JP2014134017A - Vibration-proof bearing wall structure - Google Patents

Vibration-proof bearing wall structure Download PDF

Info

Publication number
JP2014134017A
JP2014134017A JP2013002357A JP2013002357A JP2014134017A JP 2014134017 A JP2014134017 A JP 2014134017A JP 2013002357 A JP2013002357 A JP 2013002357A JP 2013002357 A JP2013002357 A JP 2013002357A JP 2014134017 A JP2014134017 A JP 2014134017A
Authority
JP
Japan
Prior art keywords
vibration
bearing wall
mounting hole
load
wall structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013002357A
Other languages
Japanese (ja)
Inventor
Tamotsu Kawai
保 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRADE UP KK
Original Assignee
GRADE UP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRADE UP KK filed Critical GRADE UP KK
Priority to JP2013002357A priority Critical patent/JP2014134017A/en
Publication of JP2014134017A publication Critical patent/JP2014134017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration-proof bearing wall structure which is a flexible structure, which can resist even second and subsequent earthquakes including aftershocks, and which can suppress and relax a shock, an impact and a deterioration in earthquake resistance by vibration proofness of a vibration-proof implement attached to a fixing part of a face material, when being subjected to the shock, the impact and deformation, caused by the earthquakes.SOLUTION: In a vibration-proof bearing wall structure 1 in which a face material 3 is arranged on at least one surface of a frame-like part 2 in a structural skeleton and fixed by a fixing material 4, a vibration-proof implement 5 made of a vibration-proof material is interposed between the face material 3 and the fixing material 4.

Description

本発明は、防振耐力壁構造に係り、詳しくは、揺れや衝撃を吸収、緩和して、該耐力壁の止着部の耐震劣化を抑制し、1回目の地震の場合は勿論、その後の余震や、新たな2回目以降の数次の地震にも耐えることができる柔構造の防振耐力壁構造に関する。   The present invention relates to a vibration-proof load-bearing wall structure, and in particular, absorbs and relaxes vibrations and shocks to suppress seismic deterioration of the fastening portion of the load-bearing wall, and in the case of the first earthquake, of course, The present invention relates to a flexible anti-vibration load-bearing wall structure that can withstand aftershocks and new second and subsequent earthquakes.

近年、世界各地で巨大地震が頻発していることにより、防災意識が急激に高まっており、その一環として住宅の耐震性向上についても強く意識され、耐震性や耐震補強の強化策が推進されており、耐震性能については建築基準法に準拠した壁倍率で定義される一定の剛性を有することが求められている。   In recent years, awareness of disaster prevention has increased rapidly due to the frequent occurrence of huge earthquakes around the world, and as part of this, there has been a strong awareness of improving the earthquake resistance of houses, and measures to strengthen earthquake resistance and seismic reinforcement have been promoted. The seismic performance is required to have a certain rigidity defined by the wall magnification in accordance with the Building Standards Law.

しかしながら、現行の耐震基準に基づく剛構造の建築物は、耐力壁が塑性限界以上の力(変形)や衝撃や震動を受けると止着部位(耐力面材や釘等)が集中的に損傷、破損して致命的な耐震劣化が生じ易く、例え1回目の地震に耐えてもその後の余震や新たな2回目以降の地震に耐えられず、結局倒壊してしまう怖れが生じる。これらの危険性の高い建築物に居住し続けることの不安が常に付きまとっている。さらに、本来、震度7程度で倒壊しない耐震設計の耐震住宅(耐震等級1、2)が、阪神大地震並みの実震動試験(震度6程度)で致命的に損傷、損壊することが公的機関で検証され、設計値と実被害との解離差の大きさが明白となり、これらの耐震住宅が抱えている課題解決が強く望まれている。そこで、一部ではゴム等の緩衝材を用いて震動や衝撃等を吸収する試みがある。
例えば、特許文献1では住宅等の構築物において、上方部に螺絲部を有し、ゴム等の緩衝筒が装着され、下方部に設けた屈曲部はコンクリート基礎内に各個に埋着されてなる植込み支持杆を用いて、該基礎の上面に配設される構築物の土台中を垂直方向に貫通する該緩衝筒を嵌装させ、座金やナットで緊結させることにより、基礎から構築物(土台)へ伝達される地震等の震動を緩和する震動緩衝具が提案されている。
かかる基礎と土台の間に土台を垂直方向に貫通する該緩衝具を配設してなる緊結構造は阪神淡路地震の家屋倒壊の主要原因とされる基礎と土台との浮上がり・分離現象や、土台と柱間のホゾ抜け現象を見るまでも無く、震災後の建築基準法で、基礎と土台との緊結一体化、及び、柱と土台と基礎の緊結一体化(ホールダウンの設置=ホゾ抜け防止)が義務付けされた経緯からも明らかなように、基礎と建築物の全荷重が負荷される土台との間に垂直方向の緩衝筒を設けることは、基礎と重量物である構築物(土台)との水平方向や垂直方向の緊結一体化を逸損させることになり、緩衝筒が本来発揮すべき緩衝性はおろか、新たに建築物の多次元方向の加震現象を増幅させる起点となることが懸念され、地震対策として最も避けるべき基礎と土台との緊結構造の一つとされる。
However, in rigid structures based on the current earthquake resistance standards, if the load bearing wall is subjected to a force (deformation), impact or vibration exceeding the plastic limit, the fastening part (bearing face material, nails, etc.) will be intensively damaged. It is easy to cause fatal earthquake-resistant deterioration due to breakage, and even if it can withstand the first earthquake, it cannot withstand subsequent aftershocks or new second and subsequent earthquakes, and there is a fear that it will eventually collapse. There is always anxiety about staying in these high-risk buildings. Furthermore, it is a public institution that earthquake-proof houses (earthquake-resistance grades 1 and 2) that are originally seismic-designed with a seismic intensity of about 7 can be fatally damaged or destroyed in an actual vibration test (seismic intensity of about 6) that is equivalent to the Great Hanshin Earthquake. As a result, the magnitude of the dissociation difference between the design value and the actual damage becomes clear, and it is strongly desired to solve the problems of these earthquake-resistant houses. Therefore, some attempts have been made to absorb vibrations and shocks using a cushioning material such as rubber.
For example, in Patent Document 1, in a structure such as a house, the upper part has a threaded part, a buffer cylinder such as rubber is attached, and the bent part provided in the lower part is embedded in each concrete foundation. Using a support rod, the buffer cylinder penetrating vertically in the base of the structure disposed on the upper surface of the foundation is fitted and fastened with a washer or nut to transmit from the foundation to the structure (base) There has been proposed a vibration damper that relieves vibrations such as earthquakes.
Tightened structure in which the shock absorber that vertically penetrates the foundation is arranged between the foundation and the foundation is the phenomenon of floating / separation between the foundation and the foundation, which is the main cause of the house collapse of the Hanshin Awaji earthquake, It is not necessary to look at the phenomenon of squeezing between the foundation and the pillar, and the building standard law after the earthquake will make the foundation and foundation tightly integrated, and the pillar, foundation and foundation tightly integrated (installation of the hall down = hozo) As is clear from the circumstances that obstruction prevention is required, providing a vertical buffer cylinder between the foundation and the foundation on which the entire load of the building is loaded is a structure that is a foundation (heavy foundation) ) And the horizontal and vertical tight integration are lost, not only the shock absorbing properties that the buffer cylinders should originally exhibit, but also a new starting point for amplifying the multi-dimensional vibration of the building. The foundation and soil that should be avoided most as a countermeasure against earthquakes It is one of Tightened structure between.

また特許文献2では、縦材と横材を矩形に組んでなる枠体と枠体に取り付けられる面材とを有する壁組と、上部構造体と下部構造体とを、それぞれ緊結一体化させるための横材を垂直方向に貫通するボルトと、該ボルトを固定するナットと、前記横材と前記ナットの間に取り付けられる弾性部材、及び/又は、前記横材と前記上部構造体と前記下部構造体との間に取り付けられる弾性部材を配置させることにより、該弾性部材の弾性変形によって枠組全体の変位を許容する、あるいは、枠組の限界を超える水平せん断力を吸収させ、靭性を向上させるとしている。
本来、壁組工法は、モノコック構造で、さらに、壁組と上部構造体と下部構造体とを緊結一体化構造とすることで耐震性が発揮されている。
一方、特許文献2では、横材を垂直方向に貫通するボルトとナットの間、あるいは、横材と、上部構造体と下部構造体との間に弾性部材を配設させることにより、例えば、図1(b)に示されているように、地震時には、壁組と、上部構造体と下部構造体との間に正負方向に大きな弾性変形隙間を発生させ、これらの壁組と上部、下部の構造体との間に弾性変形量を加算した数値が建築物の変位角度(揺れ幅)となり、階上部位ではさらに拡大する。さらに、これらの正負の弾性変形は、加震現象を発生、増幅させる要因となることが容易に推察される。
この特許文献2の如く、建築物の上下方向(垂直方向)のいずれかに、層状の弾性体(ゴム等)を介在させることは、建物の高さや、重量にも左右されるが、地震の揺れを吸収する効果より、揺れを拡大、加震させる弊害の方が大きく、耐震性をも低下させることは論理的にも説明される。現に、引用文献2の耐力壁構造は実用的には市場で実施されていない。
そこで、これらの耐震住宅の本質的な課題を解消するため、地震の揺れを受け流すいわゆる免震構造や、地震の運動エネルギーを吸収して減衰させる制震構造も提案されている。
Further, in Patent Document 2, a wall assembly having a frame body in which vertical members and cross members are assembled into a rectangle and a face member attached to the frame member, and an upper structure and a lower structure are tightly integrated with each other. A bolt that penetrates the cross member in the vertical direction, a nut that fixes the bolt, an elastic member attached between the cross member and the nut, and / or the cross member, the upper structure, and the lower structure By disposing an elastic member attached between the body and the elastic member, the elastic deformation of the elastic member allows the entire frame to be displaced, or absorbs a horizontal shear force exceeding the limit of the frame and improves toughness. .
Originally, the wall assembly method is a monocoque structure, and further, the wall assembly, the upper structure, and the lower structure have a tightly integrated structure, thereby exhibiting earthquake resistance.
On the other hand, in Patent Document 2, by arranging an elastic member between a bolt and a nut penetrating the cross member in the vertical direction, or between the cross member and the upper structure and the lower structure, for example, FIG. As shown in FIG. 1 (b), during an earthquake, large elastic deformation gaps are generated in the positive and negative directions between the wall assembly and the upper structure and the lower structure. The numerical value obtained by adding the elastic deformation amount to the structure becomes the displacement angle (swing width) of the building and further expands at the upper floor. Furthermore, it can be easily inferred that these positive and negative elastic deformations can cause and amplify the shaking phenomenon.
As in this Patent Document 2, the interposition of a layered elastic body (rubber etc.) in either the vertical direction (vertical direction) of a building depends on the height and weight of the building. It is logically explained that the effect of expanding and shaking the shaking is greater than the effect of absorbing the shaking, and the earthquake resistance is also lowered. Actually, the load bearing wall structure of Cited Document 2 is not practically implemented in the market.
Therefore, in order to solve these essential problems of earthquake-resistant houses, so-called seismic isolation structures that receive earthquake vibrations and damping structures that absorb and attenuate earthquake kinetic energy have been proposed.

しかしながら、免震構造は建築物の基礎部分に地面と建築物を力学的に絶縁するための機構を設けるものであるが、非常に高価なため一般に普及させることができない。
制震構造は、住宅に加わる水平方向の変形をある特定の耐力壁に設けられた数少ない制震機構に集め減衰させるものであるが(非特許文献1、2)、制震装置以外の部分は通常の耐震住宅と同様の剛構造で、水平方向の正負の変形をリアルタイムに制震機構に伝達・集中化させる構造としては不適格で制震効果が疑問視され、1回目の地震動や衝撃で塑性変形すれば、その後の余震や、新たな2回目以降の地震動や衝撃に耐え切れないという現行の耐震住宅の欠点を、根本的に解決できるものではない。
However, the seismic isolation structure is provided with a mechanism for mechanically insulating the ground and the building at the base of the building, but it is very expensive and cannot be generally used.
The seismic control structure collects and attenuates horizontal deformation applied to the house in a few seismic control mechanisms provided on a specific bearing wall (Non-Patent Documents 1 and 2). It is a rigid structure similar to a normal earthquake-resistant house, and it is unsuitable as a structure that transmits and concentrates horizontal positive and negative deformations to the vibration control mechanism in real time, and the vibration control effect is questioned. If plastic deformation occurs, it will not be able to fundamentally solve the shortcomings of current seismic houses that cannot withstand the subsequent aftershocks and the second and subsequent earthquake motions and impacts.

特開昭61−53966号公報JP-A 61-53966 特開平11−141020号公報Japanese Patent Laid-Open No. 11-14120

積水ハウス株式会社パンフレット『積水ハウスオリジナル 大臣認定「制振構造」 SHEQAS 地震動エネルギー吸収システム シーカス』Sekisui House Co., Ltd. Pamphlet “Sekisui House Original Minister-approved“ Vibration Control Structure ”SHEQAS Seismic Energy Absorption System Seacus” ナイス株式会社パンフレット『もう大地震をおそれない』Nice Co., Ltd. pamphlet “No more fear of a big earthquake”

本発明はかかる実情に鑑み、耐力壁自体が弾性変形、弾性復元を可能とする柔構造の防振耐力壁構造であって、従来の耐力壁と同様、法に定める静的応力試験法に準じる耐力壁量(耐震等級1〜3)をクリアーする剛性強度を有し、かつ、実際の震災時には、動的な変形(力)や震動、衝撃等を自らの弾性変形性や弾性復元性で、吸収、緩和し、揺れや衝撃や耐震劣化を抑制、緩和する。さらに加えて、余震や、新たな2回目以降の数次の地震にも耐えることができる防振耐力壁構造を提供することを目的とする。   In view of such circumstances, the present invention is a flexible anti-vibration load-bearing wall structure in which the load-bearing wall itself can be elastically deformed and elastically restored, and, like conventional load-bearing walls, conforms to the static stress test method prescribed by law. It has a rigid strength that clears the load-bearing wall amount (earthquake resistance grades 1 to 3), and at the time of an actual earthquake disaster, it can perform dynamic deformation (force), vibration, impact, etc. with its own elastic deformability and elasticity. Absorb, mitigate, suppress and mitigate shaking, shock and earthquake resistance degradation. In addition, an object of the present invention is to provide a vibration-proof bearing wall structure that can withstand aftershocks and new second and subsequent earthquakes.

本発明は上記目的を達成するためになされたもので、本発明の特徴は、例えば、軸組工法等からなる構造躯体中の枠状部の少なくとも片面の一部または全面に、耐力面材を配設して止着材で止着してなる耐力壁構造において、面材と止着材の間に防振材料からなる防振具が介設されている防振耐力壁構造を内容とする。   The present invention has been made in order to achieve the above object, and the feature of the present invention is that, for example, a load bearing surface material is applied to at least a part or the entire surface of a frame-like portion in a structural frame made of a shaft assembly method or the like. The structure is a load-bearing wall structure that is installed and fastened with a fastening material, and includes a vibration-proof load-bearing wall structure in which a vibration-proofing tool made of a vibration-proof material is interposed between the face material and the fastening material. .

本発明の他の特徴は、面材には防振具を装着するための装着孔が穿設され、止着材は装着孔に装着された防振具を貫通して面材と枠状部を止着するように構成されている上記の防振耐力壁構造を内容とする。   Another feature of the present invention is that the face material is provided with a mounting hole for mounting the vibration isolator, and the fastening material penetrates the vibration isolator mounted in the mounting hole and the face material and the frame-shaped portion. The above-described anti-vibration load-bearing wall structure that is configured to be attached is included.

本発明の更に他の特徴は、防振具が、底面側において装着孔の口径よりも小さく、上面側において装着孔の口径よりも大きいテーパ状である上記の防振耐力壁構造を内容とする。   Still another feature of the present invention is the above-described anti-vibration load-bearing wall structure in which the vibration isolator has a tapered shape that is smaller than the diameter of the mounting hole on the bottom surface side and larger than the diameter of the mounting hole on the upper surface side. .

本発明の更に他の特徴は、防振具の上面側には装着孔の口径よりも大きい鍔部が設けられている上記の防振耐力壁構造を内容とする。   Still another feature of the present invention is the above-described anti-vibration load-bearing wall structure in which a flange larger than the diameter of the mounting hole is provided on the upper surface side of the anti-vibration tool.

本発明の更に他の特徴は、防振具が底面側で小さく上面側で大きいテーパ状であり、装着孔が防振具を嵌着可能なテーパー状である上記の防振耐力壁構造を内容とする。   Still another feature of the present invention is the above-described anti-vibration load-bearing wall structure in which the vibration isolator is tapered on the bottom surface side and large on the upper surface side, and the mounting hole is tapered to fit the vibration isolator. And

本発明の更に他の特徴は、防振材料がブチルゴム、シリコンゴム等の合成ゴム、天然ゴム、エラストマー樹脂、発泡合成樹脂のいずれか一種またはこれらを複合化したもの等からなる上記の防振耐力壁構造を内容とする。   Still another feature of the present invention is that the vibration-proof material is made of a vibration-proof material made of synthetic rubber such as butyl rubber or silicone rubber, natural rubber, elastomer resin, foamed synthetic resin, or a composite of these. The content is a wall structure.

本発明の更に他の特徴は、装着孔が穿設された面材と、該装着孔内に装着一体化された、防振材料からなる防振具と、からなる防振耐力壁構造用の防振面材を内容とする。   Still another feature of the present invention is for a vibration-proof load-bearing wall structure comprising: a face member having a mounting hole drilled therein; and a vibration isolator made of a vibration isolating material that is integrally mounted in the mounting hole. Anti-vibration surface material is included.

本発明の更に他の特徴は、防振材料からなる防振具と、該防振具を貫通する止着材からなる防振耐力壁構造用の防振止着材を内容とする。   Still another feature of the present invention includes a vibration isolator made of a vibration isolating material and an anti-vibration adhesive for a vibration-proof load-bearing wall structure made of a fastening material penetrating the vibration isolator.

本発明の更に他の特徴は、防振具の周縁部に硬質部材からなる外殻部が設けられる上記の防振止着材を内容とする。   Still another feature of the present invention is the above-described anti-vibration fixing material in which an outer shell portion made of a hard member is provided on the peripheral portion of the anti-vibration device.

本発明の防振耐力壁構造は、枠状部に止着される面材と止着材の間に防振具が介設されている止着構造(以下、止着部と称する)になっているので、地震等で基礎に連結された枠材から面材に伝達される変形や震動エネルギーは防振具の弾性変形性と応力分散性で吸収され、従来の耐力壁のように面材が裂けたり、止着材が折れたりすることがない。また、防振具の弾性復元性により、直ちに元の形状に復帰して、繰り返される変形や震動、衝撃に機能し、揺れや衝撃を抑制、緩和すると共に、止着部の耐震劣化を防止、抑制する。そのため、余震や、新たな2回目以降の数次の地震にも1回目と同様の機能を維持し、優れた防振性を発揮することができる。
なお、本発明でいう防振や防振性とは、面材と止着材の間に防振具を介在させて、枠状部から伝達される変形や震動、衝撃等を応力分散すると共に弾性変形、弾性復元により地震の揺れや衝撃を抑制、緩和し、止着部(面材と止着材)の耐震劣化を防止、抑制することを指す。
The vibration-proof bearing wall structure of the present invention is a fastening structure (hereinafter referred to as a fastening part) in which a vibration-proofing tool is interposed between the face material fastened to the frame-like part and the fastening material. Therefore, deformation and vibration energy transmitted from the frame material connected to the foundation due to an earthquake etc. to the face material are absorbed by the elastic deformation and stress dispersibility of the vibration isolator, and the face material like a conventional bearing wall Will not tear or the fastening material will not break. In addition, due to the elastic resiliency of the vibration isolator, it immediately returns to its original shape, functions against repeated deformation, vibration, and shock, and suppresses and mitigates shaking and shock, and prevents seismic deterioration of the fastening part. Suppress. Therefore, even aftershocks and new second and subsequent earthquakes, the same function as the first time can be maintained and excellent vibration isolation can be exhibited.
In addition, the vibration-proofing and vibration-proofing property as used in the present invention means that a vibration-proofing tool is interposed between the face material and the fastening material to disperse deformation, vibration, shock, etc. transmitted from the frame-shaped part. It refers to suppressing and mitigating earthquake shaking and impact by elastic deformation and elastic recovery, and preventing and suppressing seismic deterioration of the fastening part (face material and fastening material).

また、面材に装着孔を穿設し、この装着孔に防振具を装着してから止着材で防振具を貫通、止着させることにより、面材を枠状部に止着すれば、建設現場での防振耐力壁の施工性が向上するので好ましい。装着孔の穿設や装着孔への防振具の装着は、面材製造工程や施工店で集中的に実施すればよい。   In addition, by drilling a mounting hole in the face material and attaching the vibration isolator to the mounting hole, and then penetrating and fixing the vibration isolator with the fastening material, the face material is secured to the frame-shaped part. It is preferable because the workability of the vibration-proof bearing wall at the construction site is improved. Drilling of the mounting hole and mounting of the vibration isolator to the mounting hole may be carried out intensively in the face material manufacturing process or the construction shop.

防振具の形状を、底面側において装着孔の口径よりも小さく、上面側において装着孔の口径よりも大きいテーパ状とすれば、防振具を装着孔に装着しやすくなり、面材の脱落を防止するとともに効果的な防振性を発揮できる。   If the shape of the vibration isolator is tapered smaller than the diameter of the mounting hole on the bottom surface side and larger than the diameter of the mounting hole on the upper surface side, the vibration isolator can be easily attached to the mounting hole, and the face material will fall off. And effective vibration isolation can be demonstrated.

防振具の上面側に鍔部を設ければ、耐力壁が大きく変形して枠状部から面材が浮き上がった場合でも、鍔部が面材の表面に係合しているため、装着孔に装着された防振具が面材から外れ落ちることがないので、震動や衝撃を吸収して元に形状に復帰する。防振具及び装着孔をテーパ状とし、装着孔に防振具を嵌着可能とした場合も同様である。   If the collar is provided on the upper surface side of the vibration isolator, the collar is engaged with the surface of the face material even when the bearing wall is greatly deformed and the face material is lifted from the frame-shaped part. The anti-vibration device attached to the body will not come off the face material, so it will absorb vibrations and shocks and return to its original shape. The same applies to the case where the vibration isolator and the mounting hole are tapered and the vibration isolator can be fitted into the mounting hole.

防振具を予め面材の装着孔内に装着一体化することにより防振面材としておけば、通常の面材と同様の方法で構造躯体中の枠状部に取り付けるだけで防振耐力壁構造を得ることができる。   If the vibration isolator is installed in the face material mounting hole in advance as a vibration isolating surface material, it can be attached to the frame in the structural frame in the same way as a normal face material. A structure can be obtained.

防振具と止着材を、止着材で防振具を貫通させることにより予め防振止着材として一体化させておけば、面材に装着孔を穿設して防振止着材を打ち込むだけで、防振耐力壁構造を得ることができる。この防振止着材は、既存の耐力壁に防振性を付与する耐震リフォームの際には、既存の耐力壁を解体せずに、木工用ホルソーで装着孔を穿設して防振止着材を打ち込めば防振耐力壁構造にすることができる点で有用である。
この際、防振具の周縁部に硬質部材からなる外殻部を設けた防振具を用いれば、装着孔への装着が容易になる。
If the anti-vibration tool and the fastening material are previously integrated as an anti-vibration fastening material by penetrating the anti-vibration tool with the fastening material, a mounting hole is drilled in the face material and the anti-vibration fastening material A vibration-proof and load-bearing wall structure can be obtained simply by driving in. This anti-vibration attachment material is used for anti-vibration by drilling a mounting hole with a woodworking horuseau without disassembling the existing load-bearing wall in the case of seismic reform that gives vibration-proof properties to the existing load-bearing wall. It is useful in that a vibration-proof and load-bearing wall structure can be obtained by placing a dressing.
At this time, if a vibration isolator having an outer shell portion made of a hard member is used at the peripheral edge of the vibration isolator, mounting in the mounting hole is facilitated.

図1(a)は本発明の防振耐力壁構造の一例を示す概略正面図であり、(b)はそのA−A断面図である。Fig.1 (a) is a schematic front view which shows an example of the vibration-proof bearing wall structure of this invention, (b) is the AA sectional drawing. 図2(a)〜(d)は防振具の形状の別例を示す概略断面図である。2A to 2D are schematic cross-sectional views showing other examples of the shape of the vibration isolator. 図3(a)は防振面材の例を示す概略正面図であり、(b)はそのB−B断面図である。Fig.3 (a) is a schematic front view which shows the example of a vibration-proof surface material, (b) is the BB sectional drawing. 図4(a)〜(e)は防振止着具の例を示す概略断面図である。4A to 4E are schematic cross-sectional views showing examples of vibration-proofing attachments. 図5は防振耐力壁の一例を示す正面図である。FIG. 5 is a front view showing an example of a vibration-proof bearing wall. 図6(a)は模擬的な震動試験法(動的試験法)の概略を示す正面図であり、(b)は基礎と防振耐力壁又は従来の耐力壁との接続を示す概略断面図である。6A is a front view showing an outline of a simulated vibration test method (dynamic test method), and FIG. 6B is a schematic cross-sectional view showing the connection between the foundation and the vibration-proof bearing wall or the conventional bearing wall. It is. 図7(a)(b)は面材を枠状部の一部に設けた例を示す正面図である。FIGS. 7A and 7B are front views showing an example in which a face material is provided in a part of the frame-like portion. 図8(a)は押込み固定具を用いた止着構造の例を示す概略断面図であり、(b)は押込み止着材の例を示す説明図である。FIG. 8A is a schematic cross-sectional view showing an example of a fastening structure using a pushing fixture, and FIG. 8B is an explanatory view showing an example of a pushing fastening material. 図9(a)は帯状防振具を用いた防振耐力壁の一例を示す正面図であり、(b)はそのC−C断面図である。Fig.9 (a) is a front view which shows an example of the vibration-proof load-bearing wall using a strip | belt-shaped vibration isolator, (b) is the CC sectional drawing.

本発明の防振耐力壁構造1は、例えば図1に示したように、構造躯体中の枠状部2の少なくとも片面に面材3を配設して止着材4で止着してなる耐力壁構造において、面材3と止着材4の間に防振材料からなる防振具5が介設されていることを特徴とする。   The anti-vibration load-bearing wall structure 1 of the present invention is formed, for example, as shown in FIG. 1 by disposing a face material 3 on at least one surface of a frame-like portion 2 in a structural housing and fastening it with a fastening material 4. The bearing wall structure is characterized in that a vibration isolator 5 made of a vibration isolating material is interposed between the face material 3 and the fastening material 4.

本発明の防振耐力壁構造1は、図1(a)に示されるように、構造躯体の枠状部2に面材3を止着してなる耐力壁の構造に関する。
本発明において枠状部2とは、例えば、木造軸組構(工)法においては、梁2a、柱2b、土台2c、間柱2d等に囲まれて枠状になった部分をいう。
なお、本発明の防振耐力壁構造1は木造の枠組構(工)法や鉄骨建築等の場合でも使用できる。又、防振耐力壁の止着部は、本発明の止着構造と従来の面材を止着材で止着する構造を併用しても、防振耐力壁の効果は発揮されるので、求める壁倍率との関係から適宜採用できる。また、防振耐力壁と従来の耐力壁が適宜混設されていてもよく、その場合、最も損壊を受けやすい建物の入隅、出隅や開口部の両側に防振耐力壁を配設するとさらに望ましい。また、建物構造によって、所定の壁倍率が確保できない場合には、防振耐力壁を間仕切り壁にも採用すれば、バランスの取れた耐震設計ができる。
さらには、従来の制震装置に代えて、本防振耐力壁を制震装置として採用することによって、先述した現状の制震装置の課題が解決され、高価な制震装置を導入することなく、安価な制震装置が新築、リフォームを問わず施工現場で製作、施工することができる。
As shown in FIG. 1A, the vibration-proof bearing wall structure 1 of the present invention relates to a bearing wall structure in which a face member 3 is fixed to a frame-like portion 2 of a structural housing.
In the present invention, the frame-like portion 2 means, for example, a portion that is surrounded by the beam 2a, the column 2b, the base 2c, the inter-column 2d, and the like in a wooden frame structure (construction) method.
The anti-vibration load-bearing wall structure 1 of the present invention can also be used in the case of a wooden frame structure (construction) method, steel frame construction, or the like. Moreover, even if the fastening structure of the vibration-proof bearing wall is used in combination with the fastening structure of the present invention and the structure in which the conventional face material is fastened with the fastening material, the effect of the vibration-proof bearing wall is exhibited. It can employ | adopt suitably from the relationship with the wall magnification calculated | required. In addition, the anti-vibration bearing wall and the conventional bearing wall may be mixed as appropriate, and in that case, if the anti-vibration bearing wall is arranged on both the entrance and exit corners and the opening of the building, which is most susceptible to damage. More desirable. In addition, if a predetermined wall magnification cannot be secured due to the building structure, a well-balanced seismic design can be achieved by adopting a vibration-proof bearing wall as the partition wall.
Furthermore, by adopting this anti-vibration bearing wall as a vibration control device instead of the conventional vibration control device, the problems of the current vibration control device described above are solved, and without introducing an expensive vibration control device. An inexpensive seismic control device can be manufactured and installed at the construction site regardless of whether it is newly constructed or renovated.

発明における面材3とは、枠状部2に止着される板状の部材であり、従来の耐力壁に用いられる構造用合板、パーティクルボード、ハードボード、硬質木片セメント板、ケイ酸カルシウム板、石綿パーライト板、フレキシブル板、シージングボード、石膏ボード、ALC(軽量気泡コンクリート)、金属製板体、合成樹脂製板体等が例示できる。
面材3の外形寸法は、従来の耐力壁で用いられていたものと同様でよく、一般的には一つ又は複数の枠状部を一枚又は複数枚の横張りと横梁を組み合わせて用いられるが、従来の木擦(きずり)構造のように幅150〜600mm程度の細板状の面材を、適宜、間隔をあける、又は、密着させて簾状に配設し、一枚当たり柱、間柱間に少なくとも縦2本の止着数で止着することで木擦からなる柔構造の防振耐力壁を構成され望ましい。
The face material 3 in the present invention is a plate-like member fixed to the frame-like portion 2 and is a structural plywood, particle board, hard board, hard wood cement board, calcium silicate board used for a conventional bearing wall. Asbestos perlite board, flexible board, sizing board, gypsum board, ALC (lightweight cellular concrete), metal plate, synthetic resin plate and the like.
The external dimensions of the face material 3 may be the same as those used in the conventional load-bearing wall. Generally, one or a plurality of frame-shaped portions are used in combination of one or a plurality of horizontal stretches and a horizontal beam. However, a thin plate-like face material having a width of about 150 to 600 mm as in the conventional wood rubbing structure is appropriately arranged at intervals or in close contact, and arranged in a bowl shape. It is desirable to construct a vibration-proof and load-bearing wall having a soft structure made of wood by attaching at least two vertically between the columns and the inter-columns.

また、図7(a)に示すように、枠状部2の上端のみに面材3を設けたり、図7(b)に示すように仕口部のみに面材3を設けるなど、枠状部2の一部に面材3を配設することもできる。このようにすれば、筋交い壁に弾性を付与して筋交いを折れにくくしたり、応力を分散して筋交い壁の壁倍率を向上させるとともに、筋交い壁面を防振耐力壁化することができる。   Further, as shown in FIG. 7 (a), the face material 3 is provided only at the upper end of the frame-like portion 2, or the face material 3 is provided only at the joint as shown in FIG. 7 (b). The face material 3 may be disposed on a part of the portion 2. In this way, it is possible to impart elasticity to the bracing wall to make it difficult to break the bracing, to disperse stress to improve the wall magnification of the bracing wall, and to make the bracing wall a vibration-proof bearing wall.

本発明の防振耐力壁構造1は、図1(b)に示されるように、面材3と止着材4の間に防振具5が介設されていることを特徴とする。図中、2は枠状部、4aはワッシャである。
本発明において、防振具5は防振材料からなる。防振材料とは、素材の弾性や震動吸収特性等を生かし、地震の変形(力)や衝撃や震動のエネルギーを吸収、減衰することができる材料で、天然ゴム、ブチルゴムやシリコンゴム等の合成ゴム、エラストマー樹脂、ポリプロピレンやポリエチレン、ポリカーボネート等を発泡させた発泡合成樹脂等が例示でき、これらの防振材料は単独で使用してもよいし、これらの素材を複合化して使用してもよい。
このような防振材料としては市販の防振ゴムを用いることもでき、例えば倉敷化工社製の防振パット(型番:KH−10、硬度:60)を本発明における防振材料として好適に使用することができる。
さらに、本発明では防振具が面材と止着材の間に介設されるので、従来の細い止着材(例:N50際丸釘)の集中荷重による面材の止着部の断裂、損傷や止着材の曲り、折れ、抜けが原因で発生する耐震劣化等の欠点が抑制、解消されるのみならず、従来の剛構造の耐力壁が柔構造の耐力壁に改良され、従来の建造物で発生していた大きな変形、衝撃、震動を抑制、緩和することができる。また、本止着構造は、面材や止着材や構造躯体側の止着部への負荷を応力分散することで、長期に安定した止着力を発揮することができる。
The vibration-proof bearing wall structure 1 of the present invention is characterized in that a vibration-proofing tool 5 is interposed between the face material 3 and the fastening material 4 as shown in FIG. In the figure, 2 is a frame-like part, and 4a is a washer.
In the present invention, the vibration isolator 5 is made of a vibration isolating material. Anti-vibration materials are materials that can absorb and attenuate earthquake deformation (force) and impact and vibration energy by taking advantage of the elasticity and vibration absorption characteristics of the material. Synthetic materials such as natural rubber, butyl rubber and silicone rubber Examples thereof include foamed synthetic resins obtained by foaming rubber, elastomer resins, polypropylene, polyethylene, polycarbonate, etc., and these vibration-proof materials may be used alone or in combination with these materials. .
Commercially-available anti-vibration rubber can be used as such anti-vibration material, and for example, an anti-vibration pad (model number: KH-10, hardness: 60) manufactured by Kurashiki Kako is suitably used as the anti-vibration material in the present invention. can do.
Further, in the present invention, since the vibration isolator is interposed between the face material and the fastening material, the fastening portion of the face material is torn due to the concentrated load of the conventional thin fastening material (eg, N50 round nail). In addition to suppressing and eliminating defects such as seismic degradation caused by damage, bending, breakage, and disconnection of fastening materials, conventional rigid structure bearing walls have been improved to flexible structure bearing walls. The large deformations, impacts, and vibrations that have occurred in the buildings can be suppressed and mitigated. Moreover, this fastening structure can exhibit a stable fastening force over a long period of time by distributing the stress on the face material, the fastening material, and the fastening part on the structure housing side.

本発明において止着材4とは、クギ、ネジ、ビス等、面材3や面材3に装着された防振具5を貫通して防振具5を枠状部2に止着が可能な部材である。本発明では、従来の耐力壁で面材を枠状部に止着するために用いられた止着材(代表的には軟鉄製のN50同等品)を用いることも可能ではあるが、バネ性や靭性の高い螺子釘を用いる方が好ましい。このような止着材4の市販品としては、(株)カネシン製耐力壁ビス(型番:KS4041)等が例示できる。また、これらの止着材に予めワッシャ(座金)を一体化したものも望ましい。使用可能なワッシャは、市販のものとしては平ワッシャや皿ばねワッシャが例示できるが、その他、平ワッシャの縁の部分を上方に湾曲させた皿状のワッシャ(図1(b)参照)を用いれば、ワッシャ4aの縁部が面材3や装着孔3aの縁部を傷つけないので、好ましく使用できる。   In the present invention, the fastening material 4 can pass through the face material 3 or the vibration isolator 5 attached to the face material 3 such as a nail, a screw, or a screw, so that the vibration isolator 5 can be secured to the frame-like portion 2. It is an important member. In the present invention, it is possible to use a fastening material (typically N50 equivalent product made of soft iron) used for fastening the face material to the frame-like portion with a conventional bearing wall. It is preferable to use a screw nail having high toughness. An example of such a commercially available fastening material 4 is Kanesin Co., Ltd. bearing wall screw (model number: KS4041). It is also desirable to have these washers integrated with washers (washers) in advance. Examples of the washers that can be used include flat washers and disc spring washers that are commercially available. In addition, dish washers (see FIG. 1B) in which the edge of the flat washer is curved upward are used. For example, the edge portion of the washer 4a does not damage the edge portion of the face material 3 or the mounting hole 3a, so that it can be preferably used.

或いは、図8(a)に記載したような、下方向に大きな張り出し部4b1が設けられたワッシャ(押込み固定具4bと称する)を設けてもよい。このような押込み固定具4bを用いれば、当該押込み固定具4bの張り出し部4b1が防振具5にめり込んで、防振具5に大きな内圧が生じるため、防振具5が装着孔3aに強く押し付けられて、止着材4から伝達される変形力や震動をより早く防振具に伝達できるとともに、防振具5が装着孔3aから抜け出しにくくなる。
押込み固定具4bの外径は、防振具5内に好適に押し込めるように、防振具5の外径よりも小さくし、且つ止着材5の頭部よりも大きくする。張り出し部4b1の突出高さは特に限定されないが、防振具5の厚みの1/4〜1/2程度が好ましい。
又は、図8(b)のように、頭部の下方向に大きな張り出し部が設けられた止着材(押込み止着材4cと称する)を用いてもよい。押込み止着材4cの頭部の大きさは上記押込み固定具4bと同程度である。
Or you may provide the washer (it is called the pushing fixing tool 4b) provided with the large overhang | projection part 4b1 in the downward direction as described in Fig.8 (a). If such a pushing fixture 4b is used, the overhanging portion 4b1 of the pushing fixture 4b is sunk into the vibration isolator 5 and a large internal pressure is generated in the vibration isolator 5, so that the vibration isolator 5 is strongly against the mounting hole 3a. It is possible to transmit the deformation force and vibration transmitted from the fastening material 4 to the vibration isolator more quickly and to prevent the vibration isolator 5 from coming out of the mounting hole 3a.
The outer diameter of the pushing fixture 4b is made smaller than the outer diameter of the vibration isolator 5 and larger than the head of the fastening member 5 so that it can be suitably pushed into the vibration isolator 5. The protruding height of the overhanging portion 4b1 is not particularly limited, but is preferably about 1/4 to 1/2 of the thickness of the vibration isolator 5.
Alternatively, as shown in FIG. 8B, a fastening material (referred to as a push-in fastening material 4c) provided with a large overhanging portion in the lower direction of the head may be used. The size of the head of the indentation fixing member 4c is approximately the same as that of the indentation fixture 4b.

なお、本発明において、全ての止着材4と面材3の間に防振具5が介設されている必要はなく、例えば防振具を介設しない止着材と、本発明による防振具5が介設された止着材4を交互に設けてもよく、あるいは耐力壁構造の要所(例えば枠状部2の上、下の仕口部近傍等)のみを防振具5が介設された止着材4で止着してもよい。特に柱2b、間柱2dなど枠状部2の縦材の高さ方向の該中央部付近は耐力壁構造が歪んだ場合でも歪みの影響を受けにくいので防振具5を用いずに止着しても差し支えない場合が多い。逆に上下の仕口部付近、梁、土台部分は大きな変形力や歪みの影響を受けやすいので柱の中央付近よりも大きな防振具や防振材料の硬度の高い防振具を設けることも望ましい。   In the present invention, it is not necessary that the vibration isolator 5 is interposed between all the fixing materials 4 and the face material 3. The fastening material 4 having the vibration tool 5 interposed therebetween may be alternately provided, or only the main points of the load bearing wall structure (for example, the upper part of the frame-like part 2 and the vicinity of the lower joint part) are provided. It is also possible to fasten with a fastening material 4 in which is interposed. In particular, the central portion of the vertical portion of the frame-shaped portion 2 such as the column 2b and the inter-column 2d is not affected by the strain even when the bearing wall structure is distorted, so that it is secured without using the vibration isolator 5. In many cases, it does not matter. On the contrary, the vicinity of the upper and lower joints, the beam, and the base part are easily affected by large deformation force and distortion, so it is possible to install a vibration isolator that is larger than the center of the column and a vibration isolator having a high hardness of the vibration isolating material. desirable.

上記したような、防振具5を用いずに止着材4で止着する部分には帯状防振具5fを設けてもよい。なお、帯状防振具5fと対比するために、通常の防振具5を栓状防振具5と称することがある。
帯状防振具5fは帯状の部材であり、栓状防振具5と同様、防振材料からなる。帯状防振具5fの厚みは好適な防振効果を得るため少なくとも1mm必要であり、望ましくは3〜10mmである。幅は好適な防振効果を得るため少なくとも15mm必要であり、望ましくは30〜50mmである。
この帯状防振具5fは、図9に示すように、面材3の上に取り付けられ、その上から止着材4で止着するように使用される。帯状防振具5fを面材3に取り付ける方法は特に限定されないが、粘着剤や接着剤を用いた接着が好ましい。また、止着材4で止着しやすくするために、帯状防振具5fには止着材4で止着する位置に下穴(図示せず)を穿設しておくのが好ましい。
帯状防振具5fの防振効果は栓状防振具5よりも低いが、施工が簡単で安価である上、面材3や止着材4を保護する効果が得られるので好ましい。
The band-shaped vibration isolator 5f may be provided in the portion that is fixed by the fixing material 4 without using the vibration isolator 5 as described above. In addition, in order to contrast with the strip | belt-shaped vibration isolator 5f, the normal vibration isolator 5 may be called the plug-shaped vibration isolator 5. FIG.
The band-shaped vibration isolator 5 f is a band-shaped member and is made of a vibration-proof material like the plug-shaped vibration isolator 5. The thickness of the band-shaped vibration isolator 5f needs to be at least 1 mm in order to obtain a suitable vibration isolating effect, and is preferably 3 to 10 mm. The width needs to be at least 15 mm in order to obtain a suitable vibration-proofing effect, and is desirably 30 to 50 mm.
As shown in FIG. 9, the band-shaped vibration isolator 5 f is mounted on the face material 3 and used so as to be fastened with the fastening material 4 from above. A method for attaching the band-shaped vibration isolator 5f to the face material 3 is not particularly limited, but adhesion using a pressure-sensitive adhesive or an adhesive is preferable. In order to make it easy to fix with the fixing material 4, it is preferable to form a pilot hole (not shown) at the position where the band-shaped vibration isolator 5 f is fixed with the fixing material 4.
The anti-vibration effect of the band-shaped anti-vibration device 5f is lower than that of the plug-type anti-vibration device 5, but it is preferable because the construction is simple and inexpensive and the effect of protecting the face material 3 and the fastening material 4 can be obtained.

面材3と止着材4の間に防振具5が介設される構造は、例えば面材3に装着孔3aを穿設し、該装着孔3aに防振具5を装着してから、止着材4により防振具5を貫通させて、面材3を枠状部2に止着することにより構成することができる。又、該装着孔3aに防振具5を装着する際に、接着剤を用いて、一体化させることも望ましい。
なお、止着材4により面材3を止着する際、図1(b)に示すように、装着孔3aよりも径が大きなワッシャ4aにより面材3を押さえることもできる。このようにすれば、防振耐力壁構造が大きく歪んだ場合でも面材3の浮き上がりを防止することができ、また、防振具5が面材3から外れるのを防止することができる。
装着孔3aの形状は、防振具5を装着可能な形状であれば特に限定されないが、施工性を考慮すれば、図2(a)(b)に示されるような円形状か、図2(c)(d)に示されるような、上面側が大きく底面側が小さいテーパ状(円錐台形状)が好ましい。
In the structure in which the vibration isolator 5 is interposed between the face material 3 and the fastening material 4, for example, the mounting hole 3 a is made in the face material 3 and the vibration isolator 5 is attached to the mounting hole 3 a. The vibration isolator 5 is penetrated by the fastening material 4 and the face material 3 is fastened to the frame-like portion 2. Further, when mounting the vibration isolator 5 in the mounting hole 3a, it is also desirable to integrate them using an adhesive.
In addition, when fixing the face material 3 with the fixing material 4, as shown in FIG.1 (b), the face material 3 can also be hold | suppressed by the washer 4a whose diameter is larger than the mounting hole 3a. In this way, even when the vibration-proof bearing wall structure is greatly distorted, the face material 3 can be prevented from being lifted, and the vibration isolator 5 can be prevented from coming off the face material 3.
The shape of the mounting hole 3a is not particularly limited as long as the vibration isolator 5 can be mounted. However, in consideration of workability, the mounting hole 3a may have a circular shape as shown in FIGS. (C) As shown in (d), a tapered shape (conical frustum shape) having a large top surface and a small bottom surface is preferable.

防振具5も装着孔3aに装着可能な形状であれば特に限定されないが、上記のような形状の装着孔3aへの装着性を考慮すれば、円柱状かテーパ状(円錐台状)が好ましい。特に、図2(a)に示すように、装着孔3aの形状が底面側と上面側で形状が等しい円筒状であり、防振具5の形状が底面側5bにおいて装着孔3aの口径よりも小さく、上面側5aにおいて装着孔3aの口径よりも大きいテーパ状(円錐台状)とすれば、装着孔3aへの防振具5の装着が容易になるので好ましい。
なお、装着孔3a及び防振具5の大きさは、衝撃を十分吸収できる限り特に限定されないが、好ましくは直径5mm以上、さらに好ましくは直径8mm以上、特に好ましくは直径10mm以上とし、面材3を枠状部2に止着する際の縁端距離との関係から適宜選定すればよい。防振具5の厚さについても特に限定されないが、装着孔3aの深さと同等以上であるほうが好ましい。特に、防振具5の厚さを装着孔3aの厚さよりも1mm程度厚くすれば、防振具5を装着孔3a内に押し込むことにより防振具5が横に広がり、装着孔3aの内面と圧着するので、強い地震等の際にも防振部5が装着孔3から外れにくくなるので好ましい。
また、防振具5に止着材4を貫通させやすくするため、予め直径1mm程度の貫通孔5eを防振具5の中心付近に設ければ、作業性が高まるのでさらに好ましい。
また、予め、防振具5と止着材4を仮止着させて一体化させておく方法も、現場で装着孔3aに順次嵌着してから、順次枠状部2に止着材4を打ち込む作業手順で施工することも可能となり、新築、リフォーム現場の状況で適宜採用すればよい。
The vibration isolator 5 is not particularly limited as long as it can be mounted in the mounting hole 3a. However, in consideration of the mounting property to the mounting hole 3a having the above shape, a columnar shape or a tapered shape (conical frustum shape) is used. preferable. In particular, as shown in FIG. 2 (a), the mounting hole 3a has the same cylindrical shape on the bottom surface side and the top surface side, and the shape of the vibration isolator 5 is smaller than the diameter of the mounting hole 3a on the bottom surface side 5b. A tapered shape (conical frustum shape) that is smaller and larger than the diameter of the mounting hole 3a on the upper surface side 5a is preferable because the vibration isolator 5 can be easily mounted in the mounting hole 3a.
The sizes of the mounting hole 3a and the vibration isolator 5 are not particularly limited as long as they can sufficiently absorb the impact, but preferably have a diameter of 5 mm or more, more preferably 8 mm or more, and particularly preferably 10 mm or more. May be appropriately selected from the relationship with the edge distance when the frame is fixed to the frame-shaped portion 2. The thickness of the vibration isolator 5 is not particularly limited, but is preferably equal to or greater than the depth of the mounting hole 3a. In particular, if the thickness of the vibration isolator 5 is about 1 mm thicker than the thickness of the mounting hole 3a, the vibration isolator 5 spreads sideways by pushing the vibration isolator 5 into the mounting hole 3a, and the inner surface of the mounting hole 3a. Since the vibration isolator 5 is unlikely to be detached from the mounting hole 3 even in the event of a strong earthquake or the like, it is preferable.
Further, in order to facilitate the penetration of the fixing material 4 into the vibration isolator 5, it is more preferable to provide a through hole 5e having a diameter of about 1 mm in the vicinity of the center of the vibration isolator 5 in advance because workability is improved.
Moreover, the method of preliminarily attaching the vibration isolator 5 and the fastening material 4 and integrating them in advance is also performed by sequentially fitting the vibration isolator 5 and the fastening material 4 in the mounting hole 3a at the site and then sequentially attaching the fastening material 4 to the frame-like portion 2. It is also possible to construct it according to the work procedure of driving, and it may be adopted as appropriate in the situation of a new construction or renovation site.

また、図2(b)に示すように、防振具5の上面側5aに装着孔3aの口径よりも大きい鍔部5cを設けることもできる。このようにすれば、防振耐力壁が大きく歪んで、面材3が枠状部2から浮き上がるような場合でも、鍔部5cが装着孔3aの縁部と係合しているため、防振具5は装着孔3aから外れない。
この際、止着材4は防振具5を貫通して枠状部2に突き刺さったままなので、止着材4で止着された部分と鍔部5cの間において防振具5は引き伸ばされた状態であり、弾性回復力が発生している。この弾性回復力により面材3と枠状部2が引き戻されるので、本発明の耐力壁構造1は直ちに元の形状に復帰する。
Moreover, as shown in FIG.2 (b), the collar part 5c larger than the aperture diameter of the mounting hole 3a can also be provided in the upper surface side 5a of the vibration isolator 5. FIG. In this way, even when the vibration-proof bearing wall is greatly distorted and the face material 3 is lifted from the frame-like portion 2, the flange portion 5c is engaged with the edge of the mounting hole 3a. The tool 5 cannot be removed from the mounting hole 3a.
At this time, since the fastening material 4 passes through the vibration isolator 5 and remains stuck into the frame-like portion 2, the vibration isolator 5 is stretched between the portion secured by the fastening material 4 and the flange portion 5c. The elastic recovery force is generated. Since the face material 3 and the frame-like portion 2 are pulled back by this elastic recovery force, the load-bearing wall structure 1 of the present invention immediately returns to its original shape.

また、図2(c)に示すように、防振具5を底面側5bで小さく上面側5aで大きいテーパ状(円錐台状)とし、装着孔3aを防振具5が嵌着可能なテーパ状(円錐台状)とすれば、防振具5の周縁のテーパと装着孔3aの周縁のテーパが係合するため、上記鍔部5cを設けた場合と同様、面材3が枠状部2から浮き上がった場合でも防振具5は装着孔3aから外れず、また浮き上がった面材3もすぐに元の形状に復帰する。
なお、図2(d)に示すように、防振具5をテーパ状にすると共に鍔部5cも設ければ、防振具5はさらに装着孔3aから抜け落ちにくくなり、面材3も元の形状に復帰しやすくなる。
Further, as shown in FIG. 2C, the vibration isolator 5 has a tapered shape (conical shape) that is small on the bottom surface side 5b and large on the top surface side 5a, and the mounting hole 3a is a taper on which the vibration isolator 5 can be fitted. Since the taper on the periphery of the vibration isolator 5 and the taper on the periphery of the mounting hole 3a are engaged with each other, the face material 3 is formed into a frame-like portion as in the case where the flange 5c is provided. The antivibration device 5 does not come off from the mounting hole 3a even when it floats up from 2, and the face material 3 that floats up immediately returns to its original shape.
As shown in FIG. 2 (d), if the vibration isolator 5 is tapered and the flange 5c is also provided, the vibration isolator 5 is further unlikely to fall out of the mounting hole 3a, and the face material 3 is also original. It becomes easy to return to the shape.

上記の防振具5は、図3(a)(b)に示すように、予め、面材3の装着孔3aに装着しておくこともできる。なお、本発明において予め防振具5が装着された面材3を防振面材53と称する。
これらの防振面材53は、面材の製造工場やプレカット工場で一括生産すればよく、この防振面材53を用いれば、施工現場において通常の止着材4で通常の面材を止着するのと同じ要領で防振面材53を枠状部2に止着するだけで、本発明の防振耐力壁構造1が得られ、作業性が高められるので好ましい。
As shown in FIGS. 3A and 3B, the vibration isolator 5 can be mounted in the mounting hole 3a of the face material 3 in advance. In the present invention, the face material 3 on which the vibration isolator 5 is mounted in advance is referred to as an anti-vibration face material 53.
These anti-vibration surface materials 53 may be produced in a lump at a face material manufacturing factory or a pre-cut factory, and if this anti-vibration surface material 53 is used, the normal face material is stopped by the normal fixing material 4 at the construction site. The anti-vibration bearing wall structure 1 of the present invention can be obtained only by fixing the anti-vibration surface member 53 to the frame-like portion 2 in the same manner as that for wearing, which is preferable because workability is improved.

また、本発明における防振具5は、図4(a)に示すように、予め、止着材4を貫通させておくこともできる。なお、本発明において予め止着材4を貫通させた防振具5を防振止着材54と称する。
このような防振止着材54は既設の耐力壁構造を本発明の防振耐力壁構造1とする場合に有用である。即ち、既存の耐力壁の要所に装着孔3aを穿設し、その部分に防振止着材54における防振具5の部分を装着孔3aに嵌装し、止着材4の部分を枠状部2に打ち込むか捩じ込むだけで、本発明の防振耐力壁構造1を得ることができる。
Moreover, as shown in FIG. 4A, the vibration isolator 5 according to the present invention can have the fastening material 4 penetrated in advance. In the present invention, the vibration isolator 5 through which the fixing material 4 is penetrated in advance is referred to as an anti-vibration fixing material 54.
Such an anti-vibration fixing material 54 is useful when the existing load-bearing wall structure is the vibration-proof load-bearing wall structure 1 of the present invention. That is, the mounting hole 3a is drilled at a point of the existing bearing wall, and the portion of the vibration isolator 5 in the anti-vibration fixing material 54 is fitted into the mounting hole 3a in that portion, and the portion of the fixing material 4 is fixed. The vibration-proof bearing wall structure 1 of the present invention can be obtained simply by driving or screwing into the frame-like portion 2.

なお、この防振止着材54には、図4(b)に示すように、止着材4の釘頭と防振具5の間にワッシャ4aを設けてもよい。
また、この防振止着材54において、止着材4は使用時において防振具5を貫通するように構成されていれば足り、使用前において止着材4が防振具5を貫通している必要はない。即ち、図4(c)に示すように、使用前には防振具5の先端が防振具5の中に埋まっているように構成されていてもよい。この場合、防振具5を装着孔3aに嵌装する際に、止着材4を把持部として使用できるので取り扱い易いだけでなく、止着材4の先端を不用意に触ることによる怪我も防ぐことができるので好ましい。
In addition, as shown in FIG. 4 (b), a washer 4 a may be provided between the nail head of the fixing material 4 and the vibration isolator 5 in the vibration-proofing fixing material 54.
In addition, in this anti-vibration fastening material 54, it is sufficient that the fastening material 4 is configured to penetrate the vibration isolator 5 during use, and the fastening material 4 penetrates the vibration isolator 5 before use. You don't have to. That is, as shown in FIG. 4C, the tip of the vibration isolator 5 may be configured to be buried in the vibration isolator 5 before use. In this case, when the vibration isolator 5 is fitted into the mounting hole 3a, the fastening material 4 can be used as a gripping portion, so that it is easy to handle, and injuries caused by carelessly touching the tip of the fastening material 4 are also caused. Since it can prevent, it is preferable.

防振止着材54における防振具5には、図4(d)に示すように、外殻部5dを設けることもできる。このようにすれば、装着孔3aに防振具5を装着する際、防振具5が不意に撓むような不都合を防止できるので、装着作業が容易になる。なお、外殻部5dの形状は特に限定されず、装着孔3aへの装着しやすさや、面材3との係合性を考慮して任意の構成を付加することができる。例えば図4(e)に示すように、鍔部5cを外殻部5dに設けてもよい。   As shown in FIG. 4D, the anti-vibration tool 5 in the anti-vibration attachment 54 can also be provided with an outer shell 5d. In this way, when the vibration isolator 5 is mounted in the mounting hole 3a, it is possible to prevent inconvenience that the vibration isolator 5 is bent unexpectedly, so that the mounting operation is facilitated. The shape of the outer shell 5d is not particularly limited, and an arbitrary configuration can be added in consideration of ease of mounting in the mounting hole 3a and engagement with the face material 3. For example, as shown in FIG. 4E, the flange portion 5c may be provided on the outer shell portion 5d.

なお、既存の耐力壁構造を本発明の防振耐力壁構造とする場合でも、防振具5と止着材4を必ずしも予め一体化させておく必要はなく、即ち上記図4(a)〜(e)の防振止着材54の各パーツをそれぞれ別々に使用してもよい。   Even when the existing load-bearing wall structure is the vibration-proof load-bearing wall structure of the present invention, it is not always necessary to integrate the vibration-proofing tool 5 and the fastening material 4 in advance, that is, FIG. You may use each part of the vibration-proof attachment material 54 of (e) separately, respectively.

以下、本発明の効果を実験例及び比較実験例に基づいて詳細に説明するが、本発明はこれらにより何等限定されるものではない。
実験例及び比較実験例に供する試験躯体の内、実験例では図5に示す大壁仕様(1820×2730mm)の木造軸組耐力壁1であって、枠状部2の片面に面材3を配して面材3と止着材4の間に防振具5が介設されている止着構造からなる防振耐力壁を用いた。比較実験例では図5に類似する従来の大壁仕様(1820×2730mm)の木造軸組耐力壁であって、防振具を介設せずに面材を直接止着材で止着されている従来の止着構造からなる耐力壁を用いた。これらの試験躯体を用い、静的試験法である柱脚固定式の面内せん断試験法と、動的試験法である震動試験法を模した図6に示す模擬震動試験法をそれぞれ実施し、その性能差を明らかにする。
模擬震動試験法は、本来、実施すべき公的な震動試験機(又は、同等機)の借用に長期間を要すことから、代替法として、阪神淡路大地震時の神戸市中心街(震度7)で、耐震等級2〜3相当(推定)の耐震住宅において、激しい地震動で2階に設置の浴槽に水が浴槽外へ飛散、消失した事例にならって、従来の耐力壁と本発明の防振耐力壁の比較震動試験を実施した。
Hereinafter, the effects of the present invention will be described in detail based on experimental examples and comparative experimental examples, but the present invention is not limited to these.
Of the test cases provided for the experimental example and the comparative experimental example, the experimental example is a wooden frame bearing wall 1 having a large wall specification (1820 × 2730 mm) shown in FIG. 5, and a face member 3 is provided on one side of the frame-like portion 2. An anti-vibration load-bearing wall having a fixing structure in which a vibration isolator 5 is interposed between the face material 3 and the fixing material 4 is used. In the comparative experiment example, it is a conventional wooden wall bearing wall (1820 × 2730 mm) similar to FIG. 5, in which the face material is fixed directly with a fixing material without using a vibration isolator. A conventional load-bearing wall having a fastening structure was used. Using these test housings, the static column test-type in-plane shear test method and the dynamic test method simulated vibration test method shown in FIG. The performance difference is clarified.
The simulated seismic test method originally requires a long period of time to borrow a public seismic tester (or equivalent) that should be implemented. As an alternative method, the central city of Kobe during the Great Hanshin Awaji Earthquake (Seismic intensity) 7) In an earthquake-resistant house with an earthquake resistance rating of 2-3 or equivalent (estimated), in the case of water splashing out of the bathtub and disappearing in the bathtub installed on the second floor due to severe earthquake motion, A comparative vibration test of the vibration-proof bearing wall was conducted.

実験例:本発明の防振耐力壁の作製
図5に示されるような、大壁仕様(1820×2730mm)の木造軸組防振耐力壁1を作製した。
枠状部2は、梁2a用の軸材として米松構造用製材JAS甲種3級105×180mmの木材を使用し、柱2b用(間柱を含む)、土台2c用の軸材としてスギ構造用製材JAS乙種3級105×105mmを用いて作製した。なお、図示しないが、土台2cと柱2bと内面せん断試験用の固定基板(基礎に相当、図示せず)の間がホールダウンで固定され、梁2aと柱2bの間が羽子板ボルトで固定されている。
面材3としては、広さが910×2730mmのJAS構造用合板特類2級(厚さ9mm)を2枚使用した。面材3の外周部及び中通部には、150mmごとに直径20mmの装着孔が穿設されている。但し、面材と軸材の両方の端縁から装着孔の中心まで、20mm以上の距離を保つようにされている。
防振具としては、倉敷化工社製の防振パット(型番:KH−10、硬度:60、厚さ12mm)を直径20mmの円筒状に打ち抜いて使用した。この防振具は上記面材の装着孔に嵌着して装着されている。
止着材としては、カネシン製耐力壁ビス(型番:KS4041)を使用し、図1(b)に記載されている例と同様、直径22mm、厚み1mmのワッシャ4aとともに、厚み9mmの面材に防振具を押し込み止着した。この止着材4が上記防振具5を貫通し、上記枠状部2に捩じ込まれることにより、面材3が枠状部2に止着されている。
なお、本実験例の防振耐力壁は3面作製し、1面を静的試験法である面内せん断試験に、2面を動的試験法を模した模擬震動試験に使用した。
Experimental example: Preparation of vibration-proof bearing wall of the present invention A wooden frame vibration-proof bearing wall 1 having a large wall specification (1820 × 2730 mm) as shown in FIG. 5 was prepared.
The frame-shaped part 2 uses wood of JAS class 3 grade 105 × 180 mm as a shaft material for the beam 2a, and is a cedar structural material as a shaft material for the pillar 2b (including the intermediate pillar) and the base 2c. It was prepared using JAS Otsuchi Class 3 105 × 105 mm. Although not shown, the base 2c, the column 2b, and a fixed substrate for internal shear test (corresponding to a foundation, not shown) are fixed in a hole-down manner, and the beam 2a and the column 2b are fixed with a battledore bolt. ing.
As the face material 3, two JAS structural plywood special grades 2 (thickness 9 mm) having a width of 910 × 2730 mm were used. A mounting hole having a diameter of 20 mm is formed every 150 mm in the outer peripheral portion and the middle portion of the face material 3. However, a distance of 20 mm or more is maintained from the edge of both the face material and the shaft material to the center of the mounting hole.
As the vibration isolator, a vibration isolating pad (model number: KH-10, hardness: 60, thickness 12 mm) manufactured by Kurashiki Kako was punched into a cylindrical shape having a diameter of 20 mm. This vibration isolator is fitted into the mounting hole of the face material.
As the fastening material, a load-bearing wall screw made of Kanesin (model number: KS4041) is used, and in the same manner as the example shown in FIG. 1B, a washer 4a having a diameter of 22 mm and a thickness of 1 mm is used as a face material having a thickness of 9 mm. The vibration isolator was pushed in and fixed. The fastening material 4 penetrates the vibration isolator 5 and is screwed into the frame-like portion 2, so that the face material 3 is fastened to the frame-like portion 2.
Three anti-vibration load-bearing walls in this experimental example were prepared, and one surface was used for an in-plane shear test, which is a static test method, and two surfaces were used for a simulated vibration test simulating a dynamic test method.

比較実験例:従来の耐力壁の作製
装着孔を穿設せず、防振具を装着せず、従来の工法に従って、止着材としてカネシン製耐力ビス(型番:KS4041)を用い面材に直接貫通させた他は、実験例と同様にして耐力壁を3面作製し、上記と同様に1面を静的試験法である面内せん断試験に、2面を動的試験法を模した模擬震動試験に使用した。
Example of comparative experiment: Production of conventional bearing wall Without mounting holes, without mounting vibration isolator, according to the conventional method, using Kanesin's bearing screw (model number: KS4041) as a fastening material directly on the face material Except for the penetration, three bearing walls were prepared in the same manner as in the experimental example, and in the same manner as above, one surface was simulated as an in-plane shear test, which is a static test method, and two surfaces were simulated as a dynamic test method. Used for vibration test.

面内せん断試験:
(実験例の防振耐力壁)
実験例の防振耐力壁を、建築基準法施工令第46条第4項表1の(八)に基づいて定められた、指定性能評価機関による耐力壁の倍率を評価するための試験方法(東京合板工業組合/東北合板工業組合、構造用合板の手引き、4.構造用合板を張った耐力壁、4.2特認による壁倍率、URL:http://www.ply-wood.net/data/pdf/tebiki _kouzou/10-12.pdf)に準じた方法により壁倍率を測定、評価した。その結果、実験例の防振耐力壁は約5kN/mの水平荷重に耐え、壁倍率2. 0相当の耐力壁であることが判った。
次に、防振パットの硬度を70に変更した場合の壁倍率は、3. 0相当の耐力壁であることが別途確認された。このように、本防振耐力壁の壁倍率の選定、設計は、防振材料の性質、防振具の配置や止着数、防振具や止着材の外形、止着材の種類等により適宜、選択、選定することが可能である。
(比較実験例の耐力壁)
上記と同様の方法による面内せん断試験の結果、比較実験例の耐力壁は約6kN/mの水平荷重に耐え、壁倍率3.0の耐力壁であることが判った。
In-plane shear test:
(Anti-vibration bearing wall in the experimental example)
Test method for evaluating the strength of a load-bearing wall by a designated performance evaluation organization, which was established based on (8) of the Building Standard Act Construction Order Article 46, Paragraph 4, Table 1 Tokyo Plywood Industry Association / Tohoku Plywood Industry Association, structural plywood guide, 4. load bearing wall with structural plywood, 4.2 wall magnification by special approval, URL: http://www.ply-wood.net/data /pdf/tebiki_kouzou/10-12.pdf) The wall magnification was measured and evaluated. As a result, it was found that the anti-vibration bearing wall of the experimental example can withstand a horizontal load of about 5 kN / m and is a bearing wall equivalent to a wall magnification of 2.0.
Next, it was separately confirmed that the wall magnification when the hardness of the vibration-proof pad was changed to 70 was a load-bearing wall equivalent to 3.0. In this way, the selection and design of the wall magnification of the anti-vibration bearing wall depends on the properties of the anti-vibration material, the arrangement and number of anti-vibration devices, the external shape of the anti-vibration devices and attachment materials, the types of attachment materials, etc. It is possible to select and select as appropriate.
(Bearing wall of comparative experimental example)
As a result of the in-plane shear test using the same method as described above, it was found that the load-bearing wall of the comparative experimental example can withstand a horizontal load of about 6 kN / m and is a load-bearing wall having a wall magnification of 3.0.

模擬震動試験:
図6(a)(b)に示すように、模擬震動試験装置を組み立てた。防振耐力壁1は土台2cの部分がバネ性に優れたアンカーボルトA(ステンレス鋼製、M12×450mmL)で基礎B(コンクリート製)と接続されており、土台2cと基礎Bの間に、コロC(テフロン(登録商標)製丸棒:50φ×120L)が基礎Bの上面と土台2cに設けた軸受部に介設されている。アンカーボルトAの周りには基礎Bの表面から深さ150mmの部分までSRスポンジゴムG1(硬度50)が設置されている。これらの構造により、土台2cを正負交番で加振することにより地震動を耐力壁面に再現し、変形や揺れの状態を観察すると共に、面材の止着部を中心に損傷、損壊による耐震劣化の進行の状態を把握した。
地震動の加振構造としては、土台2cの一端側に加振パッドP(発泡ポリエチレン(カネカ社製、商品名:エペランPP 30倍発泡品)からなる厚み50mmの板状部材)を介してランマーR(三笠産業社製、電動タンピングランマー、型番:MTX−M55)を設置した。土台2cの他端側には、復元バネSpを設けて、ランマーRによる押圧、加振挙動を反復、復元する構造にした。ランマーRの衝撃ストロークは45〜65mm、衝撃数は11.0〜12.7Hz/minである。
梁2aの上部の中央部付近(2階の床面の代替)には浴槽の代替として水槽T(長さ600×幅400×高さ400mm)を置いて、中に水を250mmの高さまで入れた。左右の柱2bの真上付近には、重さ100kgの錘Wを載置して、正負の震動や揺れの慣性力を増幅させる構造とした。梁2aの両端付近には、試験躯体の横揺れ防止ローラーSuを設けて試験躯体の正負方向以外の横揺れを防止した。
Simulated vibration test:
As shown in FIGS. 6A and 6B, a simulated vibration test apparatus was assembled. The anti-vibration bearing wall 1 is connected to the foundation B (concrete) with an anchor bolt A (stainless steel, M12 × 450 mmL) having an excellent spring property at the base 2c. Roller C (Teflon (registered trademark) round bar: 50φ × 120 L) is interposed between the upper surface of the base B and a bearing portion provided on the base 2c. Around the anchor bolt A, SR sponge rubber G1 (hardness 50) is installed from the surface of the foundation B to a portion having a depth of 150 mm. With these structures, the base 2c is vibrated alternately in positive and negative directions to reproduce the seismic motion on the load-bearing wall, observe deformation and shaking, and the seismic deterioration due to damage and damage centered on the fixed part of the face material I grasped the state of progress.
As a vibration structure for seismic motion, a rammer R is provided on one end side of the base 2c via a vibration pad P (a plate member having a thickness of 50 mm made of foamed polyethylene (manufactured by Kaneka Co., Ltd., trade name: Eperan PP 30 times foamed product)). (Mikasa Sangyo Co., Ltd., electric tamping rammer, model number: MTX-M55) was installed. On the other end side of the base 2c, a restoring spring Sp is provided so that the pressing and vibrating behavior by the rammer R is repeated and restored. The impact stroke of the rammer R is 45 to 65 mm, and the impact number is 11.0 to 12.7 Hz / min.
A water tank T (length 600 x width 400 x height 400 mm) is placed as an alternative to the bathtub near the center of the upper part of the beam 2a (substitution of the floor on the second floor), and water is put to a height of 250 mm inside. It was. A weight W having a weight of 100 kg is placed near the right and left pillars 2b to amplify positive and negative vibrations and shaking inertial forces. Near the both ends of the beam 2a, roll prevention rollers Su of the test casing were provided to prevent rolls of the test casing other than the positive and negative directions.

(比較実験例の耐力壁の震動試験1)
上記のような条件で、まず、比較実験例の耐力壁構造において、ランマーRを作動、押圧させて土台2cを徐々に加振、増幅(10秒間)させながら、耐力壁の変形、揺れ、損傷状況等を観察するとともに、水槽T内の様子を観察した。水槽T内の水の揺れが徐々に激しくなり水槽T内の水が徐々にこぼれはじめ、約1/3の程度の水がこぼれた状態(推定震度:5〜6程度)を維持して、さらに2分間震動させたところ、面材3の揺れや衝撃や変形は徐々に激しくなり、耐力の低下と共に水のこぼれ現象が再発、進行したため試験を中断した。この状態における梁2aや土台2cの止着部を中心に面材3の裂断や浮き上がりや、止着材の螺子釘(カネシン製、耐力ビス)の面材3からの頭抜け現象が散見されるも面材3の剥離、脱落には至らず、耐力壁の原形復帰は目視でほぼできているものの、人力で振動させたところ、正負のガタツキが若干観察された。この状態では地震後に起こる大きな余震や、2回目の地震の被災には耐えることはできないと判断された。
(Vibration test of bearing wall of comparative experiment example 1)
Under the above conditions, first, in the bearing wall structure of the comparative experimental example, the Rammer R is actuated and pressed to gradually vibrate and amplify the foundation 2c (10 seconds), while the bearing wall is deformed, shaken and damaged. While observing the situation etc., the state in the water tank T was observed. The water in the tank T gradually shakes and the water in the tank T gradually starts to spill, and about 1/3 of the water is maintained (estimated seismic intensity: about 5 to 6). When shaken for 2 minutes, the shaking, impact and deformation of the face material 3 gradually increased, and the spilling phenomenon of water recurred and progressed as the proof stress decreased, so the test was stopped. In this state, the surface material 3 is broken or lifted around the fixing portion of the beam 2a and the base 2c, and a head-through phenomenon from the surface material 3 of the screw nail (made of Kanesin, strength screw) of the fixing material is sometimes seen. Although the surface material 3 did not peel off or fall off, the original shape of the load bearing wall was almost restored to the original shape, but when it was vibrated by human power, some positive and negative rattling was observed. In this state, it was judged that it was not possible to endure the aftershock that occurred after the earthquake and the second earthquake.

(比較実験例の耐力壁の震動試験2)
震動試験1(推定震度:5〜6程度)の知見にならって、比較実験例の耐力壁の試験躯体を用いて、試験1の条件(水槽の水こぼれ1/3程度)を試験2の開始条件としてスタートし、さらに押圧、加振を増幅させたところ、水こぼれ現象が一段と激しくなり、ほとんどの水が槽外に飛散、こぼれ出た(この間、7〜10秒)。この間の揺れや衝撃、変形は激しさを増して、さらに止着部の損壊、破損の進行が目視され、面材3の浮き上がり、部分的な剥離現象が始まり面材3の剥離、脱落の危険性から試験を中断した(推定震度:7程度)。この状態では面材の止着部の裂断や螺子釘の頭抜けが、梁2aや土台2cを含む仕口部にも進行しており、面材3の枠状部2もやや傾き原形に復帰せず、試験1に比較して正負方向に大きなガタツキが感じられた。
この状態では耐力壁としての機能は期待できず、いずれ家屋の倒壊に至ることは容易に推察された。
(Vibration test of bearing wall in comparative experiment example 2)
Based on the knowledge of ground motion test 1 (estimated seismic intensity: about 5 to 6), test 2 conditions (about 1/3 of the water spillage in the aquarium) were started using the test case of the bearing wall of the comparative experiment example. Starting as a condition and further amplifying the pressure and vibration, the water spill phenomenon became more intense, and most of the water was scattered outside the tank and spilled (7-10 seconds during this time). During this time, the shaking, impact, and deformation increase in intensity, and the progress of the breakage and breakage of the fastening part is visually observed, and the face material 3 is lifted and the partial peeling phenomenon starts, and the risk of peeling and dropping of the face material 3 The test was suspended due to the nature (estimated seismic intensity: about 7). In this state, the tearing of the fastening part of the face material and the heading-out of the screw nail proceed to the joint part including the beam 2a and the base 2c, and the frame-like part 2 of the face material 3 is also slightly inclined to the original shape. It did not return, and a large backlash was felt in the positive and negative directions compared to Test 1.
In this state, the function as a load-bearing wall could not be expected, and it was easily assumed that the house would eventually collapse.

(実験例の防振耐力壁の震動試験3)
比較実験例の震動試験1の条件(推定震度:5〜6程度)で、実験例の防振耐力壁の震動試験を実施した。震動開始後(約5秒後)、水槽T内の水は左右に揺れ始めたが、水位は、水槽上面より下(数cm以下)で波打ちするも、外部に飛散することはなく、面材3の揺れや衝撃、変形も試験1に比して小さく、穏やかに感じられた(推定震度:5程度)。加振中の面材3の状況は、梁2a、土台2cの変形量が大きく、中心部は小さな変形で揺れ、止着部の防振具を貫通する止着材を中心に正負交番して弾性収縮変形、弾性復元変形を繰り返し、防振部が防振している状態が目視で確認された。一旦加振を中断させ止着部位(面材3の装着孔、防振具、止着材)の損傷を確認したが、面材3と止着材のワッシャによる摩擦傷が確認されたものの、止着部の損傷、損壊に至る傷ではなく、面材3の浮き上がり現象も認められないことから、試験後の壁倍率の低下も発生していないものと観察された。その後、2回目の2分間の加振後、更に3回目の2分間の加振を行うも水槽Tの水の飛散が一部認められた以外は、大きな耐震劣化は認められなかった。この結果から、数次の震度5〜6程度の地震に対しても、防振耐力壁の信頼性は大きく損なわれることはなく、防振耐力壁として実用性を有することが推察された。
(Vibration test 3 of the test example)
The vibration test of the vibration-proof bearing wall of the experimental example was performed under the conditions of the vibration test 1 of the comparative experimental example (estimated seismic intensity: about 5 to 6). After the start of vibration (about 5 seconds later), the water in the water tank T began to sway from side to side, but the water level undulated below the top surface of the water tank (several centimeters or less), but it did not scatter to the outside. The shaking, impact, and deformation of No. 3 were also smaller than Test 1 and felt calm (estimated seismic intensity: about 5). The situation of the face material 3 during vibration is that the deformation amount of the beam 2a and the base 2c is large, the center portion is swayed by a small deformation, and the positive and negative alternates centering on the fastening material penetrating the vibration isolator of the fastening portion. The state in which the vibration isolating portion was subjected to vibration isolation was confirmed visually by repeating elastic contraction deformation and elastic restoration deformation. Although the vibration was temporarily interrupted and damage to the fastening part (mounting hole of face material 3, vibration isolator, fastening material) was confirmed, although friction scratches due to the washer of the face material 3 and the fastening material were confirmed, It was observed that the wall magnification after the test was not reduced because the surface portion 3 was not lifted up, and was not damaged or damaged at the fastening part. After that, after the second 2 minutes of vibration, a third 2 minutes of vibration was performed, but no significant seismic deterioration was observed except that a part of the water in the water tank T was scattered. From this result, it was speculated that the reliability of the anti-vibration bearing wall is not greatly impaired even in the case of several earthquakes with a seismic intensity of about 5 to 6, and that the anti-vibration bearing wall has practicality.

(実験例の防振耐力壁の震動試験4)
比較実験例の震動試験2(推定震度:7程度)の条件で実験例の防振耐力壁の震動試験を実施した。
加振スタートから10秒経過後で概ね推定震度7程度が再現されたと判断し、水槽Tの水の波打ち状態や防振耐力壁のゆれ、衝撃、変形を観察した。
水面の波打ちは徐々に大きくなり、水槽上部から一部、飛散する現象が認められたが、飛散量が1/5程度でそれ以上の飛散は起こらず水槽上面まで達する大きな波立ちが続いた。
面材3自体の揺れ、衝撃、変形は、試験2の状態より小さく、緩和されていることが観察された。止着部の防振具の防振状態は、試験3と類似していたが動きは正負交番の弾性変形、弾性復元は発揮されていることが確認できた。一旦停止後、再度の目視観察では、ワッシャ跡の損傷以外で装着孔がわずかに拡大されている箇所が一部に認められたものの大きく耐震劣化していないと判断し、2回目の震動試験を行った。2回目の2分間の加振中の揺れや衝撃、変形は1回目に比し大きな変化は認められなかったものの、水の飛散は少し認められた。停止後の面材3は原形復帰した。止着部のワッシャのすれ傷は拡大しているが面材3が剥離する状態ではなく、防振ゴムの止着材の貫通穴がやや白化し拡大気味になっており、若干防振性能の低下が懸念さるものの、その後に想定される地震(推定震度6〜7程度)にも十分耐えうるものと推察された。
(Vibration test of the vibration-proof bearing wall in the experimental example 4)
The vibration test of the vibration-proof bearing wall of the experimental example was performed under the condition of the vibration test 2 of the comparative experimental example (estimated seismic intensity: about 7).
After 10 seconds from the start of vibration, it was judged that the estimated seismic intensity of about 7 was reproduced, and the waving state of the water tank T, the vibration of the vibration-proof bearing wall, impact, and deformation were observed.
The waving on the surface of the water gradually increased, and a part of the scatter was observed from the upper part of the tank. However, the amount of scatter was about 1/5, and no further scatter occurred, and a large wave reaching the upper surface of the tank continued.
It was observed that the shaking, impact, and deformation of the face material 3 itself were smaller than the state of Test 2 and relaxed. The anti-vibration state of the anti-vibration tool at the fastening part was similar to that in Test 3, but it was confirmed that the movement was positive and negative alternating elastic deformation and elastic restoration. After stopping once, the visual inspection again showed that the mounting hole was slightly enlarged except for the damage of the washer trace, but it was judged that there was no significant earthquake-resistant deterioration, and the second vibration test was conducted. went. The shaking, impact, and deformation during the 2nd vibration for the 2nd time were not significantly changed compared to the 1st time, but a little water splashing was observed. After the stop, the face material 3 has returned to its original shape. Although the scuffing of the washer at the fastening part is enlarged, the face material 3 is not peeled off, and the through-hole of the fastening material of the vibration-proof rubber is slightly whitened and seems to be enlarged, with a little vibration-proof performance Although there is concern about the decline, it was speculated that it would be able to withstand earthquakes assumed after that (estimated seismic intensity of about 6-7).

以上の実験例及び比較実験例に示す通り、静的試験法(面内せん断試験)では、実験例(壁倍率2.0)が比較実験例(壁倍率3.0)に比し低い数値であるにもかかわらず、模擬震動試験では性能差が逆転しており、本発明の防振体力壁がいかに実際の地震に強く、かつ変形や揺れや衝撃や損壊を抑制緩和するかが証され、さらには、従来の耐力壁の最大の欠陥ともされる耐震劣化の課題を解決することが立証された。   As shown in the above experimental examples and comparative experimental examples, in the static test method (in-plane shear test), the experimental example (wall magnification 2.0) is lower than the comparative experimental example (wall magnification 3.0). Despite being, the performance difference is reversed in the simulated vibration test, which demonstrates how the anti-vibration body wall of the present invention is resistant to actual earthquakes and suppresses and relieves deformation, shaking, impact and damage, Furthermore, it has been proved that the problem of seismic deterioration, which is regarded as the biggest defect of conventional bearing walls, is solved.

上記したとおり、本発明の防振耐力壁構造は、面材と止着材の間に防振材料からなる防振具が介設され全体として柔構造であるため、変形や揺れが抑制緩和され、震動や衝撃によって塑性変形しにくく、損壊しにくい。また、震動や衝撃により変形しても直ちに元の形状に復帰するので、余震や2回目以降の地震(震動や衝撃)に対しても優れた防振性を発揮し、建築物や構築物の耐震性と耐久性と安心、安全性を画期的に向上させることができる。   As described above, the anti-vibration load-bearing wall structure of the present invention is a flexible structure as a whole with an anti-vibration tool made of an anti-vibration material interposed between the face material and the fastening material, so that deformation and shaking are suppressed and alleviated. Resistant to plastic deformation due to vibration and impact, and difficult to break. In addition, even if it is deformed due to vibration or impact, it immediately returns to its original shape, so it exhibits excellent anti-vibration properties against aftershocks and subsequent earthquakes (vibrations and shocks), and the earthquake resistance of buildings and structures. , Durability, security, and safety can be dramatically improved.

1 防振耐力壁構造
2 枠状部
2a 梁
2b 柱
2c 土台
2d 間柱
3 面材
3a 装着孔
4 止着材
4a ワッシャ
4b 押込み固定具
4b1 張り出し部
4c 押込み止着材
5 (栓状)防振具
5a 上面側
5b 底面側
5c 鍔部
5d 外殻部
5e 貫通孔
5f 帯状防振具
53 防振面材
54 防振止着材
B 基礎
A アンカーボルト
N ナット
G1、G2、G3 ゴム
C コロ
R ランマー
P 加振パッド
Sp 復元バネ
T 水槽
W 錘
Su 横揺れ防止ローラー
DESCRIPTION OF SYMBOLS 1 Vibration-proof load-bearing wall structure 2 Frame-like part 2a Beam 2b Column 2c Base 2d Inter-column 3 Face material 3a Mounting hole 4 Fastening material 4a Washer 4b Pushing fixture 4b1 Overhanging part 4c Pushing fastening material 5 5a Upper surface side 5b Bottom surface side 5c Gutter part 5d Outer shell part 5e Through-hole 5f Band-shaped vibration isolator 53 Anti-vibration surface material 54 Anti-vibration attachment material B Foundation A Anchor bolt N Nut G1, G2, G3 Rubber C Roller R Rammer P Excitation pad Sp Restoration spring T Water tank W Weight Su Roll prevention roller

Claims (9)

構造躯体中の枠状部の少なくとも片面に面材を配設して止着材で止着してなる耐力壁構造において、
面材と止着材の間に防振材料からなる防振具が介設されていることを特徴とする防振耐力壁構造。
In the load-bearing wall structure in which the face material is disposed on at least one side of the frame-shaped portion in the structural frame and is fixed with a fixing material,
An anti-vibration load-bearing wall structure characterized in that an anti-vibration tool made of an anti-vibration material is interposed between the face material and the fastening material.
面材には防振具を装着するための装着孔が穿設され、
止着材は装着孔に装着された防振具を貫通して面材と枠状部を止着するように構成されていることを特徴とする請求項1に記載の防振耐力壁構造。
A mounting hole for mounting a vibration isolator is drilled in the face material,
The anti-vibration load-bearing wall structure according to claim 1, wherein the fixing member is configured to pass through the vibration isolator mounted in the mounting hole and fix the face member and the frame-like portion.
防振具が、底面側において装着孔の口径よりも小さく、上面側において装着孔の口径よりも大きいテーパ状であることを特徴とする請求項1又は2に記載の防振耐力壁構造。   The vibration-proof bearing wall structure according to claim 1 or 2, wherein the vibration isolator has a tapered shape that is smaller than the diameter of the mounting hole on the bottom surface side and larger than the diameter of the mounting hole on the upper surface side. 防振具の上面側には装着孔の口径よりも大きい鍔部が設けられていることを特徴とする請求項1又は2に記載の防振耐力壁構造。   The anti-vibration load-bearing wall structure according to claim 1 or 2, wherein a flange portion larger than the diameter of the mounting hole is provided on the upper surface side of the anti-vibration tool. 防振具が底面側で小さく上面側で大きいテーパ状であり、装着孔が防振具を嵌着可能なテーパー状であることを特徴とする請求項1又は2に記載の防振耐力壁構造。   3. The anti-vibration load-bearing wall structure according to claim 1, wherein the anti-vibration tool has a tapered shape that is small on the bottom surface side and large on the upper surface side, and the mounting hole has a taper shape to which the anti-vibration device can be fitted. . 防振材料がブチルゴム、シリコンゴム等の合成ゴム、天然ゴム、エラストマー樹脂、発泡合成樹脂のいずれか一種またはこれらを複合化したものからなることを特徴とする請求項1乃至5のいずれかに記載の防振耐力壁構造。   6. The vibration-proof material is made of any one of synthetic rubber such as butyl rubber and silicon rubber, natural rubber, elastomer resin, and foamed synthetic resin, or a composite thereof. Anti-vibration load-bearing wall structure. 装着孔が穿設された面材と、該装着孔内に装着一体化された、防振材料からなる防振具と、からなることを特徴とする防振耐力壁構造用の防振面材。   An anti-vibration surface material for a vibration-proof load-bearing wall structure, comprising: a face material having a mounting hole formed therein; and a vibration isolator made of an anti-vibration material and integrated in the mounting hole. . 防振材料からなる防振具と、該防振具を貫通する止着材からなることを特徴とする防振耐力壁構造用の防振止着材。   An anti-vibration anchoring material for an anti-vibration load-bearing wall structure, comprising an anti-vibration instrument made of an anti-vibration material and an anchoring material penetrating the anti-vibration tool. 防振具の周縁部に硬質部材からなる外殻部が設けられることを特徴とする請求項8に記載の防振止着材。   The anti-vibration fastening material according to claim 8, wherein an outer shell portion made of a hard member is provided at a peripheral edge portion of the vibration isolator.
JP2013002357A 2013-01-10 2013-01-10 Vibration-proof bearing wall structure Pending JP2014134017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002357A JP2014134017A (en) 2013-01-10 2013-01-10 Vibration-proof bearing wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002357A JP2014134017A (en) 2013-01-10 2013-01-10 Vibration-proof bearing wall structure

Publications (1)

Publication Number Publication Date
JP2014134017A true JP2014134017A (en) 2014-07-24

Family

ID=51412493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002357A Pending JP2014134017A (en) 2013-01-10 2013-01-10 Vibration-proof bearing wall structure

Country Status (1)

Country Link
JP (1) JP2014134017A (en)

Similar Documents

Publication Publication Date Title
WO2014193328A1 (en) Natural rubber or synthetic rubber elastomer-based earthquake isolator with rigid polyurethane core
WO2013125231A1 (en) Seismic isolation structure for heavy objects, and seismic isolation method
KR101702449B1 (en) Earthquake-Resistant Mount for Distributing Board Using Vibration Proof Pad
JP2007262833A (en) Viscous system vibration damper and base isolation building having this damper
CN108374494A (en) A kind of vertical micro-stretching shock isolating pedestal
JP2007138678A (en) Attenuation device
JP5834223B2 (en) Seismic isolation structure and material with plastic colloid of heavy structure
JP2009174236A (en) Base isolation and seismic response control auxiliary implement, its use method, and connecting structure
JP5601608B2 (en) Seismic isolation rubber sheet
JP2014134017A (en) Vibration-proof bearing wall structure
JP3134768U (en) Weak seismic structure for wooden structures
JP2008121401A (en) Soil improvement-type vibration damping device
JPS59134230A (en) Earthquake-resistant pile
RU101725U1 (en) SEISMICALLY RECONSTRUCTED, RESTORED OR CONSTRUCTED BUILDING OR CONSTRUCTION
Al-Ameri et al. Vertical and lateral displacement response of foundation to earthquake loading
JP6635327B2 (en) Seismic isolation structure of building and seismic isolation method
JP2007126946A (en) Damping device, seismic isolation structure and vibration control structure
JP3093003U (en) Vibration control device attached to anchor bolt
JP3128457U (en) Structural foundation damping control system
JP6866573B2 (en) Buildings and damping devices
KR20110128636A (en) Seismic isolation damping apparatus of bridge
JP2015140853A (en) Base isolation member
Hatami et al. Effects of soil-structure interaction on the seismic response of base isolated in high-rise buildings
JP2012062745A (en) Push-in fastener and fixing structure using the same
Abakarov et al. Research of Residual Deformations of Seismic Isolation Systems with Rubber-Metal Supports with Lead Core Under Seismic Effect