JP2014133187A - Rotary disk water treatment apparatus - Google Patents

Rotary disk water treatment apparatus Download PDF

Info

Publication number
JP2014133187A
JP2014133187A JP2013000981A JP2013000981A JP2014133187A JP 2014133187 A JP2014133187 A JP 2014133187A JP 2013000981 A JP2013000981 A JP 2013000981A JP 2013000981 A JP2013000981 A JP 2013000981A JP 2014133187 A JP2014133187 A JP 2014133187A
Authority
JP
Japan
Prior art keywords
disk
spiral
multistage
film
spiral film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013000981A
Other languages
Japanese (ja)
Inventor
Toshio Furukawa
俊夫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013000981A priority Critical patent/JP2014133187A/en
Publication of JP2014133187A publication Critical patent/JP2014133187A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems of a rotary disk apparatus as an installation intended for sludge reduction, energy saving and low costs in an organic wastewater treatment apparatus, including peeling of organisms on the disk, essential requirement of an additional installation for phosphorus recovery and maintenance of the installation for phosphorus recovery.SOLUTION: A rotary disk apparatus for wastewater treatment uses parts formed by cutting a spiral film element. A disk composed of a plurality of cut spiral films combined in a flat surface in a multistage form is arranged and fixed between an outer peripheral cylinder and a central axis arranged in the central part to form a multistage spiral film disk, and the multistage spiral film disks are fixed to a rotation shaft at constant intervals to form a rotary disk apparatus for wastewater treatment having a plurality of the multistage film disks. A suction pipe for recovering aerobic organisms inhabiting on the surface of a multistage spiral film disk is arranged between a multistage spiral film disk and another adjacent multistage spiral film disk, and a suction device connected to the suction pipe is also provided.

Description

本発明は、有機性成分を有する排水処理に関し、好気性生物および嫌気性生物による生物分解法を利用するシステムに関するものである。好気性生物に必要な酸素を低エネルギーで供給し、好気性生物の環境と酸素供給が不十分な領域における嫌気性生物の生育環境を整える両操作で排水中の有機性成分を効率よく分解するシステム提供で、さらに多様な生物群の構成で食物連鎖を助長することで汚泥発生を極力低減化するものである。また、好気性生物体内に蓄積される燐を簡便に回収する排水処理装置を提供するものである。   The present invention relates to wastewater treatment having an organic component, and relates to a system using a biodegradation method by an aerobic organism and an anaerobic organism. Supplying oxygen necessary for aerobic organisms at low energy, and efficiently decomposing organic components in wastewater by both the aerobic organism environment and the anaerobic organism growth environment in areas where oxygen supply is insufficient By providing the system, sludge generation will be reduced as much as possible by promoting the food chain with a more diverse composition of organisms. Moreover, the waste water treatment apparatus which collect | recovers the phosphorus accumulate | stored in an aerobic organism simply is provided.

有機性排水処理システムには様々な方式があり、その多くが好気性生物への酸素供給動力エネルギーの問題、好気性生物が主たる成分の余剰汚泥の処理問題、地球規模で課題になっている有用な燐の回収リサイクル問題など、経済的な面と環境資源的な面が有機性排水処理施設の抱える問題である。(例えば、特許文献1参照) これに対する手法として、主に好気性生物を固定化する固定床式処理装置、好気性生物を浮遊可能な担体に閉じ込めて流動させる流動式処理装置、回転円板式装置、などの水処理技術の公知事例がある。(例えば、特許文献2、特許文献3、非特許文献1、非特許文献2参照)   There are various types of organic wastewater treatment systems, many of which are problems of oxygen supply kinetic energy for aerobic organisms, treatment of surplus sludge, which is the main component of aerobic organisms, and useful issues that have become a global issue Economical and environmental resources, such as the problem of collecting and recycling phosphorus, are problems facing organic wastewater treatment facilities. (For example, refer to Patent Document 1) As a technique for this, a fixed bed type processing apparatus that mainly immobilizes aerobic organisms, a fluid type processing apparatus that traps and flows aerobic organisms in a carrier that can float, and a rotating disk type apparatus. There are known examples of water treatment techniques such as. (For example, see Patent Document 2, Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2)

広く普及している活性汚泥法では、好気性生物の種類が乏しく、汚泥の減容化には物理的、化学的な手法が必要で経済性の面からも導入事例が少ない。また、好気性生物が要求する溶存酸素供給に多大な酸素供給動力エネルギーを要すことから、その面からの種々の方法が提案されてきているが省エネルギー効果に限界がある。これらの対策として、好気性生物の様々な種類を増やすことが可能な、生物の固定化法として固定床式排水処理や回転円板装置が開発され、回転円板法は酸素供給に要するエネルギーが少なく、且つ発生余剰汚泥が少ないシステムとされている。(例えば、非特許文献1参照)しかし、多くの排水処理法において排水中に含まれる燐の回収は特別な燐回収システムを設置しなければできなかった。(例えば、特許文献4、非特許文献1参照)   The widely used activated sludge method has few types of aerobic organisms, and physical and chemical methods are necessary for volume reduction of sludge, and there are few introduction examples from the economical aspect. Further, since a large amount of oxygen supply power energy is required for the supply of dissolved oxygen required by aerobic organisms, various methods have been proposed from this aspect, but the energy saving effect is limited. As these measures, fixed-bed wastewater treatment and rotating disk devices have been developed as biological immobilization methods that can increase various types of aerobic organisms. The rotating disk method uses the energy required to supply oxygen. It is a system with a small amount of generated excess sludge. (For example, see Non-Patent Document 1) However, in many wastewater treatment methods, the recovery of phosphorus contained in wastewater could not be performed unless a special phosphorus recovery system was installed. (For example, see Patent Document 4 and Non-Patent Document 1)

回転円板式装置には様々な形状の円板が開発され、その材質も様々である。また、排水処理能力が回転円板の面積に依存することから円板の軽量化と浮力を増加させる方法、回転軸の強度の増強法などのメカニカルな構造面の改善が見られる。(特許文献5、非特許文献1、非特許文献2参照)また、大量の排水処理では回転円板装置の台数制御による対応や駆動回転部の定期的なメンテナンス対応以外には特別な要員作業がないことが高く評価されている。(非特許文献1参照)しかし、活性汚泥法と比較して普及が進んでいない点として、円板表面での好気性生物の増殖に伴い、増殖した好気性生物の堆積厚みが増加し、その生物膜による空気の透過が不十分になり生物層内部の溶存酸素不足となり、円板表面の通性嫌気性菌が過度に増殖して菌体分解や腐敗進行による硫化水素発生が生じ、円板表面の好気性生物が剥離する現象がしばしば起こる。その結果、排水処理装置からの放流水中に剥離した好気性生物が浮遊することから、SS濃度が他の処理法に比べ高くなることが欠点とされている。(例えば、非特許文献1参照)   Various shapes of disks have been developed for the rotating disk type device, and the materials are also various. Further, since the wastewater treatment capacity depends on the area of the rotating disk, mechanical structural improvements such as a method of increasing the weight of the rotating disk and a method of increasing the strength of the rotating shaft can be seen. (Refer to Patent Document 5, Non-Patent Document 1, and Non-Patent Document 2) Also, a large amount of wastewater treatment requires special personnel work other than the response by controlling the number of rotating disk devices and the periodic maintenance of the drive rotating unit. Not appreciated. (Refer to Non-Patent Document 1) However, as the point that the diffusion is not progressing compared with the activated sludge method, with the growth of aerobic organisms on the surface of the disk, the accumulated thickness of the aerobic organisms increased, Air permeation through the biofilm is insufficient, so that dissolved oxygen is deficient inside the biological layer, facultative anaerobic bacteria on the surface of the disk grow excessively, and hydrogen sulfide is generated due to cell decomposition and decay. The phenomenon of exfoliation of aerobic organisms on the surface often occurs. As a result, since the aerobic organisms peeled off in the effluent water from the wastewater treatment device float, it is a disadvantage that the SS concentration becomes higher than other treatment methods. (For example, see Non-Patent Document 1)

有機性排水処理において、回転円板法によればBOD、硝化、脱窒、脱燐処理は時系列的にBOD処理、硝化処理、脱窒処理、脱燐処理の順番で処理される。ここで、回転円板の前段ではBOD処理が主に、後段では硝化が順次進む。また、脱窒作用は嫌気性微生物により行われることから、回転円板を排水中に完全に浸漬する方法および回転円板を無酸素な室内に密閉する方法で行われている。(非特許文献1、非特許文献3参照)さらに燐の回収は排水中に溶解している燐の回収法として従来の硫酸アルミニウム、ポリ酸化アルミニウムなどの凝集剤により凝集沈殿物としての回収、また鉄イオンを利用した燐酸鉄沈殿物の回収法が行われている。(例えば、特許文献4、非特許文献1参照)   In organic wastewater treatment, according to the rotating disk method, BOD, nitrification, denitrification, and dephosphorization processes are performed in the order of BOD treatment, nitrification treatment, denitrification treatment, and dephosphorization treatment. Here, BOD processing is mainly performed in the former stage of the rotating disk, and nitrification proceeds in the latter stage. Further, since the denitrification action is performed by anaerobic microorganisms, it is performed by a method of completely immersing the rotating disk in waste water and a method of sealing the rotating disk in an oxygen-free room. (Refer to Non-Patent Document 1 and Non-Patent Document 3.) Further, the recovery of phosphorus is a recovery method of phosphorus dissolved in the waste water by using a conventional coagulant such as aluminum sulfate or polyaluminum oxide as an aggregate precipitate. A method for recovering iron phosphate precipitates using iron ions has been carried out. (For example, see Patent Document 4 and Non-Patent Document 1)

回転円板式処理装置では、流入排水部での円板面上に多量の好気性生物が繁殖することから、生物膜厚みが増大する傾向にある。この対応として、流入排水部の回転円板前段では、円板の間隔を広くし、BOD濃度の低下と好気性生物の増殖が減少する回転円板後段で、円板間隔を狭くする工夫がなされている。(非特許文献1参照)しかし、流入する有機性排水の濃度が変動する場合に、回転円板に異常に増殖した好気性生物が円板閉塞を起こすため、その除去法として空気、水の吹き付け、薬品添加による異常増殖防止、円板回転数の変化と逆回転などが講じられる。(特許文献6、非特許文献1参照)これらの円板間隔の調整、過剰生物除去対策は、本来の装置のコンパクト性、管理の容易性からは逆行するものであった。   In the rotating disk type processing apparatus, since a large amount of aerobic organisms propagate on the disk surface in the inflow and drainage section, the biofilm thickness tends to increase. To cope with this, a device has been devised in which the interval between the disks is widened before the rotating disc in the inflow and drainage section, and the interval between the discs is narrowed after the rotating disc where the decrease in BOD concentration and aerobic growth is reduced. ing. (See Non-Patent Document 1) However, when the concentration of inflowing organic wastewater fluctuates, aerobic organisms that have abnormally grown on the rotating disk cause obstruction of the disk. , Prevention of abnormal growth by adding chemicals, change of disk rotation speed and reverse rotation, etc. are taken. (Refer to Patent Document 6 and Non-Patent Document 1) These disc space adjustments and excess organism removal measures are in reverse from the compactness and ease of management of the original device.

地球環境問題からプラスチック廃材のリサイクルが注目されている。その中で、廃棄プラスチックを溶融精製する方法や廃棄されるプラスチック素材を生かして別の高付加価値製品を製造するアップサイクル・システムが近年注目されている。このような中で、海水の淡水化、上水処理、排水処理、中水製造、液状食品製造工程などで広く膜分離装置が普及しているが(非特許文献4参照)、使用済みセラミック膜などの無機膜が一部リサイクルされているのに対して、使用済み有機膜は殆ど廃棄処分されているのが実情で有効活用法が求められている。   Recycling plastic waste has attracted attention due to global environmental problems. Among them, in recent years, attention has been paid to a method for melting and refining waste plastic and an up-cycle system for producing another high-value-added product by utilizing a discarded plastic material. Under such circumstances, membrane separators are widely used in seawater desalination, water treatment, wastewater treatment, middle water production, liquid food production processes, etc. (see Non-Patent Document 4). While some inorganic membranes such as the above are recycled, used organic membranes are mostly discarded, and there is a demand for effective utilization methods.

特開平5−185090号公報(段落0001−0006 第一図)Japanese Patent Laid-Open No. 5-185090 (paragraphs 0001-0006, first figure) 特開平10−216759号公報(段落0010 第一図)Japanese Patent Laid-Open No. 10-216759 (paragraph 0010, first figure) 特開平10−216760号公報(段落0011 第一図)JP-A-10-216760 (paragraph 0011, first figure) 特開2003−245676号公報(段落0001−0007第三図)Japanese Patent Laying-Open No. 2003-245676 (paragraphs 0001-0007, FIG. 3) 特開平8−290188号公報(段落0008 第一図)JP-A-8-290188 (paragraph 0008, first figure) 特開2002−126800号公報(段落0039 第一図)JP 2002-126800 A (paragraph 0039, first figure)

須藤隆一編著「微生物固定化法による排水処理」産業用水調査会 1988年Ryuichi Sudo, “Effluent Treatment by Microbial Immobilization”, Industrial Water Research Committee, 1988 西留清、荒木宏之、古賀憲一著「交互流多槽半水没型回転円板法による有機物酸化、硝化、脱窒法の開発」鹿児島工業高等専門学校研究報告34、1999年Nishiru Kiyoshi, Araki Hiroyuki and Koga Kenichi “Development of Organic Oxidation, Nitrification, and Denitrification Method by Alternate Flow Multi-tank Semi Submersible Rotating Disc Method” Kagoshima National College of Technology Research Report 34, 1999 西留清、水元愛佳、東拓磨、中原広貴著「回転円盤と担体を用いた有機物酸化、硝化、脱窒」鹿児島工業高等専門学校研究報告45、2010年Nishiru Kiyoshi, Mizumoto Aika, Higashi Takuma, Nakahara Hiroki “Organic Oxidation, Nitrification, Denitrification Using a Rotating Disc and Carrier” Kagoshima National College of Technology Research Report 45, 2010 松本幹治監修著「ユーザーのための実用膜分離技術」日刊工業新聞社 1996年Directed by Mikiharu Matsumoto, “Practical membrane separation technology for users”, Nikkan Kogyo Shimbun, 1996

しかしながら、微生物固定化法による有機性排水処理設備は、広く普及している活性汚泥法に比べて多様な微生物を棲息することができ、散水ろ床法、接触曝気法、回転円板法として利用されてきた。その中でも回転円板法は好気性生物への酸素供給方法に特徴があり、円板のおよそ半分を排水中に漬けて、半分を空気中に曝しながら低速回転させることで酸素供給ができることからどの好気性微生物処理よりも低エネルギー法である。ところが、円板表面で増殖する様々な好気性生物は、増殖速度も大きいため厚みを増した生物自身の生体膜が酸素供給を遮断して、円板表面に近づくほど酸素欠乏状態となり、その領域では通性嫌気性生物が増殖し、その領域での微生物の死滅、硫化水素の発生が生じて好気性生物と通性嫌気性生物間の付着力が低下する物理現象で好気性生物が回転円板から脱落する問題があった。これにより、有機性排水の水質が生物処理で改善可能であっても脱落した好気性生物のSSフロックが放流水中に入ることで、その分離操作の二次的処理が不可欠になっている。   However, organic wastewater treatment facilities using the microorganism immobilization method can inhabit a variety of microorganisms compared to the widely used activated sludge method, and can be used as a trickling filter method, contact aeration method, and rotating disk method. It has been. Among them, the rotating disk method is characterized by the method of supplying oxygen to aerobic organisms, and it is possible to supply oxygen by rotating at low speed while exposing about half of the disk in waste water and exposing half to the air. It is a lower energy method than aerobic microbial treatment. However, various aerobic organisms that grow on the surface of the disc have a high growth rate, and the biological membrane of the organism that has increased in thickness cuts off the oxygen supply and becomes oxygen deficient as it approaches the disc surface. Is a physical phenomenon in which a facultative anaerobe grows, kills microorganisms in that area, and hydrogen sulfide is generated, reducing the adhesion between the aerobic and facultative anaerobes. There was a problem of falling off the board. Thereby, even if the quality of the organic waste water can be improved by biological treatment, the secondary treatment of the separation operation is indispensable because SS flocs of aerobic organisms that have fallen out enter the discharge water.

回転円板面に生育した好気性生物群とその円板面近傍に酸欠状態で生育する通性嫌気性生物群の増殖で、複数の円板間が閉塞する現象と主に好気性生物群が剥離脱落する現象を防止するために高圧水洗浄、高圧空気による剥離作業、薬品添加処理、円板の回転数の増加、逆回転などの煩わしい作業がある。また、この生物増殖現象から二次的に起こる回転円板重量の増加に伴う駆動モーターの所要動力エネルギー増加が発生し、駆動部の煩雑なメンテナンス問題も発生していた。   The growth of aerobic organisms growing on the rotating disk surface and facultative anaerobic organisms growing in the absence of oxygen in the vicinity of the disk surface. In order to prevent the phenomenon of peeling off, there are troublesome operations such as high-pressure water washing, peeling work with high-pressure air, chemical addition treatment, increasing the number of rotations of the disk, and reverse rotation. In addition, the required power energy of the drive motor is increased with the increase in the weight of the rotating disk, which occurs secondarily due to this biological growth phenomenon, and a complicated maintenance problem of the drive unit has also occurred.

回転円板法は好気性生物による有機性排水中の有機物の酸化分解を行う過程で、微生物自身の増殖を酸素雰囲気下で進める。その段階は排水中の炭化水素基質の酸化分解、アンモニアを利用した細胞合成での増殖、最後に細胞の自己分解でのアンモニアの放出に大きく区分されている。そして有機性(アンモニア性)窒素の分解は好気性細菌で酸化分解され亜硝酸性窒素、硝酸性窒素と段階的に進む。この工程は、回転円板装置の好気性生物の役割であるが、亜硝酸性窒素と硝酸性窒素は通性嫌気性菌の脱窒菌による分解でなければ無機の窒素ガスにまで分解できない。この操作を回転円板法で行う方法として、回転円板全体を処理排水中に浸漬する方法、回転円板の周りに嫌気室を設けて空気を遮断する方法、回転円板の外径を大きい径と小さい径の二区分に分け回転軸に組み込み、小さい径全体を浸漬、大きい径の一部を空気中に曝す方法、さらにドーナツ状の大きな外径を有する回転ドーナツ状円板内部に小さな径の回転円板を内蔵する形式で内臓部が完全浸漬型にした複雑な形状の回転円板法、など様々な方法で通性嫌気性脱窒菌を培養し脱窒工程を行っている。しかしながら、装置が複雑で装置コストの上昇、メンテナンスの時間と費用の増加問題があった。   The rotating disk method is a process in which organic matter in organic wastewater is oxidatively decomposed by aerobic organisms, and the growth of microorganisms itself proceeds in an oxygen atmosphere. The stage is broadly divided into oxidative degradation of hydrocarbon substrates in wastewater, growth by cell synthesis using ammonia, and finally release of ammonia by cell autolysis. The decomposition of organic (ammonia) nitrogen is oxidatively decomposed by aerobic bacteria and proceeds stepwise with nitrite nitrogen and nitrate nitrogen. This process is the role of aerobic organisms in the rotating disk device, but nitrite nitrogen and nitrate nitrogen cannot be decomposed into inorganic nitrogen gas unless they are decomposed by denitrifying bacteria of facultative anaerobes. As a method of performing this operation by the rotating disk method, a method of immersing the entire rotating disk in the treated waste water, a method of blocking an air by providing an anaerobic chamber around the rotating disk, and a large outer diameter of the rotating disk It is divided into two parts, a diameter and a small diameter, and it is incorporated into the rotating shaft, the entire small diameter is immersed, a part of the large diameter is exposed to the air, and a small diameter inside the rotating donut-shaped disk having a large outer diameter like a donut The denitrification process is performed by cultivating facultative anaerobic denitrifying bacteria by various methods such as a rotating disk method with a complicated shape in which the internal organs are completely immersed, with a built-in rotating disk. However, there is a problem that the apparatus is complicated and the apparatus cost increases and maintenance time and cost increase.

有機性排水中のBOD成分中の有用物質の一つに燐がある。従来の燐の回収方法としては活性炭での吸着法、硫酸アルミニウムやポリ酸化アルミニウムの凝集剤による凝集沈殿法、鉄イオンを利用した燐酸鉄沈殿物の回収法などがあるが、どれも排水に溶解している燐の回収を目指すもので、その回収のための新たな設備と高価な資材が必要で、装置コストの上昇、維持管理費用の増加が問題となっていた。また、食物連鎖を利用する微小後生動物(ワムシ類、線虫類、貧毛類など)の生息用の固定床、流動床、回転円板装置の好気性微生物中には燐の蓄積が期待されるが、その燐蓄積生物の直接回収方法がまだ確立されていない。   Phosphorus is one of useful substances in the BOD component in organic waste water. Conventional phosphorus recovery methods include activated carbon adsorption, coagulation and precipitation using aluminum sulfate and polyaluminum oxide coagulants, and iron phosphate precipitation recovery using iron ions, all of which are dissolved in wastewater. It is aimed at recovering phosphorus, which requires new equipment and expensive materials for the recovery, raising the cost of equipment and increasing maintenance costs. In addition, accumulation of phosphorus is expected in aerobic microorganisms in the fixed bed, fluidized bed, and rotating disk apparatus for inhabiting minute metazoans (such as rotifers, nematodes, and oligochaetes) that use the food chain. However, a direct recovery method for the phosphorus accumulating organism has not yet been established.

有機性排水処理で中小規模の排水処理設備として、酸素供給エネルギー削減、余剰汚泥削減、要員の削減問題のすべてが解決できる小型装置として回転円板装置RBC(Rotary Biological Contactor)が1960年以降に欧米で開発されて以降発展普及してきた。ところが、大量排水処理においても広大な土地を有している欧米では大外径、多数枚の円板を組み込んだ大型装置を多段多数配置して対応できているが、設置面積の制約がある施設に不向きとされている。この基本的な問題は、円板面積に排水処理量が比例していることで、その改善法として様々な形状の円板が考案されてきたが、面積の増加法に3次元的な構造が少ないため、廃水処理量の増加対応に限界があった。   As a small and medium-sized wastewater treatment facility for organic wastewater treatment, a rotary disk device RBC (Rotary Biological Contactor) has been developed in Europe and the United States since 1960 as a small device that can solve all the problems of oxygen supply energy reduction, excess sludge reduction, and personnel reduction. Since then it has been developed and popularized. However, in Europe and the United States, which have vast land for large-scale wastewater treatment, large-scale equipment with a large outer diameter and a large number of discs can be arranged in multiple stages, but there are restrictions on the installation area. It is not suitable for. The basic problem is that the amount of wastewater treatment is proportional to the disc area, and various shapes of discs have been devised as an improvement method. However, there is a three-dimensional structure for the area increase method. Due to the small amount, there was a limit to the increase in wastewater treatment volume.

様々な用途で使用される膜モジュールの中でもspiral膜は最も広く使用されている。プラスチック構成部材は、食品や医薬品適合製品使用や耐薬品性、耐熱性などの高付加価値プラスチックで、その耐久性は廃棄された時点においても、使用期間を超える遥かに長寿命の強度を有している。しかしながら、使用済みspiral膜はプラスチック廃材として処理され、その殆どは有効活用がなされていなかったと同時に処理費用負担と環境問題への配慮からユーザーおよびメーカーは処分に苦慮していた。   Of the membrane modules used in various applications, the spiral membrane is the most widely used. Plastic components are high-value-added plastics that are used for food and pharmaceutical products, chemical resistance, heat resistance, etc., and their durability is much longer than the service life even when discarded. ing. However, used spiral films are treated as plastic waste, and most of them have not been effectively used. At the same time, users and manufacturers have had difficulty in disposal due to the burden of processing costs and consideration of environmental issues.

本発明は、このような従来の問題を解決しようとするもので、使用済みspiral膜モジュールを利用した好気性生物と通性嫌気性生物を効率良く生育させて、生物体内に蓄積される燐の回収を簡便に行うことで省エネかつ低コストの排水処理装置を提供することを目的とするものである。   The present invention is intended to solve such a conventional problem, and it is possible to efficiently grow an aerobic organism and a facultative anaerobic organism using a used spiral membrane module, and to accumulate phosphorus accumulated in the organism. The object is to provide an energy-saving and low-cost wastewater treatment device by simply collecting.

本発明は、使用済みspiral膜elementを切断した部品を用い、複数の切断spiral膜を平面に多段に組み合わせた円盤を、外周の円筒と中心部に配置した中心軸間に配置固定してなる多段spiral膜円盤を一定間隔に回転軸に固定して複数の多段spiral膜円盤を有した排水処理用の回転円板装置を提供するものである。   The present invention uses a part obtained by cutting a used spiral film element, and a multi-stage disk in which a plurality of cut spiral films are combined in a plane in a multistage manner is arranged and fixed between an outer peripheral cylinder and a central axis disposed in a central part. The present invention provides a rotating disk device for wastewater treatment having a plurality of multi-stage spiral film disks by fixing the spiral film disks to a rotating shaft at regular intervals.

前記切断spiral膜は優れた耐久性を有するプラスチック素材からなり、そのサイズが世界標準となっている4、6、8−inchのspiral膜elementを用い、その中心部にある集水管に対し直角に、厚みをspiral膜element全長の1/100〜1/20に切断した大きさで、その厚みの1/2〜1/50の小孔を厚み中央からspiral膜円盤の集水管中央部を貫通させ、この小孔を通過できる大きさの丸棒およびパイプに切断spiral膜円盤を串刺し、任意の大きさの切断spiral膜を組み合わせることで円板外周部の円筒に間隙なく配置し、切断spiral膜円盤を貫通した丸棒およびパイプの両端が円板外周円筒に固定することで、複数の串刺し切断spiral膜円盤から構成された多段spiral膜円盤を一つの円板とし、この複数の円板から構成される回転円板の外径の20−40%を排水中に浸漬し、回転円板中心軸の両サイドに設けたベアリングユニットと駆動モーターにより1〜15rpmで回転させる排水処理用の回転円板装置を提供するものである。   The cut spiral membrane is made of a plastic material having excellent durability, and uses a 4, 6, 8-inch spiral membrane element whose size is the world standard, and is perpendicular to the water collecting pipe at the center. The thickness is cut to 1/100 to 1/20 of the total length of the spiral membrane element, and a small hole of 1/2 to 1/50 of the thickness is penetrated from the center of the thickness to the center of the water collection pipe of the spiral membrane disk. By cutting the spiral membrane disk into a round bar and pipe of a size that can pass through this small hole, and combining the cut spiral membrane of any size, it is arranged without any gap in the cylinder on the outer periphery of the disc, and the cut spiral membrane disk A round bar that penetrates the pipe and both ends of the pipe are fixed to the outer circumferential cylinder of the disk, so that a plurality of skewered and cut spiral membrane disks are used. A bearing unit in which a spiral film disk is a single disk, and 20-40% of the outer diameter of the rotating disk composed of a plurality of disks is immersed in drainage, and is provided on both sides of the central axis of the rotating disk. And a rotating disk device for wastewater treatment that is rotated at 1 to 15 rpm by a drive motor.

前記一枚の多段spiral膜円盤と隣り合うもう一枚の多段spiral膜円盤との間隔に多段spiral膜円盤表面に棲息する好気性生物を回収するための吸引用パイプを装着し、前記吸引用パイプに接続された吸引装置を備えた回転円板式装置を提供するものである。   A suction pipe for collecting aerobic organisms that inhabit the surface of the multistage spiral film disk is mounted at an interval between the one multistage spiral film disk and another adjacent multistage spiral film disk, and the suction pipe The rotating disk type apparatus provided with the suction device connected to is provided.

前記切断spiral膜に代わって、同様な外径および厚みを有する多孔性素材の円盤からなる多段円盤で構成される一つの円板を複数組み合わせた水処理用回転円板装置を提供するものである。   In place of the cut spiral film, a rotating disk device for water treatment is provided that combines a plurality of one disk composed of a multistage disk made of a porous material disk having the same outer diameter and thickness. .

前記切断spiral膜に代わって、同様な厚みを有する多孔性素材の多面体断面を有した多段多面体で構成した一つの円板を複数組み合わせた水処理用回転円板装置を提供するものである。   In place of the cut spiral film, a rotating disk device for water treatment is provided which is a combination of a plurality of single disks composed of a multi-stage polyhedron having a polyhedron cross section of a porous material having the same thickness.

なお、本発明は上記使用済みspiral膜に限定されるものでなく、例えば以下のものも含まれる。
(1)前記使用済みspiral膜以外の本発明用に製造されたものでもよい。
(2)前記用途例は、本発明を排水処理に適用するものであるが、いかなる微生物培養装置にも使用することができる。
In addition, this invention is not limited to the said used spiral film | membrane, For example, the following are also included.
(1) Those manufactured for the present invention other than the used spiral film may be used.
(2) Although the said example of application applies this invention to waste water treatment, it can be used for any microorganism culture apparatus.

本発明によれば、排水処理の進行に伴って切断spiral膜円盤表面の凹凸面に多様な好気性生物が付着成育し、排水中のBOD、COD成分の生物酸化を促進させ、それと同時に切断spiral円盤内部に生育する通性嫌気性菌により脱窒反応が同時進行し、窒素成分の安定分解を促進できることから、各種生物の円板面からの剥離を防止できる。   According to the present invention, various aerobic organisms adhere to and grow on the uneven surface of the cut spiral membrane disk as the wastewater treatment proceeds, and promote the biooxidation of BOD and COD components in the wastewater, and at the same time, the cut spiral Since denitrification reaction proceeds simultaneously by facultative anaerobic bacteria growing inside the disk and stable decomposition of nitrogen components can be promoted, peeling of various organisms from the disk surface can be prevented.

回転円板面上の好気性生物と通性嫌気性生物の生育領域を分割すること、また増殖した好気性生物を回収することで好気性生物の世代交代が安定し、回転円板面からの脱落もなく排水中のBOD、COD成分の分解も安定する。このため、回転円板の重量増加が起こらず回転による好気性生物への酸素供給に必要な駆動動力エネルギーの増加がなく、その駆動部のメンテナンスは定期的なものでよく、運転管理が極めて容易である。   By dividing the growth area of aerobic organisms and facultative anaerobic organisms on the rotating disk surface, and by collecting the proliferated aerobic organisms, the generational change of aerobic organisms is stabilized, and from the rotating disk surface There is no loss and the decomposition of BOD and COD components in the wastewater is stable. For this reason, there is no increase in the weight of the rotating disk, there is no increase in driving power energy necessary for supplying oxygen to the aerobic organisms due to rotation, and the maintenance of the driving part may be periodic, and operation management is extremely easy It is.

有機性排水中の燐成分は本発明の多重spiral膜円盤における円盤表面に生育する好気性生物と円盤内部に生育する嫌気性生物間で授受がなされ、好気性生物の増殖に伴い燐成分が濃縮される形となる。この好気性生物の増殖に合わせてこの生物群を吸引除去できる吸引器具が装着されているので、有機排水中の燐成分は有効に回収され、その回収生物群は有用な燐含有有機性肥料として活用することができる。   The phosphorus component in the organic wastewater is transferred between the aerobic organism growing on the surface of the disk and the anaerobic organism growing inside the disc in the multi-spiral membrane disk of the present invention, and the phosphorus component is concentrated as the aerobic organism grows. Will be in the form. Since a suction device capable of sucking and removing this organism group according to the growth of the aerobic organism is installed, the phosphorus component in the organic wastewater is effectively recovered, and the recovered organism group is used as a useful phosphorus-containing organic fertilizer. Can be used.

規格化された外径を有する4、6、8−inchのspiral膜elementは長さも38−40inchに規格化されている。各elementの面積は原液通過スペーサーの厚みで異なるが、およそ4−7m、11−21m、20−37mと大きな面積を有している。例えば、厚み20mmに切断し、4、6、8inchのモジュールを組み合わせて直径2mの多段円盤を製作すると、通常の平面円板一枚の面積が約6mに対し、8inchを52個、6inchを8個、4inchを4個の組み合わせで製作された多段円盤面積は約36m2となり6倍もの接触面積増加となる。この接触面積の3次元的な増加によりコンパクトな回転円板装置で大量の排水処理が可能になる。 The length of the 4, 6, 8-inch spiral film element having a standardized outer diameter is also standardized to 38-40 inches. The area of each element is different in thickness of the stock passage spacer, approximately 4-7m 2, 11-21m 2, has a large area and 20-37m 2. For example, when a multi-stage disk having a diameter of 2 m is manufactured by combining modules of 4, 6, and 8 inches by cutting to a thickness of 20 mm, 52 areas of a normal flat disk are approximately 6 m 2 and 52 inches and 6 inches are obtained. The area of the multi-stage disk produced by combining 8 pieces and 4 inches is about 36 m 2 , which is a 6 times increase in contact area. Due to the three-dimensional increase in the contact area, a large amount of waste water can be treated with a compact rotating disk device.

本発明に使用されるspiral膜はいかなる用途で使用されたものであってもよく、また膜交換寿命を迎えた通常廃棄されるものが適し、その緻密な構造を活用することで、優れた多段 spiral膜円盤からなる回転円板装置として排水処理設備に活用できる。これにより、従来プラスチック廃棄物として不要なものとして扱われたものから高付加価値製品である排水処理装置の部材利用へのアップサイクルが可能になる。   Spiral membranes used in the present invention may be used for any purpose, and those that are normally discarded after reaching the membrane exchange life are suitable. By utilizing the dense structure, an excellent multistage It can be utilized in wastewater treatment facilities as a rotating disk device composed of a spiral membrane disk. As a result, it is possible to up-cycle from what is conventionally treated as unnecessary plastic waste to use of a member of a wastewater treatment apparatus which is a high value-added product.

図1は、多段spiral膜円盤を用いた回転円板装置図である。FIG. 1 is a diagram showing a rotating disk device using a multi-stage spiral film disk. 図2は、spiral膜elementの構造図である。FIG. 2 is a structural diagram of the spiral film element. 図3は、spiral膜elementの切断部品図である。FIG. 3 is a cut-part view of the spiral film element. 図4は、多段spiral膜円盤構成部品とその組み立て図である。FIG. 4 is a multi-stage spiral film disk component and its assembly drawing. 図5は、円盤構成部品図である。FIG. 5 is a disk component diagram. 図6は、多段spiral膜円盤表面の生物を回収する装置である。FIG. 6 shows an apparatus for recovering organisms on the surface of a multi-stage spiral film disk.

図1は本発明の多段spiral膜円盤を組み込んだ回転円板装置図である。図2は広く利用されているspiral膜elementの構造図を示している。図3はspiral膜elementを裁断した切断部品図で、図4はその切断部品を組み込んだ多段spiral膜円盤構成部品とその組み立て図、図5は円盤構成部品図、図6は多段spiral膜円盤表面の生物を回収する装置図である。   FIG. 1 is a diagram of a rotating disk device incorporating a multi-stage spiral film disk of the present invention. FIG. 2 shows a structural diagram of a widely used spiral film element. FIG. 3 is a cut-part view of a spiral film element cut, FIG. 4 is a multi-stage spiral film disk component incorporating the cut part and its assembly, FIG. 5 is a disk component figure, and FIG. 6 is a multi-stage spiral film disk surface. It is an apparatus figure which collects the living thing.

図1は多段spiral膜円盤400を組み込んだ回転円板装置100の全体図で、排水を貯める排水貯槽1に排水の入口2、排水の出口3が両サイドにある。この排水貯槽1には複数の円板4を貫通する中心軸5をもつ多数の円板4が配置され、排水貯槽1の両端に配置した軸受け6で支持している。この中心軸5の片側にはスプロケット7とチェーン8、さらにモーター9に取り付けたスプロケット7が接続され、モーター駆動で円板4を回転させる。また、回転する円板4に付着する生物を吸引除去するための吸引パイプ10が設置されている。   FIG. 1 is an overall view of a rotating disk device 100 incorporating a multistage spiral membrane disk 400. A drainage storage tank 1 for storing drainage has a drainage inlet 2 and drainage outlet 3 on both sides. In this drainage storage tank 1, a large number of disks 4 having a central shaft 5 penetrating a plurality of disks 4 are arranged and supported by bearings 6 arranged at both ends of the drainage storage tank 1. A sprocket 7, a chain 8, and a sprocket 7 attached to a motor 9 are connected to one side of the central shaft 5, and the disk 4 is rotated by driving the motor. In addition, a suction pipe 10 is provided for sucking and removing organisms attached to the rotating disk 4.

図2は、非特許文献4に記載されている円板4を構成するspiral膜element200である。海水淡水化ではRO、NF、UF膜が使用され、自動車産業ではUF膜が主に使用され、食品産業ではMF、UF、NF、RO膜が広く普及し、上水道においてはMF、UF、NF膜が必要不可欠である。各種の膜モジュールの中で最も使用されているのがspiral膜element200である。膜11は2枚一組で、内部にスペーサー12が内蔵される。三端面は接着剤で接合された平膜11とスペーサー12の一組が中央の集水管13に接着剤で接合される。さらに別の平膜11とスペーサー12の一組との間には別のスペーサー14が介在し、同様に集水管 13に接着される。これらの複数の膜とスペーサーが集水管13を中心に巻きつけられspiral膜element200が作られる。図2にはspiral膜element200の端面に刀の鍔(つば)状の部品が取り付けられているが、この名称はATD(Anti−Telescope−Device)15で、その役割は原液入口にかかる圧力で、spiral膜element200が望遠鏡のように飛び出ることを防止する部品である。MF、UF、NF、ROの膜材質は有機性膜でPAN、PE、PES、PS、PTFEなどが使用され、構成部材のスペーサーはPP、PEなどの素材が用いられている。また、これらの構成部材を接合するために各種接着剤が使われる。このように用途に応じて限りない素材が用いられるが、出来上がるspiral膜element200は外径と長さは規格化されている。また、膜ろ過液が集められる集水管13には一定間隔で小さな穴が開いていて、この穴から膜11を透過したろ過液が通過する。この集水管13も規格化されている。広く普及しているspiral膜element200は、外径が8−inch、6−inch、4−inchの3種類で、長さは38−40inchに規格化されている。   FIG. 2 shows a spiral film element 200 constituting the disc 4 described in Non-Patent Document 4. RO, NF, UF membranes are used in seawater desalination, UF membranes are mainly used in the automobile industry, MF, UF, NF, RO membranes are widely used in the food industry, and MF, UF, NF membranes in waterworks Is indispensable. Among various types of membrane modules, the spiral membrane element 200 is most used. The film 11 is a set of two sheets, and a spacer 12 is incorporated inside. A pair of the flat membrane 11 and the spacer 12 joined at the three end surfaces with an adhesive is joined to the central water collecting pipe 13 with an adhesive. Further, another spacer 14 is interposed between another flat membrane 11 and a set of spacers 12, and is similarly bonded to the water collecting pipe 13. A plurality of these membranes and spacers are wound around the water collecting pipe 13 to form a spiral membrane element 200. In FIG. 2, a spear-shaped part of the sword is attached to the end face of the spiral film element 200. This name is ATD (Anti-Telescope-Device) 15, and its role is the pressure applied to the stock solution inlet. This is a component that prevents the spiral film element 200 from popping out like a telescope. The MF, UF, NF, and RO film materials are organic films such as PAN, PE, PES, PS, and PTFE, and the constituent spacers are made of materials such as PP and PE. Various adhesives are used to join these components. As described above, an unlimited material is used depending on the application, but the resulting spiral film element 200 has a standardized outer diameter and length. Moreover, the water collecting pipe 13 in which the membrane filtrate is collected has small holes at regular intervals, and the filtrate that has passed through the membrane 11 passes through the holes. This water collecting pipe 13 is also standardized. The widely used spiral film element 200 has three types of outer diameters of 8-inch, 6-inch, and 4-inch, and the length is standardized to 38-40 inches.

図3は、図2のspiral膜element200を集水管13に対して直角に切断したspiral膜300で、その切断面16、切断外周部17、切断集水管18、切断外周部17の中心から切断集水管18の中心部を貫通するキリ穴19で多段spiral円盤400を構成する部品図である。外径は 8−inch、6−inch、4−inchの3種類に規格化され、切断spiral膜300の厚みは10−50mm、この厚みに応じてキリ穴19は5−20mmに設定されている。   FIG. 3 is a spiral membrane 300 obtained by cutting the spiral membrane element 200 of FIG. 2 at a right angle to the water collecting tube 13, and the cut surface 16, the cut outer peripheral portion 17, the cut water collecting tube 18, and the cut outer peripheral portion 17 from the center. FIG. 4 is a component diagram that configures a multistage spiral disk 400 with a drilled hole 19 that passes through the center of a water pipe 18. The outer diameter is standardized to three types of 8-inch, 6-inch and 4-inch, the thickness of the cut spiral film 300 is 10-50 mm, and the drill hole 19 is set to 5-20 mm according to this thickness. .

図4は、図3の切断spiral膜300を用いて多段spiral膜円盤400の構成部品およびその組み立て図である。4−inch spiral膜20、6−inchspiral膜21、8−inch spiral膜22の各種切断spiral膜300を用い、図3に示した切断spiral膜300にあるキリ穴19を貫通する丸棒23により複数個の20、21、22を串刺し状にして外周の円筒24に差し込む。この円筒24は図1の回転円板装置1の中心軸5に嵌めこまれる形状の軸受け管25を中心に有し、これを固定するためのフラットバー26と円筒24に溶接固定されている。また、このフラットバー26には丸棒23が貫通できる固定穴27が開けられ、複数の切断spiral膜300の固定と強度の増強を図っている。円筒24の外径は排水処理に必要な面積で決まり、経験的に1.5−5.0mが実用的とされる。   FIG. 4 is a component diagram of the multi-stage spiral film disc 400 using the cut spiral film 300 of FIG. Various cut spiral films 300 such as a 4-inch spiral film 20, a 6-inch spiral film 21, and an 8-inch spiral film 22 are used, and a plurality of rods 23 are formed by the round bars 23 penetrating the drill holes 19 in the cut spiral film 300 shown in FIG. The individual pieces 20, 21, and 22 are skewered and inserted into the outer cylinder 24. This cylinder 24 has a bearing tube 25 shaped so as to be fitted to the center shaft 5 of the rotating disk device 1 of FIG. 1, and is fixed by welding to a flat bar 26 and a cylinder 24 for fixing it. Further, the flat bar 26 is provided with a fixing hole 27 through which the round bar 23 can pass, so that the plurality of cut spiral films 300 are fixed and the strength is increased. The outer diameter of the cylinder 24 is determined by the area required for wastewater treatment, and 1.5 to 5.0 m is empirically determined to be practical.

図5は回転円板装置1を構成する多段spiral膜円盤400の構成部品詳細で、数種類の切断spiral膜300を装着するためには円盤全体の剛性が必要で、その骨組みを示したものである。円筒24と軸受け管25をフラットバー26で溶接し強度を持たせる。このフラットバー26には丸棒23が貫通できる固定穴27が開けられ、円筒24の面にも同様な固定穴27が開孔されている。丸棒23は軸受け管25を避けてフラットバー26と円筒24の固定穴27を両サイドで貫通し、貫通部の丸棒23に予め開けてあるピン穴28に差し込まれた割ピン29により固定される。   FIG. 5 shows the details of the components of the multi-stage spiral film disk 400 constituting the rotating disk device 1. In order to mount several kinds of cut spiral film 300, the rigidity of the entire disk is required, and the framework is shown. . The cylinder 24 and the bearing tube 25 are welded with a flat bar 26 to give strength. The flat bar 26 is provided with a fixing hole 27 through which the round bar 23 can pass, and a similar fixing hole 27 is also formed on the surface of the cylinder 24. The round bar 23 passes through the fixing hole 27 of the flat bar 26 and the cylinder 24 on both sides while avoiding the bearing tube 25, and is fixed by the split pin 29 inserted into the pin hole 28 previously opened in the round bar 23 of the penetrating portion. Is done.

図6は多段spiral膜円盤400の表面の生物を回収するシステムを示す。中心軸5に複数個の円板4が固定され1−10rpmの速度でゆっくり回転している。この円板4を構成する多段 spiral膜円盤400の表面には排水中の有機物を分解する主に好気性生物が生育しているが、その成長に合わせてスリットノズルを有する吸引除去パイプ10を一枚の多段spiral膜円盤400の両サイドに2個設置して、多段spiral膜円盤400の回転に合わせて吸引力を調整して好気性生物の回収を行う。吸引除去パイプ10の後段には集合パイプ30が接続され、さらにフレキシブルホース31を介して、吸引装置32に排水と共に好気性生物が回収される。   FIG. 6 shows a system for recovering organisms on the surface of the multi-stage spiral membrane disk 400. A plurality of discs 4 are fixed to the central shaft 5 and are slowly rotating at a speed of 1-10 rpm. Mainly aerobic organisms that decompose organic substances in the wastewater are growing on the surface of the multi-stage spiral film disk 400 that constitutes the disk 4, and a suction removal pipe 10 having a slit nozzle is connected to the growth. Two are installed on both sides of the multi-stage spiral membrane disk 400, and the aerobic organisms are collected by adjusting the suction force according to the rotation of the multi-stage spiral membrane disk 400. A collecting pipe 30 is connected to the subsequent stage of the suction removing pipe 10, and aerobic organisms are collected together with drainage into the suction device 32 via a flexible hose 31.

上記の発明は、食品工場排水、生活排水、農業排水、水産業、畜産業の各種排水などBOD、COD成分を含む有機性排水処理に適用可能で、炭化水素基質、有機性窒素を含む排水の連続処理が可能で、さらに多段spiral膜円盤上で増殖する好気性生物体内に高濃度に蓄積された燐を該円盤の回転を利用した吸引回収装置で回収可能にした。また、多段spiral膜円盤の最も重要な構成部材である切断spiral膜部材は、使用済みspiral膜 elementを活用することから、近年注目されている廃棄工業製品のアップサイクルシステムの構築としても重要な意味を有している。尚、本発明は好気性生物に着目した排水処理への利用としてその有用性を示したが、絶対嫌気性菌による嫌気発酵装置への利用、さらに食品、医薬品製造に用いられるあらゆる発酵装置への応用も可能で、低速回転運転での回転円板装置の省エネルギーの優位性はどの分野においても変わらない。   The above invention is applicable to organic wastewater treatment including BOD and COD components such as food factory wastewater, domestic wastewater, agricultural wastewater, fishery industry, and various animal wastewater. Continuous processing is possible, and phosphorus accumulated at a high concentration in aerobic organisms growing on a multi-stage spiral membrane disk can be recovered by a suction recovery device using the rotation of the disk. In addition, the cutting spiral membrane member, which is the most important component of the multi-stage spiral membrane disk, utilizes the used spiral membrane element, and thus has an important meaning in the construction of an up-cycle system for waste industrial products that have been attracting attention in recent years. have. In addition, although this invention showed the usefulness as utilization to the waste water treatment which paid its attention to the aerobic organism, utilization to the anaerobic fermentation apparatus by absolute anaerobic bacteria, and also to all fermentation apparatuses used for foodstuffs and pharmaceutical manufacture Application is also possible, and the energy saving advantage of the rotating disk device in low-speed rotation operation does not change in any field.

1 処理排水槽
2 排水入口
3 排水出口
4 円板
5 回転軸
6 回転軸受け
7 スプロケット
8 チェーン
9 モーター
10 吸引パイプ
11 平膜
12 膜内部透過液スペーサー
13 集水管
14 原液側スペーサー
15 ATD補強支持体
16 spiral膜切断面
17 切断spiral膜外周面
18 集水管
19 固定穴
20 4-inch spiral膜elementの切断部品
21 6-inch spiral膜elementの切断部品
22 8-inch spiral膜elementの切断部品
23 丸棒またはパイプ
24 円筒
25 中心軸
26 円板および中心軸接続固定板;フラットバー
27 貫通穴
28 丸棒およびパイプのピン穴
29 割りピン
30 吸引集合管
31 吸引フレキシブルホース
32 吸引装置
100 多段spiral膜円盤を用いた回転円板装置
200 spiral膜element
300 切断spiral膜
400 多段spiral膜円盤
1 Treatment Drainage Tank 2 Drainage Inlet 3 Drainage Outlet 4 Disc 5 Rotating Shaft
6 Rotating bearing 7 Sprocket 8 Chain 9 Motor 10 Suction pipe 11 Flat membrane 12 Membrane permeate spacer 13 Water collecting tube 14 Stock solution side spacer 15 ATD reinforcing support 16 Spiral membrane cut surface 17 Cut spiral membrane outer peripheral surface 18 Water collecting tube 19 Fixing hole 20 Cutting part of 4-inch spiral film element 21 Cutting part of 6-inch spiral film element 22 Cutting part of 8-inch spiral film element 23 Round bar or pipe 24 Cylinder 25 Center axis 26 Disc and center axis connection fixing plate; Flat bar 27 Through-hole 28 Pin hole of round bar and pipe 29 Split pin 30 Suction collecting pipe 31 Suction flexible hose 32 Suction device 100 Rotating disk device using multi-stage spiral membrane disc 200 spiral membrane lement
300 cut spiral membrane 400 multi-stage spiral membrane disc

Claims (5)

spiral膜elementを切断した部品を用い、複数の切断spiral膜を平面に多段に組み合わせた円盤を、外周の円筒と中心部に配置した中心軸間に配置固定してなる多段spiral膜円盤を一定間隔に回転軸に固定して複数の多段spiral膜円盤を有した水処理用の回転円板装置。   A multi-stage spiral film disk is formed by using a part obtained by cutting a spiral film element, and a multi-stage spiral film disk, in which a plurality of cut spiral films are combined in multiple stages on a plane and fixed between the outer cylinder and the central axis at the center. A rotating disk device for water treatment having a plurality of multi-stage spiral film disks fixed to a rotating shaft. 請求項1の切断spiral膜は優れた耐久性を有するプラスチック素材からなり、その円筒サイズが世界標準となっている4、6、8−inchのspiral膜elementを用い、その中心部にある集水管に対し直角に、厚みをspiral膜element全長の1/100〜1/20に切断した大きさで、その厚みの1/2〜1/50の小孔が厚み中央からspiral膜円盤の集水管中央部を貫通し、該小孔を通過可能な大きさの丸棒およびパイプにより切断spiral膜円盤を串刺し、任意の大きさの切断spiral膜を組み合わせることで円板外周部の円筒に間隙なく配置し、切断spiral膜円盤を貫通した丸棒およびパイプの両端が円板外周円筒に固定することで、複数の串刺し切断spiral膜円盤から構成された多段spiral膜円盤を一つの円板とし、この複数の円板から構成される回転円板の外径の20−40%を排水中に常時浸漬し、回転円板中心軸の両サイドに設けたベアリングユニットと駆動モーターにより1〜15rpmの回転をさせる水処理用の回転円板装置。   The cut spiral membrane of claim 1 is made of a plastic material having excellent durability, and uses a 4, 6, or 8-inch spiral membrane element whose cylindrical size is the world standard, and a water collecting pipe at the center thereof. Is a size obtained by cutting the thickness to 1/100 to 1/20 of the total length of the spiral membrane element, and a small hole of 1/2 to 1/50 of the thickness is from the thickness center to the center of the water collecting pipe of the spiral membrane disk. By cutting the spiral membrane disk with a round bar and pipe of a size that can pass through the small hole and passing through the small hole, and combining the cut spiral membrane of any size, it is arranged without gaps in the cylinder on the outer periphery of the disc In addition, by fixing both ends of a round bar and a pipe penetrating the cutting spiral membrane disk to the outer peripheral cylinder of the disc, a plurality of skewered cutting spiral membrane discs can be constructed. The multi-stage spiral film disc is made into one disc, and 20-40% of the outer diameter of the rotating disc composed of a plurality of discs is constantly immersed in the drainage, on both sides of the central axis of the rotating disc. A rotating disk device for water treatment that rotates 1 to 15 rpm by a provided bearing unit and a drive motor. 請求項1の一枚の多段spiral膜円盤と隣り合うもう一枚の多段spiral膜円盤との間隔に多段spiral膜円盤表面に棲息する好気性生物を回収するための吸引用パイプを装着し、前記吸引用パイプに接続された吸引装置を備えた回転円板式装置。   A suction pipe for recovering aerobic organisms that inhabit the surface of the multistage spiral film disk is mounted at an interval between one multistage spiral film disk adjacent to the multistage spiral film disk adjacent to the multistage spiral film disk, Rotating disk device with a suction device connected to a suction pipe. 請求項1の切断spiral膜に代わって、同様な外径および厚みを有する多孔性素材の円盤からなる多段円盤で構成される一つの円板を複数組み合わせた水処理用回転円板装置。   A rotating disk device for water treatment in which a plurality of one disk composed of a multistage disk made of a porous material disk having the same outer diameter and thickness is combined in place of the cut spiral film of claim 1. 請求項1の切断spiral膜に代わって、同様な厚みを有する多孔性素材の多面体断面を有した多段多面体で構成した一つの円板を複数組み合わせた水処理用回転円板装置。   A rotating disk device for water treatment, which is a combination of a plurality of single disks each composed of a multi-stage polyhedron having a polyhedron cross section of a porous material having a similar thickness instead of the cut spiral film of claim 1.
JP2013000981A 2013-01-08 2013-01-08 Rotary disk water treatment apparatus Pending JP2014133187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000981A JP2014133187A (en) 2013-01-08 2013-01-08 Rotary disk water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000981A JP2014133187A (en) 2013-01-08 2013-01-08 Rotary disk water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2014133187A true JP2014133187A (en) 2014-07-24

Family

ID=51411917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000981A Pending JP2014133187A (en) 2013-01-08 2013-01-08 Rotary disk water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2014133187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957104A (en) * 2017-04-06 2017-07-18 华电电力科学研究院 Circular hole formula rotating bio-disc sheet
CN107162198A (en) * 2017-07-20 2017-09-15 重庆阳正环保科技股份有限公司 A kind of highly difficult waste water purification device
CN112320926A (en) * 2020-11-09 2021-02-05 上海复森环境科技发展有限公司 Self-oxygenation enhanced biological rotating disc sewage treatment device
CN112479353A (en) * 2020-11-27 2021-03-12 青岛思普润水处理股份有限公司 Rotating bed biological membrane treatment device and method
WO2021235065A1 (en) * 2020-05-18 2021-11-25 株式会社 東芝 Water treatment device and water-processing system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957104A (en) * 2017-04-06 2017-07-18 华电电力科学研究院 Circular hole formula rotating bio-disc sheet
CN107162198A (en) * 2017-07-20 2017-09-15 重庆阳正环保科技股份有限公司 A kind of highly difficult waste water purification device
CN107162198B (en) * 2017-07-20 2023-06-02 重庆阳正环保科技股份有限公司 High-difficulty wastewater purification device
WO2021235065A1 (en) * 2020-05-18 2021-11-25 株式会社 東芝 Water treatment device and water-processing system
CN112320926A (en) * 2020-11-09 2021-02-05 上海复森环境科技发展有限公司 Self-oxygenation enhanced biological rotating disc sewage treatment device
CN112479353A (en) * 2020-11-27 2021-03-12 青岛思普润水处理股份有限公司 Rotating bed biological membrane treatment device and method

Similar Documents

Publication Publication Date Title
Anjum et al. Trends and progress in AnMBR for domestic wastewater treatment and their impacts on process efficiency and membrane fouling
Dvořák et al. Anaerobic membrane bioreactors—a mini review with emphasis on industrial wastewater treatment: applications, limitations and perspectives
Shahot et al. Review on biofilm processes for wastewater treatment
AU2020102464A4 (en) A miniaturized air-lift membrane bioreactor for decentralized sewage treatment
CN101708919A (en) Method for treating leachate in refuse landfill site
JP2014133187A (en) Rotary disk water treatment apparatus
Viet et al. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations
US11970684B2 (en) Bioreactor insert and biofilm support, related apparatus and related methods
CN101665310A (en) Method for treating wastewater in artificial wetland and wastewater treating device for implementing method
US20130264282A1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
CN105481174A (en) Wastewater treatment system in rubber and synthetic plastic industry
CN103848538A (en) Reactor and method for removing ammonia nitrogen in drinking water by virtue of enhanced filter and method thereof
CN102010097B (en) Method for recycling carbon fiber wastewater
CN115818862A (en) Cold water area mariculture tail water treatment system
Zhang et al. Introduction to aerobic membrane bioreactors: Current status and recent developments
Nikoonahad et al. Evaluation of a novel integrated membrane biological aerated filter for water reclamation: A practical experience
CN105948382A (en) Domestic sewage treatment process
Siagian et al. Advances in membrane bioreactor: High performance and antifouling configurations
CN116693112A (en) Treatment method of landfill leachate with low carbon nitrogen ratio
KR20150031553A (en) Plants For Advanced Treatment Of Wastewater For Improving Phosphorous Removal Efficiency And Method For Treating Wastewater Using Thereof
CN212174737U (en) Integrated treatment system for zero discharge of domestic garbage sewage
CN202170281U (en) Domestic waste penetrating fluid treatment system
JP2009189943A (en) Water treatment method and apparatus
CN104355481A (en) Device for reclaimed water treatment
CN210595684U (en) Leachate treatment integrated equipment