ吹出して冷却塔外に排出する公知のものであり、詳細な説明を省略する。   In addition, the fan 24 passes outside air from the lateral direction to each heat exchange unit 21 by a draft air through a central space sandwiched between the pair of heat exchange units 21 below and passes through the heat exchange unit 21 sideways. The exhaust is blown upward and discharged out of the cooling tower, and detailed description is omitted.

前記充填材10は、略矩形状とされ、中央部の大部分の領域を熱交換部11として、表面に所定の凹凸を繰返しのパターン形状として多数設けられる構成である。そして、冷却塔の一部(熱交換ユニット)として配設される状態で、気相熱交換媒体である空気の流出側となる充填材10の端辺部に、熱交換部11における前記凹凸とは異なる所定の凹凸が端辺方向に沿って繰返すパターン形状のエリミネータ部12を形成される。   The filler 10 has a substantially rectangular shape, and has a configuration in which a large portion of the central portion is used as the heat exchanging portion 11 and a large number of predetermined irregularities are provided on the surface as repeated pattern shapes. And in the state arrange | positioned as a part (heat exchange unit) of a cooling tower, the said unevenness | corrugation in the heat exchange part 11 is made into the edge part of the filler 10 used as the outflow side of the air which is a gaseous-phase heat exchange medium. The eliminator 12 having a pattern shape in which different predetermined irregularities are repeated along the edge direction is formed.

このエリミネータ部12は、詳細には、充填材10の熱交換ユニット21としての起立配設状態で、エリミネータ部12のある充填材端部から熱交換部11のある内方に進むほど下がる向きとなる傾斜をなすように、凸部12aが突条状に、凹部12bが溝状に、それぞれ所定長さ連続する、凹凸パターン形状とされる構成である。そして、これらの凹凸は、凸部12aの裏側凹部分に囲まれた空間部分及び凹部12bに囲まれた空間部分の各横断面形状がそれぞれ略台形状となるように形成される。   Specifically, the eliminator unit 12 is in a standing arrangement state as the heat exchange unit 21 of the filler 10, and the direction of the eliminator unit 12 is lowered as it proceeds from the end of the filler with the eliminator 12 to the inward of the heat exchange unit 11. The convex portion 12a has a ridge shape, and the concave portion 12b has a groove shape, each having a predetermined length, so as to form an inclined pattern. And these unevenness | corrugations are formed so that each cross-sectional shape of the space part enclosed by the back side recessed part part of the convex part 12a and the space part enclosed by the recessed part 12b may become substantially trapezoid shape, respectively.

エリミネータ部12において、繰返しパターンとなる凹凸の端辺方向における配置のピッチは一定であり、エリミネータとしての機能を適切に発揮させるために、端辺方向の100mmの範囲に凸部12a(又は凹部12b)の配設数が2ないし3となるようにピッチが設定される。また、凹凸の前記下がる向きとなる傾斜の角度は、水平方向から約30ないし60°とするのが好ましい。この傾斜の角度は、凹凸形状に係り、例えば、凹凸の大きさが大である、すなわち、充填材10が複数重ねられて一体化された状態で、隣合う充填材における凹部12bと凸部12aの裏側部分との間に生じる開口部分(後述する気流通路部14)の開口断面積が大きいほど、傾斜角度を大きくすることとなる。   In the eliminator unit 12, the pitch of the arrangement of the concave and convex portions to be a repetitive pattern in the end side direction is constant, and in order to appropriately function as an eliminator, the convex portion 12a (or the concave portion 12b) is within a range of 100 mm in the end side direction. ) Is set so that the number of arrangements is 2 to 3. In addition, it is preferable that the inclination angle of the concave / convex direction is about 30 to 60 ° from the horizontal direction. The angle of the inclination relates to the uneven shape, for example, the size of the unevenness is large, that is, in a state where a plurality of the fillers 10 are stacked and integrated, the recesses 12b and the protrusions 12a in the adjacent fillers. As the opening cross-sectional area of the opening portion (airflow passage portion 14 to be described later) generated between the rear side portion and the rear side portion of the opening increases, the inclination angle increases.

また、充填材10の熱交換部11とエリミネータ部12との間には、充填材10が複数重ねられて一体化された状態で、隣合う充填材と相互に当接しない非当接部13が、エリミネータ部12のある端辺部と略平行に連続して設けられる。   Further, between the heat exchange part 11 and the eliminator part 12 of the filler 10, a plurality of fillers 10 are stacked and integrated, and a non-contact part 13 that does not contact each other with adjacent fillers. Is provided continuously in parallel with the end side portion where the eliminator portion 12 is provided.

この非当接部13は、充填材10の成形の際に熱交換部11やエリミネータ部12などの他領域とは異なり、積極的に凹凸を付加されずに略平坦形状として形成されることで、隣合う充填材と互いに当接しない状態を得られるものである。   Unlike the other areas such as the heat exchanging portion 11 and the eliminator portion 12 when the filler 10 is molded, the non-contact portion 13 is formed as a substantially flat shape without positively adding irregularities. Thus, it is possible to obtain a state in which the adjacent fillers do not contact each other.

非当接部としては、この他、隣接する熱交換部又はエリミネータ部における凹凸の出没量を小さく抑えたものに相当する凹凸形状として形成したり、隣合う充填材との一体化に接着剤を用いる場合に、熱交換部又はエリミネータ部の凹凸と同じ凹凸形状としつつ接着剤を配置しない領域を端辺部と略平行に設定することで、接着剤の厚み分の隙間を生じさせて非当接状態を実現するようにしてもよい。   As the non-contact portion, in addition to this, it is formed as a concavo-convex shape corresponding to the amount of protrusions and depressions of the concavo-convex in the adjacent heat exchanging portion or eliminator portion, or an adhesive is used for integration with the adjacent filler. When using, by setting the area where the adhesive is not placed while having the same uneven shape as the unevenness of the heat exchange part or eliminator part, a gap corresponding to the thickness of the adhesive is generated to avoid improper application. You may make it implement | achieve a contact state.

充填材10は、少なくともエリミネータ部12の凹凸の位置関係が互いに入れ替った、対となる形状の他の充填材30と交互に重ねられて複数を一体化された状態で、冷却塔20の一部である熱交換ユニット21として配設される。なお、冷却塔20の熱交換ユニット21として、複数の充填材10、30を、相互の間隔保持用として形成されたスペーサ部15及びスペーサ受部16を接触させつつ並べて一体に組合せる構成は、公知のものであり、詳細な説明を省略する。   The filler 10 is one of the cooling towers 20 in a state in which a plurality of fillers 10 are alternately stacked and integrated with other fillers 30 having a pair of shapes in which the positional relationship of the concave and convex portions of the eliminator section 12 is interchanged. It is arrange | positioned as the heat exchange unit 21 which is a part. In addition, as the heat exchange unit 21 of the cooling tower 20, a configuration in which a plurality of fillers 10 and 30 are aligned and combined together while contacting the spacer portion 15 and the spacer receiving portion 16 that are formed for maintaining a mutual interval, Since it is a well-known thing, detailed description is abbreviate | omitted.

熱交換ユニット21としての充填材群は、熱交換部11の凹凸のある表面部分に沿って流下する液相の熱交換媒体としての循環水と、この循環水の流下方向と直交する横向きに流れる気相熱交換媒体としての空気とを直接接触させて熱交換させる仕組みである。   The filler group as the heat exchange unit 21 flows in the transverse direction orthogonal to the flowing direction of the circulating water as the liquid phase heat exchange medium flowing down along the uneven surface portion of the heat exchanging portion 11. It is a mechanism in which heat is exchanged by directly contacting air as a gas phase heat exchange medium.

熱交換ユニット21として一体化した状態(図8(B)参照)で、充填材10、30では、隣合う充填材のエリミネータ部12同士が凸部12aと凹部12bの裏側凸部分とを接触させつつ、凹部12bと凸部12aの裏側凹部分との間に空気を通過させる気流通路部14を生じさせている。   In the state integrated as the heat exchange unit 21 (see FIG. 8B), in the fillers 10 and 30, the eliminator parts 12 of the adjacent fillers contact the convex part 12a and the convex part on the back side of the concave part 12b. On the other hand, an airflow passage portion 14 that allows air to pass between the concave portion 12b and the back side concave portion of the convex portion 12a is generated.

この気流通路部14は、凸部12a(凹部12b)の繰返し配置のピッチに対応して生じることとなり、凸部12aの配設数が上記した端辺方向の100mmの範囲に2ないし3となるようにすると、隣合う充填材間で気流通路部14の出口となる側部開口が端辺方向の100mmの範囲に2ないし3生じる。   This air flow passage portion 14 is generated corresponding to the pitch of the repeated arrangement of the convex portions 12a (concave portions 12b), and the number of the convex portions 12a is 2 to 3 in the range of 100 mm in the end side direction described above. By doing so, two or three side openings are formed in the range of 100 mm in the edge direction between the adjacent fillers and serving as outlets of the airflow passage section 14.

こうして熱交換ユニット21の外気出口部分では、充填材10のエリミネータ部12により、充填材10の熱交換部11間を通過した外気をファン24側へ通す一方、熱交換部11間から飛散した水滴を捕えて、熱交換部11側から外気流出方向下流側へ水滴を飛散しにくくするエリミネータの機能が実現する。   Thus, at the outside air outlet portion of the heat exchange unit 21, the eliminator 12 of the filler 10 passes outside air that has passed between the heat exchangers 11 of the filler 10 to the fan 24 side, while water droplets scattered from between the heat exchangers 11. And an eliminator function that makes it difficult for water droplets to scatter from the heat exchanging portion 11 side to the downstream side in the outside air outflow direction is realized.

一方、隣合う充填材間には、非当接部13の位置で、エリミネータ部12のある端辺方向と平行で、且つ循環水の熱交換部11での流下方向と平行に連続する、所定幅の空隙部を生じさせており、この空隙部にエリミネータ部12で回収された水がエリミネータ部12から流れ込み、この水が空隙部を流下して熱交換ユニット21外に排出されることとなる。   On the other hand, between the adjacent fillers, at a position of the non-contact portion 13, a predetermined parallel that is parallel to the end direction of the eliminator portion 12 and parallel to the flow-down direction of the heat exchange portion 11 of the circulating water. A gap having a width is generated, and water collected by the eliminator 12 flows into the gap from the eliminator 12, and the water flows down the gap and is discharged out of the heat exchange unit 21. .

なお、熱交換ユニット21においては、エリミネータ部12の凹凸パターン形状に基づき、隣合う充填材のエリミネータ部12間に生じる気流通路部14の横断面形状は、略六角形となっている。すなわち、空気の通過する気流通路部14周囲の壁面が略六角形に配置されているため、強度的に安定した状態を維持でき、気流の力を受けても振動等を発生させにくく、適切にエリミネータとしての機能を発揮させられる。加えて、熱交換ユニット21として充填材を使用する状態では、エリミネータ部12の各面は斜面もしくは垂直面となることから、エリミネータ部12に付着した循環水の水滴の流下を促し、水滴を気流通路部14から速やかに非当接部13間の空隙部へ移行させることができ、気流通路部14における水滴の再飛散を確実に防止できる。   In the heat exchange unit 21, the cross-sectional shape of the airflow passage portion 14 generated between the eliminator portions 12 of adjacent fillers is substantially hexagonal based on the uneven pattern shape of the eliminator portion 12. That is, since the wall surface around the airflow passage portion 14 through which air passes is arranged in a substantially hexagonal shape, it can maintain a stable state in strength, hardly generate vibrations or the like even when subjected to the force of airflow, Can function as an eliminator. In addition, in the state where the filler is used as the heat exchange unit 21, each surface of the eliminator unit 12 is a slope or a vertical surface. It is possible to promptly shift from the passage portion 14 to the gap between the non-contacting portions 13, and reliably prevent re-scattering of water droplets in the airflow passage portion 14.

次に、前記構成に基づく熱交換装置用充填材を用いた冷却塔の使用状態について説明する。通常の冷却塔運転状態では、循環経路上の冷凍機や空気調和機器等で熱を吸収し、温まった冷却対象の液相熱交換媒体としての循環水が、循環経路の所定位置から取出されて冷却塔20に戻ると、循環水はまず上部水槽22に導入される。上部水槽22では、循環水は所定時間で水槽底部の複数の小孔を通過して、下側の熱交換ユニット21各部へ分配滴下される。   Next, the use state of the cooling tower using the heat exchanger packing material based on the above-described configuration will be described. Under normal cooling tower operation, heat is absorbed by a refrigerator or air conditioner on the circulation path, and the circulating water as the liquid-phase heat exchange medium to be cooled is taken out from a predetermined position in the circulation path. When returning to the cooling tower 20, the circulating water is first introduced into the upper water tank 22. In the upper water tank 22, the circulating water passes through a plurality of small holes at the bottom of the water tank in a predetermined time and is distributed and dropped to each part of the lower heat exchange unit 21.

熱交換ユニット21に達した循環水は、熱交換ユニット21をなす充填材10間の各隙間に進み、充填材10に沿って流下しつつ、ファン24による誘引通風で各充填材間に対して横方向に導入される外部の空気と接触する。循環水は、主に空気と循環水の温度差に伴う熱伝達(顕熱)による冷却作用、及び、循環水の蒸発熱(潜熱)による冷却作用により冷却される一方、熱交換により逆に空気温度は上昇することとなる。   The circulating water that has reached the heat exchange unit 21 proceeds to each gap between the fillers 10 forming the heat exchange unit 21, and flows down along the filler 10, while being drawn by the fan 24 to the space between the fillers. Contact with external air introduced laterally. Circulating water is cooled mainly by the cooling action due to heat transfer (sensible heat) accompanying the temperature difference between air and circulating water and the cooling action due to the evaporation heat (latent heat) of the circulating water, while the air is reversed by heat exchange. The temperature will rise.

こうして循環水は熱交換ユニット21における空気との熱交換を経て冷却された後、下部水槽23に達して回収される。下部水槽23に溜った循環水は、水槽出口から再び循環経路に入り、新たに冷凍機や空気調和機器等で熱を吸収した後、冷却塔20に戻って前記過程が繰返される。   Thus, the circulating water is cooled through heat exchange with the air in the heat exchange unit 21, and then reaches the lower water tank 23 and is collected. The circulating water accumulated in the lower water tank 23 enters the circulation path again from the water tank outlet, newly absorbs heat by a refrigerator, an air conditioner or the like, and then returns to the cooling tower 20 to repeat the above process.

一方、循環水と熱交換し温度を上昇させた空気は、ファン24の誘引により熱交換ユニット21をなす各充填材10間の隙間を横向きに通過する。このとき、各充填材10表面を流下する循環水の一部が水滴として、熱交換ユニット21を通過しようとする空気と共に、充填材10のエリミネータ部12間に生じた気流通路部14に達する。   On the other hand, the air whose temperature has been raised by exchanging heat with the circulating water passes laterally through the gaps between the fillers 10 constituting the heat exchange unit 21 by the attraction of the fan 24. At this time, a part of the circulating water flowing down the surface of each filler 10 reaches the airflow passage portion 14 generated between the eliminator portions 12 of the filler 10 together with the air that is about to pass through the heat exchange unit 21 as water droplets.

充填材10のエリミネータ部12により生じる気流通路部14においては、空気が熱交換ユニット21の外へ向けて進行する中、循環水から分離して空気により運ばれた水滴が、周囲のエリミネータ部12表面に付着して回収され、こうした水滴のファン24や冷却塔外への到達を抑えられる。そして、エリミネータ部12に付着した水滴は、エリミネータ部12の凹凸の傾きに基づいて流下して、隣合う充填材10の非当接部13に挟まれた空隙部に達する。この空隙部に達した水は,そのまま空隙部を流下して、充填材10間から下方の下部水槽23へ流れ落ちることとなる。   In the airflow passage portion 14 generated by the eliminator portion 12 of the filler 10, water drops separated from the circulating water and carried by the air while the air proceeds toward the outside of the heat exchange unit 21, and the surrounding eliminator portion 12. It is collected by adhering to the surface, and the arrival of these water droplets outside the fan 24 and the cooling tower can be suppressed. Then, the water droplets adhering to the eliminator section 12 flow down based on the inclination of the unevenness of the eliminator section 12 and reach a void portion sandwiched between the non-contacting portions 13 of the adjacent fillers 10. The water that has reached the gap portion flows down the gap portion as it is, and flows down from between the fillers 10 to the lower lower water tank 23.

こうして水を非当接部13間の空隙部に導いて、水がエリミネータ部12に付着したまま気流通路部14に留まる状態を阻止することで、エリミネータ部12でいったん回収された水が再び空気に運ばれて外部に飛散する事態を避けられる。また、エリミネータ部12に溜った水の蒸発により水溶成分が濃縮し、スケールの析出に至るようなこともなく、スケールの滞積に伴う抵抗増大や、スケールが原因となって進行する金属部分の腐食といった、スケールによる悪影響も防止でき、メンテナンスの手間やコストを抑えられる。   In this way, water is guided to the gap between the non-contacting portions 13 to prevent the water from staying in the airflow passage portion 14 while adhering to the eliminator portion 12, so that the water once recovered by the eliminator portion 12 is air again. You can avoid the situation of being transported to the outside and scattered. Further, the water component is concentrated by evaporation of the water accumulated in the eliminator section 12, and the scale does not lead to precipitation of the scale. The adverse effects of scale, such as corrosion, can be prevented, and maintenance effort and costs can be reduced.

なお、ファン24の誘引により熱交換部11の間の隙間を通過して、エリミネータ部12の間の気流通路部14に達した空気は、ここで、熱交換部11を流下する循環水と充填材10を介した非接触の乾式熱交換(顕熱交換)を行うこととなる。こうして、表面に沿った循環水の流下のないエリミネータ部12も、循環水の冷却に寄与できることで、充填材10において、エリミネータ部12を端部に形成した分、熱交換部の面積が従来より小さくなったとしても、エリミネータ部を用いない従来の場合と同等の熱交換能力を確保できる。一方、エリミネータ部12での乾式熱交換で、外気は湿度をそのままにして温度上昇する。   The air that has passed through the gap between the heat exchanging portions 11 by the fan 24 and reaches the airflow passage portion 14 between the eliminator portions 12 is filled with the circulating water flowing down the heat exchanging portion 11 here. Non-contact dry heat exchange (sensible heat exchange) through the material 10 is performed. Thus, since the eliminator part 12 without flowing down of the circulating water along the surface can also contribute to cooling of the circulating water, the area of the heat exchanging part is larger than that of the conventional in the filler 10 because the eliminator part 12 is formed at the end. Even if it becomes small, the heat exchange capability equivalent to the conventional case which does not use an eliminator part is securable. On the other hand, by the dry heat exchange in the eliminator unit 12, the temperature of the outside air rises with the humidity unchanged.

この他、エリミネータ部12で回収され、流下して下部水槽23に達した水は、下部水槽内の他の水と同様に水槽出口から再び循環水として循環経路に入って使用される。また、充填材10のエリミネータ部12間を通って熱交換ユニット21から出た空気は、ファン24により冷却塔外に排出され、排出空気は外気に拡散する。   In addition, the water collected by the eliminator unit 12 and flowing down to reach the lower water tank 23 is used again as circulating water from the water tank outlet as circulating water in the same manner as other water in the lower water tank. Further, the air that has passed through the eliminator section 12 of the filler 10 and has exited the heat exchange unit 21 is exhausted to the outside of the cooling tower by the fan 24, and the exhausted air diffuses into the outside air.

このように、本実施形態に係る熱交換装置用充填材では、冷却塔20の一部をなす充填材10の外気出口側となる端辺部分に、所定の凹凸を有するエリミネータ部12を形成すると共に、充填材10における熱交換部11とエリミネータ部12との間には非当接部13を設け、複数の充填材10を重ね合せて一体化した状態では、この充填材群における各エリミネータ部12の凹凸が組合わさって、空気を通過させられる斜め上向きの気流通路部14が生じる一方、隣合う充填材の非当接部13の間には空隙部を生じさせ、各気流通路部14から空隙部を通じて水を下方に流下可能としている。これにより、熱交換のために通風される空気が気流通路部14を通過する中、空気に乗って運ばれる水滴をエリミネータ部12の凹凸表面部に接触させて、水滴をエリミネータ部12で回収可能となり、さらにエリミネータ部12における凹凸の表面に生じた水を気流通路部14から空隙部を通じて外部へ確実に流下させ、気流通路部14に水を滞留させないようにすることができ、滞留した水が新たに水滴として飛散するのを抑えられ、通風に伴う水滴の熱交換ユニット21外への流出及び外気への拡散と、これに伴う悪影響を抑えられる。   As described above, in the heat exchanger packing material according to the present embodiment, the eliminator portion 12 having predetermined irregularities is formed on the end portion of the filler 10 forming part of the cooling tower 20 on the outside air outlet side. In addition, a non-contact portion 13 is provided between the heat exchanging portion 11 and the eliminator portion 12 in the filler 10, and in a state where a plurality of fillers 10 are overlapped and integrated, each eliminator portion in this filler group The twelve irregularities combine to form an obliquely upward airflow passage portion 14 through which air is allowed to pass, while a gap is formed between the non-contacting portions 13 of the adjacent fillers. Water can flow downward through the gap. As a result, while the air ventilated for heat exchange passes through the airflow passage portion 14, the water droplet carried on the air is brought into contact with the uneven surface portion of the eliminator portion 12, and the water droplet can be collected by the eliminator portion 12. In addition, the water generated on the uneven surface of the eliminator 12 can be surely allowed to flow down from the airflow passage 14 to the outside through the gap, and the water can be prevented from staying in the airflow passage 14. It is possible to prevent the water droplets from being newly scattered and to suppress the outflow of the water droplets accompanying the ventilation and the diffusion of the water droplets to the outside air and the adverse effects associated therewith.

また、気相熱交換媒体としての空気が充填材10間を進行する際、エリミネータ部12が充填材10の一部となっているため、充填材の熱交換部11間からエリミネータ部12間に空気が移動する際に、従来の別体である充填材とエリミネータとの間の隙間位置で、他の充填材間を通る空気と相互に影響を及ぼし合いながらエリミネータに達するようなことは一切生じず、空気のエリミネータ部12への移動に際しての圧力損失を必要最小限にでき、充填材における熱交換性能を適切に確保できる。   Further, when the air as the gas phase heat exchange medium travels between the fillers 10, the eliminator 12 is a part of the filler 10, and therefore, between the heat exchanger 11 of the filler and the eliminator 12. When the air moves, the gap between the filler and the eliminator, which is a conventional separate body, never reaches the eliminator while interacting with the air passing between the other fillers. In addition, the pressure loss during the movement of the air to the eliminator unit 12 can be minimized, and the heat exchange performance in the filler can be ensured appropriately.

なお、前記実施形態に係る熱交換装置用充填材においては、充填材10が冷却塔20の熱交換ユニット21として配設される状態で空気の流出側となる端辺部にのみ、エリミネータ部12を配設する構成としているが、これに限られず、空気等の気相熱交換媒体の流入側となる充填材の端辺部にも、水滴を表面に付着させて回収するエリミネータ部を形成する構成とすることもできる。この場合、ファン停止時などに、流入側の端辺部に近い熱交換部表面に沿って流れる循環水等の液相熱交換媒体の一部が、熱交換部の凹凸と衝突して水滴となり、通風がないために内部に引込まれずに充填材間より外部に飛び出してしまう事態を防ぐことができ、飛散する水滴による悪影響を未然に防止できる。   In the heat exchanger packing material according to the above-described embodiment, the eliminator unit 12 is provided only at the end portion on the air outflow side when the filler material 10 is disposed as the heat exchange unit 21 of the cooling tower 20. However, the present invention is not limited to this, and an eliminator unit that collects water droplets on the surface and collects them is also formed on the end side of the filler on the inflow side of the gas phase heat exchange medium such as air. It can also be configured. In this case, when the fan is stopped, a part of the liquid phase heat exchange medium such as circulating water that flows along the surface of the heat exchange section close to the edge on the inflow side collides with the unevenness of the heat exchange section to form water droplets. Since there is no ventilation, it is possible to prevent a situation in which the air does not get drawn into the interior and jumps out from between the fillers, and an adverse effect due to scattered water droplets can be prevented.

10 充填材
11 熱交換部
12 エリミネータ部
12a 凸部
12b 凹部
13 非当接部
14 気流通路部
15 スペーサ部
16 スペーサ受部
20 冷却塔
21 熱交換ユニット
22 上部水槽
23 下部水槽
24 ファン
25 支持枠
DESCRIPTION OF SYMBOLS 10 Filling material 11 Heat exchange part 12 Eliminator part 12a Convex part 12b Concave part 13 Non-contact part 14 Airflow path part 15 Spacer part 16 Spacer receiving part 20 Cooling tower 21 Heat exchange unit 22 Upper water tank 23 Lower water tank 24 Fan 25 Support frame

Claims (2)

表面に所定の凹凸を繰返しのパターン形状として多数設けた略板状体からなり、起立させた複数を重ねて一体化させた状態で熱交換装置の一部として配設され、前記凹凸のある表面部分に沿って流下する液相の熱交換媒体と、当該液相熱交換媒体の流下方向と直交する向きに流れる気相の熱交換媒体とを直接接触させて熱交換させる、熱交換装置用の充填材において、
当該充填材が、略矩形状とされ、少なくとも前記凹凸のある領域を熱交換部とされると共に、前記熱交換装置の一部として配設される状態で気相熱交換媒体の流出側となる端辺部に、前記熱交換部における前記凹凸とは異なる所定の凹凸が前記端辺方向に沿って繰返すパターン形状のエリミネータ部を形成され、
前記充填材の熱交換部とエリミネータ部との間に、充填材が複数重ねられて一体化された状態で隣合う充填材と相互に当接しない非当接部を、エリミネータ部のある端辺と平行に連続させて設け、
前記エリミネータ部の各凹凸が、前記端辺から前記非当接部及び熱交換部のある側に向って下がる傾斜を伴って連続する形状として形成され、
前記充填材が、エリミネータ部における凹凸の位置関係が互いに入れ替った、対となる形状の他の充填材と交互に重ねられて複数を一体化された状態で、隣合う充填材のエリミネータ部同士が凸部と凹部の裏側凸部分とを接合させつつ、凹部と凸部の裏側凹部分との間に気相熱交換媒体を通過させる気流通路部を生じさせ、且つ、隣合う充填材における非当接部の間に、前記端辺と平行に連続する空隙部を生じさせることを
特徴とする熱交換装置用充填材。
The surface having a rough surface is formed of a substantially plate-like body having a large number of predetermined irregularities on the surface as a repeated pattern shape, and is arranged as a part of a heat exchange device in a state in which a plurality of standing uprights are stacked and integrated. A liquid-phase heat exchange medium flowing down along a portion and a gas-phase heat exchange medium flowing in a direction orthogonal to the flow-down direction of the liquid-phase heat exchange medium are in direct contact with each other for heat exchange. In the filler
The filler has a substantially rectangular shape, and at least the uneven region is used as a heat exchanging portion, and becomes an outflow side of the gas phase heat exchange medium in a state of being disposed as a part of the heat exchange device. A predetermined concavo-convex different from the concavo-convex in the heat exchanging part is formed on the end side part, and a pattern-shaped eliminator part is repeated along the end side direction,
A non-contact portion that does not contact the adjacent filler in a state where a plurality of fillers are stacked and integrated between the heat exchanging portion and the eliminator portion of the filler, and the edge where the eliminator portion is located Provided in parallel with
Each concavo-convex portion of the eliminator part is formed as a continuous shape with an inclination descending from the end side toward the side where the non-contact part and the heat exchange part are located,
In the state in which the fillers are alternately overlapped with other fillers in a pair of shapes in which the positional relationship of the unevenness in the eliminator part is replaced with each other, and a plurality of the eliminator parts of the adjacent fillers are integrated with each other. Creates an airflow passage portion for allowing the gas phase heat exchange medium to pass between the concave portion and the back side concave portion of the convex portion while joining the convex portion and the convex portion on the back side of the concave portion. A filler for a heat exchanging device, characterized in that a gap portion continuous in parallel with the end side is generated between the contact portions.
前記請求項1に記載の熱交換装置用充填材において、
前記エリミネータ部が、凸部の裏側凹部分に囲まれた空間部分及び凹部に囲まれた空間部分の各横断面形状が略台形状となる凹凸パターンを有する形状に形成され、
前記充填材が複数重ねられて一体化された状態で、隣合う充填材のエリミネータ部の凹部と凸部の裏側凹部分との間に生じる前記気流通路部の横断面形状が略六角形とされることを
特徴とする熱交換装置用充填材。
In the heat exchanger filling material according to claim 1,
The eliminator part is formed in a shape having a concave-convex pattern in which each cross-sectional shape of the space part surrounded by the back side concave part of the convex part and the space part surrounded by the concave part is substantially trapezoidal,
In a state where a plurality of the fillers are stacked and integrated, the cross-sectional shape of the airflow passage portion formed between the concave portion of the eliminator portion of the adjacent filler and the back side concave portion of the convex portion is substantially hexagonal. A filler for a heat exchange device.
JP2013001319A 2013-01-08 2013-01-08 Filler for heat exchanger Pending JP2014134315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001319A JP2014134315A (en) 2013-01-08 2013-01-08 Filler for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013001319A JP2014134315A (en) 2013-01-08 2013-01-08 Filler for heat exchanger

Publications (1)

Publication Number Publication Date
JP2014134315A true JP2014134315A (en) 2014-07-24

Family

ID=51412737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013001319A Pending JP2014134315A (en) 2013-01-08 2013-01-08 Filler for heat exchanger

Country Status (1)

Country Link
JP (1) JP2014134315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076560A (en) * 2018-11-09 2020-05-21 空研工業株式会社 Cooling tower filler and filler manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034864U (en) * 1973-07-25 1975-04-14
JPS5044760U (en) * 1973-08-21 1975-05-06
JPS5286858U (en) * 1975-12-25 1977-06-29
JPS5339551U (en) * 1976-09-10 1978-04-06
JPS57124698A (en) * 1981-01-22 1982-08-03 Baltimore Aircoil Co Inc Angular grooved corrugated filler for cooling water column
JPS60243495A (en) * 1984-05-07 1985-12-03 ザ・マーレイ・クーリング・タワー・カンパニー Film charging sheet for cooling tower for water and film charging pack
US4801410A (en) * 1987-07-02 1989-01-31 The Marley Cooling Tower Company Plastic fill sheet for water cooling tower with air guiding spacers
JPH0293298A (en) * 1988-09-19 1990-04-04 Marley Cooling Tower Co Film charging pack
US5320651A (en) * 1993-06-28 1994-06-14 Munters Corporation Cross-flow film fill media with intergral drift eliminator
JP2005009750A (en) * 2003-06-18 2005-01-13 Ebara Shinwa Ltd Filler unit used in closed type cross flow heat exchange tower, closed type cross flow heat exchange tower loaded with filler unit, and replacement method for filler unit
CN102109298A (en) * 2009-12-28 2011-06-29 株式会社荏原制作所 Filling component for gas-liquid contact and cooling tower using filling component for gas-liquid contact

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034864U (en) * 1973-07-25 1975-04-14
JPS5044760U (en) * 1973-08-21 1975-05-06
JPS5286858U (en) * 1975-12-25 1977-06-29
JPS5339551U (en) * 1976-09-10 1978-04-06
JPS57124698A (en) * 1981-01-22 1982-08-03 Baltimore Aircoil Co Inc Angular grooved corrugated filler for cooling water column
JPS60243495A (en) * 1984-05-07 1985-12-03 ザ・マーレイ・クーリング・タワー・カンパニー Film charging sheet for cooling tower for water and film charging pack
US4801410A (en) * 1987-07-02 1989-01-31 The Marley Cooling Tower Company Plastic fill sheet for water cooling tower with air guiding spacers
JPH0293298A (en) * 1988-09-19 1990-04-04 Marley Cooling Tower Co Film charging pack
US5320651A (en) * 1993-06-28 1994-06-14 Munters Corporation Cross-flow film fill media with intergral drift eliminator
JP2005009750A (en) * 2003-06-18 2005-01-13 Ebara Shinwa Ltd Filler unit used in closed type cross flow heat exchange tower, closed type cross flow heat exchange tower loaded with filler unit, and replacement method for filler unit
CN102109298A (en) * 2009-12-28 2011-06-29 株式会社荏原制作所 Filling component for gas-liquid contact and cooling tower using filling component for gas-liquid contact
JP2011137606A (en) * 2009-12-28 2011-07-14 Ebara Corp Filler for gas-liquid contact and cooling tower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076560A (en) * 2018-11-09 2020-05-21 空研工業株式会社 Cooling tower filler and filler manufacturing method
JP7084622B2 (en) 2018-11-09 2022-06-15 空研工業株式会社 Filler for cooling tower and method of manufacturing filler

Similar Documents

Publication Publication Date Title
JP6338529B2 (en) Air to air heat exchanger
JP6383290B2 (en) Air to air heat exchanger
WO2015109113A2 (en) Dewpoint indirect evaporative cooler
CN108225095B (en) Cooling tower water distribution system
KR101203323B1 (en) Counter flow type of cooling tower having noise reduction structure
JP2014134315A (en) Filler for heat exchanger
KR101203361B1 (en) Counter flow type of cooling tower having improved cooling efficiency
KR101340172B1 (en) Cooling tower
JP2008128595A (en) Auxiliary cooling device for condenser
KR101121173B1 (en) filler for heat exchange and counter flow type cooling tower for preventing plume using the same
KR20090000684U (en) Splash grid filler
TWI738266B (en) Flue gas desulfurization device
KR101379006B1 (en) Water Division Cap and Recyling Evaporation Type Cooler Using The Same
JP7328490B2 (en) Gas-liquid contact module
JP3832056B2 (en) Water tower
JP2006189200A (en) Wet type cooling tower
JPH11287568A (en) Water drip dispersion preventing structure for dc/ac type cooling tower
JP2014098499A (en) Heat exchanger
JP6093318B2 (en) Cooling tower assembly unit
KR101410749B1 (en) Cooling water distribution device for combined heat exchanger-condensor for recovering condensed water from the evaporated water vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207