JP2014133905A - Formed body - Google Patents
Formed body Download PDFInfo
- Publication number
- JP2014133905A JP2014133905A JP2014093513A JP2014093513A JP2014133905A JP 2014133905 A JP2014133905 A JP 2014133905A JP 2014093513 A JP2014093513 A JP 2014093513A JP 2014093513 A JP2014093513 A JP 2014093513A JP 2014133905 A JP2014133905 A JP 2014133905A
- Authority
- JP
- Japan
- Prior art keywords
- cured product
- carbon
- compound
- carbon double
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Silicon Polymers (AREA)
Abstract
Description
本発明は、炭素−炭素二重結合とヒドロシリル基とを有した化合物をラジカル重合させ、更に脱水素縮合させて得た成形体に関する。 The present invention relates to a molded product obtained by radical polymerization of a compound having a carbon-carbon double bond and a hydrosilyl group, followed by dehydrogenative condensation.
ビニル基や(メタ)アクリル基、アリル基などの炭素−炭素二重結合を有する化合物は、ラジカル重合開始剤の存在下、熱、紫外線、電子線などのエネルギーを加えることでラジカル重合するため、様々な分野で利用されている。分子中に複数の炭素−炭素二重結合を有する化合物においては、ラジカル重合により3次元架橋構造を構築し、耐熱性や機械特性、耐薬品性に優れる硬化物が得られる。得られた硬化物は、例えば液晶テレビ等のディスプレイ前面保護板や液晶偏光フィルム、位相差フィルム等のディスプレイ材料をはじめ、タッチパネル用基板、カラーフィルター用基板、TFT用基板などのガラス代替基板として、また、眼鏡用レンズ材料やプリズム、カメラ等の撮像光学系、表示デバイス等の投影光学系、画像表示装置等の観察光学系、光磁気ディスクドライブ等のレーザ光学系、導波路などに用いるレンズ等の光学素子など、各種フィルムや成形体として使用され、また、ガラス代替品材料としての利用も進んでいる。 A compound having a carbon-carbon double bond such as a vinyl group, a (meth) acryl group, or an allyl group undergoes radical polymerization by applying energy such as heat, ultraviolet rays, and electron beams in the presence of a radical polymerization initiator. It is used in various fields. In a compound having a plurality of carbon-carbon double bonds in the molecule, a three-dimensional crosslinked structure is constructed by radical polymerization, and a cured product having excellent heat resistance, mechanical properties, and chemical resistance is obtained. The obtained cured product includes, for example, a display front protective plate such as a liquid crystal television, a liquid crystal polarizing film, a retardation film, and other glass materials such as a touch panel substrate, a color filter substrate, and a TFT substrate. Lens materials for spectacles, prisms, imaging optical systems such as cameras, projection optical systems such as display devices, observation optical systems such as image display devices, laser optical systems such as magneto-optical disk drives, lenses used for waveguides, etc. These optical elements are used as various films and molded products, and are also being used as glass substitute materials.
このような硬化物の特性は、主に樹脂中の炭素−炭素二重結合の濃度に依存し、炭素−炭素二重結合を高濃度にすることで、より強固な架橋構造が構築でき、熱膨張率の低減や弾性率を向上させることができる。例えば(メタ)アクリル基で改質したエチレン性不飽和化合物を使用して得た積層体(特許文献1参照)や、イソシアヌレート骨格を有したエチレン性不飽和化合物を使用した硬化性組成物から、表面硬度に優れたプラスチックフィルムを得る方法(特許文献2参照)などが報告されている。 The characteristics of such a cured product mainly depend on the concentration of carbon-carbon double bonds in the resin. By making the concentration of carbon-carbon double bonds high, a stronger crosslinked structure can be constructed, The expansion coefficient can be reduced and the elastic modulus can be improved. For example, from a laminate (see Patent Document 1) obtained using an ethylenically unsaturated compound modified with a (meth) acrylic group, or a curable composition using an ethylenically unsaturated compound having an isocyanurate skeleton. A method for obtaining a plastic film excellent in surface hardness (see Patent Document 2) has been reported.
ところが、炭素−炭素二重結合による架橋密度が大きくなると硬化収縮率が著しく増大し、得られた硬化物が脆性化するという問題がある。また、硬化収縮による残留応力が増大すると共に、重合時に発生する重合熱により硬化速度が加速して急激な硬化が進行することから、硬化中にクラックが発生し、厚肉の硬化物を得るのが難しくなる。 However, when the crosslink density by the carbon-carbon double bond is increased, there is a problem that the curing shrinkage rate is remarkably increased and the obtained cured product becomes brittle. In addition, the residual stress due to curing shrinkage increases, and the curing rate is accelerated by the polymerization heat generated during the polymerization, and the rapid curing proceeds, so that cracks occur during the curing and a thick cured product is obtained. Becomes difficult.
それゆえに、従来においては、硬化物を製造する為には、長時間かけ徐々に加熱し硬化を進行させる方法を採らなければならない。紫外線や電子線を硬化に利用する場合も同様であり、弱い照度で長時間露光する必要があることから、生産効率の点で望ましくない。また、炭素−炭素二重結合の濃度を高濃度にすると硬化物中に重合に関与しきれない、未反応の炭素−炭素二重結合が多く残存し、結果として未反応の炭素−炭素二重結合が加熱により酸化劣化の原因となって透明性や機械物性の低下を招いてしまう。特に(メタ)アクリル基の場合には、極性基の増加に伴い硬化物の吸水率が増加してしまう。 Therefore, conventionally, in order to produce a cured product, it is necessary to take a method of gradually curing by heating for a long time. The same applies to the case of using ultraviolet rays or electron beams for curing, and it is not desirable in terms of production efficiency because it is necessary to perform exposure for a long time with a weak illuminance. In addition, when the concentration of carbon-carbon double bonds is increased, many unreacted carbon-carbon double bonds that cannot fully participate in polymerization remain in the cured product, and as a result, unreacted carbon-carbon double bonds. Bonding causes oxidative degradation due to heating, leading to a decrease in transparency and mechanical properties. In particular, in the case of a (meth) acryl group, the water absorption rate of the cured product increases as the polar group increases.
そこで、本発明の目的は、より強固な架橋構造を構築することに伴う脆性化や硬化収縮率の増加といった、トレードオフの問題を解決した成形体(以下、単に「硬化物」と言う場合もある)を提供することにある。 Therefore, an object of the present invention is to provide a molded article (hereinafter, simply referred to as “cured product”) that solves the trade-off problems such as embrittlement and increased cure shrinkage associated with building a stronger cross-linked structure. Is to provide).
本発明者らは、上記課題を解決するために検討を重ねた結果、炭素−炭素二重結合とヒドロシリル基とを有した化合物をラジカル重合させ、得られた重合物(一次硬化物)に含まれたヒドロシリル基を利用してシロキサン結合を形成させることで、炭素−炭素二重結合の増加に頼らずに架橋密度を高めることができることを見出し、本発明を完成した。 As a result of repeated studies to solve the above-mentioned problems, the present inventors radically polymerized a compound having a carbon-carbon double bond and a hydrosilyl group, and included in the obtained polymer (primary cured product). The present inventors have found that by forming a siloxane bond using the hydrosilyl group thus produced, the crosslinking density can be increased without relying on an increase in the carbon-carbon double bond, and the present invention has been completed.
すなわち、本発明は、フィルム状、シート状、又は厚板状の成形体であって、分子中にラジカル重合可能な炭素−炭素二重結合を含んだ有機基とヒドロシリル基とを有して、炭素−炭素二重結合1つあたりの分子量が100〜5000であると共に、ヒドロシリル基1つあたりの分子量が25〜1000である化合物aを、ラジカル重合させてヒドロシリル基を有した状態でフィルム状、シート状、又は厚板状に一次硬化させ、得られた一次硬化物を塩基性水溶液と接触させてヒドロシリル基を脱水素縮合させて得られたことを特徴とする成形体である。 That is, the present invention is a film-like, sheet-like, or plate-like molded article having an organic group containing a radically polymerizable carbon-carbon double bond and a hydrosilyl group in the molecule, A compound a having a molecular weight per carbon-carbon double bond of 100 to 5000 and a molecular weight of 25 to 1000 per hydrosilyl group is radical-polymerized to have a hydrosilyl group, and a film shape. A molded body obtained by first curing in a sheet form or a thick plate form, and contacting the obtained primary cured product with a basic aqueous solution to dehydrocondensate hydrosilyl groups.
本発明で用いる化合物aについて、ラジカル重合可能な炭素−炭素二重結合有する有機基とは、具体的にはビニル基、アリル基、又は(メタ)アクリル基であるのがよい。この「分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基とヒドロシリル基とを有する化合物a」は特に制限されず、得られる硬化物の目的や用途に合わせて適宜選択することができるが、好ましくは、耐熱性や透明性の観点から、数平均分子量が100〜250000である、ケイ素化合物モノマー又はケイ素化合物オリゴマー又はケイ素化合物ポリマーであるのがよい。また、化合物aの炭素−炭素二重結合の数とヒドロシリル基の数について、炭素−炭素二重結合1つあたりの分子量(化合物aの分子量を炭素−炭素二重結合の数で割った値)が100〜5000であり、ヒドロシリル基1つあたりの分子量(化合物aの分子量をヒドロシリル基の数で割った値)が25〜1000であり、好ましくは、炭素−炭素二重結合1つあたりの分子量が150〜5000であり、ヒドロシリル基1つあたりの分子量が50〜1000である。炭素−炭素二重結合1つあたりの分子量が100より小さいと硬化収縮が大きくなり、硬化物を得る事が困難であり、反対に炭素−炭素二重結合1つあたりの分子量が5000より大きいと十分な架橋構造が構築されず、硬化物が脆化してしまう。一方、ヒドロシリル基1つあたりの分子量が25より小さいと、脱水素縮合時の硬化物の収縮量が大きく硬化物が破損するおそれがあり、反対にヒドロシリル基1つあたりの分子量が1000より大きい場合では、脱水素縮合による架橋密度が増加した効果を十分に発現することができない。 Regarding the compound a used in the present invention, the organic group having a carbon-carbon double bond capable of radical polymerization is preferably a vinyl group, an allyl group, or a (meth) acryl group. This “compound a having an organic group having a carbon-carbon double bond capable of radical polymerization in the molecule and a hydrosilyl group” is not particularly limited, and may be appropriately selected according to the purpose and use of the obtained cured product. However, from the viewpoint of heat resistance and transparency, a silicon compound monomer, silicon compound oligomer, or silicon compound polymer having a number average molecular weight of 100 to 250,000 is preferable. In addition, regarding the number of carbon-carbon double bonds and the number of hydrosilyl groups in compound a, the molecular weight per carbon-carbon double bond (the value obtained by dividing the molecular weight of compound a by the number of carbon-carbon double bonds). Is 100 to 5000, and the molecular weight per hydrosilyl group (the value obtained by dividing the molecular weight of compound a by the number of hydrosilyl groups) is 25 to 1000, preferably the molecular weight per carbon-carbon double bond Is 150 to 5000, and the molecular weight per hydrosilyl group is 50 to 1000. When the molecular weight per carbon-carbon double bond is smaller than 100, the curing shrinkage becomes large and it is difficult to obtain a cured product. Conversely, when the molecular weight per carbon-carbon double bond is larger than 5000, A sufficient cross-linked structure is not constructed, and the cured product becomes brittle. On the other hand, if the molecular weight per hydrosilyl group is less than 25, the cured product may shrink due to dehydrogenative condensation, and the cured product may be damaged. On the other hand, the molecular weight per hydrosilyl group is greater than 1000. In this case, the effect of increasing the crosslinking density by dehydrogenative condensation cannot be fully exhibited.
化合物aについて、具体的には3−(メタ)アクリロキシプロピルメチルシラン、2−(メタ)アクリロキシエトキシジメチルシラン、ビス(2−(メタ)アクリロキシエトキシ)メチルシランなどのモノシラン類、鎖状シロキサン類、環状シロキサン類、籠型ロキサン類、不完全縮合籠型シロキサン類、梯子型シロキサン類、不完全縮合梯子型シロキサン類およびこれらのシロキサン類を組み合わせ縮合させたシロキサン類等を例示することができる。これらの化合物aを用いると、得られる硬化物の耐熱性を向上させることができる点で好ましい。 For compound a, specifically, monosilanes such as 3- (meth) acryloxypropylmethylsilane, 2- (meth) acryloxyethoxydimethylsilane, bis (2- (meth) acryloxyethoxy) methylsilane, and chain siloxane Siloxanes, cyclic siloxanes, caged siloxanes, incompletely condensed caged siloxanes, ladder type siloxanes, incompletely condensed ladder type siloxanes, and siloxanes obtained by combining and condensing these siloxanes. . Use of these compounds a is preferable in that the heat resistance of the resulting cured product can be improved.
また、本発明では、「分子中にラジカル重合可能な炭素−炭素二重結合有する有機基とヒドロシリル基を有する化合物a」の他に、「分子中にラジカル重合可能な炭素−炭素二重結合を有する化合物b」を含んだ状態でラジカル重合させて、一次硬化物を得るようにしてもよい。ここで、化合物bとしては、単官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートオリゴマー、ビニルエーテル類、ビニルエステル類等が挙げられる。 In the present invention, in addition to “the compound a having an organic group having a carbon-carbon double bond capable of radical polymerization in the molecule and a hydrosilyl group”, a “carbon-carbon double bond capable of radical polymerization in the molecule”. The primary cured product may be obtained by radical polymerization in a state containing the compound b ”. Here, examples of the compound b include monofunctional (meth) acrylate monomers, polyfunctional (meth) acrylate monomers, polyfunctional (meth) acrylate oligomers, vinyl ethers, vinyl esters, and the like.
更に本発明では、好ましくは、化合物bが、炭素−炭素二重結合の他に水酸基を有するものであるのがよい。具体的には、2−ヒドロキシエチル(メタ)アクリレートや2−ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類、グリセリンジ(メタ)アクリレートやペンタエリスリトールトリアクリレートなどの水酸基含有多官能アクリレート類、水酸基含有ビニルエーテル類、水酸基含有アリルエーテル類等が挙げられる。このような炭素−炭素二重結合と水酸基とを有した化合物bは、その水酸基が化合物aのヒドロシリル基と脱水素縮合が可能であり、架橋密度を向上させることができる。「分子中にラジカル重合可能な炭素−炭素二重結合と水酸基とを有した化合物b」と「化合物a」との配合割合については、得られる硬化物の用途等に応じ、すなわち弾性率の向上や熱寸法安定性の向上(熱膨張係数の低下)等の目的から化合物bの配合割合を増すようにするのがよいが、化合物bの水酸基の数より化合物aのヒドロシリル基の数の方が多くなるようにするのが望ましい。水酸基の数の方が多くなってしまうと、後述するように、ヒドロシリル基を利用した脱水素縮合において水酸基が残存し、最終的に得られる硬化物の吸水率が高くなってしまうおそれがある。 Further, in the present invention, preferably, the compound b has a hydroxyl group in addition to the carbon-carbon double bond. Specifically, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, and hydroxyl-containing polyfunctional acrylates such as glycerin di (meth) acrylate and pentaerythritol triacrylate , Hydroxyl group-containing vinyl ethers, hydroxyl group-containing allyl ethers, and the like. The compound b having such a carbon-carbon double bond and a hydroxyl group can be dehydrogenatively condensed with the hydrosilyl group of the compound a, and the crosslinking density can be improved. About the compounding ratio of "compound b having a carbon-carbon double bond and a hydroxyl group capable of radical polymerization in the molecule" and "compound a", depending on the use of the obtained cured product, that is, an improvement in elastic modulus It is preferable to increase the compounding ratio of the compound b for the purpose of improving the thermal dimensional stability (decreasing the thermal expansion coefficient), etc., but the number of hydrosilyl groups of the compound a is more than the number of hydroxyl groups of the compound b. It is desirable to increase it. If the number of hydroxyl groups increases, as will be described later, hydroxyl groups remain in the dehydrogenative condensation using hydrosilyl groups, and the water absorption of the finally obtained cured product may increase.
本発明における硬化物の製造方法では、上記化合物aを(さらに化合物bを含む場合もある)ラジカル重合(化合物bが含まれる場合は化合物aとのラジカル共重合の場合もある。以下、共重合の場合を含めて「ラジカル(共)重合」ということがある。)させることで、ヒドロシリル基(Si-H基)を含んだ状態で一次硬化させる。次いで、得られた一次硬化物を塩基水溶液と接触させることで、ヒドロシリル基を利用した脱水素縮合によりシロキサン結合を形成して、最終硬化物を得る。すなわち、上記の一次硬化物を塩基水溶液と反応させてヒドロシリル基の少なくとも一部をシラノール基(Si-OH基)に変換させ、次いで、残ったヒドロシリル基と変換されたシラノール基との間で塩基により脱水素縮合が起こり、シロキサン結合が生成されて架橋密度を増加させる。また、炭素−炭素二重結合と水酸基とを有する化合物bを含む場合は、化合物bの水酸基と一次硬化物のヒドロシリル基との間でも脱水素縮合が起こり、ケイ素−酸素−炭素結合が生成して架橋密度が増加する。このように本発明の硬化物の製造方法を用いれば、炭素−炭素二重結合数を増加させることなく、架橋密度を高めることができ、これまでは両立が困難であった、高架橋密度化に伴う脆性化や硬化収縮率増加を抑制した硬化物の製造を可能にする。 In the method for producing a cured product in the present invention, radical polymerization of the compound a (which may further include the compound b) (in some cases, radical copolymerization with the compound a when the compound b is included) is described below. In some cases, it is sometimes referred to as “radical (co) polymerization”.), Thereby causing primary curing in a state including a hydrosilyl group (Si—H group). Subsequently, the obtained primary cured product is brought into contact with an aqueous base solution to form a siloxane bond by dehydrogenative condensation using a hydrosilyl group to obtain a final cured product. That is, the primary cured product is reacted with a base aqueous solution to convert at least a part of the hydrosilyl group into a silanol group (Si-OH group), and then a base is formed between the remaining hydrosilyl group and the converted silanol group. Dehydrogenative condensation occurs, and a siloxane bond is generated to increase the crosslink density. Further, when the compound b having a carbon-carbon double bond and a hydroxyl group is included, dehydrogenative condensation occurs between the hydroxyl group of the compound b and the hydrosilyl group of the primary cured product, and a silicon-oxygen-carbon bond is generated. This increases the crosslink density. Thus, if the manufacturing method of the hardened | cured material of this invention is used, a crosslinking density can be raised, without increasing the number of carbon-carbon double bonds, and it was difficult until now to make high crosslinking density high. This makes it possible to produce a cured product that suppresses the accompanying embrittlement and the increase in cure shrinkage.
本発明における硬化物の製造方法では、少なくとも化合物a(化合物bが含まれる場合もある)とラジカル重合開始剤とを含んだ硬化性組成物を用いて、一次硬化物を得るようにしてもよい。ラジカル重合開始剤としては、公知の光重合開始剤や熱重合開始剤を用いることができ、配合量については、硬化性組成物100重量量に対して、0.1〜5重量部の範囲であるのがよく、好ましくは0.1〜3重量部の範囲であるのがよい。ラジカル重合開始剤が0.1重量部に満たないと硬化が不十分となり、得られる硬化物の強度や剛性が低くなり、一方、5重量部を超えると硬化物の着色等の問題が生じるおそれがある。 In the method for producing a cured product in the present invention, a primary cured product may be obtained by using a curable composition containing at least compound a (which may contain compound b) and a radical polymerization initiator. . As the radical polymerization initiator, a known photopolymerization initiator or thermal polymerization initiator can be used, and the blending amount is in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the curable composition. It should be in the range of 0.1 to 3 parts by weight. If the radical polymerization initiator is less than 0.1 parts by weight, curing is insufficient, and the strength and rigidity of the resulting cured product are reduced. On the other hand, if it exceeds 5 parts by weight, problems such as coloring of the cured product may occur. There is.
硬化性組成物を光硬化性組成物とする場合に用いられる光重合開始剤としては、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1−フェニル−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示できる。また、光重合開始剤と組み合わせて効果を発揮する光開始助剤や鋭感剤を併用することもできる。 As the photopolymerization initiator used when the curable composition is a photocurable composition, compounds such as acetophenone, benzoin, benzophenone, thioxanthone, and acylphosphine oxide can be preferably used. . Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. it can. Moreover, the photoinitiator adjuvant and the sharpening agent which show an effect in combination with a photoinitiator can also be used together.
また、硬化性組成物を熱硬化性組成物とする場合に用いられる熱重合開始剤としては、ケトンパーオキサイド類、ジアシルキルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類などが挙げられる。これらの中で触媒活性の点から、ジアルキルパーオキサイドが好ましい。具体的には、シクロヘキサノンパーオキサイド、1,1−ビス(t−ヘキサパーオキシ)シクロヘキサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、ジ−t−ブチルパーオキサイド、t−へキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート等を例示することができるが、これらに制限されるものではない。また、これらを単独で使用してもよく、熱重合開始剤を2種類以上併用してもよい。更には、熱重合促進剤や光重合開始剤を併用することもできる。 In addition, as the thermal polymerization initiator used when the curable composition is a thermosetting composition, ketone peroxides, diacylalkyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals , Alkyl peresters, and percarbonates. Among these, dialkyl peroxide is preferable from the viewpoint of catalytic activity. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t -Hexylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate and the like can be exemplified, but are not limited thereto. Moreover, these may be used independently and may use two or more types of thermal polymerization initiators together. Furthermore, a thermal polymerization accelerator or a photopolymerization initiator can be used in combination.
また、硬化性組成物には、本発明の目的から外れない範囲で各種添加剤を添加することができる。各種添加剤として有機/無機フィラー、可塑剤、難燃剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、離型剤、発泡剤、核剤、着色剤、架橋剤、分散助剤、樹脂成分等を例示することができる。 Various additives can be added to the curable composition within a range not departing from the object of the present invention. Various additives include organic / inorganic fillers, plasticizers, flame retardants, heat stabilizers, antioxidants, light stabilizers, UV absorbers, lubricants, antistatic agents, mold release agents, foaming agents, nucleating agents, colorants, Crosslinking agents, dispersion aids, resin components and the like can be exemplified.
本発明において、ヒドロシリル基を有する一次硬化物は、例えばラジカル重合開始剤を含んだ硬化性組成物を加熱又は光照射によって硬化させることで得ることができる。このうち、加熱によって重合体(或いは共重合体)を得る場合、その重合温度は、熱重合開始剤や促進剤の選択により、室温から200℃前後までの広い範囲から選択することができる。この際、硬化性組成物を金型内やスチールベルト上で重合硬化させることで所望の形状の一次硬化物を得るようにしてもよい。 In the present invention, the primary cured product having a hydrosilyl group can be obtained, for example, by curing a curable composition containing a radical polymerization initiator by heating or light irradiation. Among these, when a polymer (or copolymer) is obtained by heating, the polymerization temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of a thermal polymerization initiator and an accelerator. At this time, a primary cured product having a desired shape may be obtained by polymerizing and curing the curable composition in a mold or on a steel belt.
一方、光照射によって重合体(或いは共重合体)を得る場合、例えば波長10〜400nmの範囲の紫外線や波長400〜700nmの範囲の可視光線を照射することで、一次硬化させることができる。用いる光の波長は特に制限されるものではないが、特に波長200〜400nmの近紫外線が好適に用いられる。また、紫外線発生源として用いられるランプとしては、低圧水銀ランプ(出力:0.4〜4W/cm)、高圧水銀ランプ(40〜160W/cm)、超高圧水銀ランプ(173〜435W/cm)、メタルハライドランプ(80〜160W/cm)、パルスキセノンランプ(80〜120W/cm)、無電極放電ランプ(80〜120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光重合開始剤の種類に応じて選定される。 On the other hand, when a polymer (or copolymer) is obtained by light irradiation, primary curing can be performed by, for example, irradiating ultraviolet rays in the wavelength range of 10 to 400 nm or visible rays in the wavelength range of 400 to 700 nm. The wavelength of the light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used. In addition, lamps used as ultraviolet light sources include low-pressure mercury lamps (output: 0.4 to 4 W / cm), high-pressure mercury lamps (40 to 160 W / cm), ultra-high pressure mercury lamps (173 to 435 W / cm), and metal halide lamps. (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used.
光照射によってヒドロシリル基を有した一次硬化物を得る際には、例えば任意のキャビティ形状を有し、石英ガラス等の透明素材で構成された金型内に硬化性組成物を注入し、上述したような紫外線ランプで紫外線を照射して重合硬化を行い、金型から脱型させることで所望の形状の一次硬化物を得ることができる。また、金型を用いない場合には、例えば移動するスチールベルト上にドクターブレードやロール状のコーターを用いて硬化性組成物を塗布し、上記のような紫外線ランプで重合硬化させることで、シート状の一次硬化物を得ることができる。さらには、ヒドロシリル基を有した一次硬化物に一軸延伸や二軸延伸などの延伸加工を施し、一次硬化物をフィルム状やシート状等の任意の形状に加工して、塩基水溶液で処理するようにしてもよい(熱による硬化等の場合も同様である)。 When obtaining a primary cured product having a hydrosilyl group by light irradiation, for example, the curable composition is injected into a mold having an arbitrary cavity shape and made of a transparent material such as quartz glass. A primary cured product having a desired shape can be obtained by performing polymerization and curing by irradiating ultraviolet rays with such an ultraviolet lamp and removing the mold from the mold. Further, when a mold is not used, for example, a sheet is obtained by applying a curable composition on a moving steel belt using a doctor blade or a roll-shaped coater and polymerizing and curing with an ultraviolet lamp as described above. A primary cured product can be obtained. Furthermore, the primary cured product having a hydrosilyl group is subjected to a stretching process such as uniaxial stretching or biaxial stretching, and the primary cured product is processed into an arbitrary shape such as a film or sheet and treated with an aqueous base solution. (It is also the same in the case of curing by heat or the like).
既に一部述べたが、一次硬化物を得る際には、硬化性組成物を目的とする硬化物となるように所定の形状とし、ラジカル(共)重合させるようにするのがよい。ここで、得られる一次硬化物が熱可塑性である場合、例えば射出成型、押出成形、押出ラミネート成形、圧縮成形、中空成形、カレンダー成形、真空成形、Tダイ法等の各種の成形法を採用できる。ただし、化合物aまたは化合物bの一分子当たりの炭素−炭素二重結合数が1.0を超える場合は、三次元架橋構造体を有する(共)重合体となるため、通常、成形硬化が採用される。なお、本明細書中ではラジカル(共)重合のことを硬化ともいう。ラジカル(共)重合には、加熱又は電子線、紫外線等のエネルギー線照射が適当である。 As already described in part, when a primary cured product is obtained, it is preferable that the curable composition is formed into a predetermined shape so as to become a target cured product and radical (co) polymerization is performed. Here, when the obtained primary cured product is thermoplastic, various molding methods such as injection molding, extrusion molding, extrusion laminate molding, compression molding, hollow molding, calendar molding, vacuum molding, and T-die method can be employed. . However, when the number of carbon-carbon double bonds per molecule of compound a or compound b exceeds 1.0, a (co) polymer having a three-dimensional cross-linked structure is formed, so that usually molding hardening is adopted. Is done. In the present specification, radical (co) polymerization is also referred to as curing. For radical (co) polymerization, heating or irradiation with an energy beam such as an electron beam or an ultraviolet ray is suitable.
また、得られた一次硬化物を塩基性水溶液と接触させてヒドロシリル基を脱水素縮合させる際、塩基水溶液の塩基としては、水に溶解するものであれば特に制限はない。塩基の例を挙げると、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルトリエチルアンモニウム等の水酸化アンモニウム塩、ヒドロキシルアミン、N−メチルヒドロキシルアミン、N、N−ジメチルヒドロキシルアミン、N−エチルヒドロキシルアミン、N、N−ジエチルヒドロキシルアミン等のヒドロキシルアミン化合物が例示できる。 Further, when the obtained primary cured product is brought into contact with a basic aqueous solution to dehydrocondense the hydrosilyl group, the base of the aqueous base solution is not particularly limited as long as it dissolves in water. Examples of bases include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, water Examples thereof include ammonium hydroxide salts such as benzyltriethylammonium oxide, hydroxylamine compounds such as hydroxylamine, N-methylhydroxylamine, N, N-dimethylhydroxylamine, N-ethylhydroxylamine, N, N-diethylhydroxylamine and the like.
塩基水溶液の濃度については、0.05〜2.0mol/Lの範囲が好ましい。塩基濃度が希薄すぎると完全な脱水素縮合に長時間を要し、反対に濃度が高すぎるとシロキサン結合などが切断され、得られる硬化物の機械特性が悪化してしまう。一次硬化物と塩基水溶液とを接触させる方法としては、浸漬、噴霧、シャワー等の公知の方法を用いることができるが、なかでも塩基水溶液中に一次硬化物を浸漬させる方法が好ましい。浸漬時間は、一次硬化物に残存するヒドロシリル基の数や用いる塩基水溶液により異なるが、脱水素縮合の進行度合いを一次硬化物から発生する水素量で確認しながら行うのがよく、完全に脱水素縮合させるためには一次硬化物からの水素の発生が認められなくなるまで浸漬させるのが好ましい。また、脱水素縮合は一次硬化物が塩基水溶液と接触している箇所から進行するため、浸漬方法を変えることで、部分的に架橋密度を高めることもできる。例えば、浸漬時間を短くして一次硬化物の表面のみの架橋密度を高めようにしてもよい。さらには最終的に得られる硬化物の表面から中心部までの架橋密度が異なる傾斜材料とすることも可能であり、得られる硬化物の用途に合わせて浸漬条件を変えるようにしてもよい。 The concentration of the aqueous base solution is preferably in the range of 0.05 to 2.0 mol / L. If the base concentration is too dilute, it takes a long time for complete dehydrogenation condensation. On the other hand, if the concentration is too high, siloxane bonds and the like are broken, and the mechanical properties of the resulting cured product deteriorate. As a method for bringing the primary cured product into contact with the aqueous base solution, known methods such as dipping, spraying, showering and the like can be used. Among them, a method of immersing the primary cured product in the aqueous base solution is preferable. The immersion time varies depending on the number of hydrosilyl groups remaining in the primary cured product and the aqueous base solution to be used, but it is better to check the progress of dehydrogenative condensation with the amount of hydrogen generated from the primary cured product. In order to condense, it is preferable to immerse until generation | occurrence | production of hydrogen from a primary cured material is not recognized. In addition, since dehydrogenative condensation proceeds from a position where the primary cured product is in contact with the aqueous base solution, the crosslinking density can be partially increased by changing the dipping method. For example, the immersion time may be shortened to increase the crosslinking density only on the surface of the primary cured product. Furthermore, it is also possible to use gradient materials having different crosslink densities from the surface to the center of the finally obtained cured product, and the immersion conditions may be changed according to the use of the obtained cured product.
塩基水溶液に接触させた後は、一次硬化物の不純物除去や、経時による寸法安定性を高める目的で、後処理を施すことが望ましい。このような後処理としては、例えば一次硬化物を水洗して塩基を除去するのがよく、また、塩基水溶液との接触による脱水素縮合が不完全であり、ヒドロシリル基がシラノール基として残存する可能性があるため、水洗後更に加熱処理するようにしてもよい。この加熱処理については、100℃から300℃の温度範囲で1時間以上加熱することが好ましく、より好ましくは180℃から250℃の温度範囲で1〜3時間加熱するのがよい。 After contact with the aqueous base solution, it is desirable to perform post-treatment for the purpose of removing impurities from the primary cured product and improving dimensional stability over time. As such post-treatment, for example, the primary cured product may be washed with water to remove the base, and dehydrogenative condensation by contact with an aqueous base solution is incomplete, and the hydrosilyl group may remain as a silanol group. Since it has the property, you may make it heat-process after washing with water. About this heat processing, it is preferable to heat for 1 hour or more in the temperature range of 100 to 300 degreeC, More preferably, it is good to heat for 1 to 3 hours in the temperature range of 180 to 250 degreeC.
本発明によって得られた硬化物は、一次硬化の際の成形条件により、例えばフィルム状のものから厚板まで種々の状態で得ることができ、硬化後の形状に特に制限はない。そのため、液晶テレビ等のディスプレイ前面保護板や液晶偏光フィルム、位相差フィルム等のディスプレイ材料をはじめ、タッチパネル用基板、カラーフィルター用基板、TFT用基板などのガラス代替基板として、また、眼鏡用レンズ材料やプリズム、カメラ等の撮像光学系、表示デバイス等の投影光学系、画像表示装置等の観察光学系、光磁気ディスクドライブ等のレーザ光学系、導波路などに用いるレンズ等の光学素子など、各種用途に適用可能である。 The cured product obtained by the present invention can be obtained in various states, for example, from a film to a thick plate, depending on the molding conditions during the primary curing, and the shape after curing is not particularly limited. Therefore, it is used as a glass substitute substrate for display front protective plates for liquid crystal televisions, liquid crystal polarizing films, retardation films, etc., as well as for touch panel substrates, color filter substrates, TFT substrates, and for eyeglass lens materials. Various types of optical elements such as lenses, prisms, imaging optical systems such as cameras, projection optical systems such as display devices, observation optical systems such as image display devices, laser optical systems such as magneto-optical disk drives, and lenses used in waveguides, etc. Applicable for use.
本発明における硬化物の製造方法によれば、モノマー中の炭素−炭素二重結合の濃度増加に頼らずに、強固な架橋構造を構築した硬化物が得られるため、炭素−炭素二重結合により架橋密度を高めたことによる硬化収縮率の増加や脆性化といった問題を解消することができる。そのため、得られた硬化物は、熱膨張率の低減、弾性率の向上、硬化収縮率の抑制、脆性化の防止等が同時に図られたものであり、また、本発明の製造方法は、従来ではクラックの発生が懸念されるような厚肉の硬化物を得るのにも好適な方法である。 According to the method for producing a cured product in the present invention, a cured product having a strong cross-linked structure can be obtained without relying on an increase in the concentration of carbon-carbon double bonds in the monomer. Problems such as an increase in cure shrinkage and embrittlement due to an increased crosslinking density can be solved. Therefore, the obtained cured product is intended to simultaneously reduce the coefficient of thermal expansion, improve the elastic modulus, suppress the curing shrinkage, prevent brittleness, etc., and the production method of the present invention is a conventional method. Then, it is also a suitable method for obtaining a thick cured product in which the occurrence of cracks is a concern.
更に、本発明の硬化物の製造方法は、ヒドロシリル基を有した状態で一次硬化物を得て、塩基水溶液を用いた脱水素縮合によりシロキサン結合を形成させるため、工業的にも有利な方法であると言える。すなわち、一次硬化物を得る際には、ゲル化のおそれや脱水縮合反応性により制御が困難であるSi−OH基を有した化合物を用いるのではなく、Si−H基を有した化合物aを使用して一次硬化物を得て、その後に一部のSi−H基をSi−OH基に変換させるため、取扱い性の観点からも優れた方法である。 Furthermore, the method for producing a cured product of the present invention is an industrially advantageous method because a primary cured product is obtained in a state having a hydrosilyl group and a siloxane bond is formed by dehydrogenative condensation using an aqueous base solution. It can be said that there is. That is, when obtaining a primary cured product, instead of using a compound having a Si—OH group, which is difficult to control due to the risk of gelation or dehydration condensation reactivity, a compound a having a Si—H group is used. This is an excellent method from the viewpoint of handleability because it is used to obtain a primary cured product and then a part of Si—H groups is converted to Si—OH groups.
以下、実施例及び比較例に基づき、本発明をより具体的に説明する。 Hereinafter, based on an Example and a comparative example, the present invention is explained more concretely.
[合成例1]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、45〜50モル%(MeHSiO)の水素化末端メチルヒドロシロキサン−フェニルメチルシロキサンコポリマー(Gelest,Inc.製 HPM-502 重量平均分子量:4300)28.3g及びトルエン13mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.12gを加え20分室温で撹拌し、滴下ローとよりメタクリル酸2-ヒドロキシエチル1.89gを滴下し、2時間室温で撹拌した。反応終了後、トルエン20mLと10w%クエン酸水溶液20mLとを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Aを30g得た。得られた反応生成物Aの1H-NMR(図1)を測定したところ、ヒドロシリル基に帰属される4.7ppm(H−Si)のシグナルに加え、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H2C=C)のシグナルが確認され、反応生成物Aは、水素化末端メチルヒドロシロキサン−フェニルメチルシロキサンコポリマーのヒドロシリル基の一部にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基とヒドロシリル基とを有する化合物であることが確認された。
[Synthesis Example 1]
In a reaction vessel equipped with a stirrer, a dropping funnel, and a thermometer, 45-50 mol% (MeHSiO) hydrogenated terminal methylhydrosiloxane-phenylmethylsiloxane copolymer (HPM-502, manufactured by Gelest, Inc.) weight average molecular weight: 4300 ) 28.3 g and 13 mL of toluene were added and stirred until homogeneous. Next, 0.12 g of N, N-diethylhydroxylamine was added and stirred for 20 minutes at room temperature, and 1.89 g of 2-hydroxyethyl methacrylate was added dropwise from the dropping funnel and stirred for 2 hours at room temperature. After completion of the reaction, 20 mL of toluene and 20 mL of a 10 w% aqueous citric acid solution were added, the reaction solution was washed with water, and further washed with water. After washing with water, it was dehydrated with anhydrous magnesium sulfate. By filtering off anhydrous magnesium sulfate and concentrating, 30 g of reaction product A was obtained as a colorless transparent liquid. When 1H-NMR (FIG. 1) of the obtained reaction product A was measured, in addition to the signal of 4.7 ppm (H—Si) attributed to the hydrosilyl group, 5.5 ppm attributed to the alkene of the methacryl group. And a signal of 6.1 ppm (H 2 C = C) was confirmed, and the reaction product A was dehydrogenated with 2-hydroxyethyl methacrylate as part of the hydrosilyl group of the hydrogenated terminal methylhydrosiloxane-phenylmethylsiloxane copolymer. It was confirmed that the compound was a compound having an organic group having a carbon-carbon double bond capable of radical polymerization in the molecule and a hydrosilyl group.
[合成例2]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、トリメチルシリル末端ポリメチルヒドロシロキサン(Gelest,Inc.製 HMS-992 重量平均分子量:2000)39.5g及びトルエン40mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.35gを加え20分室温で撹拌し、滴下ロートよりメタクリル酸2-ヒドロキシエチル8.48gを滴下し、2時間室温で撹拌した。反応終了後、トルエン60mLと10w%クエン酸水溶液60mLとを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Bを30g得た。得られた反応生成物Bの1H-NMRを測定したところ、ヒドロシリル基に帰属される4.7ppm(H−Si)のシグナルに加え、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H2C=C)のシグナルが確認され、反応生成物Bは、トリメチルシリル末端ポリメチルヒドロシロキサンのヒドロシリル基の一部にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基とヒドロシリル基とを有する化合物であることが確認された。
[Synthesis Example 2]
Into a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 39.5 g of trimethylsilyl-terminated polymethylhydrosiloxane (Gelest, Inc. HMS-992 weight average molecular weight: 2000) and 40 mL of toluene are added until uniform. Stir. Next, 0.35 g of N, N-diethylhydroxylamine was added and stirred for 20 minutes at room temperature, and 8.48 g of 2-hydroxyethyl methacrylate was added dropwise from the dropping funnel and stirred for 2 hours at room temperature. After completion of the reaction, 60 mL of toluene and 60 mL of a 10 w% aqueous citric acid solution were added, the reaction solution was washed with water, and further washed with water. After washing with water, it was dehydrated with anhydrous magnesium sulfate. By filtering off anhydrous magnesium sulfate and concentrating, 30 g of reaction product B was obtained as a colorless transparent liquid. When 1H-NMR of the obtained reaction product B was measured, in addition to a signal of 4.7 ppm (H-Si) attributed to the hydrosilyl group, 5.5 ppm and 6.1 ppm attributed to the alkene of the methacryl group. (H 2 C = C) signal was confirmed, and reaction product B was a radical polymerization in the molecule, in which 2-hydroxyethyl methacrylate was added to a part of the hydrosilyl group of trimethylsilyl-terminated polymethylhydrosiloxane by dehydrogenation. It was confirmed to be a compound having an organic group having a possible carbon-carbon double bond and a hydrosilyl group.
[合成例3]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、トリメチルシリル末端ポリメチルヒドロシロキサン(Gelest,Inc.製 HMS-992 重量平均分子量:2000)39.5g及びトルエン40mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.35gを加え20分室温で撹拌し、滴下ロートよりメタクリル酸2-ヒドロキシエチル87.7gを滴下し、2時間室温で撹拌し、更に60℃で2時間撹拌した。反応終了後、トルエン60mLと10w%クエン酸水溶液60mLを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Cを119g得た。得られた反応生成物Cの1H-NMRを測定したところ、ヒドロシリル基に帰属される4.7ppm(H−Si)のシグナルが完全に消失し、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H2C=C)のシグナルが確認され、反応生成物Cは、トリメチルシリル末端ポリメチルヒドロシロキサンの全てのヒドロシリル基にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基を有する化合物であることを確認した。
[Synthesis Example 3]
Into a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 39.5 g of trimethylsilyl-terminated polymethylhydrosiloxane (Gelest, Inc. HMS-992 weight average molecular weight: 2000) and 40 mL of toluene are added until uniform. Stir. Next, 0.35 g of N, N-diethylhydroxylamine was added and stirred for 20 minutes at room temperature, and 87.7 g of 2-hydroxyethyl methacrylate was added dropwise from the dropping funnel, stirred for 2 hours at room temperature, and further at 60 ° C. for 2 hours. Stir. After completion of the reaction, 60 mL of toluene and 60 mL of 10 w% aqueous citric acid solution were added, the reaction solution was washed with water, and further washed with water. After washing with water, it was dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 119 g of reaction product C as a colorless transparent liquid. When 1H-NMR of the obtained reaction product C was measured, the signal of 4.7 ppm (H-Si) attributed to the hydrosilyl group disappeared completely, and 5.5 ppm attributed to the alkene of the methacryl group. A signal of 6.1 ppm (H 2 C = C) was confirmed, and the reaction product C contained in the molecule, 2-hydroxyethyl methacrylate was added to all hydrosilyl groups of the trimethylsilyl-terminated polymethylhydrosiloxane by dehydrogenation. It was confirmed that the compound had an organic group having a carbon-carbon double bond capable of radical polymerization.
上記合成例1〜3で原料として用いたヒドロシリル化合物の平均分子量から計算される1分子中の「平均ヒドロシリル基水素数」を表1に示す。また、上記合成例1〜3で得られた反応生成物A〜Cについて、1H-NMRにおけるヒドロシリル基水素数の面積比から計算される「反応生成物1分子中の平均ヒドロシリル基水素数」と、同じく1H-NMRにおけるメタクリル基のアルケン水素の面積比から計算される「反応生成物1分子中の平均メタクリル基数」を表1に示す。 Table 1 shows the “average hydrosilyl group hydrogen number” in one molecule calculated from the average molecular weight of the hydrosilyl compound used as a raw material in Synthesis Examples 1 to 3. For the reaction products A to C obtained in Synthesis Examples 1 to 3, the “average hydrosilyl group hydrogen number in one molecule of reaction product” calculated from the area ratio of the hydrosilyl group hydrogen number in 1H-NMR, Similarly, “average number of methacryl groups in one molecule of reaction product” calculated from the area ratio of alkene hydrogen of methacryl groups in 1H-NMR is shown in Table 1.
上記合成例1〜3で得られた反応生成物A〜Cを用いて、トリメチロールプロパントリアクリレート(炭素−炭素二重結合を有する化合物)、ペンタエリスリトールトリアクリレート(炭素−炭素二重結合と水酸基とを有する化合物)、1-ヒドロキシシクロヘキシルフェニルケトン(光重合開始剤)、及びジターシャリーブチルパーオキサイド(熱重合開始剤)と共に、表2に示したとおりに配合して、硬化性組成物A-1〜2、B-1〜3、及びC-1〜3を得た。なお、表2における各成分の数値は重量部を表す。また、それぞれの硬化性組成物について、含有された反応成生物A〜Cがヒドロシリル基を有するかどうかその有無を示す。 Using reaction products A to C obtained in Synthesis Examples 1 to 3, trimethylolpropane triacrylate (a compound having a carbon-carbon double bond), pentaerythritol triacrylate (carbon-carbon double bond and hydroxyl group) Compound), 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator), and ditertiary butyl peroxide (thermal polymerization initiator) as shown in Table 2 to obtain a curable composition A- 1-2, B-1-3, and C-1-3 were obtained. In addition, the numerical value of each component in Table 2 represents a weight part. In addition, for each curable composition, whether or not the contained reaction product A to C has a hydrosilyl group is indicated.
[実施例1]
上記で得られた硬化性組成物A-1をガラス板上に塗布し、ロールコーターを用いて厚さ0.2mmになるようにキャスト(流延)し、30W/cmの高圧水銀ランプを用いて8000mJ/cm2の積算露光量で硬化させて、所定の厚み(0.2mm)を有したフィルム状の成形体A-1a(一次硬化物)を得た。得られた成形体A-1aのIRスペクトル(図2)では2155cm-1のピーク(ヒドロシリル基に帰属されるピーク)が確認された。
[Example 1]
The curable composition A-1 obtained above is applied onto a glass plate, cast (cast) to a thickness of 0.2 mm using a roll coater, and a 30 W / cm high-pressure mercury lamp is used. Then, the film was cured with an integrated exposure amount of 8000 mJ / cm 2 to obtain a film-like molded product A-1a (primary cured product) having a predetermined thickness (0.2 mm). In the IR spectrum (FIG. 2) of the obtained molded product A-1a, a peak of 2155 cm −1 (a peak attributed to a hydrosilyl group) was confirmed.
上記で得られた成形体A-1aを塩基水溶液(1.1mol/LのN,N−ジエチルヒドロキシルアミン)に浸漬させた。浸漬後、直に成形体のヒドロシリル基による脱水素縮合が進行して水素の気泡が発生した。室温で24時間浸漬させた後、成形体を取り出し、水洗を行った。さらに成形体を室温で1時間自然乾燥させた後、200℃のオーブンで1時間加熱させ、成形体A-1b(最終硬化物)を得た。得られた成形体A-1bのIRスペクトル(図2)によれば、成形体A-1aで観測された2155cm-1のピーク(ヒドロシリル基に帰属されるピーク)が消失していることから、完全に脱水素縮合が進行したことが確認された。 The molded product A-1a obtained above was immersed in an aqueous base solution (1.1 mol / L N, N-diethylhydroxylamine). Immediately after the immersion, dehydrogenative condensation by the hydrosilyl group of the molded product proceeded to generate hydrogen bubbles. After being immersed for 24 hours at room temperature, the molded body was taken out and washed with water. Further, the molded body was naturally dried at room temperature for 1 hour, and then heated in an oven at 200 ° C. for 1 hour to obtain a molded body A-1b (final cured product). According to the IR spectrum (FIG. 2) of the obtained molded product A-1b, the peak at 2155 cm −1 observed in the molded product A-1a (the peak attributed to the hydrosilyl group) has disappeared. It was confirmed that the dehydrogenative condensation had progressed completely.
上記で得られた成形体A-1bについて、以下に記した各条件での物性を評価した。結果を表3に示す。 About the molded object A-1b obtained above, the physical property on each condition described below was evaluated. The results are shown in Table 3.
[成形性]
得られた成形体A-1bを目視で確認し、クラックや欠けが無い場合を「良」とし、クラックや欠けが発生している場合を「不良」とする2段階評価を行った。
[Formability]
The obtained molded product A-1b was visually confirmed, and a two-step evaluation was performed in which a case where there was no crack or chip was “good” and a case where a crack or chip was generated was “bad”.
[ヒドロシリル基の有無]
成形体A-1bを約10mm x 10mmに切断して得た試験片表面のIRスペクトルを測定し、2155cm-1付近にヒドロシリル基に帰属されるピークの有無で確認した。
[Presence or absence of hydrosilyl group]
The IR spectrum of the surface of a test piece obtained by cutting the compact A-1b to about 10 mm × 10 mm was measured and confirmed by the presence or absence of a peak attributed to a hydrosilyl group in the vicinity of 2155 cm −1 .
[弾性率]
以下で述べる硬化条件1、1aおよび1bの場合で最終的に得られた厚み0.2mmの成形体については、引張弾性率(試験片:8mm x 80mm x 0.2mm、試験速度0.5mm/min、チャック間距離50mm)の値を示す。硬化条件2、2a、3および3aの場合で最終的に得られた厚み2mmの成形体については、曲げ弾性率(試験片:25mm x 50mm x 2mm、試験速度0.3mm/min、支点間距離12mm、支点半径0.5mm、圧子半径1.5mm)の値を示す。また表3中の「×」は所定サイズの試験片が得られず測定不可を示す。
[Elastic modulus]
For the molded body of 0.2mm thickness finally obtained under the curing
[CTE]
熱機械的分析を行い、50℃から150℃の線膨張係数(CTE)を測定した。硬化条件1、1aおよび1bで得られた厚み0.2mmの成形体については、3mm幅に試験片を加工、チャック間距離15mmで固定し昇温速度昇温速度5℃/min、引張荷重4.2mNで測定した。硬化条件2、2a、3および3aで得られた厚み2mmの成形体については、5mm角に切断し、試験厚み2mmとし昇温速度昇温速度5℃/min、圧縮荷重100mNで測定した。
[CTE]
A thermomechanical analysis was performed, and the linear expansion coefficient (CTE) from 50 ° C to 150 ° C was measured. For a 0.2mm-thick molded body obtained under curing
[吸水率]
硬化条件1、1aおよび1bの場合で最終的に得られた厚み0.2mmの成形体については、試験片サイズを100mm x 100mmとし、硬化条件2、2a、3および3aで最終的に得られた厚み2mmの成形体については、試験片サイズを25mm x 50mmにして、それぞれ50℃で24時間乾燥させた後、重量を測定し、ついで25℃の温水中に24時間浸漬させ、次の式により吸水率を求めた。また表3中の「×」は所定サイズの試験片が得られず測定不可を示す。
吸水率(%)=[(吸水重量−乾燥重量)/乾燥重量]×100
[Water absorption rate]
For the 0.2 mm thick molded body finally obtained under the curing
Water absorption rate (%) = [(water absorption weight−dry weight) / dry weight] × 100
[実施例2〜6、比較例1〜6]
表3に示すように、硬化性組成物と以下に記した硬化条件との組合せから実施例2〜6及び比較例1〜6に係る成形体を得た。得られた成形体について、上述した方法で物性評価を行った。結果を表3に示す。
[Examples 2-6, Comparative Examples 1-6]
As shown in Table 3, molded bodies according to Examples 2 to 6 and Comparative Examples 1 to 6 were obtained from combinations of the curable composition and the curing conditions described below. About the obtained molded object, physical property evaluation was performed by the method mentioned above. The results are shown in Table 3.
[硬化条件1]
ロールコーターを用いて、ガラス板上に硬化性組成物を厚さ0.2mmになるようにキャスト(流延)し、30W/cmの高圧水銀ランプを用い、8000mJ/cm2の積算露光量で硬化させ、所定の厚み(0.2mm)を有したフィルム状の成形体(一次硬化物)を得た。
[Curing condition 1]
Using a roll coater, cast (cast) the curable composition onto a glass plate to a thickness of 0.2 mm, and use a 30 W / cm high-pressure mercury lamp with an integrated exposure amount of 8000 mJ / cm 2. Curing was performed to obtain a film-like molded body (primary cured product) having a predetermined thickness (0.2 mm).
[硬化条件1a]
硬化条件1に加えて更に、硬化条件1で得られた成形体を塩基水溶液(1.1mol/LのN,N−ジエチルヒドロキシルアミン)に室温で24時間浸漬させ、水洗後室温で1時間自然乾燥させた後、200℃のオーブンで1時間加熱させて厚さ0.2mmのフィルム状の成形体(最終硬化物)を得た。
[
In addition to curing
[硬化条件1b]
塩基性水溶液を水に変えた以外は硬化条件1aと同様にして厚さ0.2mmのフィルム状の成形体(最終硬化物)を得た。
[
A film-like molded body (final cured product) having a thickness of 0.2 mm was obtained in the same manner as in the
[硬化条件2]
厚さ2mmになるようにガラス板で組み込んだ50mm角の型に硬化性組成物を流し込み、30W/cmの高圧水銀ランプを用いて8000mJ/cm2の積算露光量で硬化させ、所定の厚み(2mm)を有したシート状の成形体(一次硬化物)を得た。
[Curing condition 2]
The curable composition is poured into a 50 mm square mold incorporated with a glass plate so as to have a thickness of 2 mm, and cured at a cumulative exposure of 8000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp. A sheet-like molded body (primary cured product) having 2 mm) was obtained.
[硬化条件2a]
硬化条件2に加え更に、硬化条件2で得られた成形体を塩基水溶液(1.1mol/LのN、N−ジエチルヒドロキシルアミン)に室温で72時間浸漬させ、水洗後室温で24時間自然乾燥させた後、200℃のオーブンで2時間加熱させて厚さ2mmのシート状の成形体(最終硬化物)を得た。
[Curing condition 2a]
In addition to curing condition 2, the molded product obtained under curing condition 2 is immersed in an aqueous base solution (1.1 mol / L N, N-diethylhydroxylamine) at room temperature for 72 hours, washed with water, and then naturally dried at room temperature for 24 hours. After that, it was heated in an oven at 200 ° C. for 2 hours to obtain a sheet-like molded body (final cured product) having a thickness of 2 mm.
[硬化条件3]
内径が25mm x 50mm x 2mmの金型に射出圧力3Mpaで射出し、保圧:1Mpa/10秒、金型温度:180℃、硬化時間1分の各条件で射出成型して厚さ2mmのシート状の成形体(一次硬化物)を得た。
[Curing condition 3]
A 2mm thick sheet that is injected into a mold with an inner diameter of 25mm x 50mm x 2mm at an injection pressure of 3Mpa, injection-molded under the following conditions: holding pressure: 1Mpa / 10 seconds, mold temperature: 180 ° C, curing
[硬化条件3a]
硬化条件3に加え更に、硬化条件3で得られた成形体を塩基水溶液(1.1mol/LのN、N−ジエチルヒドロキシルアミン)に室温で72時間浸漬させ、水洗後室温で24時間自然乾燥させた後、200℃のオーブンで2時間加熱させて厚さ2mmのシート状の成形体(最終硬化物)を得た。
[Curing condition 3a]
In addition to curing condition 3, the molded product obtained under curing condition 3 is immersed in an aqueous base (1.1 mol / L N, N-diethylhydroxylamine) at room temperature for 72 hours, washed with water, and then naturally dried at room temperature for 24 hours. After that, it was heated in an oven at 200 ° C. for 2 hours to obtain a sheet-like molded body (final cured product) having a thickness of 2 mm.
上記実施例1〜6、及び比較例1〜6より、それぞれのCTEの結果から、ヒドロシリル基を含有する成形体(一次硬化物)を塩基水溶液に接触させることで、ヒドロシリル基が脱水素縮合し、架橋密度が増加したことで、弾性率が増加し、CTEを低減させることが確認された。また、反応生成物BとCを用いた硬化性組成物の比較から、本発明の製造方法を用いれば、炭素−炭素二重結合を増加させたことと同等の弾性率とCETをもつ成形体(最終硬化物)を良好な成形性で得ることができ、尚且つ低吸水性を併せ持つことが可能である。 From Examples 1 to 6 and Comparative Examples 1 to 6, from the results of the respective CTEs, the hydrosilyl group was dehydrogenated and condensed by bringing the molded body (primary cured product) containing the hydrosilyl group into contact with an aqueous base solution. It was confirmed that the increase in crosslink density increased the elastic modulus and reduced CTE. Further, from the comparison of the curable compositions using the reaction products B and C, if the production method of the present invention is used, a molded article having an elastic modulus and CET equivalent to that having increased carbon-carbon double bonds. (Final cured product) can be obtained with good moldability and can also have low water absorption.
本発明によれば、炭素−炭素二重結合数を増加させること無く、一次硬化物に含有されるヒドロシリル基の脱水素縮合を利用し、最終的に得られる硬化物の架橋密度を増加させることが可能である。そのため、本発明によって得られた硬化物(最終硬化物)は例えば液晶テレビ等のディスプレイ前面保護板や液晶偏光フィルムなどのディスプレイ材料をはじめ、タッチパネル用基板、カラーフィルター用基板、TFT用基板などのガラス代替基板として利用でき、また、例えば眼鏡用レンズ材料やプリズム、カメラ等の撮像光学系、表示デバイス等の投影光学系、画像表示装置等の観察光学系、光磁気ディスクドライブ等のレーザ光学系、導波路などに用いるレンズなどの光学素子としても利用することができる。すなわち、本発明によって得られた硬化物は、これまで主にガラスが使われていた各種ガラス材料にかわって使用することができる。 According to the present invention, the dehydration condensation of the hydrosilyl group contained in the primary cured product is utilized without increasing the number of carbon-carbon double bonds, and the crosslinking density of the finally obtained cured product is increased. Is possible. Therefore, the cured product (final cured product) obtained by the present invention includes display materials such as a display front protective plate and a liquid crystal polarizing film for liquid crystal televisions, touch panel substrates, color filter substrates, TFT substrates, and the like. It can be used as a glass substitute substrate, and for example, imaging optical systems such as eyeglass lens materials and prisms, cameras, projection optical systems such as display devices, observation optical systems such as image display devices, and laser optical systems such as magneto-optical disk drives It can also be used as an optical element such as a lens used in a waveguide. That is, the cured product obtained by the present invention can be used in place of various glass materials that have so far mainly been used for glass.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014093513A JP5750183B2 (en) | 2014-04-30 | 2014-04-30 | Compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014093513A JP5750183B2 (en) | 2014-04-30 | 2014-04-30 | Compact |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009011588A Division JP5732187B2 (en) | 2009-01-22 | 2009-01-22 | Method for producing cured product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014133905A true JP2014133905A (en) | 2014-07-24 |
JP5750183B2 JP5750183B2 (en) | 2015-07-15 |
Family
ID=51412405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014093513A Expired - Fee Related JP5750183B2 (en) | 2014-04-30 | 2014-04-30 | Compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5750183B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0297504A (en) * | 1988-09-30 | 1990-04-10 | Natoko Paint Kk | Crosslinked polymer particulate and manufacture thereof |
JPH06184237A (en) * | 1992-02-28 | 1994-07-05 | Hoya Corp | Gas-permeable polymer and its production |
JPH0931399A (en) * | 1995-07-13 | 1997-02-04 | Toagosei Co Ltd | Coating composition and its manufacture |
JPH1180711A (en) * | 1997-08-29 | 1999-03-26 | Shiseido Co Ltd | Water repellent and treatment thereof |
JP2006313659A (en) * | 2005-05-06 | 2006-11-16 | Shin Etsu Chem Co Ltd | Solid polyelectrolyte film and its manufacturing method, and fuel cell |
-
2014
- 2014-04-30 JP JP2014093513A patent/JP5750183B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0297504A (en) * | 1988-09-30 | 1990-04-10 | Natoko Paint Kk | Crosslinked polymer particulate and manufacture thereof |
JPH06184237A (en) * | 1992-02-28 | 1994-07-05 | Hoya Corp | Gas-permeable polymer and its production |
JPH0931399A (en) * | 1995-07-13 | 1997-02-04 | Toagosei Co Ltd | Coating composition and its manufacture |
JPH1180711A (en) * | 1997-08-29 | 1999-03-26 | Shiseido Co Ltd | Water repellent and treatment thereof |
JP2006313659A (en) * | 2005-05-06 | 2006-11-16 | Shin Etsu Chem Co Ltd | Solid polyelectrolyte film and its manufacturing method, and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP5750183B2 (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5433426B2 (en) | Method for producing silicone resin and curable resin composition containing the silicone resin | |
JP5685149B2 (en) | Semi-cured product, cured product and production method thereof, optical component, cured resin composition | |
KR20050109515A (en) | Silicone resin composition and moldings thereof | |
JP5981752B2 (en) | Compound lens and manufacturing method thereof | |
JP5732187B2 (en) | Method for producing cured product | |
JP5091230B2 (en) | Retardation film, retardation film laminate and production method thereof | |
JP5858593B2 (en) | Method for producing cured product | |
JP2006193660A (en) | Resin composition and optical part using the same | |
JP5750183B2 (en) | Compact | |
JP5698566B2 (en) | Silicone resin composition and molded body thereof | |
JP7279919B2 (en) | Composition for optical stereolithography, three-dimensional object, and method for producing the same | |
WO2006009173A1 (en) | Polymer optical waveguide and process for production thereof | |
JP5457051B2 (en) | Retardation film and method for producing the same | |
JP2010091734A (en) | Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these | |
JPWO2018030339A1 (en) | Thermosetting composition | |
JP5385832B2 (en) | Curable resin composition and molded product obtained therefrom | |
KR20190059275A (en) | Monolithic high refractive index photonic devices | |
JP2013043902A (en) | Curable resin composition and cured product | |
WO2018092700A1 (en) | Curable composition for production of resin sheet | |
JPH04180911A (en) | Curable composition | |
JP3901821B2 (en) | Low birefringence optical member, resin composition for molding the same, and method for producing optical member | |
JPH11322848A (en) | Optical member having low birefringence and its production | |
JP3673389B2 (en) | Low birefringence optical member, resin composition for molding the same, and method for producing optical member | |
JP6866606B2 (en) | Resin sheet manufacturing method | |
JP2012188527A (en) | Pseudo-cross-linked curable resin composition, and its copolymer and molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5750183 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |