JP2014130879A - Manufacturing method of coil-embedded magnetic element - Google Patents

Manufacturing method of coil-embedded magnetic element Download PDF

Info

Publication number
JP2014130879A
JP2014130879A JP2012287096A JP2012287096A JP2014130879A JP 2014130879 A JP2014130879 A JP 2014130879A JP 2012287096 A JP2012287096 A JP 2012287096A JP 2012287096 A JP2012287096 A JP 2012287096A JP 2014130879 A JP2014130879 A JP 2014130879A
Authority
JP
Japan
Prior art keywords
coil
molded body
winding
embedded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287096A
Other languages
Japanese (ja)
Inventor
Tatsuya Nakamura
達也 仲村
Shinya Matsutani
伸哉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012287096A priority Critical patent/JP2014130879A/en
Publication of JP2014130879A publication Critical patent/JP2014130879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method capable of forming plural coil-embedded magnetic elements at the same time while preventing displacement of winding coils.SOLUTION: The manufacturing method of a coil-embedded magnetic element includes at least: a first step to form a primary molding having plural protrusions the cross sectional area of which gets smaller in a projection direction on the upper face of a plate-like molding which contains a first magnetic material and a first resin; a second step to insert an air core for a winding core to each of the plural protrusions to fix the winding coil to the protrusion; a third step to form a secondary molding containing a second magnetic material and a second resin on the upper face of the primary molding on which the winding coils are fixed to the respective protrusions to form a molded-coil molding in which the winding coil is embedded; a fourth step to separate the molded-coil molding for each of the winding coils to form pieces of the molded-coil molding; and a fifth step to provide a terminal electrode which is electrically connected to a piece of the winding coil.

Description

本発明は、インダクタ、チョークコイル、トランス等のインダクタンス部品のうち、磁性体にコイルが埋設されてなるコイル埋設型磁性素子の製造方法に関する。   The present invention relates to a method for manufacturing a coil-embedded magnetic element in which a coil is embedded in a magnetic material among inductance components such as an inductor, a choke coil, and a transformer.

近年の電子機器の小型化、高機能化に伴い、電子部品としても小型、低背化、実装面積の極小化等の要求が高まっている。インダクタ部品としても、これら要求を実現すべく、様々な製品および製造方法が提案されている。   With the recent downsizing and higher functionality of electronic devices, there are increasing demands for electronic components that are small, low profile, and have a minimal mounting area. For inductor components, various products and manufacturing methods have been proposed in order to realize these requirements.

このようなインダクタ部品の一例として、金属磁性粉末と樹脂との混合体にコイルが埋設されたコイル埋設型インダクタンス部品が提案されている。このようなインダクタ部品の製造方法としては、例えば特許文献1があげられる。   As an example of such an inductor component, a coil embedded type inductance component in which a coil is embedded in a mixture of metal magnetic powder and resin has been proposed. An example of a method for manufacturing such an inductor component is Patent Document 1.

特許文献1には、多数個取りが可能な巻き線一体型モールドコイルの製造方法において、成型体を2つに分け、一方の成形体の上面に巻き線コイルを配置し、この成形体の一部を溶融させて、巻き線コイルを加圧埋設した後に、もう一方の成形体も同様に一部を溶融させてコイルを略埋設させることで巻き線コイルを配置する際の位置ずれを防止する技術が開示されている。   In Patent Document 1, in a method for manufacturing a wound-integrated mold coil capable of taking a large number of pieces, a molded body is divided into two, and a wound coil is arranged on the upper surface of one molded body. After the portion is melted and the wound coil is embedded under pressure, the other molded body is similarly partially melted to substantially embed the coil, thereby preventing misalignment when the wound coil is disposed. Technology is disclosed.

特開2011−3761号公報JP 2011-3761 A

しかしながら上記特許文献1の製造方法では成形体の一部を溶融させる工程が必須であるため製造工程における工数が増加し、製品のコストアップに繋がってしまう。   However, in the manufacturing method of Patent Document 1, a process for melting a part of the molded body is essential, and therefore the number of steps in the manufacturing process increases, leading to an increase in product cost.

さらに溶融状態の成形体に巻き線コイルを埋め込むことで巻き線コイルを配置するため、特に上下位置における巻き線コイルの位置ずれが問題となる。   Further, since the winding coil is arranged by embedding the winding coil in the molten compact, the positional deviation of the winding coil particularly in the vertical position becomes a problem.

上記課題を解決するために本発明のコイル埋設型磁性素子の製造方法は、第一の磁性材料と第一の樹脂を含む板状成形体上面に凸方向に従ってその断面積が小さくなる複数の凸部を有する一次成形体を作製する第1のステップと、前記複数の凸部の各々に、巻き線コイルの空芯を挿入して、前記巻き線コイルを前記凸部に固定する第2のステップと、前記凸部に前記巻き線コイルが固定された前記一次成形体の上面に、第二の磁性材料と第二の樹脂を含む二次成形体を設けて、前記巻き線コイルが埋設されたモールドコイル成形体を作製する第3のステップと、前記モールドコイル成形体を前記巻き線コイル毎に分離して、個片にする第4のステップと、前記個片に前記巻き線コイルと電気的に接続する端子電極を設ける第5のステップとを少なくとも備える。   In order to solve the above-described problems, a method for manufacturing a coil-embedded magnetic element according to the present invention includes a plurality of protrusions whose cross-sectional area decreases on the upper surface of a plate-like molded body including a first magnetic material and a first resin. A first step of producing a primary molded body having a portion; and a second step of inserting an air core of a winding coil into each of the plurality of convex portions and fixing the winding coil to the convex portion. And a secondary molded body including a second magnetic material and a second resin is provided on the upper surface of the primary molded body having the winding coil fixed to the convex portion, and the wound coil is embedded. A third step of producing a molded coil molded body, a fourth step of separating the molded coil molded body for each of the winding coils into individual pieces, and an electrical connection between the wound coil and the individual pieces. A fifth step of providing a terminal electrode to be connected to It provided even without.

本発明は複数の巻き線コイルを成形体に埋設させたモールドコイル成形体を前記コイル毎に個片化することで、コイル埋設型磁性素子を効率的に製造することができるとともに、特に複数の巻き線コイルを配置する際の位置ずれを簡便な方法で解決することができるため不良が少なく、かつ磁気特性に優れたコイル埋設型磁性素子を実現することができる。   According to the present invention, a coil-embedded magnetic element can be efficiently manufactured by separating a molded coil molded body in which a plurality of wound coils are embedded in a molded body for each coil. Since the positional deviation at the time of arranging the winding coil can be solved by a simple method, a coil-embedded magnetic element with few defects and excellent magnetic characteristics can be realized.

本発明の一実施例におけるコイル埋設型磁性素子の斜視図The perspective view of the coil embedding type | mold magnetic element in one Example of this invention 本発明の一実施例におけるコイル埋設型磁性素子の断面図Sectional drawing of the coil-embedded magnetic element in one Example of this invention 本発明の一実施例におけるコイル埋設型磁性素子の製造工程を示す模式図The schematic diagram which shows the manufacturing process of the coil embedding type magnetic element in one Example of this invention. 本発明の一実施例における巻き線コイル搭載工程後の一次成形体の上面図と側面図The top view and side view of the primary molded object after the winding coil mounting process in one Example of this invention 本発明の一実施例における巻き線コイル搭載工程後の一次成形体の側面図The side view of the primary molded object after the winding coil mounting process in one Example of this invention

以下、本発明におけるコイル埋設型磁性素子4について説明する。   Hereinafter, the coil-embedded magnetic element 4 according to the present invention will be described.

図1は本発明におけるコイル埋設型磁性素子4の斜視図であり、図2はその断面図である。   FIG. 1 is a perspective view of a coil-embedded magnetic element 4 according to the present invention, and FIG. 2 is a sectional view thereof.

本発明のコイル埋設型磁性素子4は、磁性粉末と樹脂を含む複合磁性材料1と、複合磁性材料1内に埋設された巻き線コイル3と、この巻き線コイル3と電気的に接続する端子電極2とを少なくとも備える。   The coil-embedded magnetic element 4 of the present invention includes a composite magnetic material 1 containing magnetic powder and resin, a wound coil 3 embedded in the composite magnetic material 1, and a terminal that is electrically connected to the wound coil 3. And at least an electrode 2.

本発明のコイル埋設型磁性素子4に用いられる磁性材料としては、結晶系材料であるFe、Fe−Si−Cr系、Fe−Si−Al系、Fe−Si系、Fe−Ni系、若しくは非晶質材料である、Fe−Si−Cr−B系、Fe−Si−NB−B系、ナノ微結晶合金、あるいは、Fe−(Al、Ga)−P−C−B系、Fe−(Zr、Hf、NB、Ta)−B系、Fe−Co−Ln−B系金属ガラス等を用いる事ができる。これらの磁性材料は1種類または2種類以上の磁性材料を複合させて使用する事もできる。上記磁性材料のうちFe系金属磁性粉末は、飽和磁束密度が高いため、大電流での使用において有用である。   Magnetic materials used for the coil-embedded magnetic element 4 of the present invention include crystalline materials such as Fe, Fe—Si—Cr, Fe—Si—Al, Fe—Si, Fe—Ni, or non-crystalline materials. Fe-Si-Cr-B system, Fe-Si-NB-B system, nano-crystalline alloy, Fe- (Al, Ga) -PCB system, Fe- (Zr) , Hf, NB, Ta) -B-based, Fe-Co-Ln-B-based metallic glass, or the like can be used. These magnetic materials can be used in combination of one kind or two or more kinds of magnetic materials. Among the above magnetic materials, Fe-based metal magnetic powder has a high saturation magnetic flux density, and thus is useful for use at a large current.

上記結晶系材料のうちFe−Si−Cr系を使用する場合は、Siの比率が1重量%以上8重量%以下、Crの比率が2重量%以上8重量%以下であり、残りがFe及び不可避な不純物からなる事が望ましい。不可避な不純物の一例として、Mn、Cr、Ni、P、S、C等が挙げられる。   When the Fe-Si-Cr system is used among the crystalline materials, the Si ratio is 1 wt% or more and 8 wt% or less, the Cr ratio is 2 wt% or more and 8 wt% or less, and the rest is Fe and It is desirable to consist of inevitable impurities. Examples of inevitable impurities include Mn, Cr, Ni, P, S, and C.

Siを含有させることにより、磁気異方性、磁歪定数を小さくし、また電気抵抗を高め、渦電流損失を低減させる効果がある。1重量%以上とすることで、軟磁気特性の改善効果を得ることができ、8重量%以下とすることにより、飽和磁化の低下を抑制し、直流重畳特性の低下を抑制する事が出来る。   Inclusion of Si has the effect of reducing magnetic anisotropy and magnetostriction constant, increasing electric resistance, and reducing eddy current loss. When the content is 1% by weight or more, an effect of improving soft magnetic characteristics can be obtained, and when the content is 8% by weight or less, a decrease in saturation magnetization can be suppressed and a decrease in DC superimposition characteristics can be suppressed.

また、Crを含有させることにより、耐候性を向上させる効果がある。2重量%以上とすることで、耐候性改善効果を得る事ができ、8重量%以下とすることにより、軟磁気特性の劣化を抑制することができる。   Moreover, there exists an effect which improves a weather resistance by containing Cr. By making it 2% by weight or more, it is possible to obtain a weather resistance improving effect, and by making it 8% by weight or less, it is possible to suppress the deterioration of soft magnetic properties.

Fe系金属磁性粉を用いる場合は、主成分の元素であるFeと不可避な不純物からなることが望ましい。不可避な不純物の一例として、Mn、Cr、Ni、P、S、C等が挙げられる。Feの純度を高めることで、高い飽和磁束密度を得ることができる。   In the case of using an Fe-based metal magnetic powder, it is desirable that it consists of Fe as a main component element and inevitable impurities. Examples of inevitable impurities include Mn, Cr, Ni, P, S, and C. A high saturation magnetic flux density can be obtained by increasing the purity of Fe.

Fe−Si−Al系の金属磁性粉末を用いる場合は、その比率は、Siが8重量%以上12重量%以下、Alの含有量が4重量%以上6重量%以下であり、残りがFe及び不可避な不純物からなることが望ましい。不可避な不純物の一例として、Mn、Cr、Ni、P、S、C等が挙げられる。各構成元素の含有量を前記組成範囲とすることで高い透磁率と低い保持力が得られるためである。   When Fe-Si-Al-based metal magnetic powder is used, the ratio is as follows: Si is 8 wt% or more and 12 wt% or less, Al content is 4 wt% or more and 6 wt% or less, and the balance is Fe and It is desirable to consist of inevitable impurities. Examples of inevitable impurities include Mn, Cr, Ni, P, S, and C. This is because high magnetic permeability and low coercive force can be obtained by setting the content of each constituent element within the above composition range.

Fe−Si系金属磁性粉末を用いる場合は、その比率は、Siが1重量%以上8重量%以下であり、残部がFe及び不可避な不純物からなることが望ましい。不可避な不純物の一例として、Mn、Cr、Ni、P、S、C等が挙げられる。Siを含有させることにより、磁気異方性、磁歪定数を小さくし、また電気抵抗を高め、渦電流損失を低減させる効果がある。1重量%以上とすることで、軟磁気特性の改善効果を得ることができ、8重量%以下とすることにより、飽和磁化の低下を抑制し、直流重畳特性の低下を抑制することができる。   In the case of using an Fe—Si based metal magnetic powder, it is desirable that Si is 1% by weight or more and 8% by weight or less, with the balance being Fe and inevitable impurities. Examples of inevitable impurities include Mn, Cr, Ni, P, S, and C. Inclusion of Si has the effect of reducing magnetic anisotropy and magnetostriction constant, increasing electric resistance, and reducing eddy current loss. When the content is 1% by weight or more, an effect of improving soft magnetic characteristics can be obtained, and when the content is 8% by weight or less, a decrease in saturation magnetization can be suppressed and a decrease in DC superimposition characteristics can be suppressed.

Fe−Ni系金属磁性粉末を用いる場合は、その比率は、Niの含有量が40重量%以上90重量%以下であり、残りがFe及び不可避な不純物からなることが望ましい。不可避な不純物の一例として、Mn、Cr、Ni、P、S、C等が挙げられる。本発明におけるNiの役割は、Niの含有量が、40重量%より少ないと、軟磁気特性の改善効果に乏しく、90重量%より多いと飽和磁化の低下が大きく、直流重畳特性が低下する。さらに透磁率を改善させるために1〜6重量%のMoを含有させることも可能である。   In the case of using Fe—Ni-based metal magnetic powder, the ratio is preferably such that the Ni content is 40% by weight or more and 90% by weight or less, and the remainder is made of Fe and inevitable impurities. Examples of inevitable impurities include Mn, Cr, Ni, P, S, and C. The role of Ni in the present invention is that when the Ni content is less than 40% by weight, the effect of improving the soft magnetic properties is poor, and when it is more than 90% by weight, the saturation magnetization is greatly reduced and the DC superposition characteristics are deteriorated. Further, it is possible to contain 1 to 6% by weight of Mo in order to improve the magnetic permeability.

また、本発明のコイル埋設型磁性素子4に用いられる金属磁性粉末の平均粒子径は1〜100μmであることが望ましい。平均粒子径を1.0μm以上とすることにより、高い充填率を得ることができ、透磁率の低下を抑制することができる。また、平均粒子径を100μm以下とすることにより、高周波領域において渦電流損失が大きくなるのを抑制することができる。より好ましくは、5〜30μmの範囲である。   The average particle size of the metal magnetic powder used in the coil-embedded magnetic element 4 of the present invention is preferably 1 to 100 μm. By setting the average particle diameter to 1.0 μm or more, a high filling rate can be obtained, and a decrease in magnetic permeability can be suppressed. Further, by setting the average particle diameter to 100 μm or less, it is possible to suppress an increase in eddy current loss in the high frequency region. More preferably, it is the range of 5-30 micrometers.

本発明のコイル埋設型磁性素子4に用いられる樹脂としては、熱硬化性樹脂または熱可塑性樹脂があげられる。また、磁性材料と樹脂の混合体である複合磁性材料1において、金属磁性粉末を用いる場合は金属磁性粉末と樹脂との接着性を考慮し、添加剤としてカップリング剤を微量添加しても良い。また、複合磁性材料1において、成形時に熱を加えて溶融させた時の流動性を向上させること、また成形材料と金型との離型性を持たせる事を目的として、離型剤を微量添加しても良い。   Examples of the resin used for the coil-embedded magnetic element 4 of the present invention include a thermosetting resin and a thermoplastic resin. In addition, in the composite magnetic material 1 that is a mixture of a magnetic material and a resin, when a metal magnetic powder is used, a small amount of a coupling agent may be added as an additive in consideration of the adhesion between the metal magnetic powder and the resin. . In addition, in the composite magnetic material 1, a small amount of release agent is used for the purpose of improving the fluidity when melted by applying heat at the time of molding, and for providing the mold material and mold release properties. It may be added.

本発明のコイル埋設型磁性素子4に熱硬化性樹脂を用いる場合は、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。   When a thermosetting resin is used for the coil-embedded magnetic element 4 of the present invention, for example, an epoxy resin, a phenol resin, an unsaturated polyester resin, a silicone resin, and the like can be given.

熱硬化性樹脂として、エポキシ樹脂を用いる場合は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。これらの樹脂を1種単独で用いてもよいし、2種類以上の材料を組み合わせて使用する事も出来る。   When an epoxy resin is used as the thermosetting resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenol type epoxy resin, Naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These resins may be used alone or in combination of two or more materials.

熱硬化性樹脂として、エポキシ樹脂を用いる場合に必要な硬化剤としては、例えば、ノボラック型フェノール樹脂、ジシアンジアミド、酸無水物等を挙げる事が出来る。これらについて1種単独で用いてもよいし、2種類以上の材料を組み合わせて使用する事も出来る。熱硬化性樹脂として、エポキシ樹脂を用いる場合に必要な硬化触媒としては、例えば、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン等の有機ホスフィン類、トリエタノールアミン、ベンジルメチルアミン等の第三級アミン類等を用いる事が出来る。   As a thermosetting resin, as a hardening | curing agent required when using an epoxy resin, a novolak-type phenol resin, a dicyandiamide, an acid anhydride etc. can be mentioned, for example. One of these may be used alone, or two or more materials may be used in combination. Examples of the curing catalyst required when using an epoxy resin as the thermosetting resin include imidazoles such as 2-methylimidazole and 2-phenylimidazole, organic phosphines such as triphenylphosphine, tributylphosphine, and trimethylphosphine, Tertiary amines such as triethanolamine and benzylmethylamine can be used.

本発明のコイル埋設型磁性素子4に熱可塑性樹脂を用いる場合は、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、液晶ポリマー等が挙げられる。   When a thermoplastic resin is used for the coil-embedded magnetic element 4 of the present invention, polyphenylene sulfide resin, polyamide resin, polyester resin, polypropylene resin, liquid crystal polymer and the like can be mentioned.

本発明のコイル埋設型磁性素子4に用いられるカップリング剤としては、シラン系カップリング剤またはチタネート系カップリング剤等が挙げられる。   Examples of the coupling agent used for the coil-embedded magnetic element 4 of the present invention include a silane coupling agent or a titanate coupling agent.

本発明のコイル埋設型磁性素子4に用いられる離型剤としては、高級脂肪酸またはその脂肪酸エステルか脂肪酸アミドからなる物質である、カルナバワックス、カルボキシル基含有ポリオフィレン等が挙げられる。これらについて1種単独で用いてもよいし、2種類以上の材料を組み合わせて使用する事も出来る。この高級脂肪酸は、炭素数12以上の飽和脂肪酸、又は不飽和脂肪酸である。飽和脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、サラギン酸、ベヘン酸、リグノセリン酸、モンタン酸等を挙げる事が出来る。不飽和脂肪酸としては、α−リノレン酸、ステアリドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、リノール酸、γ−リノレン酸、ジホモーγ−リノレン酸、アラキドン酸、オレイン酸、エライジン酸、エルカ酸、ネルボン酸等を挙げる事が出来る。   Examples of the mold release agent used in the coil-embedded magnetic element 4 of the present invention include carnauba wax and carboxyl group-containing polyolefin, which are substances composed of higher fatty acids or fatty acid esters or fatty acid amides thereof. One of these may be used alone, or two or more materials may be used in combination. This higher fatty acid is a saturated fatty acid having 12 or more carbon atoms or an unsaturated fatty acid. Examples of saturated fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, salaric acid, behenic acid, lignoceric acid, and montanic acid. As unsaturated fatty acids, α-linolenic acid, stearidonic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, etc. Can be mentioned.

以下に、本発明のコイル埋設型磁性素子4の製造方法を磁性粉末として金属磁性粉末、樹脂として熱硬化性樹脂を用いた場合について説明する。   Below, the manufacturing method of the coil embedding type | mold magnetic element 4 of this invention demonstrates the case where a metal magnetic powder is used as magnetic powder, and a thermosetting resin is used as resin.

なお、熱硬化性樹脂としては常温付近では固形であり、加熱することで軟化点温度に達し溶融、さら加熱することで架橋反応を生じ熱硬化するものを用いた。   As the thermosetting resin, a resin that is solid at around room temperature, reaches a softening point temperature by heating, melts, and further heats by causing a crosslinking reaction by heating.

まず、金属磁性粉末と、熱硬化性樹脂とをミキサーまたはブレンダー等を用いて均一になるように混合し、熱硬化性樹脂の軟化点よりも高い温度をかけながら、ニーダー、プラネタリーミキサー、ミキシングロール等を用いて溶融混練して混練物を得る。   First, the magnetic metal powder and thermosetting resin are mixed uniformly using a mixer or blender, and the kneader, planetary mixer, and mixing are applied while applying a temperature higher than the softening point of the thermosetting resin. A kneaded product is obtained by melt-kneading using a roll or the like.

ここで熱硬化性樹脂としては、後の硬化工程を考慮し、架橋反応(熱硬化)が生じない温度で溶融させる必要がある。   Here, the thermosetting resin needs to be melted at a temperature at which a crosslinking reaction (thermosetting) does not occur in consideration of a subsequent curing step.

前記混練物を成形して金属磁性粉末と熱硬化性樹脂とからなる一次成形体5および二次成形体6の成形方法としては、例えば、射出成形、トランスファー成形、圧縮成形といった、造粒粉末の樹脂成分を加熱溶融して金型に射出することで成形するプラスチック成形法、または造粒粉末を金型に直接供給して加圧成形する圧粉成形法があげられるがいずれの方法を採用しても良い。   Examples of the molding method of the primary molded body 5 and the secondary molded body 6 formed of the metal magnetic powder and the thermosetting resin by molding the kneaded product include granulated powders such as injection molding, transfer molding, and compression molding. There are two methods, plastic molding method in which resin components are heated and melted and injected into the mold, or powder molding method in which granulated powder is directly supplied to the mold and pressed. May be.

図3は本発明のコイル埋設型磁性素子4の製造方法における成形工程からモールドコイル成形体9の分離工程までを示す製造工程の模式図である。   FIG. 3 is a schematic diagram of the manufacturing process showing from the molding process to the separation process of the molded coil molded body 9 in the method for manufacturing the coil-embedded magnetic element 4 of the present invention.

以下、一次成形体5および二次成形体6の成形を射出成形法を例として詳細に説明する。   Hereinafter, the molding of the primary molded body 5 and the secondary molded body 6 will be described in detail by taking an injection molding method as an example.

まず、一次成形体5の成形工程から巻き線コイル3の搭載工程までを図3(a)(b)を用いて説明する。図3(a)に示すように一次成形体5を射出成形(二次成形体6も同様)する場合、軟化点温度よりも高い溶融状態の熱硬化性樹脂と金属磁性粉末からなる混練物を射出し金型内に充填させ、金型とともに内部の樹脂成分に熱を加えることで熱硬化性樹脂の硬化を行う。ここで熱硬化性樹脂を完全に架橋反応させず、半硬化状態でとどめておくことで、二次成形体6との密着性が向上し、コイル埋設型磁性素子4の機械的強度を高めることができる。   First, the process from the forming process of the primary molded body 5 to the mounting process of the wound coil 3 will be described with reference to FIGS. When the primary molded body 5 is injection-molded (as is the secondary molded body 6) as shown in FIG. 3 (a), a kneaded product composed of a thermosetting resin in a molten state higher than the softening point temperature and a metal magnetic powder is used. The thermosetting resin is cured by injecting and filling the mold and applying heat to the resin component inside the mold. Here, the thermosetting resin is not completely cross-linked, and remains in a semi-cured state, thereby improving the adhesion with the secondary molded body 6 and increasing the mechanical strength of the coil-embedded magnetic element 4. Can do.

また、前記硬化後の一次成形体5を金型内で一定時間、圧力を加えることで金属磁性粉末の充填率を高めることができる。   Moreover, the filling rate of the metal magnetic powder can be increased by applying pressure to the cured primary molded body 5 in the mold for a certain period of time.

なお、一次成形体5の成形工法を圧粉成形法とすることにより、高圧力で加圧成形することができるため、プラスチック成形法よりも金属磁性粉末の充填率を高める事ができ、高い比透磁率を得る事ができる。   In addition, since the molding method of the primary molded body 5 is a compacting method, it can be pressure-molded at a high pressure, so the filling rate of the metal magnetic powder can be increased compared to the plastic molding method, and a high ratio. Magnetic permeability can be obtained.

次に一次成形体5の上面に形成する凸部7について詳細に説明する。   Next, the convex part 7 formed on the upper surface of the primary molded body 5 will be described in detail.

図3(b)に示すように、一次成形体5の上面に凸部7を形成し、この凸部7の形状を凸方向に従ってその断面積が小さくなる形状とすることで、巻き線コイル3の搭載工程において、凸部7に巻き線コイル3の空芯部をはめ込みやすくすることができる。これは後工程で第2の成形体をプラスチック成形法で形成する場合に、効果的であり上記混練物を射出する圧力で発生する巻き線コイル3の位置ずれを防止することができる。   As shown in FIG. 3 (b), a convex portion 7 is formed on the upper surface of the primary molded body 5, and the shape of the convex portion 7 is changed to a shape in which the cross-sectional area becomes smaller in accordance with the convex direction. In the mounting step, it is possible to easily fit the air core portion of the winding coil 3 into the convex portion 7. This is effective when the second molded body is formed by a plastic molding method in a later step, and can prevent displacement of the winding coil 3 caused by the pressure for injecting the kneaded material.

なお、その断面積とは一次成形体5の平面方向に平行な面における断面を指す。   In addition, the cross-sectional area refers to a cross section in a plane parallel to the planar direction of the primary molded body 5.

また、図4(a)(b)に示すように、巻き線コイル3と電気的に接続する端子電極2との接続を考慮し、予め巻き線コイル3の引き出し位置を固定させておく必要がある場合には、さらに効果的であり、巻き線コイル3が凸部7を中心に回転して発生する巻き線コイル3の位置ずれを防止することができる。   Further, as shown in FIGS. 4A and 4B, it is necessary to fix the lead-out position of the winding coil 3 in advance in consideration of the connection between the winding coil 3 and the terminal electrode 2 electrically connected. In some cases, it is more effective, and it is possible to prevent the displacement of the winding coil 3 that occurs when the winding coil 3 rotates around the convex portion 7.

また、凸部7の断面形状を巻き線コイル3の空芯形状と同形状とすることで、より巻き線コイル3を搭載しやすくなり、複数の巻き線コイル3の位置ばらつきを抑制することができる。例えば略円形状の空芯形状を有する巻き線コイル3に対しては、その断面が略円形状の凸部7とすることが好ましい。   Further, by making the cross-sectional shape of the convex portion 7 the same as the air core shape of the winding coil 3, it becomes easier to mount the winding coil 3, and to suppress the positional variation of the plurality of winding coils 3. it can. For example, for the winding coil 3 having a substantially circular air core shape, it is preferable that the cross section is a convex portion 7 having a substantially circular shape.

さらに上述したように、凸部7の断面形状と巻き線コイル3の空芯形状を同形状とし、かつこの凸部7の先端における断面積をS、前記凸部7の末端の断面積をP、前記空芯の面積をDとしたときS<D≦Pなる関係を満たすことで、一次成形体5に巻き線コイル3が配置された際に、凸部7の一定の高さで巻き線コイル3が固定されるため、複数の巻き線コイル3における上下位置のばらつきを防止することができる。   Further, as described above, the cross-sectional shape of the convex portion 7 and the air-core shape of the winding coil 3 are the same, and the cross-sectional area at the tip of the convex portion 7 is S, and the cross-sectional area at the end of the convex portion 7 is P. When the winding coil 3 is disposed on the primary molded body 5 by satisfying the relationship of S <D ≦ P when the area of the air core is D, winding is performed at a certain height of the convex portion 7. Since the coil 3 is fixed, it is possible to prevent the vertical position variation among the plurality of winding coils 3.

なお、上記D=Pを満足するものとしたが、巻き線コイル3の空芯の直径と凸部7の末端の直径にばらつきを有していたとしても、巻き線コイル3の空芯の直径に対して凸部7の末端の直径が10%以内の差異であれば製品設計上磁気特性に影響を及ぼすものではない。   Although D = P is satisfied, the diameter of the air core of the winding coil 3 may vary even if there is a variation in the diameter of the air core of the winding coil 3 and the diameter of the end of the projection 7. On the other hand, if the diameter of the end of the convex portion 7 is within 10%, the magnetic characteristics are not affected in product design.

また、図5に示すように凸部7の先端部を曲面とすることで、凸部7に巻き線コイル3をより挿入しやすくなる。   Moreover, as shown in FIG. 5, the winding coil 3 can be more easily inserted into the convex portion 7 by making the tip portion of the convex portion 7 a curved surface.

以上のように、凸部7を形成することにより巻き線コイル3の配置および固定が容易となる。   As described above, by forming the convex portion 7, the winding coil 3 can be easily arranged and fixed.

次に、図3(c)に示すように、二次成形体6の成形工程について説明する。二次成形体6の成形は、上述した一次成形体5の成形工程と同様に、金属磁性粉末と溶融状態の熱硬化性樹脂からなる混練物を金型内に充填し金型内で熱硬化を行うことで、一次成形体5および二次成形体6が一体となり複合磁性材料1となるとともに、複数の巻き線コイル3が埋設されたモールドコイル成形体9を作製する。   Next, as shown in FIG.3 (c), the formation process of the secondary molded object 6 is demonstrated. The molding of the secondary molded body 6 is carried out in the same manner as the molding process of the primary molded body 5 described above, and a kneaded material made of a metal magnetic powder and a molten thermosetting resin is filled in the mold and thermoset in the mold. As a result, the primary molded body 5 and the secondary molded body 6 are integrated into the composite magnetic material 1, and a molded coil molded body 9 in which a plurality of wound coils 3 are embedded is produced.

なお、2016サイズ以下のコイル埋設型磁性素子4を作製する場合、一次成形体5とコイル間の狭スペースに、磁性材料を充填させる必要があるため、例えば、射出成形、トランスファー成形、圧縮成形といった、磁性材料と樹脂からなる混合物の樹脂成分を加熱溶融して成形を行うプラスチック成形法によって成形を行うことで前記狭スペースに磁性材料が入り込みやすくなり好ましい。   In addition, when manufacturing the coil embedded type magnetic element 4 of 2016 size or less, since it is necessary to fill a narrow space between the primary molded body 5 and the coil with a magnetic material, for example, injection molding, transfer molding, compression molding, etc. It is preferable that molding is performed by a plastic molding method in which a resin component of a mixture of a magnetic material and a resin is heated and melted to perform molding so that the magnetic material can easily enter the narrow space.

なお、図4(a)は巻き線コイル3の対となる引き出し位置を各々反対方向としているが、この引き出し位置は特に限定されるものではなく、側面もしくは上面から引き出すこともできる。   In addition, although Fig.4 (a) has taken out the drawing position used as the pair of the winding coil 3 in the respectively opposite direction, this drawing position is not specifically limited, It can also draw out from a side surface or an upper surface.

次に、図3(d)に示すように、モールドコイル成形体9を金型から取り外しコイル毎に所定寸法にて分割を行い個片8を得る。分割する手法としては、ダイシングによる手法、分割溝を形成後にブレーキングを行う手法、レーザーを用いて切断する手法等があげられる。前記分割溝については、金型形状によってモールドコイル成形体9に溝が入るように成形しても良い。   Next, as shown in FIG. 3 (d), the molded coil molded body 9 is removed from the mold and divided into pieces with a predetermined dimension for each coil to obtain individual pieces 8. Examples of the dividing method include a dicing method, a braking method after forming the dividing groove, and a cutting method using a laser. About the said division | segmentation groove | channel, you may shape | mold so that a groove | channel may enter into the molded coil molded object 9 with a metal mold | die shape.

次に分割した個片8に対して、巻き線コイル3と電気的に接続するように端子電極2を形成する。端子電極2の形成手法としては、例えば導電性接着剤を塗布後、ニッケル−スズめっきを行う手法を挙げる事が出来るが、巻き線コイル3との導通が確保さえ出来れば、他の手法で形成しても良い。   Next, the terminal electrode 2 is formed on the divided pieces 8 so as to be electrically connected to the winding coil 3. As a method for forming the terminal electrode 2, for example, a method of performing nickel-tin plating after applying a conductive adhesive can be cited. However, as long as conduction with the winding coil 3 can be ensured, other methods are used. You may do it.

本発明によれば小型で量産性に優れた信頼性の高いコイル埋設型磁性素子を製造することが可能となる。   According to the present invention, it is possible to manufacture a highly reliable coil-embedded magnetic element that is small and excellent in mass productivity.

1 複合磁性材料
2 端子電極
3 巻き線コイル
4 コイル埋設型磁性素子
5 一次成形体
6 二次成形体
7 凸部
8 個片
9 モールドコイル成形体
DESCRIPTION OF SYMBOLS 1 Composite magnetic material 2 Terminal electrode 3 Winding coil 4 Coil embedding type | mold magnetic element 5 Primary molded object 6 Secondary molded object 7 Convex part 8 Piece 9 Mold coil molded object

Claims (4)

第一の磁性材料と第一の樹脂を含む板状成形体上面に凸方向に従ってその断面積が小さくなる複数の凸部を有する一次成形体を作製する第1のステップと、
前記複数の凸部の各々に、巻き線コイルの空芯を挿入して、前記巻き線コイルを前記凸部に固定する第2のステップと、
前記凸部に前記巻き線コイルが固定された前記一次成形体の上面に、第二の磁性材料と第二の樹脂を含む二次成形体を設けて、前記巻き線コイルが埋設されたモールドコイル成形体を作製する第3のステップと、
前記モールドコイル成形体を前記巻き線コイル毎に分離して、個片にする第4のステップと、
前記個片に前記巻き線コイルと電気的に接続する端子電極を設ける第5のステップと、を少なくとも備えたコイル埋設型磁性素子の製造方法。
A first step of producing a primary molded body having a plurality of convex portions whose cross-sectional area is reduced along the convex direction on the upper surface of the plate-shaped molded body including the first magnetic material and the first resin;
A second step of inserting an air core of a winding coil into each of the plurality of convex portions and fixing the winding coil to the convex portion;
A molded coil in which a secondary molded body including a second magnetic material and a second resin is provided on an upper surface of the primary molded body in which the wound coil is fixed to the convex portion, and the wound coil is embedded. A third step of producing a molded body;
A fourth step in which the molded coil molded body is separated for each of the winding coils to form individual pieces;
And a fifth step of providing a terminal electrode electrically connected to the wound coil on the individual piece.
前記凸部の断面および前記巻き線コイルの前記空芯の形状は略円形状である請求項1に記載のコイル埋設型磁性素子の製造方法。 The method for manufacturing a coil-embedded magnetic element according to claim 1, wherein a cross section of the convex portion and a shape of the air core of the wound coil are substantially circular. 前記凸部の先端における断面積をS、前記凸部の末端の断面積をP、前記空芯の面積をDとしたとき、S<D≦Pの関係を満たす請求項2に記載のコイル埋設型磁性素子の製造方法。 The coil embedding according to claim 2, wherein S <D ≦ P is satisfied, where S is a cross-sectional area at the tip of the convex portion, P is a cross-sectional area at the end of the convex portion, and D is an area of the air core. Method for manufacturing a mold magnetic element. 前記凸部の先端を曲面とする請求項1に記載のコイル埋設型磁性素子の製造方法。 The method for manufacturing a coil-embedded magnetic element according to claim 1, wherein a tip of the convex portion is a curved surface.
JP2012287096A 2012-12-28 2012-12-28 Manufacturing method of coil-embedded magnetic element Pending JP2014130879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287096A JP2014130879A (en) 2012-12-28 2012-12-28 Manufacturing method of coil-embedded magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287096A JP2014130879A (en) 2012-12-28 2012-12-28 Manufacturing method of coil-embedded magnetic element

Publications (1)

Publication Number Publication Date
JP2014130879A true JP2014130879A (en) 2014-07-10

Family

ID=51409045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287096A Pending JP2014130879A (en) 2012-12-28 2012-12-28 Manufacturing method of coil-embedded magnetic element

Country Status (1)

Country Link
JP (1) JP2014130879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102782A (en) * 2017-11-28 2019-06-24 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product
JP2019212664A (en) * 2018-05-31 2019-12-12 住友ベークライト株式会社 Resin composition for forming magnetic member, magnetic member, coil, manufacturing method of magnetic member, and kit for forming magnetic member
US10848016B2 (en) 2015-08-26 2020-11-24 Seiko Epson Corporation Magnetic powder dust core with entirely buried coil or magnet
JP7511319B2 (en) 2017-11-28 2024-07-05 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or exterior member, and method for manufacturing molded article

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352204A (en) * 1989-07-20 1991-03-06 Matsushita Electric Ind Co Ltd Inductance element and manufacture thereof
JP2003297661A (en) * 2002-03-29 2003-10-17 Murata Mfg Co Ltd Method for manufacturing chip type part
JP2004311756A (en) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd Coil component
JP2006024947A (en) * 2004-07-09 2006-01-26 Taida Electronic Ind Co Ltd Method of manufacturing coil-embedded inductor
JP2006128473A (en) * 2004-10-29 2006-05-18 Nec Tokin Corp Inductor and its manufacturing method
JP2008042087A (en) * 2006-08-09 2008-02-21 Tdk Corp Working method for laminate substrate and manufacturing method for coil component
JP2008053455A (en) * 2006-08-24 2008-03-06 Tdk Corp Coil component and manufacturing method thereof
JP2009245992A (en) * 2008-03-28 2009-10-22 Tdk Corp Coil part and method of manufacturing the same
JP2011003761A (en) * 2009-06-19 2011-01-06 Yoshizumi Fukui Winding integrated type molded coil, and method of manufacturing winding integrated type molded coil
JP2012526389A (en) * 2009-05-04 2012-10-25 クーパー テクノロジーズ カンパニー Magnetic component assembly
JP2013254911A (en) * 2012-06-08 2013-12-19 Sumida Corporation Method of manufacturing magnetic element and magnetic element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352204A (en) * 1989-07-20 1991-03-06 Matsushita Electric Ind Co Ltd Inductance element and manufacture thereof
JP2003297661A (en) * 2002-03-29 2003-10-17 Murata Mfg Co Ltd Method for manufacturing chip type part
JP2004311756A (en) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd Coil component
JP2006024947A (en) * 2004-07-09 2006-01-26 Taida Electronic Ind Co Ltd Method of manufacturing coil-embedded inductor
JP2006128473A (en) * 2004-10-29 2006-05-18 Nec Tokin Corp Inductor and its manufacturing method
JP2008042087A (en) * 2006-08-09 2008-02-21 Tdk Corp Working method for laminate substrate and manufacturing method for coil component
JP2008053455A (en) * 2006-08-24 2008-03-06 Tdk Corp Coil component and manufacturing method thereof
JP2009245992A (en) * 2008-03-28 2009-10-22 Tdk Corp Coil part and method of manufacturing the same
JP2012526389A (en) * 2009-05-04 2012-10-25 クーパー テクノロジーズ カンパニー Magnetic component assembly
JP2011003761A (en) * 2009-06-19 2011-01-06 Yoshizumi Fukui Winding integrated type molded coil, and method of manufacturing winding integrated type molded coil
JP2013254911A (en) * 2012-06-08 2013-12-19 Sumida Corporation Method of manufacturing magnetic element and magnetic element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848016B2 (en) 2015-08-26 2020-11-24 Seiko Epson Corporation Magnetic powder dust core with entirely buried coil or magnet
JP2019102782A (en) * 2017-11-28 2019-06-24 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product
JP7511319B2 (en) 2017-11-28 2024-07-05 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or exterior member, and method for manufacturing molded article
JP2019212664A (en) * 2018-05-31 2019-12-12 住友ベークライト株式会社 Resin composition for forming magnetic member, magnetic member, coil, manufacturing method of magnetic member, and kit for forming magnetic member

Similar Documents

Publication Publication Date Title
JP6288531B2 (en) Core member, reactor, and manufacturing method of core member
JP6403093B2 (en) COMPOSITE MATERIAL, MAGNETIC CORE FOR MAGNETIC COMPONENT, REACTOR, CONVERTER, AND POWER CONVERTER
JP6198166B2 (en) Composite materials, magnetic components, and reactors
EP2584574B1 (en) Reactor
JP6730785B2 (en) Metal composite core manufacturing method and reactor manufacturing method
JPWO2006022262A1 (en) Manufacturing method of magnetic core parts
US20170110233A1 (en) Magnetic element
US8943675B2 (en) Method for making a shielded inductor involving an injection-molding technique
JP2017037888A (en) Magnetic powder mold coil and method of manufacturing the same
JP2014130879A (en) Manufacturing method of coil-embedded magnetic element
JP2017191925A (en) Coil component and manufacturing method thereof
JP2013222741A (en) Reactor
CN111406084A (en) Composite powder
US20190259524A1 (en) Composite material molded article, reactor, and method for manufacturing composite material molded article
JP4718583B2 (en) Molded coil manufacturing method
US10825591B2 (en) Composite material molded article and reactor
JP4705191B1 (en) Molded coil manufacturing method
JP2006080127A (en) Method for manufacturing coil element
JP2019102713A (en) Inductor and method of manufacturing the same
JP6087708B2 (en) Winding element manufacturing method
JP2016096227A (en) Inductor
JP2022136806A (en) Inductor and manufacturing method thereof
KR20230068837A (en) Coil-embedded inductor with double insert injection and Method of manufacturing the same
CN111755219A (en) Coil component and method for manufacturing coil component
JP2005286235A (en) Polar anisotropic bonded magnet and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523