JP2014130754A - Solid-state battery - Google Patents

Solid-state battery Download PDF

Info

Publication number
JP2014130754A
JP2014130754A JP2012288160A JP2012288160A JP2014130754A JP 2014130754 A JP2014130754 A JP 2014130754A JP 2012288160 A JP2012288160 A JP 2012288160A JP 2012288160 A JP2012288160 A JP 2012288160A JP 2014130754 A JP2014130754 A JP 2014130754A
Authority
JP
Japan
Prior art keywords
layer
solid
active material
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012288160A
Other languages
Japanese (ja)
Inventor
Hideaki Miyake
秀明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012288160A priority Critical patent/JP2014130754A/en
Publication of JP2014130754A publication Critical patent/JP2014130754A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state battery which facilitates manufacturing when a solid-state battery in which at least an insulating member is disposed at an end part is manufactured in a zigzag pattern.SOLUTION: The solid-state battery comprises: a first part 2a in which anode electrode layers 3, 3 are disposed on both faces, and anode active material layers 4, 4 are coated on the anode electrode layers 3, 3 on each of the faces; a second part 2b in which cathode electrode layers 6, 6 are disposed on both faces, and cathode active material layers 7, 7 are coated on the cathode electrode layers 4, 4 on each of the faces; and an insulating member 2 positioned between the first part 2a and the second part 2b and having a third part 2c inside of which is formed a hole. The first part 2a, the third part 2c, and the second part 2b are laminated in that order by folding the insulating member 2 in a zigzag pattern, and a solid-state electrolyte layer 5 is placed in the hole of the third part 2c while the first part 2a, the third part 2c, and the second part 2b in the laminated state. If the insulating layer 2 has a plurality of third parts 2c, it is preferable that the hole sizes of the plurality of third parts 2c are different.

Description

本発明は、全固体電池に関する。   The present invention relates to an all solid state battery.

大容量/高出力化が可能な次世代電池として、全固体電池の開発が進められている。全固体電池は、従来の二次電池に用いられている液体電解質の代わりに固体電解質を用いており、エネルギ密度が高くでき、安全性にも優れている。しかし、全固体電池は、液系電池のようにセパレータが配設されていないので、電池の外周端部での欠損(例えば、活物質の割れや欠け)や電極バリ等による短絡の問題がある。特に、全固体電池が車両等の振動する用途で使われると、これらの問題が発生する可能性が高くなる。そこで、全固体電池には、外周端部に絶縁フィルム等が設けられるものがある。   All-solid-state batteries are being developed as next-generation batteries capable of high capacity / high output. The all-solid-state battery uses a solid electrolyte instead of the liquid electrolyte used in the conventional secondary battery, can increase the energy density, and is excellent in safety. However, since all-solid-state batteries are not provided with separators like liquid batteries, there is a problem of short-circuiting due to defects (for example, cracking or chipping of the active material) or electrode burrs at the outer peripheral edge of the battery. . In particular, when the all-solid-state battery is used in a vibrating application such as a vehicle, there is a high possibility that these problems will occur. Therefore, some all solid state batteries are provided with an insulating film or the like at the outer peripheral end.

特許文献1には、負極活物質層と正極活物質層の端面及び固体電解質層と対向する面の端面の周縁部をそれぞれ絶縁性材料で被覆し、負極集電体、絶縁性材料で被覆した負極活物質層、固体電解質層、絶縁性材料で被覆した正極活物質層、正極集電体を積層した状態で加圧して製造される全固体電池が開示されている。また、特許文献2には、負極集電体の両面に負極合剤層(負極活物質)を設けた第1のシートを形成し、正極集電体の主面に正極合剤層(正極活物質)を合剤未塗工部を介して複数設けた第2のシートを形成し、第2のシートの主面側に合剤未塗工部、一の正極合剤層の合剤層未塗工部側における端面及び他の正極合剤層の合剤層未塗工部側における端面を覆うように絶縁フィルムを配設し、第2のシートの主面又は第1のシートの両面に電解質フィルムを配設し、負極合剤層と正極合剤層とを貼り合せて第2のシートの合剤層未塗工部でつづら折りして積層して製造される全固体電池が開示されている。   In Patent Document 1, the edge portions of the negative electrode active material layer and the positive electrode active material layer and the peripheral portion of the end surface facing the solid electrolyte layer are each coated with an insulating material, and are coated with a negative electrode current collector and an insulating material. An all-solid battery manufactured by applying pressure in a state where a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer coated with an insulating material, and a positive electrode current collector are laminated is disclosed. In Patent Document 2, a first sheet in which a negative electrode mixture layer (negative electrode active material) is provided on both surfaces of a negative electrode current collector is formed, and a positive electrode mixture layer (positive electrode active material) is formed on a main surface of the positive electrode current collector. The second sheet is provided with a plurality of substances) via the uncoated part, and the uncoated part is formed on the main surface side of the second sheet. An insulating film is disposed so as to cover the end face on the coated part side and the end face on the mixture layer uncoated part side of the other positive electrode mixture layer, on the main surface of the second sheet or both surfaces of the first sheet Disclosed is an all-solid battery that is manufactured by disposing an electrolyte film, laminating a negative electrode mixture layer and a positive electrode mixture layer, and folding them at the mixture layer uncoated portion of the second sheet. Yes.

特開2012−38425号公報JP 2012-38425 A 特開2003−100350号公報JP 2003-100350 A

特許文献1,2に開示の全固体電池の場合、正極や負極を作製した後に絶縁部材を配設している。絶縁フィルム等の絶縁部材は非常に薄い部材であるので、絶縁部材を活物質層等の端部に位置決めし、固定させるのは非常に難しい。さらに、特許文献2に開示の全固体電池のようにつづら折りで製造する場合、硬さ、厚さ、摩擦力等が異なる集電体と絶縁部材とを同時に正確に折り曲げることは難しく、正極と負極との位置合わせも難い。そのため、端部に絶縁部材が配設される全固体電池をつづら折りで製造するのは非常に困難である。   In the case of the all-solid-state battery disclosed in Patent Documents 1 and 2, the insulating member is disposed after the positive electrode and the negative electrode are produced. Since the insulating member such as an insulating film is a very thin member, it is very difficult to position and fix the insulating member on the end of the active material layer or the like. Furthermore, when manufacturing by zigzag folding like the all-solid-state battery disclosed in Patent Document 2, it is difficult to accurately bend the current collector and the insulating member having different hardness, thickness, frictional force, etc. at the same time. It is difficult to align with. Therefore, it is very difficult to manufacture an all-solid battery in which an insulating member is disposed at an end portion by spelling.

そこで、本発明は、少なくとも端部に絶縁部材が配設される全固体電池がつづら折りで製造される場合に製造が容易となる全固体電池を提供することを課題とする。   Then, this invention makes it a subject to provide the all-solid-state battery which manufacture becomes easy when the all-solid-state battery by which an insulating member is arrange | positioned at an edge part is manufactured by zigzag folding.

本発明に係る全固体電池は、両面に負極電極層が配設され、当該各面の負極電極層に負極活物質層が塗工された第1部と、両面に正極電極層が配設され、当該各面の正極電極層に正極活物質層が塗工された第2部と、第1部と第2部との間に位置し、内側に孔が形成された第3部とを有する絶縁部材を備え、絶縁部材をつづら折りすることによって第1部、第3部、第2部の順で積層され、当該積層された状態において第3部の孔に固体電解質層が配置されることを特徴とする。   The all solid state battery according to the present invention has a negative electrode layer disposed on both sides, a first part in which a negative electrode active material layer is coated on the negative electrode layer on each side, and a positive electrode layer on both sides. And a second part in which a positive electrode active material layer is applied to the positive electrode layer on each side, and a third part located between the first part and the second part and having a hole formed inside. An insulating member is provided, and the first member, the third member, and the second member are stacked in this order by folding the insulating member in a zigzag manner, and the solid electrolyte layer is disposed in the hole of the third member in the stacked state. Features.

この全固体電池は、負極電極層、負極活物質層、固体電解質層、正極活物質層、正極電極層を1単位として構成される電池であり、これが必要に応じた数だけ積層されている。さらに、全固体電池は、電池外周端部の欠損や電極バリ等による短絡を防止するために、各層の間に絶縁部材が配設された構造を有している。この構造は、一続きの絶縁部材をつづら折りすることによって得られる。そのために、一続きの絶縁部材は、第1部〜第3部を有しており、第1部〜第3部が第1部、第3部、第2部の順で積層する数に応じて配置されている。第1部は、絶縁部材の両面に負極電極層が配設され、その各面の負極電極層に負極活物質層が塗工されている。第2部は、両面に正極電極層が配設され、その各面の正極電極層に正極活物質層が塗工されている。第3部は、内側に孔が形成されている。固定電解質層は、第1部の各面の負極活物質層に塗工されてもよいし、第2部の各面の正極活物質層に塗工されてもよいし、あるいは、第3部の一面に塗工されてもよい。この第1部〜第3部を有する絶縁部材を、第1部と第3部との間、第3部と第2部との間を順次折り曲げてつづら折りすることによって、第1部、第3部、第2部の順で積層される。その結果、負極電極層、負極活物質層、固体電解質層、正極活物質層、正極電極層の順で積層され、各電極層の間や正極活物質層と固体電解質層との間に絶縁部材が配設された全固体電池となる。特に、この全固体電池の場合、正極活物質と固体電解質との間に配設される絶縁部材(第3部)には孔が空いているので、その孔を通ってイオン(電子)が移動できる。また、その絶縁部材(第3部)の孔が空いていない部分が正極活物質と固体電解質との間の外周端部に介在するので、外周端部を保護し、外周端部の欠損や電極のバリ等による短絡を防止できる。さらに、一続きの絶縁部材を基準にして絶縁部材の両面に各電極層及び各活物質層が配置されるので、非常に薄い絶縁部材を位置決めして固定させるという問題が発生しない。また、つづら折りするときに第1部と第3部との間、第3部と第2部との間の折り曲げる位置を調整することにより、負極電極層、負極活物質層、固体電解質層、正極活物質層、正極電極層及び第3部の孔(ひいては、外周端部の絶縁部材)の位置決めを高精度かつ容易にできる。このように、この全固体電池は、一続きの絶縁部材を基準にして各層を配置した後に絶縁部材をつづら折りして製造される構造とすることにより、位置決めが容易となり、製造が容易である。   This all-solid battery is a battery configured with a negative electrode layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode layer as one unit, and is laminated in a number as required. Furthermore, the all-solid-state battery has a structure in which an insulating member is disposed between each layer in order to prevent a short circuit due to a defect in the outer peripheral edge of the battery or an electrode burr. This structure is obtained by folding a series of insulating members. Therefore, the continuous insulating member has the first part to the third part, and according to the number of the first part to the third part stacked in the order of the first part, the third part, and the second part. Are arranged. In the first part, a negative electrode layer is disposed on both surfaces of the insulating member, and a negative electrode active material layer is coated on the negative electrode layer on each surface. In the second part, a positive electrode layer is disposed on both surfaces, and a positive electrode active material layer is coated on the positive electrode layer on each surface. The third part has a hole formed inside. The fixed electrolyte layer may be applied to the negative electrode active material layer on each side of the first part, may be applied to the positive electrode active material layer on each side of the second part, or the third part It may be coated on one side. The insulating member having the first part to the third part is folded between the first part and the third part, and the third part and the second part are sequentially folded, so that the first part and the third part are folded. And the second part. As a result, the negative electrode layer, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode layer are laminated in this order, and the insulating member is interposed between each electrode layer and between the positive electrode active material layer and the solid electrolyte layer. Is an all-solid-state battery in which is disposed. In particular, in the case of this all-solid battery, since there is a hole in the insulating member (third part) disposed between the positive electrode active material and the solid electrolyte, ions (electrons) move through the hole. it can. Further, since the portion of the insulating member (third part) where no hole is formed is interposed at the outer peripheral end between the positive electrode active material and the solid electrolyte, the outer peripheral end is protected, and the outer peripheral end defect or electrode Can prevent a short circuit due to burrs. Furthermore, since each electrode layer and each active material layer are disposed on both surfaces of the insulating member with reference to the continuous insulating member, the problem of positioning and fixing a very thin insulating member does not occur. Further, by adjusting the folding position between the first part and the third part and between the third part and the second part when zigzag folding, the negative electrode layer, the negative electrode active material layer, the solid electrolyte layer, the positive electrode The positioning of the active material layer, the positive electrode layer, and the third part hole (and consequently the insulating member at the outer peripheral end) can be made with high accuracy and ease. As described above, the all-solid-state battery has a structure in which each layer is arranged on the basis of a series of insulating members and then the insulating members are folded and manufactured, thereby facilitating positioning and easy manufacture.

本発明の上記全固体電池では、絶縁部材は、第3部を複数有し、複数の第3部の孔のサイズが異なると好適である。   In the all solid state battery of the present invention, it is preferable that the insulating member has a plurality of third parts, and the sizes of the holes of the plurality of third parts are different.

負極電極層、負極活物質層、固体電解質層、正極活物質層、正極電極層を1単位としてこれが複数積層される全固体電池の場合、絶縁部材は第1〜第3部を複数有することになる。第3部は、絶縁部材の内側に孔が形成されており、孔が空いていない部分が絶縁部材として残っている。第3部が複数有る場合、つづら折りされて積層されると、孔が空いていない部分については絶縁部材の厚さが第3部の数分累積されることになる。特に、複数の第3部の孔のサイズが全て同じ場合、複数の第3部の孔が空いていない部分が全て同じ幅になるので、第3部の数分の絶縁部材の厚さが同じ箇所で累積され、1つの段差となる。全固体電池はつづら折りされた状態で外部拘束されるので、その段差が大きくなると(第3部の数が多くなると)、大きなせん断力が作用する。そこで、複数の第3部の孔のサイズを異なるサイズとし、複数の第3部の孔が空いていない部分の幅を変える。これによって、複数の第3部の孔が空いていない部分の絶縁部材の厚さが同じ箇所で累積されることがなく、複数の段差となる。したがって、つづら折りされた状態で外部拘束されても、複数の小さい段差なので、大きなせん断力が作用しない。このように、この全固体電池は、複数の第3部の孔のサイズを異なるサイズとすることにより、複数の第3部による絶縁部材の厚さの累積によるせん断力を抑制でき、せん断を防止できる。   In the case of an all-solid battery in which a negative electrode layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode layer are stacked as a unit, the insulating member has a plurality of first to third parts. Become. In the third part, a hole is formed inside the insulating member, and a portion where the hole is not left remains as the insulating member. In the case where there are a plurality of third portions, when the layers are zigzag folded and stacked, the thickness of the insulating member is accumulated for the number of the third portions for the portions where no holes are formed. In particular, when the sizes of the holes of the plurality of third parts are all the same, the portions where the holes of the plurality of third parts are not open all have the same width, so the thickness of the insulating member is the same as the number of the third parts. Accumulated at each location to form one step. Since the all-solid battery is externally restrained in a folded state, a large shearing force acts when the step becomes large (when the number of the third part increases). Therefore, the sizes of the holes of the plurality of third parts are made different sizes, and the widths of the portions where the holes of the plurality of third parts are not vacant are changed. Thereby, the thickness of the insulating member in the portion where the plurality of third portion holes are not formed is not accumulated at the same place, and a plurality of steps are formed. Therefore, even if externally restrained in a zigzag folded state, a large shearing force does not act because of a plurality of small steps. Thus, this all-solid-state battery can suppress the shearing force due to the accumulation of the thickness of the insulating member by the plurality of third parts by making the sizes of the holes of the plurality of third parts different, thereby preventing shearing. it can.

本発明によれば、一続きの絶縁部材を基準にして各層を配置した後に絶縁部材をつづら折りして製造される構造とすることにより、位置決めが容易となり、製造が容易である。   According to the present invention, positioning is facilitated and manufacturing is facilitated by adopting a structure in which each layer is arranged with reference to a series of insulating members and then the insulating members are folded and manufactured.

本実施の形態に係る全固体電池(外装フィルム等がない状態)の側面図である。It is a side view of the all-solid-state battery (state without an exterior film etc.) which concerns on this Embodiment. 本実施の形態に係る全固体電池の平面図であり、(a)が外装フィルム等がない状態であり、(b)が外装フィルム等がある状態である。It is a top view of the all-solid-state battery which concerns on this Embodiment, (a) is a state without an exterior film etc., (b) is a state with an exterior film etc. 図1の全固体電池を展開した(つづら折り前の)平面図である。FIG. 2 is a plan view of the all solid state battery of FIG. 1 developed (before zigzag folding). 図3の展開した状態の一部分を拡大した図であり、(a)が平面図であり、(b)が側面図である。It is the figure which expanded a part of the expanded state of FIG. 3, (a) is a top view, (b) is a side view. 絶縁フィルム累積の状態を示す側断面図であり、(a)が絶縁フィルムの第3部の孔の大きさを全て同じにした場合であり、(b)が絶縁フィルムの第3部の孔の大きさを徐々に変えた場合である。It is a sectional side view which shows the state of insulation film accumulation, (a) is a case where all the magnitude | sizes of the hole of the 3rd part of an insulation film are the same, (b) is the case of the hole of the 3rd part of an insulation film. This is a case where the size is gradually changed.

以下、図面を参照して、本発明に係る全固体電池の実施の形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。なお、図1等においては、各層や絶縁フィルムの積層構造を解り易く示すために、外装フィルム等を除いた全固体電池で描いており(但し、図2(b)のみ外装フィルム等がある)、各層や絶縁フィルムについては実際よりも平面の大きさに比べて厚さを厚くして描いている。また、図1等では、各層や絶縁フィルムを見易くするために、各層や絶縁フィルムをそれぞれ異なる模様で描いている。   Embodiments of an all-solid battery according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted. In addition, in FIG. 1 etc., in order to show the lamination structure of each layer and an insulating film in an easy-to-understand manner, it is drawn with an all-solid-state battery excluding the exterior film etc. (however, only the exterior film etc. in FIG. 2B). Each layer and insulating film are drawn with a thickness larger than the actual size of the plane. Moreover, in FIG. 1 etc., in order to make each layer and an insulating film easy to see, each layer and an insulating film are drawn in a different pattern, respectively.

本実施の形態では、本発明に係る全固体電池を、リチウムイオン二次電池の全固体電池に適用する。本実施の形態に係る全固体電池は、負極電極層、負極活物質層、固体電解質層、正極活物質層、正極電極層を1単位として構成される電池であり、これが必要に応じた数だけ複数積層されている。この積層される数は、全固体電池が用いられる用途により、必要とされる電圧等に応じて決定される。本実施の形態に係る全固体電池は、このような積層構造がつづら折りによる方法で製造される。本実施の形態に係る全固体電池は、例えば、電気自動車、ハイブリッド自動車等のモータを駆動源として有する自動車のバッテリに用いられる。   In this embodiment, the all solid state battery according to the present invention is applied to an all solid state battery of a lithium ion secondary battery. The all-solid-state battery according to the present embodiment is a battery configured with a negative electrode layer, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode layer as one unit. Multiple layers are stacked. The number to be stacked is determined according to the required voltage and the like depending on the application in which the all solid state battery is used. The all solid state battery according to the present embodiment is manufactured by a method in which such a laminated structure is zigzag folded. The all solid state battery according to the present embodiment is used for, for example, a battery of an automobile having a motor as a drive source such as an electric vehicle or a hybrid vehicle.

図1〜図4を参照して、本実施の形態に係る全固体電池1について説明する。図1は、本実施の形態に係る全固体電池(外装フィルム等がない状態)の側面図である。図2は、本実施の形態に係る全固体電池の平面図であり、(a)が外装フィルム等がない状態であり、(b)が外装フィルム等がある状態である。図3は、図1の全固体電池を展開した(つづら折り前の)平面図である。図4は、図3の展開した状態の一部分を拡大した図であり、(a)が平面図であり、(b)が側面図である。   With reference to FIGS. 1-4, the all-solid-state battery 1 which concerns on this Embodiment is demonstrated. FIG. 1 is a side view of an all solid state battery (with no exterior film or the like) according to the present embodiment. FIG. 2 is a plan view of the all solid state battery according to the present embodiment, in which (a) shows a state where there is no exterior film or the like, and (b) shows a state where there is an exterior film or the like. FIG. 3 is a plan view of the all solid state battery shown in FIG. 1 (before zigzag folding). 4 is an enlarged view of a part of the unfolded state of FIG. 3, in which (a) is a plan view and (b) is a side view.

全固体電池1は、電池外周端部の欠損や電極バリ等による短絡を防止するために、積層構造において一続きの絶縁フィルム2を各層の間に配設した構造である。絶縁フィルム2は、両面に負極電極層3、負極活物質層4、固定電解質層5が配設された第1部2aと、両面に正極電極層6、正極活物質層7が配設された第2部2bと、その第1部2aと第2部2bの間に位置して内側に孔2dが形成された第3部2cとを有している。一続きの絶縁フィルム2にはこの第1部2a〜第3部2cが第1部2a、第3部2c、第2部2b、第3部2cの順で積層する数に応じて繰り返し配置され、絶縁フィルム2の各部の間を順次折り曲げてつづら折りすることによって、第1部2a、第3部2c、第2部2b、第3部2cの順で積層される。   The all-solid-state battery 1 has a structure in which a continuous insulating film 2 is disposed between layers in a laminated structure in order to prevent short-circuiting due to defects at the outer peripheral edge of the battery or electrode burrs. The insulating film 2 has a first part 2a in which a negative electrode layer 3, a negative electrode active material layer 4 and a fixed electrolyte layer 5 are arranged on both sides, and a positive electrode layer 6 and a positive electrode active material layer 7 on both sides. It has the 2nd part 2b and the 3rd part 2c in which the hole 2d was formed inside between the 1st part 2a and the 2nd part 2b. In the continuous insulating film 2, the first part 2a to the third part 2c are repeatedly arranged according to the number of the first part 2a, the third part 2c, the second part 2b, and the third part 2c stacked in this order. The first film 2a, the third film 2c, the second film 2b, and the third film 2c are stacked in this order by bending the parts of the insulating film 2 in order.

絶縁フィルム2は、負極電極層3,3間(全面)、正極電極層6,6間(全面)、固体電解質層5と正極活物質層7間(外周端部のみ)に配置される絶縁部材である。絶縁フィルム2は、一続きの薄いフィルムであり、第1部2a、第2部2b、第3部2cを構成するための所定の形状を有している。つづら折り前の絶縁フィルム2の平面視した形状は、図3に示す全固体電池1を展開した(つづら折り前の)平面形状と同じ形状を有しており、第1部2a、第3部2c、第2部2b、第3部2cの順で繰り返し配置される。この繰り返す数は、全固体電池1での積層される数によって決まる。絶縁フィルム2の材料としては、例えば、PET(ポリエチレンテレフタレート)である。   The insulating film 2 is an insulating member disposed between the negative electrode layers 3 and 3 (entire surface), between the positive electrode layers 6 and 6 (entire surface), and between the solid electrolyte layer 5 and the positive electrode active material layer 7 (only the outer peripheral edge). It is. The insulating film 2 is a continuous thin film and has a predetermined shape for constituting the first part 2a, the second part 2b, and the third part 2c. The shape in plan view of the insulating film 2 before zigzag folding has the same shape as the plan shape (before zigzag folding) in which the all solid state battery 1 shown in FIG. 3 is developed, and the first part 2a, the third part 2c, The second part 2b and the third part 2c are repeatedly arranged in this order. The number of repetitions depends on the number of layers in the all solid state battery 1. The material of the insulating film 2 is, for example, PET (polyethylene terephthalate).

絶縁フィルム2の第1部2aの部分の平面視した形状は、図4に示すように、長方形状(正方形状でもよい)と、その長方形状の一側部に凸形状を有している。この絶縁フィルム2の第1部2aの両面には、負極電極部材が接合(蒸着、印刷、熱圧着等)されて負極電極層3が形成され、その負極電極層3の上面(長方形状部分のみ)には負極活物質が塗工(塗布)されて負極活物質層4が形成され、その負極活物質層4の上面に固体電解質が塗工されて固体電解質層5が形成されている。   As shown in FIG. 4, the shape of the first portion 2 a of the insulating film 2 in a plan view has a rectangular shape (may be a square shape) and a convex shape on one side of the rectangular shape. A negative electrode member is bonded (evaporation, printing, thermocompression bonding, etc.) to both surfaces of the first portion 2a of the insulating film 2 to form the negative electrode layer 3, and the upper surface of the negative electrode layer 3 (only the rectangular portion) ) Is coated (coated) to form a negative electrode active material layer 4, and a solid electrolyte is coated on the upper surface of the negative electrode active material layer 4 to form a solid electrolyte layer 5.

絶縁フィルム2の第2部2bの部分の平面視した形状は、図4に示すように、第1部2aの部分と同じサイズの長方形状(正方形状でもよい)と、その長方形状の他側部に凸形状を有している。この絶縁フィルム2の第2部2bの両面には、正極電極部材が接合されて正極電極層6が形成され、その正極電極層6の上面(長方形状部分のみ)には正極活物質が塗工されて正極活物質層7が形成されている。   As shown in FIG. 4, the shape of the second part 2b portion of the insulating film 2 in plan view is a rectangular shape (may be a square shape) the same size as the first portion 2a portion, and the other side of the rectangular shape. The part has a convex shape. A positive electrode member is bonded to both surfaces of the second portion 2b of the insulating film 2 to form a positive electrode layer 6, and a positive electrode active material is applied to the upper surface (only the rectangular portion) of the positive electrode layer 6 Thus, the positive electrode active material layer 7 is formed.

絶縁フィルム2の第3部2cの部分の平面視した形状は、図4に示すように、第1部2aや第2部2bの部分よりもサイズが大きい長方形状(正方形状でもよい)である。どの程度サイズを大きくするかは、第1部2aでの負極電極層3、負極活物質層4、固体電解質層5による厚さや第2部2bでの正極電極層6、正極活物質層7による厚さ等を考慮して適宜設定される。この絶縁フィルム2の第3部2cの部分には、内部に長方形状の空間(絶縁フィルムが無い部分)である孔2dが形成されている。この孔2dのサイズ(A×B)は、第1部2aや第2部2bの長方形状の部分(活物質の塗工部分)のサイズよりも小さいサイズである。したがって、絶縁フィルム2の第3部2cには、所定の幅を有するロ形状の端部保護部2eだけが絶縁フィルムとして残っている。第3部2cにおける端部保護部2eの第1部2aと繋がる部分については、第1部2aでの負極電極層3、負極活物質層4、固体電解質層5による厚さよりも長い幅を有している。また、第3部2cにおける端部保護部2eの第2部2bと繋がる部分については、第2部2bでの正極電極層6、正極活物質層7による厚さよりも長い幅を有している。   As shown in FIG. 4, the shape of the third part 2 c portion of the insulating film 2 in a plan view is a rectangular shape (or a square shape) larger in size than the first part 2 a and the second part 2 b portions. . The extent to which the size is increased depends on the thickness of the negative electrode layer 3, the negative electrode active material layer 4 and the solid electrolyte layer 5 in the first part 2a, and the positive electrode layer 6 and the positive electrode active material layer 7 in the second part 2b. It is appropriately set in consideration of the thickness and the like. In the portion of the third portion 2c of the insulating film 2, a hole 2d which is a rectangular space (portion where there is no insulating film) is formed. The size (A × B) of the hole 2d is smaller than the size of the rectangular part (active material coating part) of the first part 2a or the second part 2b. Therefore, in the third portion 2c of the insulating film 2, only the B-shaped end protection portion 2e having a predetermined width remains as the insulating film. The part connected to the first part 2a of the end protection part 2e in the third part 2c has a width longer than the thickness of the negative electrode layer 3, the negative electrode active material layer 4, and the solid electrolyte layer 5 in the first part 2a. doing. In addition, the portion of the third portion 2c that is connected to the second portion 2b of the end protection portion 2e has a width that is longer than the thickness of the positive electrode layer 6 and the positive electrode active material layer 7 in the second portion 2b. .

負極電極層3は、絶縁フィルム2の第1部2aの両面に配置される負極側の電極層である。負極電極の材料は、金属であり、例えば、銅である。負極電極層3は、この負極電極材料で絶縁フィルム2の第1部2aの部分の形状(長方形状+凸形状)と同じ平面形状で所定の厚さを有する部材として予め作製され、つづり折りする前にこの負極電極部材が絶縁フィルム2の第1部2aの部分に接合されることによって形成される。   The negative electrode layer 3 is a negative electrode layer disposed on both surfaces of the first part 2 a of the insulating film 2. The material of the negative electrode is a metal, for example, copper. The negative electrode layer 3 is produced in advance as a member having a predetermined thickness in the same planar shape (rectangular shape + convex shape) as the shape (rectangular shape + convex shape) of the first portion 2a of the insulating film 2 with this negative electrode material, and is folded. The negative electrode member is formed by bonding to the first portion 2a of the insulating film 2 before.

負極活物質層4は、負極電極層3と固体電解質層5との間に配置される負極側の活物質層である。負極活物質の材料は、全固体電池1の種類、用途等に応じて適宜選択でき、例えば、リチウム金属、Li−Al合金やLi−In合金等のリチウム合金、LiTi12等のチタン酸リチウム、炭素繊維や黒鉛等の炭素材料である。負極活物質層4は、つづり折りする前に、この負極活物質材料が負極電極層3の一面の長方形状の部分(凸形状の部分を除く)に塗工されることによって形成される。なお、負極電極層3の一面において負極活物質が塗工されない部分(凸形状の部分)は負極電極未塗工部8となっており、この負極電極未塗工部8が外部との接続部となる。 The negative electrode active material layer 4 is a negative electrode side active material layer disposed between the negative electrode layer 3 and the solid electrolyte layer 5. The material of the negative electrode active material can be appropriately selected according to the type and application of the all solid state battery 1, and examples thereof include lithium metal, lithium alloys such as Li—Al alloy and Li—In alloy, Li 4 Ti 5 O 12 and the like. Carbon materials such as lithium titanate, carbon fiber and graphite. The negative electrode active material layer 4 is formed by applying the negative electrode active material material to a rectangular portion (excluding a convex portion) on one surface of the negative electrode layer 3 before being folded. In addition, the part (convex-shaped part) where the negative electrode active material is not coated on one surface of the negative electrode layer 3 is a negative electrode uncoated part 8, and the negative electrode uncoated part 8 is a connection part to the outside. It becomes.

固体電解質層5は、負極活物質層4と正極活物質層7(但し、外周端部には絶縁フィルム2の端部保護部2eが介在する)との間に配置される固体電解質層である。固体電解質の材料は、全固体電池1の種類、用途等に応じて適宜選択でき、例えば、(LiPO)x−(LiS)y−(SiS)zガラス、(LiS)x−(SiS)yガラス、(LiS)x−(P)yガラス、これらガラスを一部結晶化した結晶化ガラス等の硫化物系無機固体電解質、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型酸化物系無機固体電解質、(La0.5+xLi0.5−3x)TiO等のペロブスカイト型酸化物無機固体電解質等のリチウムイオン伝導性樹脂である。固体電解質層5は、つづり折りする前に、この固体電解質材料が負極活物質層4の一面に塗工されることによって形成される。 The solid electrolyte layer 5 is a solid electrolyte layer disposed between the negative electrode active material layer 4 and the positive electrode active material layer 7 (however, the end protection portion 2e of the insulating film 2 is interposed at the outer peripheral end). . The material of the solid electrolyte can be appropriately selected according to the type and application of the all-solid battery 1. For example, (Li 3 PO 4 ) x- (Li 2 S) y- (SiS 2 ) z glass, (Li 2 S ) X- (SiS 2 ) y glass, (Li 2 S) x- (P 2 S 5 ) y glass, sulfide-based inorganic solid electrolytes such as crystallized glass obtained by partially crystallizing these glasses, LiTi 2 (PO 4 ) 3 , NASICON type inorganic solid electrolytes such as LiZr 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , and perovskite type oxides such as (La 0.5 + x Li 0.5-3x ) TiO 3 It is a lithium ion conductive resin such as an inorganic solid electrolyte. The solid electrolyte layer 5 is formed by applying this solid electrolyte material to one surface of the negative electrode active material layer 4 before being folded.

正極電極層6は、絶縁フィルム2の第2部2bの両面に配置される正極側の電極層である。正極電極の材料は、金属であり、例えば、アルミニウムである。正極電極層6は、この正極電極材料で絶縁フィルム2の第2部2bの部分の形状(長方形状+凸形状)と同じ平面形状で所定の厚さを有する部材として予め作製され、つづり折りする前にこの正極電極部材が絶縁フィルム2の第2部2bの部分に接合されることによって形成される。   The positive electrode layer 6 is a positive electrode layer disposed on both surfaces of the second portion 2 b of the insulating film 2. The material of the positive electrode is a metal, for example, aluminum. The positive electrode layer 6 is produced in advance as a member having a predetermined thickness with the same planar shape (rectangular shape + convex shape) as the shape (rectangular shape + convex shape) of the second portion 2b of the insulating film 2 by using the positive electrode material, and is folded. The positive electrode member is formed by bonding to the portion of the second portion 2b of the insulating film 2 before.

なお、負極や正極の電極材料によって負極や正極の電極部材が上記形状で予め作製される場合、この作製された各電極部材にはバリができる場合がある。この電極部材のバリによって、積層された状態のときに正極側と負極側とが接触し、短絡する可能性がある。そのため、この電極バリ対策が必要となる。   In addition, when the electrode member of a negative electrode or a positive electrode is produced in advance with the above shape by the electrode material of the negative electrode or the positive electrode, the produced electrode member may be burred. Due to the burrs of the electrode member, there is a possibility that the positive electrode side and the negative electrode side come into contact with each other and short-circuit when they are stacked. Therefore, this countermeasure against electrode flash is necessary.

正極活物質層7は、正極電極層6と固体電解質層5(但し、外周端部は絶縁フィルム2の端部保護部2eが介在する)との間に配置される正極側の活物質層である。正極活物質の材料は、全固体電池1の種類、用途等に応じて適宜選択でき、例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ等の遷移金属カルコゲナイド、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO,LiMn)、コバルト酸リチウム(LiCoO)等の遷移金属酸化物である。正極活物質層7は、つづり折りする前に、この正極活物質材料が正極電極層6の一面の長方形状の部分(凸形状の部分を除く)に部分に塗工されることによって形成される。なお、正極電極層6の一面において正極活物質が塗工されない部分(凸形状の部分)は正極電極未塗工部9となっており、この正極電極未塗工部9が外部との接続部となる。 The positive electrode active material layer 7 is an active material layer on the positive electrode side that is disposed between the positive electrode layer 6 and the solid electrolyte layer 5 (however, the outer peripheral end portion is interposed with the end protection portion 2e of the insulating film 2). is there. The material of the positive electrode active material can be appropriately selected according to the type and use of the all solid state battery 1. For example, transition metal chalcogenides such as titanium disulfide, molybdenum disulfide, and niobium selenide, lithium nickelate (LiNiO 2 ), Transition metal oxides such as lithium manganate (LiMnO 2 , LiMn 2 O 4 ) and lithium cobaltate (LiCoO 2 ). The positive electrode active material layer 7 is formed by applying the positive electrode active material material to a rectangular portion (excluding a convex portion) on one surface of the positive electrode layer 6 before being folded. . In addition, the part (convex-shaped part) where the positive electrode active material is not coated on one surface of the positive electrode layer 6 is a positive electrode uncoated part 9, and the positive electrode uncoated part 9 is connected to the outside. It becomes.

なお、負極や正極の活物質層4,7や固体電解質層5の塗工(塗布)は、従来の周知の任意の方法を適用できる。活物質層4,7は、活物質材料のみから形成されてもよいし、あるいは、活物質材料に必要に応じて導電性材料、固定電解質、バインダ等の材料を混合して形成されてもよい。この各物質の混合比は、全固体電池1が適切に動作できれば、全固体電池1の種類、用途等に応じて適宜設定できる。また、固体電解質層5は、固体電解質材料のみから形成されてもよいし、あるいは、固体電解質材料に必要に応じてバインダ等の材料を混合して形成されてもよい。この物質の混合比は、全固体電池1が適切に動作できれば、全固体電池1の種類、用途等に応じて適宜設定できる。   In addition, the conventionally well-known arbitrary methods are applicable to the coating (application | coating) of the active material layers 4 and 7 and the solid electrolyte layer 5 of a negative electrode or a positive electrode. The active material layers 4 and 7 may be formed only from the active material material, or may be formed by mixing a material such as a conductive material, a fixed electrolyte, and a binder as required in the active material material. . If the all-solid battery 1 can operate appropriately, the mixing ratio of these substances can be set as appropriate according to the type, application, and the like of the all-solid battery 1. Further, the solid electrolyte layer 5 may be formed only from the solid electrolyte material, or may be formed by mixing a material such as a binder with the solid electrolyte material as necessary. If the all-solid battery 1 can operate appropriately, the mixing ratio of these substances can be set as appropriate according to the type, application, etc. of the all-solid battery 1.

上記の説明した第1部2a、第3部2c、第2部2b、第3部2c、・・・の順で繰り返し配置された絶縁フィルム2(図3参照)を、第1部2aと第3部2cとの間、第3部2cと第2部2bとの間、第2部2bと第3部2cとの間、・・・を順次折り曲げてつづら折りする。すると、図1に示すように、第1部2a、第3部2c、第2部2b、第3部2c・・・の順で繰り返し積み重ねられ、負極電極層3、負極活物質層4、固体電解質層5、絶縁フィルム2の端部保護部2e(第3部2c)、正極活物質層7、正極電極層6を1単位として、これが複数積層された全固体電池1(外装フィルム等がない状態)となる。また、負極電極層3,3間及び正極電極層6,6間にも絶縁フィルム2が配置される。なお、図1において、全固体電池1には、最も上部の負極電極層3、負極活物質層4、固体電解質層5及び最も下部の負極電極層3、負極活物質層4、固体電解質層5が無くてもよい。   The first part 2a, the third part 2c, the second part 2b, the third part 2c,..., The insulating film 2 (see FIG. 3) repeatedly arranged in this order, the first part 2a and the first part 2a. The three parts 2c, the third part 2c and the second part 2b, the second part 2b and the third part 2c,... Then, as shown in FIG. 1, the first part 2a, the third part 2c, the second part 2b, the third part 2c,... Are repeatedly stacked in this order, and the negative electrode layer 3, the negative electrode active material layer 4, the solid The electrolyte layer 5, the end protection part 2 e (third part 2 c) of the insulating film 2, the positive electrode active material layer 7, and the positive electrode layer 6 are used as one unit, and the all-solid battery 1 (no exterior film or the like) is laminated. State). The insulating film 2 is also disposed between the negative electrode layers 3 and 3 and between the positive electrode layers 6 and 6. In FIG. 1, the all-solid battery 1 includes an uppermost negative electrode layer 3, a negative electrode active material layer 4, a solid electrolyte layer 5 and a lowermost negative electrode layer 3, a negative electrode active material layer 4, and a solid electrolyte layer 5. There is no need.

この全固体電池1では、固体電解質層5と正極活物質層7との間に絶縁フィルム2が配設されているが、孔2dが空いているので、固体電解質層5と正極活物質層7との間でのリチウムイオンの移動が可能である。また、全固体電池1では、負極電極層3,3間及び正極電極層6,6間の全面に絶縁フィルム2が配設されるとともに、固体電解質層5と正極活物質層7との間の外周端部に絶縁フィルム2の端部保護部2eが配設される。この絶縁フィルム2により、全固体電池1の外周端部(特に、活物質層4,7の外周端部)を保護するとともに、負極や正極の電極バリ等による短絡を防止できる。   In this all solid state battery 1, the insulating film 2 is disposed between the solid electrolyte layer 5 and the positive electrode active material layer 7, but since the hole 2 d is vacant, the solid electrolyte layer 5 and the positive electrode active material layer 7. Lithium ions can move between the two. Further, in the all solid state battery 1, the insulating film 2 is disposed on the entire surface between the negative electrode layers 3 and 3 and between the positive electrode layers 6 and 6, and between the solid electrolyte layer 5 and the positive electrode active material layer 7. An end protection portion 2e of the insulating film 2 is disposed at the outer peripheral end. The insulating film 2 can protect the outer peripheral end of the all solid state battery 1 (particularly, the outer peripheral end of the active material layers 4 and 7) and can prevent a short circuit due to an electrode burr of the negative electrode or the positive electrode.

また、つづら折りする際、単一の部材である絶縁フィルム2だけを折り曲げるので、正確に折り曲げることが容易である。さらに、絶縁フィルム2の第3部2cにおける第1部2aとの間の部分及び第2部2bとの間の部分が、折り曲げる際の遊び部分になっている。したがって、この各部分に折り曲げ用のスリット等を入れておくことによって、正確かつ容易に折り曲げることができる。また、このスリット等の位置を調整することにより、第1部2a(負極電極層3、負極活物質層4、固体電解質層5)、第3部2c(孔2d、端部保護部2e)、第2部2b(正極活物質層7、正極電極層6)を積層する際の位置合わせを正確かつ容易に行うことができる。   Moreover, since only the insulating film 2 which is a single member is folded when zigzag folding, it is easy to bend correctly. Furthermore, the portion between the first portion 2a and the portion between the second portion 2b in the third portion 2c of the insulating film 2 is a play portion when being bent. Therefore, it is possible to bend accurately and easily by putting a bending slit or the like in each portion. Further, by adjusting the position of the slit or the like, the first part 2a (negative electrode layer 3, negative electrode active material layer 4, solid electrolyte layer 5), third part 2c (hole 2d, end protection part 2e), Positioning when the second part 2b (the positive electrode active material layer 7 and the positive electrode layer 6) is laminated can be accurately and easily performed.

図2(b)に示すように、全固体電池1は、全ての負極電極未塗工部8が溶接等で結合されて負極端子10に接続されるとともに、全ての正極電極未塗工部9が溶接等で結合されて正極端子11に接続されている。さらに、全固体電池1は、負極端子10と正極端子11だけが外部に出た状態で、ラミネートフィルム等の外装フィルム12で外装されている。   As shown in FIG. 2 (b), the all solid state battery 1 has all the negative electrode uncoated portions 8 joined by welding or the like and connected to the negative terminal 10, and all the positive electrode uncoated portions 9 are connected. Are coupled by welding or the like and connected to the positive electrode terminal 11. Furthermore, the all-solid-state battery 1 is packaged with an exterior film 12 such as a laminate film with only the negative electrode terminal 10 and the positive electrode terminal 11 coming out.

上記構造を有する全固体電池1を製造する場合の製造工程について説明する。PET等を用いて上記で説明した形状の絶縁フィルム2を予め作製する。また、負極電極材料を用いて上記で説明した形状の負極電極部材を予め作製する。また、正極極電極材料を用いて上記で説明した形状の正極極電極部材を予め作製する。   A manufacturing process in the case of manufacturing the all solid state battery 1 having the above structure will be described. The insulating film 2 having the shape described above is prepared in advance using PET or the like. Moreover, the negative electrode member having the shape described above is prepared in advance using the negative electrode material. Moreover, the positive electrode member having the shape described above is prepared in advance using the positive electrode material.

次に、絶縁フィルム2の第1部2a毎に、両面に、予め作製された負極電極部材を接合して負極電極層3を形成し、その負極電極層3の一面(但し、負極電極未塗工部8部分を除く)に負極活物質を塗工して負極活物質層4を形成し、その負極活物質層4の一面に固体電解質を塗工して固体電解質層5を形成する。   Next, for each first part 2a of the insulating film 2, a negative electrode member prepared in advance is bonded to both surfaces to form the negative electrode layer 3, and one surface of the negative electrode layer 3 (however, the negative electrode is not coated) The negative electrode active material is applied to a portion of the negative electrode active material layer 4 except for the part 8), and a solid electrolyte is applied to one surface of the negative electrode active material layer 4 to form the solid electrolyte layer 5.

また、絶縁フィルム2の第2部2b毎に、両面に、正極電極部材を接合して正極電極層6を形成し、その正極電極層6の一面(但し、正極電極未塗工部9部分を除く)に正極活物質を塗工して正極活物質層7を形成する。   Further, for each second portion 2b of the insulating film 2, a positive electrode member is joined to both surfaces to form a positive electrode layer 6, and one surface of the positive electrode layer 6 (however, the positive electrode uncoated portion 9 portion is The positive electrode active material layer 7 is formed by coating the positive electrode active material.

次に、絶縁フィルム2の第1部2aと第3部2cとの間、第3部2cと第2部2bとの間、第2部2bと第3部2cとの間、・・・を順次折り曲げてつづら折りする。このつづら折りする前に、第1部2aと第3部2cとの間、第3部2cと第2部2bとの間、第2部2bと第3部2cとの間にそれぞれ折り曲げ用のスリットを入れておく。そして、全ての負極電極未塗工部8を結合して負極端子10に接続するとともに、全ての正極電極未塗工部9を結合して正極端子11に接続する。最後に、上部と下部から加圧して、外装フィルム12で外装する。   Next, between the first part 2a and the third part 2c of the insulating film 2, between the third part 2c and the second part 2b, between the second part 2b and the third part 2c, and so on. Bend sequentially and fold. Before this zigzag folding, slits for bending are provided between the first part 2a and the third part 2c, between the third part 2c and the second part 2b, and between the second part 2b and the third part 2c. Put in. All the negative electrode uncoated portions 8 are coupled and connected to the negative terminal 10, and all the positive electrode uncoated portions 9 are coupled and connected to the positive terminal 11. Finally, pressure is applied from the top and bottom and the exterior film 12 is used for exterior packaging.

全固体電池1によれば、一続きの絶縁フィルム2に第1部2a(負極電極層3、負極活物質層4、固体電解質層5)、第3部2c(孔2d、端部保護部2e)、第2部2b(正極電極層6、正極活物質層7)を形成した後に、この一続きの絶縁フィルム2をつづら折りして製造できる構造とすることにより、位置決めが容易となり、製造が非常に容易である。特に、絶縁フィルム2を基準にして第1部2aの負極電極層3、負極活物質層4、固体電解質層5を積層するとともに第2部2bの正極電極層6、正極活物質層7を積層するので、非常に薄い絶縁フィルムを位置決めして固定させるという問題が発生しない。また、絶縁フィルム2をつづら折りすることによって積層構造とすることがきるので、全ての層を積層して製造するよりも、製造が容易であり、製造スピードも速い。また、絶縁フィルム2の第1部2aと第3部2cとの間、第3部2cと第2部2bとの間、第2部2bと第3部2cとの間の各部分(遊び部分)にスリット等を入れることによって、高精度かつ容易に各層の位置合わせを行うことができる。   According to the all-solid battery 1, the first part 2 a (the negative electrode layer 3, the negative electrode active material layer 4, the solid electrolyte layer 5), the third part 2 c (the hole 2 d, the end protection part 2 e) are formed on the continuous insulating film 2. ), After forming the second part 2b (the positive electrode layer 6, the positive electrode active material layer 7), the structure can be manufactured by folding the continuous insulating film 2 in a zigzag manner. Easy to. In particular, the negative electrode layer 3, the negative electrode active material layer 4, and the solid electrolyte layer 5 of the first part 2a are laminated with the insulating film 2 as a reference, and the positive electrode layer 6 and the positive electrode active material layer 7 of the second part 2b are laminated. Therefore, the problem of positioning and fixing a very thin insulating film does not occur. Moreover, since it can be set as a laminated structure by folding the insulating film 2 spellingly, manufacture is easier and manufacturing speed is quicker than manufacturing by laminating | stacking all the layers. Moreover, each part (play part) between the 1st part 2a and the 3rd part 2c of the insulating film 2, between the 3rd part 2c and the 2nd part 2b, and between the 2nd part 2b and the 3rd part 2c. ), It is possible to align each layer with high accuracy and ease.

また、全固体電池1によれば、固体電解質層5と正極活物質層7との間、負極電極層3,3間、正極電極層6,6間にそれぞれ絶縁フィルム2が配設されるので、この絶縁フィルム2により全固体電池1の外周端部欠損や電極バリ等による短絡を防止できる。また、全固体電池1によれば、固体電解質層5と正極活物質層7との間に配設される絶縁フィルム2には内側に孔2dを空けているので、リチウムイオンの移動が可能であるとともに外側の端部保護部2eによって外周端部を保護できる。   Moreover, according to the all-solid-state battery 1, since the insulating film 2 is arrange | positioned between the solid electrolyte layer 5 and the positive electrode active material layer 7, between the negative electrode layers 3 and 3, and between the positive electrode layers 6 and 6, respectively. The insulation film 2 can prevent a short circuit due to an outer peripheral edge defect or an electrode burr of the all solid state battery 1. Moreover, according to the all-solid-state battery 1, since the insulating film 2 arrange | positioned between the solid electrolyte layer 5 and the positive electrode active material layer 7 has the hole 2d inside, the movement of lithium ions is possible. At the same time, the outer edge can be protected by the outer edge protection portion 2e.

図5を参照して、上記構成の全固体電池1においてより好適な形態について説明する。図5は、絶縁フィルム累積の状態を示す側断面図であり、(a)が絶縁フィルムの第3部の孔の大きさを全て同じにした場合であり、(b)が絶縁フィルムの第3部の孔の大きさを徐々に変えた場合である。   With reference to FIG. 5, a more preferable form in the all-solid-state battery 1 of the said structure is demonstrated. FIG. 5 is a side sectional view showing a state of accumulation of the insulating film, where (a) is a case where the sizes of the holes of the third part of the insulating film are all the same, and (b) is a third of the insulating film. This is a case where the size of the hole of the part is gradually changed.

全固体電池1では、絶縁フィルム2の第3部2cにおいては孔2dが空けられ、所定の幅を有する端部保護部2eが存在する。絶縁フィルム2には第3部2cが複数有り、複数の第3部2cの孔2d(A×B)のサイズが全て同じ場合、複数の第3部2cの端部保護部2eの幅が全て同じになる。絶縁フィルム2がつづら折りされて積層されると、複数の第3部2cの端部保護部2eが積層される部分については絶縁フィルム2の厚さが第3部2cの数分累積されることになる。孔2dのサイズが全て同じで端部保護部2eが全て同じ幅Wの場合、図5(a)に示すように、第3部2cの数分の絶縁フィルム2の厚さが同じ箇所で累積され、1つの段差となる。全固体電池1はつづら折りされた状態で外部拘束されるので、その段差が大きくなると(第3部2cの数が多くなると)、大きなせん断力が作用する。   In the all-solid-state battery 1, a hole 2d is formed in the third portion 2c of the insulating film 2, and an end protection portion 2e having a predetermined width exists. When the insulating film 2 has a plurality of third portions 2c and the sizes of the holes 2d (A × B) of the plurality of third portions 2c are all the same, the widths of the end protection portions 2e of the plurality of third portions 2c are all Be the same. When the insulating film 2 is folded and stacked, the thickness of the insulating film 2 is accumulated by the number of the third portions 2c for the portions where the end protection portions 2e of the plurality of third portions 2c are stacked. Become. When all the sizes of the holes 2d are the same and all the end protection portions 2e have the same width W, as shown in FIG. 5A, the thickness of the insulating film 2 corresponding to the number of the third portions 2c is accumulated at the same location. It becomes one step. Since the all-solid-state battery 1 is externally restrained in a zigzag folded state, when the step becomes large (when the number of the third portions 2c increases), a large shearing force acts.

図5(a)の例の場合、端部保護部2eで1枚のフィルム分の段差ができ、端部保護部2eが累積されると2枚のフィルム分の段差ができ、端部保護部2eが累積されると3枚のフィルム分の段差ができ、端部保護部2eが累積されると4枚のフィルム分の段差ができる。この大きな段差がある状態で外部拘束(圧力)が加わると、大きなせん断力が発生し、せん断される可能性がある。図5(a)に示す例の場合、符号Pで示す部分がせん断されており、段差が大きいので、負極活物質層4と正極活物質層7とが接触し、短絡状態となっている。なお、せん断しても短絡しない場合がある。また、大きなせん断力が発生してもせん断しない場合がある。 In the case of the example of FIG. 5A, a step for one film is made at the end protection portion 2e 1 , and a step for two films is made when the end protection portion 2e 2 is accumulated. When the protective portion 2e 3 are accumulated can three steps of the film component can four steps of the film component when the edge protectant portion 2e 4 are accumulated. When external restraint (pressure) is applied in a state where there is a large step, a large shearing force is generated and there is a possibility of shearing. In the case of the example shown in FIG. 5A, the portion indicated by the symbol P is sheared and the step is large, so that the negative electrode active material layer 4 and the positive electrode active material layer 7 are in contact with each other and are in a short circuit state. Note that there is a case where a short circuit does not occur even when shearing. Further, even if a large shear force is generated, the shear may not occur.

そこで、複数の第3部2cの各孔2dのサイズ(A×B)をそれぞれ異なるサイズとし、各端部保護部2eの幅Wを異なる幅とする。例えば、各孔2dの大きさを、A1>A2>A3>A4かつB1>B2>B3>B4にした場合、図5(b)に示すように、端部保護部2eの幅W1<端部保護部2eの幅W2<端部保護部2eの幅W3<端部保護部2eの幅W4となる。これによって、複数の端部保護部2eによるフィルムの厚さが同じ箇所で累積されることがなく、複数の小さい段差となる。 Therefore, the sizes (A × B) of the holes 2d of the plurality of third portions 2c are different from each other, and the width W of each end protection portion 2e is different. For example, the size of each hole 2d, A1>A2>A3> A4 and B1>B2>B3> If you B4, as shown in FIG. 5 (b), the width W1 <end of the edge protectant portion 2e 1 the width W3 <width W4 of the edge protectant portion 2e 4 width W2 <edge protectant portion 2e 3 parts protective portion 2e 2. Thereby, the thickness of the film by the several edge part protection part 2e is not accumulated in the same location, but becomes a several small level | step difference.

図5(b)の例の場合、端部保護部2eで1枚のフィルム分の段差ができ、端部保護部2eが累積されると1枚のフィルム分の段差が2個でき、端部保護部2eが累積されると1枚のフィルム分の段差が3個でき、端部保護部2eが累積されると1枚のフィルム分の段差が4個できる。したがって、外部拘束されても、複数の小さい段差なので、大きなせん断力が作用しない。 In the case of the example of FIG. 5 (b), a step for one film can be made at the end protection part 2e 1 , and when the end protection part 2e 2 is accumulated, two steps for one film can be made, When the edge protectant portion 2e 3 are accumulated can one step of the film component is three, it can be one of the step of film worth four when the edge protectant portion 2e 4 are accumulated. Therefore, even if externally constrained, a large shearing force does not act because of a plurality of small steps.

なお、複数の第3部2cの各孔2dのサイズ(ひいては、各端部保護部2eの幅)をどのように異ならせるかは適宜設定できる。例えば、各孔2dの大きさを、A1<A2<A3・・・かつB1<B2<B3・・・としてもよいし、あるいは、徐々に大きくしたり小さくしたりするのでなく、ランダムにサイズを変えてもよい。また、全ての各孔2dのサイズをそれぞれ変えるのではなく、少数個ずつなら同じサイズの孔2dがあってもよい。   Note that how the sizes of the respective holes 2d of the plurality of third portions 2c (and consequently the widths of the end protection portions 2e) are made different can be set as appropriate. For example, the size of each hole 2d may be A1 <A2 <A3... And B1 <B2 <B3..., Or may be randomly increased rather than gradually increased or decreased. You may change it. Further, instead of changing the sizes of all the holes 2d, there may be holes 2d of the same size if there are a small number.

このように、全固体電池1は、絶縁フィルム2の複数の第3部2cの孔2dのサイズを異なるサイズとすることにより、複数の第3部2cの端部保護部2eの部分のフィルムの厚さの累積によるせん断力を抑制でき、せん断を防止できる。ひいては、せん断による短絡も防止できる。   As described above, the all-solid-state battery 1 is formed by changing the sizes of the holes 2d of the plurality of third portions 2c of the insulating film 2 to different sizes, so that the end protection portions 2e of the plurality of third portions 2c The shearing force due to the accumulated thickness can be suppressed and shearing can be prevented. As a result, a short circuit due to shearing can also be prevented.

以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。   As mentioned above, although embodiment which concerns on this invention was described, this invention is implemented in various forms, without being limited to the said embodiment.

例えば、本実施の形態ではリチウムイオン二次電池に全固体電池を適用したが、他の電池に全固体電池を適用してもよい。また、本実施の形態では全固体電池の用途として自動車のバッテリを例に挙げたが、これ以外の様々な用途で用いることができる。   For example, in the present embodiment, an all solid state battery is applied to a lithium ion secondary battery, but an all solid state battery may be applied to another battery. In the present embodiment, an automobile battery is used as an example of an all-solid-state battery, but it can be used in various other applications.

また、本実施の形態では固定電解質層が第1部の両面の負極活物質層に塗工される構成としたが、固定電解質層はつづら折り後に第3部の孔に配置されていれば、第2部の両面の正極活物質層に塗工されてもよいし、あるいは、第3部の一面に塗工されてもよい。   Further, in the present embodiment, the fixed electrolyte layer is applied to the negative electrode active material layers on both sides of the first part, but if the fixed electrolyte layer is arranged in the hole of the third part after zigzag folding, It may be applied to two parts of the positive electrode active material layer on both sides, or may be applied to one side of the third part.

1…全固体電池、2…絶縁フィルム、2a…第1部、2b…第2部、2c…第3部、2d…孔、2e…端部保護部、3…負極電極層、4…負極活物質層、5…固体電解質層、6…正極電極層、7…正極活物質層、8…負極電極未塗工部、9…正極電極未塗工部、10…負極端子、11…正極端子、12…外装フィルム。   DESCRIPTION OF SYMBOLS 1 ... All-solid-state battery, 2 ... Insulating film, 2a ... 1st part, 2b ... 2nd part, 2c ... 3rd part, 2d ... Hole, 2e ... End part protection part, 3 ... Negative electrode layer, 4 ... Negative electrode active Material layer, 5 ... Solid electrolyte layer, 6 ... Positive electrode layer, 7 ... Positive electrode active material layer, 8 ... Negative electrode uncoated part, 9 ... Positive electrode uncoated part, 10 ... Negative electrode terminal, 11 ... Positive electrode terminal, 12 ... Exterior film.

Claims (2)

両面に負極電極層が配設され、当該各面の負極電極層に負極活物質層が塗工された第1部と、両面に正極電極層が配設され、当該各面の正極電極層に正極活物質層が塗工された第2部と、前記第1部と前記第2部との間に位置し、内側に孔が形成された第3部と、を有する絶縁部材を備え、
前記絶縁部材をつづら折りすることによって前記第1部、前記第3部、前記第2部の順で積層され、当該積層された状態において前記第3部の孔に固体電解質層が配置されることを特徴とする全固体電池。
A negative electrode layer is provided on both sides, a first part in which a negative electrode active material layer is applied to the negative electrode layer on each side, and a positive electrode layer is provided on both sides. An insulating member having a second part coated with a positive electrode active material layer, and a third part located between the first part and the second part and having a hole formed inside;
The first part, the third part, and the second part are laminated in order by folding the insulating member in a zigzag manner, and a solid electrolyte layer is disposed in the hole of the third part in the laminated state. All-solid battery featuring.
前記絶縁部材は、前記第3部を複数有し、
前記複数の第3部の孔のサイズが異なることを特徴とする請求項1に記載の全固体電池。
The insulating member has a plurality of the third parts,
The all-solid-state battery according to claim 1, wherein the plurality of third portions have different hole sizes.
JP2012288160A 2012-12-28 2012-12-28 Solid-state battery Withdrawn JP2014130754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288160A JP2014130754A (en) 2012-12-28 2012-12-28 Solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288160A JP2014130754A (en) 2012-12-28 2012-12-28 Solid-state battery

Publications (1)

Publication Number Publication Date
JP2014130754A true JP2014130754A (en) 2014-07-10

Family

ID=51408976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288160A Withdrawn JP2014130754A (en) 2012-12-28 2012-12-28 Solid-state battery

Country Status (1)

Country Link
JP (1) JP2014130754A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836581B1 (en) * 2015-12-10 2018-03-08 현대자동차주식회사 A solid-state battery and preparation thereof
KR101905984B1 (en) * 2016-10-17 2018-10-08 현대자동차주식회사 Bipolar all solid battery and manufacturing method for the same
JP2018181837A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Battery and manufacturing method thereof
US20180366785A1 (en) * 2017-06-15 2018-12-20 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
EP3435443A1 (en) * 2017-07-25 2019-01-30 Airbus Defence and Space GmbH Battery with a flexible thin film, thin film and method of manufacturing a battery
JP2019021621A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 battery
JP2020113434A (en) * 2019-01-11 2020-07-27 日立造船株式会社 All-solid-state battery and manufacturing method of all-solid-state battery
KR20220004556A (en) * 2020-07-03 2022-01-11 도요타지도샤가부시키가이샤 Solid-state battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836581B1 (en) * 2015-12-10 2018-03-08 현대자동차주식회사 A solid-state battery and preparation thereof
KR101905984B1 (en) * 2016-10-17 2018-10-08 현대자동차주식회사 Bipolar all solid battery and manufacturing method for the same
JP7126155B2 (en) 2017-04-19 2022-08-26 パナソニックIpマネジメント株式会社 BATTERY AND BATTERY MANUFACTURING METHOD
JP2018181837A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Battery and manufacturing method thereof
US11508970B2 (en) 2017-04-19 2022-11-22 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
US20210257626A1 (en) * 2017-04-19 2021-08-19 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
US11031603B2 (en) * 2017-04-19 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
JP7065403B2 (en) 2017-06-15 2022-05-12 パナソニックIpマネジメント株式会社 Batteries and battery manufacturing methods
JP2019003934A (en) * 2017-06-15 2019-01-10 パナソニックIpマネジメント株式会社 Battery and battery manufacturing method
US10833370B2 (en) * 2017-06-15 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
US20180366785A1 (en) * 2017-06-15 2018-12-20 Panasonic Intellectual Property Management Co., Ltd. Battery and battery manufacturing method
JP7162236B2 (en) 2017-07-14 2022-10-28 パナソニックIpマネジメント株式会社 battery
JP2019021621A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 battery
US10680273B2 (en) 2017-07-14 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Battery
EP3435443A1 (en) * 2017-07-25 2019-01-30 Airbus Defence and Space GmbH Battery with a flexible thin film, thin film and method of manufacturing a battery
JP2020113434A (en) * 2019-01-11 2020-07-27 日立造船株式会社 All-solid-state battery and manufacturing method of all-solid-state battery
US11848421B2 (en) 2019-01-11 2023-12-19 Hitachi Zosen Corporation All-solid-state battery and method for manufacturing all-solid-state battery
JP7411331B2 (en) 2019-01-11 2024-01-11 日立造船株式会社 All-solid-state batteries and methods of manufacturing all-solid-state batteries
KR20220004556A (en) * 2020-07-03 2022-01-11 도요타지도샤가부시키가이샤 Solid-state battery
JP2022013173A (en) * 2020-07-03 2022-01-18 トヨタ自動車株式会社 Solid state battery
JP7318598B2 (en) 2020-07-03 2023-08-01 トヨタ自動車株式会社 solid state battery
KR102610509B1 (en) 2020-07-03 2023-12-07 도요타지도샤가부시키가이샤 Solid-state battery

Similar Documents

Publication Publication Date Title
JP2014130754A (en) Solid-state battery
EP2882024B1 (en) Stepped electrode assembly, and secondary battery, battery pack and device comprising same and method for manufacturing same
US9685679B2 (en) Stepwise electrode assembly having variously-shaped corner and secondary battery, battery pack and device comprising the same
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
EP2750239B1 (en) Stepped electrode assembly and battery cell comprising same
JP5290952B2 (en) High safety multilayer electrochemical cell
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
CN110476273B (en) Secondary battery and method of manufacturing the same
KR100848788B1 (en) Electrode Assembly Having Electrode Tabs of the Same Size in Joint Portion thereof and Electrochemical Cell Containing the Same
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
CN107112487B (en) Cylindrical battery
JP6788107B2 (en) Manufacturing method of electrode unit for battery cell and electrode unit
CN103733417B (en) Electrode assemblie, battery unit, the manufacture method of the manufacture method of electrode assemblie and battery unit
JP6109957B2 (en) Electrode assembly including round corners
WO2015147066A1 (en) Multilayer battery and manufacturing method therefor
EP3168918B1 (en) Electrode assembly wound in both directions, and lithium secondary battery comprising same
US20180083255A1 (en) Rechargeable battery
JP5900281B2 (en) All-solid battery and method for manufacturing the same
JP7110082B2 (en) secondary battery
KR20200143979A (en) Electrode assembly and secondary battery having the same
JP2016541103A (en) Electrode assembly, manufacturing method thereof, and electrochemical cell
JP5676095B2 (en) Multilayer secondary battery
JP7253399B2 (en) secondary battery
JP5429304B2 (en) Solid battery module
JP2018060699A (en) Manufacturing method for laminated secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111