JP2014130055A - Device and method for measuring iron concentration - Google Patents

Device and method for measuring iron concentration Download PDF

Info

Publication number
JP2014130055A
JP2014130055A JP2012287411A JP2012287411A JP2014130055A JP 2014130055 A JP2014130055 A JP 2014130055A JP 2012287411 A JP2012287411 A JP 2012287411A JP 2012287411 A JP2012287411 A JP 2012287411A JP 2014130055 A JP2014130055 A JP 2014130055A
Authority
JP
Japan
Prior art keywords
concentration
iron
absorbance
sample water
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287411A
Other languages
Japanese (ja)
Inventor
Miyuki Urata
美由貴 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2012287411A priority Critical patent/JP2014130055A/en
Publication of JP2014130055A publication Critical patent/JP2014130055A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately measure the concentration of total iron existing in water, soluble iron, and suspended form iron without using a reagent.SOLUTION: An iron concentration measurement device 1 comprises: an absorbance measurement unit 7 for irradiating a sample water with light having a wavelength of 360-380 nm to measure absorbance; a concentration calculation unit 3 for calculating the iron concentration on the basis of an absorbance measured by the absorbance measurement unit 7; and a filter unit 6 for filtering a suspended form component from the sample water. The concentration calculation unit 3 calculates the concentration of total iron from an absorbance measured by the absorbance measurement unit 7 in the sample water before filtration by the filter unit 6, calculates the concentration of soluble iron from an absorbance measured by the absorbance measurement unit 7 in the sample water after filtration by the filter unit 6 and subtracts the concentration of the soluble iron from the concentration of the total iron to calculate the concentration of the suspended form iron.

Description

本発明は、鉄分濃度測定装置および方法に関するものである。   The present invention relates to an iron concentration measuring apparatus and method.

従来、水中における鉄分の存否を光学的に判定する装置が知られている(例えば、特許文献1参照。)。
この装置は、サンプリングした水に、三価鉄イオンを二価鉄イオンに還元する第1剤と、二価鉄イオンと反応して発色する第2剤とを供給し、照射した光の透過率によって発色物質の有無を判定することで、鉄分の有無を判定している。
Conventionally, an apparatus for optically determining the presence or absence of iron in water is known (see, for example, Patent Document 1).
This apparatus supplies the sampled water with a first agent that reduces trivalent iron ions to divalent iron ions and a second agent that develops color by reacting with divalent iron ions, and the transmittance of the irradiated light. The presence or absence of iron is determined by determining the presence or absence of a coloring substance.

特開2006−284209号公報JP 2006-284209 A

しかしながら、特許文献1の装置は、二価鉄イオンを検出することにより鉄分の存否を判定する装置であるため、以下の不都合がある。
第1に、水中においては、鉄は、二価鉄イオンおよび三価鉄イオンのような溶解性鉄として溶存している他、水酸化物のような懸濁態鉄としても存在しており、単に二価鉄イオンを発色させて検出するだけでは、水中に存在する懸濁態鉄の濃度を精度よく測定することができないという不都合がある。
第2に、特許文献1の装置は、サンプリングした水に試薬を混入して、第1剤によって三価鉄イオンを二価鉄イオンに還元させた上で、二価鉄イオンと第2剤との反応により発色させた後でなければ鉄分の有無を判定できないので、判定に手間がかかるという不都合がある。
However, since the apparatus of Patent Document 1 is an apparatus that determines the presence or absence of iron by detecting divalent iron ions, it has the following disadvantages.
First, in water, iron is dissolved as soluble iron such as divalent iron ions and trivalent iron ions, and also exists as suspended iron such as hydroxides. There is an inconvenience that the concentration of suspended iron present in water cannot be measured with high accuracy simply by developing and detecting divalent iron ions.
Second, the device of Patent Document 1 mixes a reagent into sampled water, reduces trivalent iron ions to divalent iron ions by the first agent, and then adds the divalent iron ions and the second agent. Since the presence or absence of iron can only be determined after the color has been developed by this reaction, there is the inconvenience that the determination takes time.

本発明は、上述した事情に鑑みてなされたものであって、水中に存在する全鉄、溶解性鉄および懸濁態鉄の濃度を、試薬を用いることなく、精度よく測定することができる鉄分濃度測定装置および方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and is capable of accurately measuring the concentrations of total iron, soluble iron, and suspended iron existing in water without using a reagent. It is an object of the present invention to provide a concentration measuring apparatus and method.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明の一態様は、試料水に、波長360nm〜380nmの光を照射して吸光度を測定する吸光度測定部と、該吸光度測定部により測定された吸光度に基づいて鉄分濃度を算出する濃度算出部と、前記試料水から懸濁態成分を濾過するフィルタ部とを備え、前記濃度算出部が、前記フィルタ部による濾過前の試料水について、前記吸光度測定部により測定された吸光度から全鉄分の濃度を算出し、前記フィルタ部による濾過後の試料水について、前記吸光度測定部により測定された吸光度から溶解性鉄の濃度を算出し、全鉄分の濃度から溶解性鉄の濃度を減算して懸濁態鉄の濃度を算出する鉄分濃度測定装置を提供する。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention is an absorbance measurement unit that measures absorbance by irradiating sample water with light having a wavelength of 360 nm to 380 nm, and a concentration calculation unit that calculates iron concentration based on the absorbance measured by the absorbance measurement unit. And a filter unit that filters suspended components from the sample water, and the concentration calculation unit is configured to measure the concentration of total iron from the absorbance measured by the absorbance measurement unit for the sample water before filtration by the filter unit. Calculate the concentration of soluble iron from the absorbance measured by the absorbance measurement unit for the sample water after filtration by the filter unit, and subtract the concentration of soluble iron from the concentration of total iron to suspend An iron concentration measuring device for calculating the concentration of state iron is provided.

本態様によれば、吸光度測定部において、濾過前の試料水に、370nm近傍の波長の光を照射して、吸光度を測定し、測定された吸光度に基づいて濃度算出部により鉄分濃度を算出することにより、水中に存在している溶解性鉄および懸濁態鉄を合わせた合計の全鉄濃度を測定することができる。一方、吸光度測定部において、濾過後の試料水に、370nm近傍の波長の光を照射して、吸光度を測定し、測定された吸光度に基づいて濃度算出部により鉄分濃度を算出することにより、水中に存在している溶解性鉄の濃度を測定することができる。そして、濃度算出部において、全鉄濃度から溶解性鉄の濃度を減算することにより、懸濁態鉄の濃度を測定することができる。すなわち、本態様によれば、水中に存在する全鉄、溶解性鉄および懸濁態鉄のそれぞれの濃度を、試薬を用いることなく、精度よく測定することができる。   According to this aspect, in the absorbance measurement unit, the sample water before filtration is irradiated with light having a wavelength near 370 nm, the absorbance is measured, and the iron concentration is calculated by the concentration calculation unit based on the measured absorbance. Thus, the total total iron concentration of soluble iron and suspended iron present in water can be measured. On the other hand, in the absorbance measurement unit, the sample water after filtration is irradiated with light having a wavelength near 370 nm, the absorbance is measured, and the concentration calculation unit calculates the iron concentration based on the measured absorbance. The concentration of soluble iron present in can be measured. And in a density | concentration calculation part, the density | concentration of suspended iron can be measured by subtracting the density | concentration of soluble iron from the total iron density | concentration. That is, according to this aspect, the concentrations of total iron, soluble iron, and suspended iron existing in water can be accurately measured without using a reagent.

上記態様においては、前記フィルタ部が孔径の異なる複数のフィルタを備え、前記濃度算出部が、各前記フィルタを透過した後の試料水について、前記吸光度測定部により測定された吸光度から溶解性鉄の濃度をそれぞれ算出し、全鉄分の濃度から各溶解性鉄の濃度を減算して粒径別の懸濁態鉄の濃度を算出してもよい。   In the above aspect, the filter unit includes a plurality of filters having different pore diameters, and the concentration calculation unit calculates soluble iron from the absorbance measured by the absorbance measurement unit for the sample water that has passed through each filter. The concentration may be calculated, and the concentration of suspended iron for each particle size may be calculated by subtracting the concentration of each soluble iron from the total iron content.

また、本発明の他の態様においては、試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第1の吸光度測定部と、該第1の吸光度測定部を通過した試料水から懸濁態成分を濾過するフィルタ部と、該フィルタ部を通過した濾過後の試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第2の吸光度測定部と、前記第2の吸光度測定部により測定された濾過後の試料水の吸光度に基づいて、溶解性鉄の濃度を算出し、前記第1の吸光度測定部により測定された濾過後の試料水の吸光度と前記第2の吸光度測定部により測定された濾過前の試料水の吸光度とに基づいて、懸濁態鉄の濃度を算出する濃度算出部とを備える鉄分濃度測定装置を提供する。   In another aspect of the present invention, the sample water is irradiated with light having a wavelength of 360 nm to 380 nm to measure the absorbance, and the sample water that has passed through the first absorbance measurement unit is used. A filter unit for filtering suspended components, a second absorbance measurement unit for measuring absorbance by irradiating light having a wavelength of 360 nm to 380 nm to the filtered sample water that has passed through the filter unit, and the second absorbance measurement unit Based on the absorbance of the sample water after filtration measured by the absorbance measurement unit, the concentration of soluble iron is calculated, and the absorbance of the sample water after filtration measured by the first absorbance measurement unit and the second Provided is an iron concentration measuring device including a concentration calculating unit for calculating the concentration of suspended iron based on the absorbance of sample water before filtration measured by an absorbance measuring unit.

本態様によれば、第1の吸光度測定部、フィルタ部および第2の吸光度測定部を通過する間に、試料水の濾過前の吸光度および濾過後の吸光度が測定され、濃度算出部によって溶解性鉄の濃度と懸濁態鉄の濃度を算出することができる。   According to this aspect, while passing through the first absorbance measurement unit, the filter unit, and the second absorbance measurement unit, the absorbance of the sample water before filtration and the absorbance after filtration are measured, and the concentration calculation unit analyzes the solubility. The concentration of iron and suspended iron can be calculated.

また、本発明の他の態様においては、試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第1のステップと、試料水をフィルタに通して懸濁態成分を濾過する第2のステップと、第2のステップにより濾過された試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第3のステップと、第1のステップにおいて測定された吸光度と、第3のステップにおいて測定された吸光度とに基づいて、懸濁態鉄の濃度を算出する第4のステップとを含む鉄分濃度測定方法を提供する。   In another aspect of the present invention, the first step of measuring the absorbance by irradiating the sample water with light having a wavelength of 360 nm to 380 nm, and the step of filtering the suspended component by passing the sample water through a filter. 2, a third step of measuring the absorbance by irradiating the sample water filtered in the second step with light having a wavelength of 360 nm to 380 nm, the absorbance measured in the first step, and a third And a fourth step of calculating the concentration of suspended iron based on the absorbance measured in the step.

本態様によれば、第1のステップにおいて、全鉄濃度に対応する吸光度を測定し、第2のステップにおいてフィルタにより懸濁態成分を除去し、第3のステップにおいて、溶解性鉄濃度に対応する吸光度を測定し、第4のステップにおいて2つの吸光度に基づいて懸濁態鉄の濃度を算出することができる。   According to this aspect, the absorbance corresponding to the total iron concentration is measured in the first step, the suspended component is removed by the filter in the second step, and the soluble iron concentration is corresponded in the third step. In the fourth step, the concentration of suspended iron can be calculated based on the two absorbances.

本発明によれば、水中に存在する全鉄、溶解性鉄および懸濁態鉄のそれぞれの濃度を、試薬を用いることなく、精度よく測定することができるという効果を奏する。   According to the present invention, there is an effect that the concentrations of total iron, soluble iron, and suspended iron existing in water can be accurately measured without using a reagent.

本発明の一実施形態に係る鉄分濃度測定装置を示すブロック図である。It is a block diagram which shows the iron concentration measuring apparatus which concerns on one Embodiment of this invention. 図1の鉄分濃度測定装置の吸光度測定部の一例を示す図である。It is a figure which shows an example of the light absorbency measurement part of the iron concentration measuring apparatus of FIG. 図1の鉄分濃度測定装置による鉄分濃度測定方法を説明するフローチャートである。It is a flowchart explaining the iron concentration measuring method by the iron concentration measuring apparatus of FIG. 図1の鉄分濃度測定装置の変形例を示すブロック図である。It is a block diagram which shows the modification of the iron concentration measuring apparatus of FIG. 図1の鉄分濃度測定装置の他の変形例を示すブロック図である。It is a block diagram which shows the other modification of the iron content concentration measuring apparatus of FIG.

本発明の一実施形態に係る鉄分濃度測定装置1および鉄分濃度測定方法について、図面を参照して以下に説明する。
本実施形態に係る鉄分濃度測定装置1は、例えば、給水経路Aを通じてボイラ装置(図示略)に供給される給水に含有される鉄分濃度を測定する装置であって、図1に示されるように、管路系2と、演算記憶部(濃度算出部)3と、表示部14とを備えている。
An iron concentration measuring apparatus 1 and an iron concentration measuring method according to an embodiment of the present invention will be described below with reference to the drawings.
The iron concentration measuring device 1 according to the present embodiment is a device that measures the iron concentration contained in the feed water supplied to the boiler device (not shown) through the feed water path A, for example, as shown in FIG. , A pipeline system 2, a calculation storage unit (concentration calculation unit) 3, and a display unit 14.

管路系2は、ボイラ装置への給水経路に接続する第1の流路4と、該第1の流路4からさらに分岐した後に第1の流路4に合流する第2の流路5と、第2の流路5に設けられたフィルタ部6と、第1の流路4と第2の流路5との合流位置の下流に配置された吸光度測定部7と、給水経路から流れてきた試料水の流れる流路を第1の流路4と第2の流路5とで切り替えるための2つのバルブ(流路切替部)8,9とを備えている。   The pipe line system 2 includes a first flow path 4 connected to a water supply path to the boiler device, and a second flow path 5 that further branches from the first flow path 4 and then merges with the first flow path 4. And a filter section 6 provided in the second flow path 5, an absorbance measurement section 7 arranged downstream of the joining position of the first flow path 4 and the second flow path 5, and a flow from the water supply path There are provided two valves (channel switching units) 8 and 9 for switching the channel through which the sample water flows between the first channel 4 and the second channel 5.

フィルタ部6は、メンブレンフィルタやカートリッジフィルタ等のフィルタ(図示略)を備えている。フィルタは交換可能であることが好ましい。フィルタの孔径を選択することで、濾過したい懸濁態鉄の粒径を絞り込むことができる。   The filter unit 6 includes a filter (not shown) such as a membrane filter or a cartridge filter. The filter is preferably replaceable. By selecting the pore size of the filter, the particle size of suspended iron to be filtered can be narrowed down.

吸光度測定部7は、図2に示されるように、流路を構成する管路7aの一部に設けられた透明な材質からなる窓部7bと、該窓部7bの位置において、管路7aを挟んで対向する位置に配置された発光部7cと受光部7dとを備えている。発光部7cは、例えば、発光ダイオードであり、波長360nm〜380nmの光を、窓部7bを介して管路7a内を流動する試料水に照射するようになっている。受光部7dは、例えば、フォトダイオードまたは光電子増倍管であり、発光部7cから発せられ、試料水を通過し、窓部7bを介して管路7a外に放出されてきた光の光量を検出するようになっている。   As shown in FIG. 2, the absorbance measuring unit 7 includes a window 7b made of a transparent material provided in a part of the pipe 7a constituting the flow path, and the pipe 7a at the position of the window 7b. The light-emitting part 7c and the light-receiving part 7d arrange | positioned in the position which opposes on both sides of is provided. The light emitting part 7c is, for example, a light emitting diode, and irradiates the sample water flowing in the pipe line 7a through the window part 7b with light having a wavelength of 360 nm to 380 nm. The light receiving unit 7d is, for example, a photodiode or a photomultiplier tube, and detects the amount of light emitted from the light emitting unit 7c, passing through the sample water, and emitted outside the pipe line 7a through the window 7b. It is supposed to be.

第1の流路4と第2の流路5との合流位置と吸光度測定部7との間には、標準液を吸光度測定部7に供給するためのポート10が配置されている。標準液は、既知濃度の鉄分を含有する液体である。鉄を鉄イオンの状態で溶存させるために、標準液は通常、酸性に維持されているが、pHの変化によって吸光度が異なるため、ポート10に供給する標準液としては、試料水と同等の中性となるようにpH6〜8に調節したものを使用する。   A port 10 for supplying the standard solution to the absorbance measuring unit 7 is disposed between the joining position of the first channel 4 and the second channel 5 and the absorbance measuring unit 7. The standard solution is a liquid containing a known concentration of iron. In order to dissolve iron in the state of iron ions, the standard solution is usually kept acidic. However, since the absorbance varies depending on the change in pH, the standard solution supplied to the port 10 is the same as the sample water. Use the one adjusted to pH 6-8 so as to be sex.

演算記憶部3は、ポート10から標準液を供給したときに吸光度測定部7の受光部7dにより受光された光量に基づき全鉄と溶解性鉄のそれぞれの検量線を作成して記憶するようになっている。   The arithmetic storage unit 3 creates and stores calibration curves for total iron and soluble iron based on the amount of light received by the light receiving unit 7d of the absorbance measuring unit 7 when the standard solution is supplied from the port 10. It has become.

演算記憶部3は、第1の流路4を通過した試料水を吸光度測定部7に供給した際に、受光部7dにより受光された光量と全鉄の検量線とに基づいて全鉄の濃度を算出するようになっている。また、演算記憶部3は、第2の流路5を通過した試料水を供給した際に受光部7dにより受光された光量と溶解性鉄の検量線とに基づいて溶解性鉄の濃度を算出するようになっている。さらに、演算記憶部3は、算出された全鉄の濃度から溶解性鉄の濃度を減算することにより、懸濁態鉄の濃度を算出するようになっている。   When the sample water that has passed through the first flow path 4 is supplied to the absorbance measurement unit 7, the calculation storage unit 3 is based on the amount of light received by the light receiving unit 7 d and the calibration curve of total iron. Is calculated. The arithmetic storage unit 3 calculates the concentration of soluble iron based on the amount of light received by the light receiving unit 7d and the calibration curve of soluble iron when the sample water that has passed through the second flow path 5 is supplied. It is supposed to be. Further, the calculation storage unit 3 calculates the concentration of suspended iron by subtracting the concentration of soluble iron from the calculated concentration of total iron.

表示部14は、例えば、モニタであって、演算記憶部3によって算出された全鉄濃度、溶解性鉄濃度および懸濁態鉄濃度をそれぞれ表示するようになっている。   The display unit 14 is, for example, a monitor, and displays the total iron concentration, the soluble iron concentration, and the suspended iron concentration calculated by the calculation storage unit 3, respectively.

このように構成された本実施形態に係る鉄分濃度測定装置1を用いた鉄分濃度測定方法について以下に説明する。
本実施形態に係る鉄分濃度測定方法は、ボイラに接続する給水経路から一部の水を試料水として第1の流路4に分岐して測定する方法である。
An iron concentration measuring method using the iron concentration measuring apparatus 1 according to the present embodiment configured as described above will be described below.
The iron concentration measurement method according to the present embodiment is a method in which a part of water is sampled as sample water from a water supply path connected to a boiler and is measured.

試料水の濃度測定に先立って、定期的にあるいは必要に応じて、吸光度測定部7の校正(検量線の作成)を行う。校正は、2つの流路4,5のバルブ8,9を閉止し、ポート10から、中性にpH調整された標準液を吸光度測定部7に供給する。そして、吸光度測定部7において、発光部7cから標準液に向けて波長370nm近傍の光を照射し、標準液を透過した光を受光部7dによって受光する。受光部7dから出力された電気信号を、演算記憶部3に送り、全鉄濃度の校正値として記憶する。これを濃度の異なる複数の標準液で行い、全鉄の検量線を作成する。標準液の濃度の1つはゼロでもよい。   Prior to measuring the concentration of the sample water, the absorbance measurement unit 7 is calibrated (preparation of a calibration curve) periodically or as necessary. In the calibration, the valves 8 and 9 of the two flow paths 4 and 5 are closed, and a standard solution whose pH is neutrally adjusted is supplied from the port 10 to the absorbance measurement unit 7. In the absorbance measurement unit 7, light having a wavelength of about 370 nm is irradiated from the light emitting unit 7c toward the standard solution, and the light transmitted through the standard solution is received by the light receiving unit 7d. The electric signal output from the light receiving unit 7d is sent to the calculation storage unit 3 and stored as a calibration value of the total iron concentration. This is performed with a plurality of standard solutions having different concentrations, and a calibration curve of total iron is prepared. One of the concentrations of the standard solution may be zero.

次に、第1の流路4のバルブ8を閉止し、第2の流路5のバルブ9を開放し、ポート10から標準液を第2の流路5に設けられたフィルタ部6に流し、フィルタ部6を透過した標準液を吸光度測定部7に導く。そして、吸光度測定部7において、発光部7cから試料水に向けて波長370nm近傍の光を照射し、透過した光を受光部7dによって受光する。受光部7dから出力された電気信号を、演算記憶部3に送り、溶解性鉄の校正値として記憶する。これを濃度の異なる複数の標準液で行い、溶解性鉄の検量線を作成する。標準液の濃度の1つはゼロでもよい。   Next, the valve 8 of the first flow path 4 is closed, the valve 9 of the second flow path 5 is opened, and the standard solution is allowed to flow from the port 10 to the filter unit 6 provided in the second flow path 5. Then, the standard solution that has passed through the filter unit 6 is guided to the absorbance measurement unit 7. In the absorbance measurement unit 7, light having a wavelength of about 370 nm is irradiated from the light emitting unit 7c toward the sample water, and the transmitted light is received by the light receiving unit 7d. The electric signal output from the light receiving unit 7d is sent to the calculation storage unit 3 and stored as a calibration value of soluble iron. This is performed with a plurality of standard solutions having different concentrations, and a calibration curve for soluble iron is prepared. One of the concentrations of the standard solution may be zero.

次いで、試料水の濃度測定を行う。
まず、図3に示されるように、第1の流路4のバルブ8を開放し、第2の流路5のバルブ9を閉止することにより、試料水を第1の流路4に導入し、吸光度測定部7に直接導く(ステップS1)。そして、吸光度測定部7において、発光部7cから試料水に向けて波長370nm近傍の光を照射し、透過した光を受光部7dによって受光する(ステップS2)。受光部7dから出力された電気信号は、演算記憶部3に送られ、前述の全鉄の検量線に基づいて演算され、全鉄濃度の測定値として記憶される(ステップS3)。
Next, the concentration of the sample water is measured.
First, as shown in FIG. 3, the sample water is introduced into the first flow path 4 by opening the valve 8 of the first flow path 4 and closing the valve 9 of the second flow path 5. Then, it is directly guided to the absorbance measurement unit 7 (step S1). Then, in the absorbance measurement unit 7, light having a wavelength of about 370 nm is irradiated from the light emitting unit 7c toward the sample water, and the transmitted light is received by the light receiving unit 7d (step S2). The electric signal output from the light receiving unit 7d is sent to the calculation storage unit 3, calculated based on the above-described calibration curve of total iron, and stored as a measurement value of the total iron concentration (step S3).

次に、第1の流路4のバルブ8を閉止し、第2の流路5のバルブ9を開放することにより、試料水を第2の流路5に設けられたフィルタ部6に流し、フィルタ部6を透過した試料水を吸光度測定部7に導く(ステップS4)。そして、吸光度測定部7において、発光部7cから試料水に向けて波長370nm近傍の光を照射し、透過した光を受光部7dによって受光する(ステップS5)。発光部7cから出力された電気信号は、演算記憶部3に送られ、前述の溶解性鉄の検量線に基づき演算され、溶解性鉄の濃度の測定値として記憶される(ステップS6)。   Next, by closing the valve 8 of the first flow path 4 and opening the valve 9 of the second flow path 5, the sample water is allowed to flow through the filter unit 6 provided in the second flow path 5, The sample water that has passed through the filter unit 6 is guided to the absorbance measurement unit 7 (step S4). Then, in the absorbance measurement unit 7, light having a wavelength of about 370 nm is irradiated from the light emitting unit 7c toward the sample water, and the transmitted light is received by the light receiving unit 7d (step S5). The electric signal output from the light emitting unit 7c is sent to the calculation storage unit 3, calculated based on the above-described soluble iron calibration curve, and stored as a measurement value of the concentration of soluble iron (step S6).

演算記憶部3においては、ステップS3で算出された全鉄濃度からステップS6で算出された溶解性鉄の濃度が減算されることにより、懸濁態鉄の濃度が算出される(ステップS7)。   In the operation storage unit 3, the concentration of suspended iron is calculated by subtracting the concentration of soluble iron calculated in step S6 from the total iron concentration calculated in step S3 (step S7).

このように、本実施形態に係る鉄分濃度測定装置1および鉄分濃度測定方法によれば、従来のように試薬を使用せずに済むので、環境に負荷をかけず、ランニングコストを低減することができるという利点がある。そして、従来、測定できなかった懸濁態鉄の濃度を溶解性鉄の濃度とともに精度よく測定することができるという利点がある。   As described above, according to the iron concentration measuring apparatus 1 and the iron concentration measuring method according to the present embodiment, it is not necessary to use a reagent as in the conventional case, so that it is possible to reduce the running cost without burdening the environment. There is an advantage that you can. And there exists an advantage that the density | concentration of suspended iron which could not be measured conventionally can be measured with a density | concentration of soluble iron accurately.

また、標準液として、既知濃度の鉄分を鉄イオンの状態で溶存させた液体をpH調整して中性にしたものを使用しているため、標準液中の鉄分は一部懸濁態として存在している。本実施形態によれば、そのような懸濁態を含む標準液であっても、含有される鉄分の全鉄濃度を、試薬を用いることなく連続的に精度よく検出することができ、さらに懸濁態鉄濃度と溶解性鉄濃度を測定することでボイラの供給水の除鉄プロセスの効率化を図ることができるという利点がある。   In addition, as a standard solution, a solution in which iron of a known concentration is dissolved in the state of iron ions is used to adjust the pH to neutral. Therefore, iron in the standard solution is partially suspended. doing. According to this embodiment, even in a standard solution containing such a suspended state, the total iron concentration of iron contained can be detected continuously and accurately without using a reagent. There is an advantage that the efficiency of the iron removal process of the boiler feed water can be improved by measuring the suspended iron concentration and the soluble iron concentration.

なお、本実施形態においては、第1の流路4と第2の流路5とを合流させて単一の吸光度測定部7において濾過前および濾過後の両方の試料水の吸光度を測定することとしたが、これに代えて、図4に示されるように、各流路に吸光度を測定する別個の吸光度測定部12,13を配置してもよい。   In the present embodiment, the first flow path 4 and the second flow path 5 are merged, and the absorbance of the sample water before and after filtration is measured in a single absorbance measurement unit 7. However, instead of this, as shown in FIG. 4, separate absorbance measuring units 12 and 13 for measuring the absorbance may be arranged in each channel.

また、本実施形態においては、各流路5,6への試料水の流れを切り替えるバルブ8,9を各流路5,6に設けることとしたが、これに代えて、三方弁によって流れを切り替えることにしてもよい。
また、図5に示されるように、孔径の異なるフィルタ6A,6Bを複数設置して、各フィルタ6a,6b透過毎に吸光度を測定することにしてもよい。すなわち、バルブ9および三方弁11を切り替えて試料水を透過させるフィルタ6A,6Bを切り替えることにより、吸光度測定部7において粒径別に懸濁態鉄を測定することができる。
In the present embodiment, the valves 8 and 9 for switching the flow of the sample water to the flow paths 5 and 6 are provided in the flow paths 5 and 6, but instead, the flow is caused by a three-way valve. You may decide to switch.
Further, as shown in FIG. 5, a plurality of filters 6A and 6B having different hole diameters may be installed, and the absorbance may be measured for each filter 6a and 6b transmitted. That is, by switching the filters 9A and 6B that allow the sample water to pass by switching the valve 9 and the three-way valve 11, the absorbance measurement unit 7 can measure suspended iron for each particle size.

1 鉄分濃度測定装置
3 演算記憶部(濃度算出部)
4 第1の流路
5 第2の流路
6 フィルタ部
6A,6B フィルタ
7,12,13 吸光度測定部
8,9 バルブ(流路切替部)
S2 第1のステップ
S4 第2のステップ
S5 第3のステップ
S7 第4のステップ
1 Iron Concentration Measuring Device 3 Operation Storage Unit (Concentration Calculation Unit)
4 First flow path 5 Second flow path 6 Filter section 6A, 6B Filter 7, 12, 13 Absorbance measurement section 8, 9 Valve (flow path switching section)
S2 1st step S4 2nd step S5 3rd step S7 4th step

Claims (4)

試料水に、波長360nm〜380nmの光を照射して吸光度を測定する吸光度測定部と、
該吸光度測定部により測定された吸光度に基づいて鉄分濃度を算出する濃度算出部と、
前記試料水から懸濁態成分を濾過するフィルタ部とを備え、
前記濃度算出部が、前記フィルタ部による濾過前の試料水について、前記吸光度測定部により測定された吸光度から全鉄分の濃度を算出し、前記フィルタ部による濾過後の試料水について、前記吸光度測定部により測定された吸光度から溶解性鉄の濃度を算出し、全鉄分の濃度から溶解性鉄の濃度を減算して懸濁態鉄の濃度を算出する鉄分濃度測定装置。
An absorbance measurement unit that measures absorbance by irradiating the sample water with light having a wavelength of 360 nm to 380 nm;
A concentration calculation unit for calculating an iron concentration based on the absorbance measured by the absorbance measurement unit;
A filter unit for filtering suspended components from the sample water,
The concentration calculator calculates the concentration of total iron from the absorbance measured by the absorbance measurement unit for the sample water before filtration by the filter unit, and the absorbance measurement unit for the sample water after filtration by the filter unit An iron concentration measuring device that calculates the concentration of soluble iron from the absorbance measured by the method, and calculates the concentration of suspended iron by subtracting the concentration of soluble iron from the concentration of total iron.
前記フィルタ部が孔径の異なる複数のフィルタを備え、
前記濃度算出部が、各前記フィルタを透過した後の試料水について、前記吸光度測定部により測定された吸光度から溶解性鉄の濃度をそれぞれ算出し、全鉄分の濃度から各溶解性鉄の濃度を減算して粒径別の懸濁態鉄の濃度を算出する請求項1に記載の鉄分濃度測定装置。
The filter unit includes a plurality of filters having different hole diameters,
The concentration calculation unit calculates the concentration of soluble iron from the absorbance measured by the absorbance measurement unit for each sample water after passing through each filter, and calculates the concentration of each soluble iron from the concentration of total iron. The iron concentration measuring apparatus according to claim 1, wherein the concentration of suspended iron for each particle size is calculated by subtraction.
試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第1の吸光度測定部と、
該第1の吸光度測定部を通過した試料水から懸濁態成分を濾過するフィルタ部と、
該フィルタ部を通過した濾過後の試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第2の吸光度測定部と、
前記第2の吸光度測定部により測定された濾過後の試料水の吸光度に基づいて、溶解性鉄の濃度を算出し、前記第1の吸光度測定部により測定された濾過後の試料水の吸光度と前記第2の吸光度測定部により測定された濾過前の試料水の吸光度とに基づいて、懸濁態鉄の濃度を算出する濃度算出部とを備える鉄分濃度測定装置。
A first absorbance measurement unit that measures absorbance by irradiating the sample water with light having a wavelength of 360 nm to 380 nm;
A filter unit for filtering suspended components from the sample water that has passed through the first absorbance measurement unit;
A second absorbance measuring unit that measures absorbance by irradiating light having a wavelength of 360 nm to 380 nm to the filtered sample water that has passed through the filter unit;
Based on the absorbance of the sample water after filtration measured by the second absorbance measurement unit, the concentration of soluble iron is calculated, and the absorbance of the sample water after filtration measured by the first absorbance measurement unit and An iron concentration measuring device comprising: a concentration calculating unit that calculates the concentration of suspended iron based on the absorbance of the sample water before filtration measured by the second absorbance measuring unit.
試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第1のステップと、
試料水をフィルタに通して懸濁態成分を濾過する第2のステップと、
第2のステップにより濾過された試料水に、波長360nm〜380nmの光を照射して吸光度を測定する第3のステップと、
第1のステップにおいて測定された吸光度と、第3のステップにおいて測定された吸光度とに基づいて、懸濁態鉄の濃度を算出する第4のステップとを含む鉄分濃度測定方法。
A first step of irradiating the sample water with light having a wavelength of 360 nm to 380 nm to measure absorbance;
A second step of passing sample water through a filter to filter suspended components;
A third step of measuring the absorbance by irradiating the sample water filtered by the second step with light having a wavelength of 360 nm to 380 nm;
An iron concentration measurement method, comprising: a fourth step of calculating a concentration of suspended iron based on the absorbance measured in the first step and the absorbance measured in the third step.
JP2012287411A 2012-12-28 2012-12-28 Device and method for measuring iron concentration Pending JP2014130055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287411A JP2014130055A (en) 2012-12-28 2012-12-28 Device and method for measuring iron concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287411A JP2014130055A (en) 2012-12-28 2012-12-28 Device and method for measuring iron concentration

Publications (1)

Publication Number Publication Date
JP2014130055A true JP2014130055A (en) 2014-07-10

Family

ID=51408562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287411A Pending JP2014130055A (en) 2012-12-28 2012-12-28 Device and method for measuring iron concentration

Country Status (1)

Country Link
JP (1) JP2014130055A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128435A (en) * 1989-10-13 1991-05-31 Mitsubishi Heavy Ind Ltd Method for measuring iron-component in water
JPH0416750A (en) * 1990-05-10 1992-01-21 Kyoto Denshi Kogyo Kk Method for measuring chromaticity of clean water
JPH0854339A (en) * 1994-08-10 1996-02-27 Fuji Electric Co Ltd Method and instrument for measuring chromaticity and turbidity of solvent containing colloidal matter
JP2002267595A (en) * 2001-03-07 2002-09-18 Dkk Toa Corp Small multi-component detector
JP2003035636A (en) * 2001-07-23 2003-02-07 Horiba Ltd Method and apparatus for analyzing particulate matter in engine exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128435A (en) * 1989-10-13 1991-05-31 Mitsubishi Heavy Ind Ltd Method for measuring iron-component in water
JPH0416750A (en) * 1990-05-10 1992-01-21 Kyoto Denshi Kogyo Kk Method for measuring chromaticity of clean water
JPH0854339A (en) * 1994-08-10 1996-02-27 Fuji Electric Co Ltd Method and instrument for measuring chromaticity and turbidity of solvent containing colloidal matter
JP2002267595A (en) * 2001-03-07 2002-09-18 Dkk Toa Corp Small multi-component detector
JP2003035636A (en) * 2001-07-23 2003-02-07 Horiba Ltd Method and apparatus for analyzing particulate matter in engine exhaust gas

Similar Documents

Publication Publication Date Title
CN105738287B (en) Water Test Kits
GB2426579B (en) Devices and methods for quantification of liquids in gas-condensate wells
CN105092504B (en) Extracorporeal body fluid purification apparatus and apparatus control method
CN106404681A (en) Water quality detection method and system
EP2960641B1 (en) Method for measuring dissolved-substance concentration
JP2007505680A (en) Apparatus, system and method related to hemodialysis, hemodiafiltration, hemofiltration or peritoneal dialysis
JP2012202887A (en) Analyzer
KR20200020947A (en) Optical detection of black powder concentrations in gas flow lines
CA2926202A1 (en) Multiple wavelength light source for colorimetric measurement
JP2018185257A (en) Water quality measurement device
KR101108561B1 (en) Apparatus for measuring pH by using absorptiometric analysis and measuring method using the same
JP2014130055A (en) Device and method for measuring iron concentration
JP2007085881A (en) Method and instrument for measuring concentration of component
JP2008057996A (en) Measuring method of concentration of component to be inspected in water to be measured
US11307138B2 (en) Testing method for residual organic compounds in a liquid sample
US10962463B2 (en) System and method for measuring dissolved metal concentrations using a chemosensor film
JP5637278B2 (en) Automatic measurement method of lysate concentration
CN209055455U (en) A kind of Ultraviolet Photometric Method COD online analyzer
JPS6038654B2 (en) Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
CN105300888B (en) A kind of on-line measurement device and its measurement method
JP6958636B2 (en) Water quality analyzer
JP2014163847A (en) Surface deposit measurement instrument
JP2002340787A (en) Apparatus for measuring absorbance
JP4204712B2 (en) Cation detection device, cation detection method, water treatment device, and ultrapure water production device
JP3216698U (en) Infrared gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228