JP2014133943A - Method of setting oxygen enrichment rate and blast furnace operation method - Google Patents

Method of setting oxygen enrichment rate and blast furnace operation method Download PDF

Info

Publication number
JP2014133943A
JP2014133943A JP2013230467A JP2013230467A JP2014133943A JP 2014133943 A JP2014133943 A JP 2014133943A JP 2013230467 A JP2013230467 A JP 2013230467A JP 2013230467 A JP2013230467 A JP 2013230467A JP 2014133943 A JP2014133943 A JP 2014133943A
Authority
JP
Japan
Prior art keywords
tuyere
oxygen
ratio
blown
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013230467A
Other languages
Japanese (ja)
Other versions
JP5786922B2 (en
Inventor
Kimitoshi Mori
侯寿 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013230467A priority Critical patent/JP5786922B2/en
Publication of JP2014133943A publication Critical patent/JP2014133943A/en
Application granted granted Critical
Publication of JP5786922B2 publication Critical patent/JP5786922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of setting an oxygen enrichment rate which can improve combustibility of powdered coal when hot air blown into a tuyere is enriched with oxygen and powdered coal and oxygen are blown into the tuyere.SOLUTION: A ratio of enriched oxygen in hot air to enriched oxygen blown from the vicinity of powdered coal, i.e. a tuyere blow oxygen ratio, is adjusted on the basis of a combustion state at the tip of the tuyere. Because the combustion state at the tip of the tuyere changes in response to a tuyere blow oxygen ratio, preliminary grasping of the relationship between the tuyere blow oxygen ratio and the combustion state at the tip of the tuyere enables determining an optimal value of the tuyere blow oxygen ratio for achieving a good combustion state at the tip of the tuyere. The relationship between tuyere blow oxygen ratio and the combustion state at the tip of the tuyere also depends upon the amount of blown powdered coal per unit pig iron, i.e. the powdered coal ratio. Preliminary determination of the relationship between tuyere blow oxygen ratio and the combustion state at the tip of the tuyere for every powdered coal ratio, therefore, enables determining an optimal value for achieving good combustion state even when the powdered coal ratio varies.

Description

本発明は、羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な高炉の酸素富化率設定方法及び高炉操業方法に関するものである。   The present invention is a blast furnace in which oxygen can be enriched in hot air blown into the blast furnace from the tuyere, and pulverized coal can be blown into the tuyere and oxygen can be blown from the vicinity thereof. The present invention relates to an oxygen enrichment rate setting method and a blast furnace operation method.

高炉法とは、炉頂部から鉄鉱石・焼結鉱やコークスなどの塊成化された原料を装入する一方で、炉下部の羽口から熱風を炉内に吹込み、羽口先でコークスが燃焼することで還元ガスが発生し、その還元ガスが炉内を炉頂部に向かって上昇している過程で、炉内の原料(鉱石)を還元・溶融して銑鉄を製造する方法である。近年では、コークスの塊成化工程でかかるコストを低減するために、石炭を細かく粉砕した微粉炭を羽口部に直接吹込み、これによりコークスと置換して溶銑製造コストを低減する操業を実施している。ここで、羽口先(羽口前)には、熱風が吹込まれる衝撃でレースウエイと呼ばれる直径1m程度の大きさの燃焼空間が形成されており、吹込まれた微粉炭は、この狭い燃焼空間を通過する短い時間の間にできるだけ燃焼させてしまうことが望ましい。その理由は、燃え残った微粉炭は未燃チャーとして炉内に蓄積され、通気性を悪化させる原因となり、安定操業を阻害するためである。   In the blast furnace method, while agglomerated raw materials such as iron ore, sintered ore and coke are charged from the top of the furnace, hot air is blown into the furnace from the tuyeres at the bottom of the furnace, and coke is produced at the tuyere tip. It is a method of producing pig iron by reducing and melting the raw material (ore) in the furnace in the process in which reducing gas is generated by combustion and the reducing gas is rising in the furnace toward the top of the furnace. In recent years, in order to reduce the cost of the coke agglomeration process, pulverized coal finely pulverized is directly blown into the tuyere, thereby replacing the coke and reducing the cost of hot metal production. doing. Here, at the tip of the tuyere (in front of the tuyere), a combustion space having a diameter of about 1 m called a raceway is formed by the impact of blowing hot air, and the pulverized coal that has been blown is the narrow combustion space. It is desirable to burn as much as possible during the short time of passing through. The reason is that unburned pulverized coal is accumulated in the furnace as unburned char, which causes deterioration of air permeability and hinders stable operation.

この微粉炭を効率よく燃焼させて操業安定化を図る方法としては、一般的に、1)燃焼空間の温度を高くする方法(反応速度向上)、2)燃焼空間の酸素濃度を高くする方法(反応速度向上)、3)燃焼空間の大きさを調整する方法(反応時間確保)、4)微粉炭の性状(揮発分、粒度)を調整する方法(反応速度向上)などが知られている。このうち、2)の方法の一つとして、例えば下記特許文献1に記載されるように、羽口部に微粉炭を吹込むと同時にその近傍から酸素又は酸素濃度の高い気体を吹込む方法がある。また、3)の方法の一つとして、例えば下記特許文献2に記載されるように、送風条件や羽口部の情報から羽口毎のレースウエイの大きさ(深度)を算出し、それらのレースウエイ深度の高炉円周方向の偏差が小さくなるように微粉炭の吹込み量を調整する方法がある。   In general, as a method of stabilizing the operation by efficiently burning this pulverized coal, 1) a method of increasing the temperature of the combustion space (improving the reaction rate), and 2) a method of increasing the oxygen concentration of the combustion space ( (Reaction rate improvement), 3) A method of adjusting the size of the combustion space (reaction time securing), 4) A method of adjusting the properties (volatile matter, particle size) of pulverized coal (reaction rate improvement), etc. are known. Among them, as one of the methods 2), for example, as described in Patent Document 1 below, there is a method in which pulverized coal is blown into the tuyere and at the same time oxygen or a gas having a high oxygen concentration is blown from the vicinity. is there. Moreover, as one of the methods of 3), as described in, for example, Patent Document 2 below, the size (depth) of the raceway for each tuyere is calculated from the air blowing conditions and the tuyere information, and those There is a method of adjusting the amount of pulverized coal injection so that the deviation of the raceway depth in the blast furnace circumferential direction becomes small.

特開2003−286511号公報JP 2003-286511 A 特公平1−20202号公報Japanese Patent Publication No. 1-20202

しかしながら、前記特許文献1に記載される酸素吹込み方法では、高圧の羽口部に多量の酸素を吹込むには吹込み酸素の圧力を高圧に昇圧する必要があり、コストアップとなると共に、羽口に直接吹込まれる酸素は昇温されていないために温度が100℃程度と低く、多量の羽口酸素吹込みは羽口先燃焼温度を低下させ、かえって微粉炭の燃焼性を低下させるという問題がある。一方、前記特許文献2に記載される微粉炭吹込み方法では、微粉炭の燃焼性を向上させて羽口先の燃焼状態を改善する技術ではないため、操業状況によっては微粉炭の吹込み量を低下させる必要があり、その結果、炉温維持のために高価なコークスを使ってコストアップとなることもある。
本発明は、上記のような問題点に着目してなされたものであり、羽口に送風される熱風に酸素を富化すると共に羽口部に微粉炭と酸素を吹込む場合に、微粉炭の燃焼性を向上することが可能な酸素富化率設定方法及び高炉操業方法を提供することを目的とするものである。
However, in the oxygen blowing method described in Patent Document 1, in order to blow a large amount of oxygen into the high-pressure tuyere, it is necessary to increase the pressure of the blowing oxygen to a high pressure, which increases costs. Since the oxygen directly blown into the tuyere is not heated, the temperature is as low as about 100 ° C., and a large amount of tuyere oxygen blowing lowers the tuyere tip combustion temperature, which in turn reduces the flammability of pulverized coal. There's a problem. On the other hand, the pulverized coal injection method described in Patent Document 2 is not a technique for improving the combustion state of the tuyere by improving the flammability of the pulverized coal. As a result, the cost may be increased by using expensive coke to maintain the furnace temperature.
The present invention has been made paying attention to the above-described problems, and in the case where oxygen is enriched in the hot air blown to the tuyere and pulverized coal and oxygen are blown into the tuyere, the pulverized coal It is an object of the present invention to provide an oxygen enrichment rate setting method and a blast furnace operating method capable of improving the flammability.

上記課題を解決するために、本発明の酸素富化率設定方法は、羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ前記羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合の酸素富化率設定方法において、前記羽口先の燃焼状態に基づいて前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる富化酸素との比率を調整することを特徴とするものである。   In order to solve the above problems, the oxygen enrichment rate setting method of the present invention is capable of enriching oxygen in hot air blown from the tuyere into the blast furnace, and adding pulverized coal to the tuyere. In the oxygen enrichment rate setting method in the case where it is possible to blow in and oxygen from the vicinity thereof, the hot air is blown from the vicinity of the enriched oxygen and the pulverized coal based on the combustion state of the tuyere The ratio with the enriched oxygen is adjusted.

また、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を予め求め、その関係から、前記羽口先の燃焼状態に基づいて、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率の最適値を設定し、その最適値になるように前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率を調整することを特徴とするものである。   Further, a relationship between the ratio of the enriched oxygen to the hot air and the oxygen enrichment injected from the vicinity of the pulverized coal and the tuyere tip combustion state is obtained in advance, and based on the relationship, the combustion state of the tuyere tip And setting an optimum value of the ratio of the oxygen enriched to the hot air and the oxygen enrichment blown from the vicinity of the pulverized coal, and the oxygen enriched to the hot air and the pulverized coal to be the optimum value The ratio with the oxygen enrichment blown from the vicinity of is adjusted.

また、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を、単位銑鉄あたりの吹込み微粉炭量毎に予め求めることを特徴とするものである。
また、本発明の高炉操業方法は、羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ前記羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合に、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を予め求め、その関係から、前記羽口先の燃焼状態に基づいて、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率の最適値を設定し、その最適値になるように前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率を調整することを特徴とするものである。
In addition, the relationship between the ratio of oxygen enriched to the hot air and oxygen enriched from the vicinity of the pulverized coal and the state of combustion at the tuyere is determined in advance for each amount of pulverized coal injected per unit pig iron. It is characterized by.
The blast furnace operating method of the present invention can enrich oxygen in hot air blown from the tuyere into the blast furnace, and blow pulverized coal into the tuyere and blow oxygen from the vicinity thereof. When it is possible, the relationship between the ratio of the oxygen enriched to the hot air and the oxygen enrichment injected from the vicinity of the pulverized coal and the state of combustion at the tip of the tuyere is obtained in advance. Based on the combustion state of the tip, an optimum value of the ratio of oxygen enriched to the hot air and oxygen enrichment blown from the vicinity of the pulverized coal is set, and the enrichment to the hot air is set to the optimum value. The ratio of oxygenated oxygen and oxygen enrichment injected from the vicinity of the pulverized coal is adjusted.

而して、本発明の酸素富化率設定方法及び高炉操業方法によれば、羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合に、羽口先の燃焼状態に基づいて熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率を調整する。羽口先の燃焼状態は、他の操業条件、例えば熱風の温度や熱風中に含まれる湿分の量などが一定である場合には、熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率に応じて変化する。従って、予め、羽口先の燃焼状態と、熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率との関係を把握していれば、羽口先の燃焼状態を良好にするための熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率の最適値を求めることができ、その最適値になるように熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率を調整すれば、羽口先における微粉炭の燃焼性を向上することができる。   Thus, according to the oxygen enrichment rate setting method and blast furnace operation method of the present invention, oxygen can be enriched in hot air blown from the tuyere into the blast furnace, and pulverized coal is formed in the tuyere. And the ratio of the enriched oxygen blown from the vicinity of the pulverized coal to the hot air is adjusted based on the combustion state of the tuyere. . The combustion state of the tuyere is blown from the vicinity of the oxygen and pulverized coal enriched in the hot air when the temperature of the hot air and the amount of moisture contained in the hot air are constant. Varies depending on the ratio of enriched oxygen. Therefore, if the relationship between the combustion state of the tuyere and the ratio of the enriched oxygen to the hot air and the enriched oxygen blown from the vicinity of the pulverized coal is grasped in advance, the combustion state of the tuyere is improved. The optimum value of the ratio of enriched oxygen to hot air and enriched oxygen blown from the vicinity of pulverized coal can be determined, and the enriched oxygen and pulverized coal By adjusting the ratio of the enriched oxygen blown from the vicinity, the combustibility of the pulverized coal at the tuyere can be improved.

また、熱風への富化酸素と微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係は、単位銑鉄あたりの吹込み微粉炭量によって異なる。従って、熱風への富化酸素と微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を、予め単位銑鉄あたりの吹込み微粉炭量毎に求めておけば、単位銑鉄あたりの吹込み微粉炭量が変化したときにも羽口先の燃焼状態を良好にするための熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率の最適値を求めることができ、その最適値になるように熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率を調整すれば、羽口先における微粉炭の燃焼性を確実に向上することができる。   Further, the relationship between the ratio of oxygen enriched to hot air and oxygen enrichment injected from the vicinity of pulverized coal and the state of combustion at the tuyere changes depending on the amount of pulverized coal injected per unit pig iron. Therefore, if the relationship between the ratio of oxygen enriched to hot air and oxygen enrichment injected from the vicinity of pulverized coal and the state of combustion at the tuyere is determined in advance for each amount of pulverized coal injected per unit pig iron. Optimum ratio of enriched oxygen to hot air and enriched oxygen blown from the vicinity of pulverized coal to improve the combustion state of the tuyere even when the amount of pulverized coal injected per unit pig iron changes By adjusting the ratio of enriched oxygen to hot air and enriched oxygen blown from the vicinity of the pulverized coal so that the optimum value can be obtained, the combustibility of the pulverized coal at the tuyere is ensured. Can be improved.

本発明の酸素富化率設定方法及び高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the oxygen enrichment rate setting method and blast furnace operation method of this invention were applied. 羽口吹込み酸素比率と燃焼温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between a tuyere blowing oxygen ratio and combustion temperature. 図1の高炉において羽口先燃焼状態に応じて羽口吹込み酸素比率を調整したときのタイミングチャートである。It is a timing chart when adjusting the tuyere blowing oxygen ratio according to the tuyere tip combustion state in the blast furnace of FIG.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方には、レースウエイ5と呼ばれる空間が存在し、主として、この空間で炭材の燃焼が行われる。ランス4から羽口3を通過し、レースウエイ5内に吹込まれた微粉炭(図ではPC:Pulverized Coal)は、コークスと共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャーとして排出される。前述のように、未燃チャーは炉内に蓄積され、炉内通気性を悪化させるため、レースウエイ5内で微粉炭をできるだけ燃焼させる、つまり微粉炭の燃焼性向上が求められる。
Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. A space called a raceway 5 exists ahead of the tuyere 3 in the direction of blowing hot air, and charcoal is mainly burned in this space. The pulverized coal (PC: Pulverized Coal in the figure) that passed through the tuyere 3 from the lance 4 and was blown into the raceway 5 burned together with coke, and its volatile matter and fixed carbon burned, and remained unburned. Aggregates of carbon and ash, commonly called char, are discharged from the raceway as unburned char. As described above, unburned char is accumulated in the furnace and deteriorates the air permeability of the furnace, so that the pulverized coal is burned as much as possible in the raceway 5, that is, the pulverized coal is required to be improved in combustibility.

羽口3からレースウエイ5内に吹込まれた微粉炭は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。ランス4から微粉炭と酸素を平行に吹込んだ場合、微粉炭がO2と接触して燃焼し、その燃焼熱によって微粉炭が加熱、昇温すると考えられ、これによりランスに近い位置で微粉炭が燃焼を開始し、燃焼率も上昇する。 The pulverized coal blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal rapidly rises by the radiant heat transfer and conduction heat transfer. Thermal decomposition starts when the temperature rises to 300 ° C. or more, ignites the volatile matter, forms a flame, and the combustion temperature reaches 1400 to 1700 ° C. When pulverized coal and oxygen are blown in parallel from the lance 4, it is considered that the pulverized coal comes into contact with O 2 and burns, and the pulverized coal is heated and heated by the combustion heat. Charcoal begins to burn and the combustion rate also increases.

本実施形態では、このように微粉炭の燃焼性を向上させるため、ランスを用いて、微粉炭の近傍に酸素を吹込む。例えば、ランス4が所謂単管ランスである場合には、微粉炭を吹込むランス4と酸素を吹込むランス4を2本セットにして各羽口3内に吹込む。また、ランス4が、大径の吹込み管の内側に小径の吹込み管を差し込んだ所謂二重管ランスである場合には、例えば内側吹込み管から微粉炭を吹込み、内側吹込み管と外側吹込み管の隙間から酸素を吹込む。二重管ランスにおける微粉炭と酸素の吹込みは、この逆であってもよいが、酸素と微粉炭を接近させてより燃焼しやすい状態とするのが好ましい。なお、ランスには、酸素供給源からの酸素が直接的に供給される。   In this embodiment, in order to improve the combustibility of pulverized coal in this way, oxygen is blown into the vicinity of pulverized coal using a lance. For example, when the lance 4 is a so-called single pipe lance, two sets of the lance 4 for blowing pulverized coal and the lance 4 for blowing oxygen are blown into each tuyere 3. Further, when the lance 4 is a so-called double pipe lance in which a small diameter blowing pipe is inserted inside a large diameter blowing pipe, for example, pulverized coal is blown from the inner blowing pipe, and the inner blowing pipe is used. And oxygen is blown from the gap between the outer blowing pipes. The pulverized coal and oxygen blowing in the double pipe lance may be reversed, but it is preferable to bring oxygen and pulverized coal closer to facilitate combustion. The lance is directly supplied with oxygen from an oxygen supply source.

本実施形態では、送風管2に供給される熱風にも酸素を富化する。熱風は、ブロワ6で起こした風を熱風炉7に送り、熱風炉7で加熱されて各送風管2に供給される。熱風に富化する酸素は、熱風炉7の上流側に供給される。そのため、送風管2から送風される熱風には加熱された酸素が富化されている。この熱風に富化される酸素と、前述したランス4から吹込まれる酸素は、同じ酸素供給源から供給される。そして、熱風への酸素富化と、前述した微粉炭と共にランス4から吹込まれる酸素の富化との比率は、自在に調整することができる。   In the present embodiment, the hot air supplied to the blower pipe 2 is also enriched with oxygen. As the hot air, the wind generated by the blower 6 is sent to the hot air furnace 7, heated by the hot air furnace 7, and supplied to each blower pipe 2. Oxygen enriched in hot air is supplied to the upstream side of the hot air furnace 7. Therefore, the heated air blown from the blower tube 2 is enriched with heated oxygen. The oxygen enriched in the hot air and the oxygen blown from the lance 4 are supplied from the same oxygen supply source. And the ratio of oxygen enrichment to hot air and enrichment of oxygen blown from the lance 4 together with the pulverized coal described above can be freely adjusted.

単独の送風管2(全体でも結果は同じ)に富化される酸素の富化率と、当該送風管2に挿入されたランス4から吹込まれる酸素の富化率との総和(トータル酸素富化率)を一定として、ランス4から吹込まれる酸素富化率のトータル酸素富化率に対する比率を変化させると、羽口先の燃焼温度、即ち羽口先燃焼状態が変化する。一般には、例えばトータル酸素富化率に対するランス(羽口)吹込み酸素富化率の比率を増加すると、羽口先燃焼状態が良好になり、羽口先燃焼温度が上昇すると考えられている。しかしながら、例えば図2に示すように、或るトータル酸素富化率に対する羽口吹込み酸素富化率の比率(図では羽口吹込み酸素比率、以下、単に羽口吹込み酸素比率とも記す)で羽口先燃焼温度が飽和して、それより羽口吹込み酸素比率を増大しても羽口先燃焼温度は低下することが明らかになった。   Sum of the enrichment rate of oxygen enriched in a single air duct 2 (the result is the same as a whole) and the enrichment ratio of oxygen blown from the lance 4 inserted into the air duct 2 (total oxygen enrichment) When the ratio of the oxygen enrichment ratio blown from the lance 4 to the total oxygen enrichment ratio is changed with the constant (concentration ratio) constant, the tuyere tip combustion temperature, that is, the tuyere tip combustion state changes. In general, for example, increasing the ratio of the lance (tuyere) blowing oxygen enrichment rate to the total oxygen enrichment rate is considered to improve the tuyere tip combustion state and increase the tuyere tip combustion temperature. However, for example, as shown in FIG. 2, the ratio of the tuyere blown oxygen enrichment rate to a certain total oxygen enrichment rate (in the figure, tuyere blown oxygen ratio, hereinafter also simply referred to as tuyere blown oxygen ratio) It became clear that the tuyere tip combustion temperature decreased when the tuyere tip combustion temperature was saturated.

図2は、燃焼実験炉において、羽口吹込み酸素比率を変化させたときの羽口先燃焼温度を調査した結果である。燃焼実験炉は、実際の高炉と同じように、炉内にコークスが充填されており、覗き窓からレースウエイの内部を観察することができるようになっている。また、送風管にはランスが差し込まれ、例えば燃焼バーナで生じた熱風を実験炉内に所定の送風量で送風することができる。また、この送風管では、送風の酸素富化量を調整することも可能である。ランスは、微粉炭及び酸素の何れか一方又は双方を送風管内に吹込むことができる。実験炉内で生じた排ガスは、サイクロンと呼ばれる分離装置で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱に捕集される。羽口先燃焼温度、つまりレースウエイ内の燃焼温度は、覗き窓から2色温度計によって計測した。2色温度計は、周知のように、熱放射(高温物体から低温物体への電磁波の移動)を利用して温度計測を行う放射温度計であり、温度が高くなると波長分布が短波長側にずれていくことに着目して、波長分布の温度の変化を計測することで温度を求める波長分布形の一つであり、中でも波長分布を捉えるため、2つの波長における放射エネルギーを計測し、比率から温度を測定するものである。   FIG. 2 shows the result of investigating the tuyere tip combustion temperature when the tuyere blown oxygen ratio is changed in the combustion experimental furnace. Like the actual blast furnace, the combustion experimental furnace is filled with coke so that the inside of the raceway can be observed from the viewing window. In addition, a lance is inserted into the blower tube, and hot air generated by, for example, a combustion burner can be blown into the experimental furnace with a predetermined blowing amount. Moreover, in this blower pipe, it is also possible to adjust the oxygen enrichment amount of the blown air. The lance can blow one or both of pulverized coal and oxygen into the blower pipe. The exhaust gas generated in the experimental furnace is separated into exhaust gas and dust by a separation device called a cyclone, the exhaust gas is sent to an exhaust gas treatment facility such as an auxiliary combustion furnace, and the dust is collected in a collection box. The tuyere tip combustion temperature, that is, the combustion temperature in the raceway, was measured from a viewing window with a two-color thermometer. As is well known, a two-color thermometer is a radiation thermometer that measures temperature using thermal radiation (electromagnetic wave movement from a high-temperature object to a low-temperature object). Paying attention to the shift, it is one of the wavelength distribution types to obtain the temperature by measuring the temperature change of the wavelength distribution, and in particular to measure the wavelength distribution, the radiant energy at two wavelengths is measured and the ratio The temperature is measured from

前述のように、微粉炭吹込み原単位、即ち微粉炭比一定で、羽口吹込み酸素比率を増加していくと、或る比率で羽口先燃焼温度はピークとなり、それ以後、羽口吹込み酸素比率を増大するほど羽口先燃焼温度は低下する。これは、前述のように、羽口(ランス)に吹込まれる酸素が加熱されない、常温(低温)の酸素であり、微粉炭の燃焼性向上に寄与する以上に低温の酸素を吹込むと、かえって羽口先燃焼温度を低下させてしまうためであると考えられる。更に、図2から明らかなように、微粉炭比を変えて羽口吹込み酸素比率を変更すると、羽口先燃焼温度が変化するだけでなく、各微粉炭比における羽口先燃焼温度のピークに対応する羽口吹込み酸素比率の値が変化する。従って、設定されている微粉炭比(微粉炭吹込み量)において、羽口先燃焼温度がピークとなる羽口吹込み酸素比率を設定、調整すればよい。   As described above, when the pulverized coal injection basic unit, that is, the pulverized coal ratio is constant and the tuyere-blown oxygen ratio is increased, the tuyere tip combustion temperature peaks at a certain ratio, and thereafter The tuyere tip combustion temperature decreases as the oxygen concentration increases. This is, as described above, oxygen that is blown into the tuyere (lance) is not heated, is room temperature (low temperature) oxygen, and when blowing low temperature oxygen more than contributing to the improvement of pulverized coal combustibility, On the contrary, it is considered that the tuyere tip combustion temperature is lowered. Furthermore, as apparent from FIG. 2, changing the pulverized coal ratio and changing the tuyere blowing oxygen ratio not only changes the tuyere tip combustion temperature but also corresponds to the peak of the tuyere tip combustion temperature at each pulverized coal ratio. The value of the tuyere blowing oxygen ratio changes. Therefore, the tuyere blowing oxygen ratio at which the tuyere tip combustion temperature reaches a peak may be set and adjusted at the set pulverized coal ratio (pulverized coal blowing amount).

高炉の炉内状況は、送風条件、例えば微粉炭の吹込み量などを一定に保っていても、他の様々な要因、例えば原料(コークスや鉄鉱石など)の物理的及び化学的性状の変動(バラツキ)などで、羽口先の燃焼状態は変化する。つまり、羽口吹込み酸素比率の最適値は炉内状況により変動することを意味している。そのため「羽口先燃焼状態」をセンサー情報により把握して試行錯誤的に最適値を見いだす点が本技術のポイントである。但し、実際の生産設備で羽口吹込み酸素比率を大きく変更して最適点を探す方法は操業上好ましくないので、或る程度望ましい値をラボテスト結果などから求めておいて設定するというやり方が実用的な運用方法となる。   Although the blast furnace conditions are kept constant, for example, the blowing rate of pulverized coal, etc., various other factors such as fluctuations in physical and chemical properties of raw materials (coke, iron ore, etc.) The combustion state of the tuyere changes due to (variation) or the like. That is, it means that the optimum value of the tuyere blowing oxygen ratio varies depending on the in-furnace situation. Therefore, the point of this technology is to find the optimum value by trial and error by grasping the “combustion state of the tuyere” from the sensor information. However, the method of searching the optimum point by changing the tuyere-blown oxygen ratio greatly in actual production facilities is not preferable for operation, so it is practical to find a desired value from the laboratory test results and set it. Operation method.

図2では、羽口先燃焼状態として羽口先燃焼温度を用いた。例えば、羽口先燃焼温度は送風圧力と逆の傾向にある。即ち、羽口先の燃焼状態が良好で、羽口先燃焼温度が高いときには、送風圧力が低くなる。逆に、羽口先の燃焼状態が悪化し、羽口先燃焼温度が低いときには、送風圧力が高くなる。これは、炉内の通気抵抗指数とも一致する。即ち、炉内の通気抵抗指数は、周知のように、送風圧力、炉頂部圧力、送風量から求められ、送風圧力が高いほど、炉内通気抵抗指数が大きくなり、通気の状態が悪い。通気状態の低下は、即ち羽口先燃焼温度の低下であり、羽口先燃焼状態の悪化である。従って、これらの羽口先燃焼状態の情報を用いつつ羽口吹込み酸素比率を調整していけば、現状設定されている微粉炭比における羽口先燃焼温度のピーク点、つまり羽口先燃焼状態の最適点を達成する羽口吹込み酸素比率の最適値を探索して把握することができ、その最適値になるように羽口吹込み酸素比率を調整する。   In FIG. 2, the tuyere tip combustion temperature is used as the tuyere tip combustion state. For example, the tuyere tip combustion temperature tends to be opposite to the blowing pressure. That is, when the state of combustion at the tuyere is good and the tuyere tip combustion temperature is high, the blowing pressure is low. On the contrary, when the combustion state of the tuyere tip deteriorates and the tuyere tip combustion temperature is low, the blowing pressure becomes high. This agrees with the ventilation resistance index in the furnace. That is, as is well known, the ventilation resistance index in the furnace is obtained from the blowing pressure, the furnace top pressure, and the blowing volume. The higher the blowing pressure, the larger the ventilation resistance index in the furnace and the worse the ventilation state. The decrease in the aeration state is a decrease in the tuyere tip combustion temperature and the deterioration of the tuyere tip combustion state. Therefore, if the tuyere-injected oxygen ratio is adjusted while using the tuyere-tip combustion state information, the peak point of the tuyere-tip combustion temperature at the currently set pulverized coal ratio, that is, the optimum state of the tuyere-tip combustion state The optimum value of the tuyere blowing oxygen ratio that achieves the point can be searched and grasped, and the tuyere blowing oxygen ratio is adjusted to be the optimum value.

そこで、本実施形態では、羽口3に埋設された温度計T(羽口埋込み温度)で羽口先燃焼温度を、送風管2に取付けられた圧力計Pで炉内通気抵抗指数を検出しながら、羽口吹込み酸素比率を調整した。その例を図3に示す。図3の例では、予め設定された微粉炭比で微粉炭を吹込み、羽口先燃焼温度が安定する羽口吹込み酸素比率で操業を継続していたところ、何らかの要因により羽口先燃焼温度が低下すると共に炉内通気抵抗指数が悪化した。これは、炉内状況の変動により現状設定されている羽口吹込み酸素比率が最適点ではなくなったことを意味している。そこで、現状の炉内状況に合った最適点に合わせるべく、羽口吹込み酸素比率を段階的に上昇させた。まず、一段目の増加により、羽口先燃焼温度は上昇傾向、炉内通気抵抗指数は低下傾向となったため、羽口先燃焼状態は改善方向となったと判断した。更に、二段目の増加を行ったところ、今度は逆に羽口先燃焼温度は低下に転じ、炉内通気抵抗指数は上昇傾向となった。これは、羽口先燃焼状態が悪化したことを示しており、図2でいえば、羽口先燃焼温度がピーク点となる羽口吹込み酸素比率の最適値を通り過ぎてしまったと考えられる。つまり、一段目の増加アクションの羽口吹込み酸素比率の設定が、現状の炉内状況に合った最適値であることが判断できる。そのため、再度、一段目のアクションに戻したところ、羽口先燃焼温度は上昇し、安定した羽口先燃焼温度と炉内通気抵抗指数を得ることができた。   Therefore, in the present embodiment, the temperature at the tip of the tuyere is detected by a thermometer T (feather embedding temperature) embedded in the tuyere 3, and the ventilation resistance index in the furnace is detected by a pressure gauge P attached to the blower tube 2. The tuyere-blown oxygen ratio was adjusted. An example is shown in FIG. In the example of FIG. 3, when pulverized coal was injected at a preset pulverized coal ratio and the operation was continued at the tuyere blowing oxygen ratio at which the tuyere tip combustion temperature was stable, the tuyere tip combustion temperature was due to some factor. As it decreased, the furnace ventilation resistance index deteriorated. This means that the tuyere-blown oxygen ratio currently set is no longer the optimum point due to fluctuations in the furnace conditions. Therefore, the tuyere-blown oxygen ratio was increased step by step in order to adjust to the optimum point according to the current in-furnace situation. First, due to the increase in the first stage, the tuyere tip combustion temperature increased and the furnace ventilation resistance index tended to decrease, so it was judged that the tuyere tip combustion state was improving. In addition, when the second stage was increased, the tuyere tip combustion temperature turned down and the in-furnace resistance index increased. This indicates that the state of combustion at the tip of the tuyere has deteriorated. In FIG. 2, it is considered that the tuyere tip combustion temperature has passed the optimum value of the tuyere-injected oxygen ratio at which the peak point is reached. That is, it can be determined that the setting of the tuyere blowing oxygen ratio in the first-stage increase action is an optimal value that matches the current in-furnace situation. Therefore, when returning to the first-stage action again, the tuyere tip combustion temperature rose, and stable tuyere tip combustion temperature and furnace ventilation resistance index could be obtained.

このように本実施形態の高炉操業方法では、羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合に、羽口先の燃焼状態に基づいて熱風への富化酸素と微粉炭の近傍から吹込まれる富化酸素との比率、即ち羽口吹込み酸素比率を調整する。羽口先の燃焼状態は、羽口吹込み酸素比率に応じて変化する。従って、予め、羽口先の燃焼状態と、羽口吹込み酸素比率との関係を把握していれば、羽口先の燃焼状態を良好にするための羽口吹込み酸素比率の最適値を求めることができ、その最適値になるように羽口吹込み酸素比率を調整すれば、羽口先における微粉炭の燃焼性を向上することができる。   Thus, in the blast furnace operating method of this embodiment, oxygen can be enriched in hot air blown from the tuyere into the blast furnace, and pulverized coal is blown into the tuyere and oxygen is introduced from its vicinity. When inhalation is possible, the ratio of the enriched oxygen to the hot air and the enriched oxygen that is injected from the vicinity of the pulverized coal, that is, the tuyere injecting oxygen ratio is adjusted based on the combustion state of the tuyere. The combustion state of the tuyere changes according to the tuyere blowing oxygen ratio. Therefore, if the relationship between the combustion state of the tuyere and the tuyere blowing oxygen ratio is known in advance, the optimum value of the tuyere blowing oxygen ratio for improving the tuyere tip combustion state is obtained. If the tuyere blowing oxygen ratio is adjusted so that the optimum value is obtained, the combustibility of the pulverized coal at the tuyere can be improved.

また、熱風への富化酸素と微粉炭の近傍から吹込まれる酸素富化との比率、即ち羽口吹込み酸素比率と、羽口先燃焼状態との関係は、単位銑鉄あたりの吹込み微粉炭量、即ち微粉炭比によって異なる。従って、羽口吹込み酸素比率と、羽口先燃焼状態との関係を、予め微粉炭比毎に求めておけば、微粉炭比が変化したときにも羽口先の燃焼状態を良好にするための羽口吹込み酸素比率の最適値を求めることができ、その最適値になるように羽口吹込み酸素比率を調整すれば、羽口先における微粉炭の燃焼性を確実に向上することができる。   The ratio between the oxygen enriched to hot air and the oxygen enrichment injected from the vicinity of the pulverized coal, that is, the relationship between the tuyere infused oxygen ratio and the state of the tuyere tip combustion is the blasted pulverized coal per unit pig iron. It depends on the quantity, ie the pulverized coal ratio. Therefore, if the relationship between the tuyere-injected oxygen ratio and the tuyere tip combustion state is obtained in advance for each pulverized coal ratio, it is possible to improve the tuyere tip combustion state even when the pulverized coal ratio changes. The optimum value of the tuyere blown oxygen ratio can be obtained, and if the tuyere blown oxygen ratio is adjusted so as to be the optimum value, the combustibility of the pulverized coal at the tuyere can be reliably improved.

1は高炉
2は送風管
3は羽口
4はランス
5はレースウエイ
6はブロワ
7は熱風炉
Tは温度計
Pは圧力計
1 is a blast furnace 2 is an air duct 3 is a tuyere 4 is a lance 5 is a raceway 6 is a blower 7 is a hot stove T is a thermometer P is a pressure gauge

Claims (4)

羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ前記羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合の酸素富化率設定方法において、前記羽口先の燃焼状態に基づいて前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる富化酸素との比率を調整することを特徴とする酸素富化率設定方法。   Oxygen enrichment when oxygen can be enriched in hot air blown from the tuyere into the blast furnace, and pulverized coal can be blown into the tuyere and oxygen can be blown from the vicinity. In the rate setting method, the oxygen enrichment rate setting is characterized by adjusting the ratio of the enriched oxygen to the hot air and the enriched oxygen blown from the vicinity of the pulverized coal based on the combustion state of the tuyere Method. 前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を予め求め、その関係から、前記羽口先の燃焼状態に基づいて、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率の最適値を設定し、その最適値になるように前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率を調整することを特徴とする請求項1に記載の酸素富化率設定方法。   The ratio between the enriched oxygen to the hot air and the oxygen enrichment blown from the vicinity of the pulverized coal, and the relationship between the tuyere tip combustion state in advance, from that relationship, based on the combustion state of the tuyere tip, Set the optimal value of the ratio of oxygen enriched to the hot air and oxygen enriched from the vicinity of the pulverized coal, and the vicinity of the oxygen enriched to the hot air and the pulverized coal to be the optimal value The oxygen enrichment rate setting method according to claim 1, wherein the ratio of oxygen enrichment blown from is adjusted. 前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を、単位銑鉄あたりの吹込み微粉炭量毎に予め求めることを特徴とする請求項2に記載の酸素富化率設定方法。   The relationship between the ratio of oxygen enriched to the hot air and oxygen enriched from the vicinity of the pulverized coal and the state of combustion at the tip of the tuyere is obtained in advance for each amount of pulverized coal injected per unit pig iron The oxygen enrichment rate setting method according to claim 2. 羽口部から高炉内部に送風される熱風に酸素を富化することが可能で、且つ前記羽口部に微粉炭を吹込むと共にその近傍から酸素を吹込むことが可能な場合に、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率と、羽口先燃焼状態との関係を予め求め、その関係から、前記羽口先の燃焼状態に基づいて、前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率の最適値を設定し、その最適値になるように前記熱風への富化酸素と前記微粉炭の近傍から吹込まれる酸素富化との比率を調整することを特徴とする高炉操業方法。   When the hot air blown from the tuyere into the blast furnace can be enriched with oxygen, and when pulverized coal can be blown into the tuyere and oxygen can be blown from the vicinity thereof, the hot air The relationship between the ratio of oxygen enriched to oxygen and oxygen enrichment blown from the vicinity of the pulverized coal and the tuyere tip combustion state is obtained in advance, and from that relationship, based on the combustion state of the tuyere tip, the hot air The optimum value of the ratio of oxygen enriched to oxygen and oxygen enrichment blown from the vicinity of the pulverized coal is set, and the oxygen enriched to the hot air and the blown from the vicinity of the pulverized coal are set to the optimum value. A method for operating a blast furnace, characterized by adjusting a ratio of oxygen enrichment.
JP2013230467A 2012-12-14 2013-11-06 Oxygen enrichment rate setting method and blast furnace operation method Active JP5786922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230467A JP5786922B2 (en) 2012-12-14 2013-11-06 Oxygen enrichment rate setting method and blast furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012273228 2012-12-14
JP2012273228 2012-12-14
JP2013230467A JP5786922B2 (en) 2012-12-14 2013-11-06 Oxygen enrichment rate setting method and blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2014133943A true JP2014133943A (en) 2014-07-24
JP5786922B2 JP5786922B2 (en) 2015-09-30

Family

ID=51412435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230467A Active JP5786922B2 (en) 2012-12-14 2013-11-06 Oxygen enrichment rate setting method and blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5786922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107605A1 (en) * 2015-10-16 2017-04-20 Samsung Display Co., Ltd. Mask and method of manufacturing the mask
CN111778371A (en) * 2020-05-21 2020-10-16 南京钢铁股份有限公司 Method for quickly spraying coal and enriching oxygen during blow-in of blast furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263906A (en) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from blast furnace tuyere
JPH062020A (en) * 1992-06-16 1994-01-11 Kawasaki Steel Corp Method for blowing powdery fuel into blast furnace
JPH0688109A (en) * 1991-01-16 1994-03-29 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from tuyere in blast furnace
EP1939305A1 (en) * 2006-12-29 2008-07-02 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for making pig iron in a blast furnace
JP2011174171A (en) * 2010-01-29 2011-09-08 Jfe Steel Corp Method for operating blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263906A (en) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from blast furnace tuyere
JPH0688109A (en) * 1991-01-16 1994-03-29 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from tuyere in blast furnace
JPH062020A (en) * 1992-06-16 1994-01-11 Kawasaki Steel Corp Method for blowing powdery fuel into blast furnace
EP1939305A1 (en) * 2006-12-29 2008-07-02 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for making pig iron in a blast furnace
JP2011174171A (en) * 2010-01-29 2011-09-08 Jfe Steel Corp Method for operating blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170107605A1 (en) * 2015-10-16 2017-04-20 Samsung Display Co., Ltd. Mask and method of manufacturing the mask
US10287669B2 (en) * 2015-10-16 2019-05-14 Samsung Display Co., Ltd. Mask and method of manufacturing the mask
CN111778371A (en) * 2020-05-21 2020-10-16 南京钢铁股份有限公司 Method for quickly spraying coal and enriching oxygen during blow-in of blast furnace

Also Published As

Publication number Publication date
JP5786922B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5824810B2 (en) Blast furnace operation method
AU2013284587B2 (en) Method for operating blast furnace
TWI758977B (en) How the blast furnace works
JP5786922B2 (en) Oxygen enrichment rate setting method and blast furnace operation method
JP2010209212A (en) Method for producing fuel charcoal material for sintering
KR102080705B1 (en) Method for injecting pulverized coal into oxygen blast furnace
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP5824812B2 (en) Blast furnace operation method
RU2695793C2 (en) Blast furnace operation method
RU2695842C2 (en) Blast furnace operation method
CN101497801A (en) Oxygen-enriched low temperature dry distillation blow-in method for coal
US9945001B2 (en) Blast furnace operation method and lance
JP6213734B2 (en) Method for producing sintered ore
JP6870426B2 (en) How to operate the blast furnace
WO2018180892A1 (en) Method for operating blast furnace
JP6036156B2 (en) Blast furnace operation method
JP5824811B2 (en) Blast furnace operation method
JP5987772B2 (en) Blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
UA106473C2 (en) Method for combustion of low-quality fuel
JP6044564B2 (en) Blast furnace operation method
JP6176361B2 (en) Blast furnace operation method
JP6337613B2 (en) Blast furnace operation method
JP6064933B2 (en) Blast furnace operation method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250