JP2014129690A - Hydraulic pressure suppression method - Google Patents

Hydraulic pressure suppression method Download PDF

Info

Publication number
JP2014129690A
JP2014129690A JP2012288278A JP2012288278A JP2014129690A JP 2014129690 A JP2014129690 A JP 2014129690A JP 2012288278 A JP2012288278 A JP 2012288278A JP 2012288278 A JP2012288278 A JP 2012288278A JP 2014129690 A JP2014129690 A JP 2014129690A
Authority
JP
Japan
Prior art keywords
groundwater
hole
water
underground
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012288278A
Other languages
Japanese (ja)
Inventor
Yuki Yamada
祐樹 山田
Akira Yamamoto
山本  彰
Yoshihiko Morio
義彦 森尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012288278A priority Critical patent/JP2014129690A/en
Publication of JP2014129690A publication Critical patent/JP2014129690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an efficient decrease in water-level within a desired range with good workability.SOLUTION: A hole 110 linking the inside and outside of an underground structure such as an underground part 12 of an existing structure 10 to each other is formed in a region, for example, a floor slab 13 contacting underground water 5, of the underground part 12, and negative pressure is applied to the hole 110 by a vacuum pump 120 so as to make underground water 5 outside the underground structure flow into an underground space 15.

Description

本発明は、水圧抑制方法に関するものであり、具体的には、所望の範囲での効率的な水位低下を良好な施工性にて実現する技術に関する。   The present invention relates to a water pressure suppression method, and specifically relates to a technique for realizing efficient water level reduction in a desired range with good workability.

省資源などの環境配慮面や施工コスト削減、或いは狭小な施工領域への対応などの観点から、既存構造物のうち地上部分を解体し、地下部分のみ再利用する施工ニーズがある。そうした施工を、地下部分に被圧地下水が作用する構造物に対し実行すると、地上部分撤去後の構造物重量と、構造物に作用している水圧とがバランスしなくなり、構造物の地下部分にあたる床版や側壁に過大な応力が作用したり、浮き上がりを生じる可能性がある。このような、地下水圧により生じる構造物の損傷や浮き上がり等の問題に対処する技術としては、以下のような技術が提案されている。   From the viewpoints of environmental considerations such as resource saving, construction cost reduction, and response to narrow construction areas, there is a construction need to dismantle the ground part of existing structures and reuse only the underground part. If such construction is performed on a structure in which pressurized groundwater acts on the underground part, the weight of the structure after removal of the ground part and the water pressure acting on the structure will not be balanced, and this will correspond to the underground part of the structure. Excessive stress may act on the floor slab and side walls, and it may cause lifting. The following techniques have been proposed as a technique for coping with such problems such as structural damage and floating caused by groundwater pressure.

すなわち、地中構造物において、床版の底面から地中構造物内空へと貫通する孔を設け、この孔を通じて自噴する地下水を地中構造物内空に導いて、床版直下の地下水位を低下させる排水装置(特許文献1参照)などが提案されている。また、地中構造物周囲の地盤に所定間隔で集水箇所すなわちウェルポイントを設置し、ウェルポイントをつなぐ配管を介して真空ポンプによる吸引動作を行い、地下水を揚水して地中構造物周囲の地下水位を低下させるウェルポイント工法の技術も従来から提案されている。   That is, in the underground structure, a hole penetrating from the bottom of the floor slab to the interior of the underground structure is provided, and the groundwater level that is directly below the floor slab is guided by guiding the groundwater that self-injects through the hole to the interior of the underground structure. There has been proposed a drainage device (see Patent Document 1) or the like that lowers water. In addition, water collection points, that is, well points, are installed at predetermined intervals on the ground around the underground structure, and a suction operation is performed by a vacuum pump through a pipe connecting the well points, and groundwater is pumped up to surround the underground structure. Conventionally, a well point technique for lowering the groundwater level has also been proposed.

特開平11−303115号公報JP-A-11-303115

従来技術のごとく、床版に形成した孔を介し、被圧で自噴する地下水を取り込む手法を採用した場合、地下水位を低下させられる深度は、最大でも孔の位置する床版直下までであり、それ以上の地下水位低下を図ることは出来ない。また、床版直下まで地下水位を低下出来る範囲は、孔のごく近傍のみとなる。従って、対象となる地中構造物の仕様によっては、地下水圧による損傷や浮き上がり等の影響を回避しきれないことも懸念される。また、多くの地下水を導いて十分に地下水位を低下させるべく、上述の孔の径を拡大すると、床版における該当箇所周辺の強度低下も大きくなり、その後の補修作業等の手間やコストが増大する。また、大径の孔形成には大型機材が必要となり、地下の限られた空間における機材搬入や施工領域の確保の点でも問題がある。   As in the prior art, when adopting a method to take in groundwater that is self-jetting under pressure through a hole formed in the floor slab, the depth at which the groundwater level can be lowered is up to directly below the floor slab where the hole is located, The groundwater level cannot be lowered further. Moreover, the area where the groundwater level can be lowered to just below the floor slab is only in the vicinity of the hole. Therefore, depending on the specifications of the target underground structure, there is a concern that the effects of damage and floating due to groundwater pressure cannot be avoided. In addition, if the diameter of the above-mentioned hole is enlarged in order to sufficiently reduce the groundwater level by guiding a lot of groundwater, the decrease in strength around the relevant part of the floor slab also increases, increasing the labor and cost of subsequent repair work, etc. To do. In addition, large-scale equipment is required to form a large-diameter hole, and there are problems in terms of carrying in equipment in a limited underground space and securing a construction area.

一方、ウェルポイント工法を採用する場合、止水壁外側から真空ポンプを利用して強制的な揚水を行うため、揚水量が多くなりがちで、地中構造物周囲の地下水位を必要以上に低下させてしまう恐れもある。更に、ウェルポイント工法を施工する際には、地中のウェルポイントに至る多くの配管を並列配置し、これを吸引する大型のポンプ類を接続した一連のシステムを導入する必要があり、施工領域が狭小な都市部に適用することが難しいといった課題もある。   On the other hand, when the well point method is adopted, forced pumping is performed from the outside of the water blocking wall using a vacuum pump, so the amount of pumping tends to increase, and the groundwater level around the underground structure is unnecessarily lowered. There is also a risk of letting you. Furthermore, when constructing the well point method, it is necessary to introduce a series of systems in which a large number of pipes leading to the well point in the ground are arranged in parallel and connected to large-scale pumps for sucking them. However, it is difficult to apply to small urban areas.

そこで本発明では、所望の範囲での効率的な水位低下を良好な施工性にて実現する技術の提供を目的とする。   Therefore, an object of the present invention is to provide a technique for realizing efficient water level reduction within a desired range with good workability.

上記課題を解決する本発明の水圧抑制方法は、地下構造物のうち地下水に接する部位に、地下構造物内外を連通する孔を形成し、真空ポンプにより前記孔に負圧をかけて、地下構造物外側の地下水を地下構造物内空に流入させることを特徴とする。これによれば、構造物の床版や側壁等に設けた小径の孔と真空ポンプの組合せというシンプルで小規模な機材構成で所望の排水作業が実行でき、施工空間が限定的となりやすい地下構造物においても良好な施工性を達成できる。   The water pressure suppression method of the present invention that solves the above problems is to form a hole communicating with the inside and outside of the underground structure in a portion in contact with the ground water in the underground structure, and apply a negative pressure to the hole with a vacuum pump to It is characterized in that groundwater outside the object flows into the underground structure. According to this structure, the desired drainage work can be performed with a simple and small-scale equipment configuration consisting of a small-diameter hole provided in the floor slab or side wall of the structure and a vacuum pump, and the construction space is likely to be limited. Good workability can be achieved even for objects.

また、孔から地下構造物内空に自噴してくる地下水に加え、孔にかかった真空ポンプ由来の負圧によって地下構造物内空に向け吸引される地下水も排水されることになる。そのため、床版直下のごく狭い範囲のみ水位低下がなされるのではなく、真空ポンプが生み出す負圧の大きさ(真空度)に応じて、床版直下から相応の深度の地下水まで吸引し、それにつれて適切な範囲の地下水の排水を行うことができる。   Further, in addition to the groundwater that is spontaneously jetted from the hole into the underground structure, the groundwater that is sucked into the underground structure by the negative pressure derived from the vacuum pump applied to the hole is also drained. Therefore, the water level is not lowered only in a very narrow range directly under the floor slab, but it is drawn from the floor slab directly to the groundwater at an appropriate depth according to the magnitude of the negative pressure (vacuum level) generated by the vacuum pump. As a result, it is possible to drain the appropriate range of groundwater.

よって、真空ポンプが発生する負圧を調整するなどして所望範囲での地下水の排水が可能となり、ひいては地下構造物にかかる水圧を確実かつ効率的に抑制出来る。こうして真空ポンプを制御し、対象となる地下構造物に関して効率的な水圧抑制を行えることで、周辺環境にて不要な地下水位低下が発生する事態も回避出来る。   Therefore, it becomes possible to drain groundwater in a desired range by adjusting the negative pressure generated by the vacuum pump, and thus the water pressure applied to the underground structure can be reliably and efficiently suppressed. By controlling the vacuum pump in this way and efficiently suppressing water pressure with respect to the target underground structure, it is possible to avoid a situation where unnecessary groundwater level drop occurs in the surrounding environment.

また、床版や側壁に設ける上述の孔およびその周囲に配置した真空ポンプは、地盤中の地下水位とほぼ同じ深度に位置しており、その場合に真空ポンプが発生させる負圧は、大きな損失無く孔の内空を吸引し、効率良く排水が行われることになる。従って、ウェルポイント工法のように、地表面から長い距離を経て吸引動作を行うために負圧がロスし、効率的な排水ひいては水圧抑制がなされないといった問題は生じない。   Moreover, the above-mentioned hole provided in the floor slab and the side wall and the vacuum pump arranged around the hole are located at substantially the same depth as the groundwater level in the ground. In that case, the negative pressure generated by the vacuum pump is a large loss. Without emptying the inside of the hole, drainage is efficiently performed. Therefore, unlike the well point method, there is no problem that the negative pressure is lost because the suction operation is performed over a long distance from the ground surface, and efficient drainage and thus the water pressure is not suppressed.

従って本発明によれば、所望の範囲での効率的な水位低下を良好な施工性にて実現可能となる。   Therefore, according to the present invention, it is possible to achieve efficient water level reduction within a desired range with good workability.

なお、上述の水圧抑制方法において、孔から所定深度の地層に至る井戸を削孔し、真空ポンプにより孔に負圧をかけ、井戸を介して集水した地下構造物外側の地下水を地下構造物内空に流入させるとしてもよい。これによれば、必要な地下水位低下量に応じた深度に達する小口径の自噴井戸(例えばリリーフウェル)と、真空ポンプを組み合わせて用いることで、井戸を通じて帯水層から効率的な集水がなされると共に、孔を通じて井戸に負圧をかけて井戸の集水能力を更に高め、効率的な排水と水圧抑制を行うことが出来る。   In the water pressure suppression method described above, the well from the hole to the formation at a predetermined depth is drilled, the negative pressure is applied to the hole by a vacuum pump, and the groundwater outside the underground structure collected through the well is subsurface. It may be allowed to flow into the interior. According to this, by using a small-diameter self-injection well (for example, a relief well) that reaches a depth corresponding to the required groundwater level drop and a vacuum pump, efficient water collection from the aquifer through the well is achieved. At the same time, negative pressure can be applied to the well through the hole to further increase the water collection capacity of the well, thereby efficiently draining water and suppressing water pressure.

また、上述の水圧抑制方法において、上述の孔に連結した配管を所定容器の内空に接続し、当該所定容器の内空を真空ポンプで減圧することで、孔ないし井戸を介して集水した地下構造物外側の地下水を所定容器内に排出させ、当該所定容器内に排出された地下水を水中ポンプで排水する、としてもよい。これによれば、真空ポンプで発生させた負圧を、小径の孔より大きな容積の容器に作用させ、この容器を介して孔にかかる負圧の変動を低減し安定的なものと出来る。そのため、孔を介して地下から揚水する地下水の量も安定する。   Further, in the above-described water pressure suppression method, the pipe connected to the above-mentioned hole is connected to the inner space of the predetermined container, and the inner space of the predetermined container is decompressed with a vacuum pump, thereby collecting water through the hole or the well. The groundwater outside the underground structure may be discharged into a predetermined container, and the groundwater discharged into the predetermined container may be drained with a submersible pump. According to this, the negative pressure generated by the vacuum pump can be applied to a container having a larger volume than the small-diameter hole, and the fluctuation of the negative pressure applied to the hole via this container can be reduced and stabilized. Therefore, the amount of groundwater pumped from the underground through the hole is also stabilized.

また、上述の水圧抑制方法において、所定容器内を堰板で区画し、第1の区画に配管を接続して地下水を排出させ、当該区画から堰板を越流し第2の区画に流れ込んだ地下水を、水中ポンプで排水する、としてもよい。これによれば、容器内に排出された地下水が堰板を境とする区画内に貯留され、区画内を満たして堰板から越流した分のみが地表に排水されることになる。よって、配管が導かれた区画内では水面が一定に保たれ、容器内空の容積も一定となり、容器内空に負圧を安定的にかけることができる。よって、揚水する地下水の量も安定する。   Further, in the above-described water pressure suppression method, the inside of the predetermined container is partitioned by a dam plate, a pipe is connected to the first partition, the ground water is discharged, and the ground water flows into the second partition after overflowing the dam plate from the partition. It is good also as draining with a submersible pump. According to this, the groundwater discharged | emitted in the container is stored in the division which uses a dam plate as a boundary, and only the part which filled the inside of a division and overflowed from the dam plate will be drained to the ground surface. Therefore, the water surface is kept constant in the section where the pipe is guided, the volume of the container inner space is also constant, and a negative pressure can be stably applied to the container inner space. Therefore, the amount of groundwater to be pumped is also stabilized.

また、上述の水圧抑制方法において、所定容器内における第1の区画を複数に区画し、区画毎に配管を接続して、各々の配管から、当該配管が接続された該当区画に地下水を流入させ、各区画から堰板を越流し第1の区画共通の第2の区画に流れ込んだ地下水を水中ポンプで排水するとしてもよい。これによれば、複数の孔ないし井戸から集水した地下水を、各配管を通じて容器内の各区画(分割された第1の区画)に導いて区画毎に貯留し、地下水で満たされたいずれかの区画から堰板を越えて越流した分の地下水のみが、容器内における第2の区画(各配管で共有する1区画)で集められ、この区画に配置した水中ポンプで地表に排水されることになる。よって、各孔や井戸の配管が導かれた各区画内では、孔や井戸毎の集水速度に相違があっても水面が一定に保たれて、容器内空の容積も一定となり、容器内空に負圧を安定的にかけることができる。よって、複数の孔や井戸から集水し、これを地表に揚水する地下水の量も安定しやすくなる。   Further, in the above-described water pressure suppression method, the first compartment in the predetermined container is divided into a plurality of sections, pipes are connected to the sections, and groundwater is caused to flow from each pipe into the corresponding section to which the pipe is connected. The groundwater that has overflowed the dam plate from each section and has flowed into the second section common to the first section may be drained by a submersible pump. According to this, groundwater collected from a plurality of holes or wells is guided to each section (first divided section) in the container through each pipe, stored in each section, and filled with groundwater. Only the groundwater that overflows from the section above the weir plate is collected in the second section (one section shared by each pipe) in the container and drained to the surface by the submersible pump placed in this section. It will be. Therefore, in each section where the piping of each hole or well is led, even if there is a difference in the water collection speed for each hole or well, the water surface is kept constant, the volume of the container empty space is also constant, Negative pressure can be stably applied to the sky. Therefore, the amount of groundwater collected from a plurality of holes and wells and pumped to the ground surface can be easily stabilized.

本発明によれば、所望の範囲での効率的な水位低下を良好な施工性にて実現可能となる。   According to the present invention, it is possible to achieve efficient water level reduction in a desired range with good workability.

第1実施形態における水圧抑制方法の適用例を示す図である。It is a figure which shows the example of application of the water pressure suppression method in 1st Embodiment. 第2実施形態における水圧抑制方法の適用例を示す図である。It is a figure which shows the example of application of the water pressure suppression method in 2nd Embodiment. 減圧容器の構造例1を示す図である。It is a figure which shows the structural example 1 of a pressure reduction container. 減圧容器の構造例2を示す図である。It is a figure which shows the structural example 2 of a pressure reduction container.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は第1実施形態における水圧抑制方法の適用例を示す図である。ここでは、既存構造物10のうち地上部分11を解体し、地下部分12のみ再利用する工事が実施される状況において、地下部分12の少なくとも底面が、地盤2中で地下水5が存在する帯水層1に位置しており、その水圧抑制を図る例について説明する。勿論、既存の構造物の地下部分のみならず、新たに構築中の構造物における地下部分について水圧抑制方法を適用するとしてもよい。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing an application example of the water pressure suppression method in the first embodiment. Here, in the situation where the ground portion 11 of the existing structure 10 is dismantled and only the underground portion 12 is reused, at least the bottom surface of the underground portion 12 is aquifer where groundwater 5 exists in the ground 2. The example which is located in the layer 1 and suppresses the water pressure will be described. Of course, the water pressure suppression method may be applied not only to the underground portion of the existing structure but also to the underground portion of the newly constructed structure.

既存構造物10の地下部分12は、床版13と、この床版13の側部から連続して上方に立ち上がる側壁14とから構成されている。また、床版13周囲の地盤2には、当該地下部分12の構築時に、地盤2を開削しドライな施工領域を確保するために施工した止水・山留壁50が残されている。   The underground portion 12 of the existing structure 10 is composed of a floor slab 13 and a side wall 14 that rises continuously from the side of the floor slab 13. In addition, on the ground 2 around the floor slab 13, the water stop / mountain wall 50 constructed to excavate the ground 2 and secure a dry construction area when the underground portion 12 is constructed is left.

第1実施形態における水圧抑制方法においては、図1に示すように、止水・山留壁50の内側領域にある床版13に小径の孔110を設け、この孔110と連結した真空ポンプ120を稼働させ、帯水層1の地下水5の排水を行うこととなる。   In the water pressure suppression method in the first embodiment, as shown in FIG. 1, a small diameter hole 110 is provided in the floor slab 13 in the inner region of the water stop / mountain wall 50, and a vacuum pump 120 connected to the hole 110. The groundwater 5 of the aquifer 1 is drained.

孔110は、床版13直下の地盤2と床版13上の地下空間15とを連通すべく、床版13をコアリングして形成したものであり、その上部開口には適宜なバルブ機構113が気密に固定されている。なお、側壁14に水圧が作用している状況であれば、側壁14に孔110とこれに付帯するバルブ機構113を設けるとしてもよい。   The hole 110 is formed by coring the floor slab 13 so that the ground 2 directly below the floor slab 13 and the underground space 15 on the floor slab 13 are communicated with each other. Is airtightly fixed. If water pressure is applied to the side wall 14, the side wall 14 may be provided with a hole 110 and a valve mechanism 113 attached thereto.

バルブ機構113は、地下空間15に設置された減圧容器122に連結された配管121を有している。この配管121は、バルブ機構113の内空114を介して、孔110の内空111と減圧容器122とを連通させた配管となる。孔110からの排水作業が不要な場合には、バルブ機構113のバルブを閉塞すると、孔110と配管121との間が気密および水密に遮断されることになる。   The valve mechanism 113 has a pipe 121 connected to a decompression vessel 122 installed in the underground space 15. The pipe 121 is a pipe in which the inner space 111 of the hole 110 communicates with the decompression vessel 122 through the inner space 114 of the valve mechanism 113. When the drainage operation from the hole 110 is not necessary, the valve of the valve mechanism 113 is closed, and the hole 110 and the pipe 121 are shut off in an airtight and watertight manner.

配管121が連結された減圧容器122は、一定強度を備えた密閉容器であり、配管121の他に、真空ポンプ120が接続されている。なお、真空ポンプ120は、バルブ機構113が開いた状態で連結された孔110に負圧を作用させる装置となる。また、減圧容器122の内空123には、孔110および配管121を介して排出された地下水5を貯める貯水容器124と、この貯水容器124に貯まった地下水5を地表3に排水するための水中ポンプ118も設置されている。   The decompression container 122 connected to the pipe 121 is a sealed container having a certain strength, and a vacuum pump 120 is connected in addition to the pipe 121. The vacuum pump 120 is a device that applies a negative pressure to the hole 110 connected in a state where the valve mechanism 113 is open. Further, in the inner space 123 of the decompression container 122, a water storage container 124 for storing the groundwater 5 discharged through the hole 110 and the pipe 121 and a water for draining the groundwater 5 stored in the water storage container 124 to the ground surface 3 are stored. A pump 118 is also installed.

上述のような構成を備えて、帯水層1に底面を接している床版13には、地下水5の上向きの水圧がかかっているため、これを開放しようとする孔110には、帯水層1から自ずと地下水5が流れ込み、バルブ機構113が開いた状態であれば配管121を通じて地下空間15(の貯水容器124)に地下水5の自噴が生じる。このように孔110から自噴する地下水5の量は、地下空間15での大気圧と、床版13直下に作用する水圧との差に応じたものになる。そのため、減圧容器122やバルブ機構113を介して孔110に連結された真空ポンプ120を稼働させ、孔110の内空111およびバルブ機構113の内空114、配管121、更には減圧容器122の内空123を吸引し、その負圧を高める。すると、真空ポンプ120の吸引に応じて相応の負圧となった内空111、114や減圧容器122の内空123らは、地盤2中の地下水5の水圧との圧力差が大きくなり、従って、帯水層1中の、より広範な範囲の地下水5が孔110を介して減圧容器122の内空123に引き込まれることになる。   The floor slab 13 having the above-described configuration and in contact with the bottom surface of the aquifer 1 is subjected to upward water pressure on the ground water 5. If the groundwater 5 naturally flows from the layer 1 and the valve mechanism 113 is opened, the groundwater 5 is self-injected into the underground space 15 (the water storage container 124) through the pipe 121. In this way, the amount of the groundwater 5 jetted from the hole 110 is in accordance with the difference between the atmospheric pressure in the underground space 15 and the water pressure acting directly below the floor slab 13. Therefore, the vacuum pump 120 connected to the hole 110 via the decompression container 122 and the valve mechanism 113 is operated, and the inner space 111 of the hole 110, the inner space 114 of the valve mechanism 113, the pipe 121, and further the inside of the decompression container 122. The air 123 is sucked and its negative pressure is increased. Then, the internal airs 111 and 114 and the internal air 123 of the decompression vessel 122, which have a corresponding negative pressure according to the suction of the vacuum pump 120, have a large pressure difference from the water pressure of the groundwater 5 in the ground 2, and accordingly. A wider range of groundwater 5 in the aquifer 1 is drawn into the inner space 123 of the decompression vessel 122 through the hole 110.

これにより、孔110を介して地下空間15に自噴してくる地下水5に加え、孔110に作用した負圧によって吸引される地下水5も地下空間15(の減圧容器122の内空123)に導かれ、これら地下水5が合わせて貯水容器124に蓄えられることになる。この地下水5は水中ポンプ118により地表3に排水される。   As a result, in addition to the groundwater 5 self-injecting into the underground space 15 through the hole 110, the groundwater 5 sucked by the negative pressure acting on the hole 110 is also introduced into the underground space 15 (the inner space 123 of the decompression vessel 122). These groundwaters 5 are stored in the water storage container 124 together. This groundwater 5 is drained to the surface 3 by a submersible pump 118.

なお、こうした孔110の内空111等に負圧を作用させる真空ポンプ120は、上述のように、床版13上に配置されており、床版13直下の地下水位と近しい深度に位置している。そのため、真空ポンプ120が発生させる負圧は、大きな損失無く孔110の内空111等を吸引し、効率良く地下水5の排水が行われることになる。従って、ウェルポイント工法のように、地表面3から長い距離を経て、更には止水・山留め壁50を越えて床版13直下の地下水5の吸引動作を行い、そのために負圧がロスし、効率的な排水ひいては水圧抑制がなされないといった問題は生じない。   Note that the vacuum pump 120 that applies a negative pressure to the inner space 111 of the hole 110 is disposed on the floor slab 13 as described above, and is located at a depth close to the groundwater level directly below the floor slab 13. Yes. Therefore, the negative pressure generated by the vacuum pump 120 sucks the inner space 111 and the like of the hole 110 without a large loss, and drains the groundwater 5 efficiently. Therefore, as in the well point method, the suction operation of the groundwater 5 directly under the floor slab 13 is performed after passing a long distance from the ground surface 3 and further over the water stop / mounting wall 50, so that the negative pressure is lost. There is no problem of efficient drainage and therefore no suppression of water pressure.

また、床版13にかかる水圧が想定される適正範囲に減少するよう、床版13に生じた応力等の各種観測値の大小或いは変化速度などに応じて、真空ポンプ120の出力を制御し、発生させる負圧の大きさを調整しつつ、地下水5の排水を行うとすれば好適である。これにより、既存構造物10の地下部分12にかかる水圧を確実かつ効率的に抑制出来る。加えて、このように真空ポンプ120を制御し、対象となる既存構造物10の地下部分12に関して無駄のない水圧抑制を行えることで、過大な排水による不適切な地下水位低下が周辺環境に発生することを回避することも出来る。   Further, the output of the vacuum pump 120 is controlled in accordance with the magnitude or rate of change of various observation values such as stress generated in the floor slab 13 so that the water pressure applied to the floor slab 13 is reduced to an appropriate range assumed. It is preferable to drain the groundwater 5 while adjusting the magnitude of the negative pressure to be generated. Thereby, the water pressure concerning the underground part 12 of the existing structure 10 can be suppressed reliably and efficiently. In addition, since the vacuum pump 120 is controlled in this way and the water pressure can be suppressed with respect to the underground portion 12 of the target existing structure 10, an inappropriate groundwater level drop due to excessive drainage occurs in the surrounding environment. You can avoid doing that.

こうした効果は、床版13や側壁14に設けた小径の孔110とバルブ機構113、減圧容器122、真空ポンプ120、および水中ポンプ118等の組合せという、ごくシンプルで小規模な装置構成で達成されるものであり、施工空間が限定的となりやすい地下空間15においても良好な施工性を達成できることになる。   Such an effect is achieved with a very simple and small-scale apparatus configuration including a combination of a small-diameter hole 110 provided in the floor slab 13 and the side wall 14 and a valve mechanism 113, a decompression vessel 122, a vacuum pump 120, a submersible pump 118, and the like. Therefore, good workability can be achieved even in the underground space 15 where the construction space tends to be limited.

また、真空ポンプ120で発生した負圧は、小径の孔110やバルブ機構113よりも大きな容積の減圧容器122に作用することになり、この減圧容器122を介して孔110にかかる負圧が、孔110に直接作用する場合よりも安定しやすい。そのため、自噴井戸130や孔110を介して帯水層1から揚水する地下水5の水量も安定する。   Further, the negative pressure generated by the vacuum pump 120 acts on the decompression vessel 122 having a larger volume than the small-diameter hole 110 and the valve mechanism 113, and the negative pressure applied to the hole 110 via the decompression vessel 122 is It is easier to be stable than when acting directly on the hole 110. Therefore, the amount of groundwater 5 pumped from the aquifer 1 through the self-injection well 130 and the hole 110 is also stabilized.

続いて、上述した水圧抑制方法において、孔110下方の地盤2中に自噴井戸130を更に設けた第2実施形態について説明する。図2は第2実施形態における水圧抑制方法の適用例を示す図である。第2実施形態における自噴井戸130は、第1実施形態で説明した孔110の下部開口と連続し、床版13直下から地盤2中の帯水層1に達する小口径の井戸であり、具体的にはリリーフウェルを採用できる。この自噴井戸130は、地盤2を帯水層1まで削孔して井戸孔131を形成し、この井戸孔131に井戸管132を挿入し、その後、井戸管132の外周と井戸孔131の壁面との間を砂礫等のフィルター材133で間詰めすることで構築する。井戸管132のうち、少なくとも帯水層1の深度に対応した部位についてはスクリーンとなっており、帯水層1からフィルター材133を介して井戸管132の内空135に流入してくる地下水5のフィルタリングがなされる。   Subsequently, a second embodiment in which a self-injection well 130 is further provided in the ground 2 below the hole 110 in the above-described water pressure suppression method will be described. FIG. 2 is a diagram illustrating an application example of the water pressure suppression method in the second embodiment. The self-injection well 130 in the second embodiment is a small-diameter well that is continuous with the lower opening of the hole 110 described in the first embodiment and reaches the aquifer 1 in the ground 2 from directly below the floor slab 13. Relief wells can be used. In this self-injection well 130, the ground 2 is drilled to the aquifer 1 to form a well hole 131, a well pipe 132 is inserted into the well hole 131, and then the outer periphery of the well pipe 132 and the wall surface of the well hole 131 are formed. It is constructed by stuffing with a filter material 133 such as sand gravel. A portion of the well pipe 132 corresponding to at least the depth of the aquifer 1 is a screen, and the groundwater 5 flowing from the aquifer 1 into the inner space 135 of the well pipe 132 through the filter material 133. Is filtered.

こうした構成において、真空ポンプ120により、減圧容器122およびバルブ機構113等を介して孔110に負圧をかけると、この負圧が、孔110の内空111を通じて、自噴井戸130における井戸管132の内空135に作用する。負圧が作用した内空135は、帯水層1の地下水5の水圧との圧力差が大きくなり、従って、帯水層1の地下水5がフィルター材133およびスクリーンを介して引き込まれることになる。真空ポンプ120により十分な負圧がかけられているため、井戸管132内空135の地下水5は上昇し、自噴井戸130と上部で連結する孔110および配管121を介して地下空間15の貯水容器124まで導かれ、水中ポンプ118で排水される。このような、帯水層1に達して、地下水5を直接的に集水できる自噴井戸130を孔110の直下に形成し用いることで、結果として効率的な排水と水圧抑制を行うことが出来る。   In such a configuration, when a negative pressure is applied to the hole 110 by the vacuum pump 120 via the decompression vessel 122, the valve mechanism 113, and the like, this negative pressure is passed through the inner space 111 of the hole 110 and the well pipe 132 in the self-injection well 130 It acts on the inner space 135. The inner space 135 in which the negative pressure is applied has a large pressure difference from the water pressure of the groundwater 5 of the aquifer 1, and therefore the groundwater 5 of the aquifer 1 is drawn through the filter material 133 and the screen. . Since sufficient negative pressure is applied by the vacuum pump 120, the groundwater 5 in the well 135 inside the well 135 rises, and the water storage container in the underground space 15 through the hole 110 and the pipe 121 connected to the self-injection well 130 at the top. It is led to 124 and drained by the submersible pump 118. By forming and using the self-injection well 130 that can reach the aquifer 1 and collect the groundwater 5 directly under the hole 110, as a result, efficient drainage and water pressure suppression can be performed. .

続いて、上述の孔110や自噴井戸130に負圧を作用させるための、より具体的な手法について図3に基づき説明する。図3は減圧容器122の構造例1を示す図である。ここでは、上述した減圧容器122の内空123を堰板126で区画した構成にて水圧抑制を行う例を示す。この例において、減圧容器122は、その内空123が堰板126で2つに区画されている。区画127(第1の区画)には、バルブ機構113の配管121が接続されている。また、区画128(第2の区画)には水中ポンプ118が設置されている。   Next, a more specific method for applying a negative pressure to the hole 110 and the self-injection well 130 will be described with reference to FIG. FIG. 3 is a diagram illustrating a first structural example of the decompression vessel 122. Here, an example in which water pressure suppression is performed in a configuration in which the inner space 123 of the decompression vessel 122 described above is partitioned by a weir plate 126 is shown. In this example, the decompression vessel 122 has an inner space 123 divided into two by a dam plate 126. A pipe 121 of the valve mechanism 113 is connected to the section 127 (first section). A submersible pump 118 is installed in the section 128 (second section).

真空ポンプ120を稼働させると、減圧容器122の内空123が減圧され、配管121を介して、バルブ機構113の内空114、および孔110の内空111、自噴井戸130に負圧が作用する。すると、上述した第1、第2実施形態の場合と同様に、地下水5が配管121を通って減圧容器122の内空123に導かれる。配管121を通って内空123に入った地下水5は、配管121の先端から区画127に流入する。こうした配管121からの地下水5の流入が一定時間続くと、区画127は地下水5で満たされ、区画127の容積を越えた分の地下水5は堰板126を越流することになる。堰板126を越流した地下水5は、区画128に流れ込み、水中ポンプ118で地表3に排水される。   When the vacuum pump 120 is operated, the inner space 123 of the decompression vessel 122 is depressurized, and negative pressure acts on the inner space 114 of the valve mechanism 113, the inner space 111 of the hole 110, and the self-injection well 130 via the pipe 121. . Then, similarly to the case of the first and second embodiments described above, the groundwater 5 is guided to the inner space 123 of the decompression vessel 122 through the pipe 121. The groundwater 5 that has entered the inner space 123 through the pipe 121 flows into the section 127 from the tip of the pipe 121. When the inflow of the groundwater 5 from the pipe 121 continues for a certain time, the section 127 is filled with the groundwater 5, and the groundwater 5 exceeding the capacity of the section 127 overflows the weir plate 126. The groundwater 5 that has overflowed the weir plate 126 flows into the section 128 and is drained to the ground surface 3 by the submersible pump 118.

減圧容器122の内空123をこのような構成とすることで、配管121が接続された区画127において、一定時間経過後は地下水5で満水状態となり、その結果、水位が一定に保たれることとなり、ひいては減圧容器122の内空123の容積も一定となって、内空123に対してかかる負圧が安定的となる。よって、帯水層1から揚水し、排水する地下水5の量も安定する。   By configuring the inner space 123 of the decompression vessel 122 in such a configuration, in the section 127 to which the pipe 121 is connected, the ground water 5 is filled with water after a certain period of time, and as a result, the water level is kept constant. As a result, the volume of the inner air 123 of the decompression vessel 122 is also constant, and the negative pressure applied to the inner air 123 becomes stable. Therefore, the amount of groundwater 5 pumped from the aquifer 1 and drained is also stabilized.

上述の説明では配管121が1本である状況に対応した例を示したが、複数の配管121からの地下水5を処理する状況が生じる場合もある。そこで、減圧容器122の内空123を堰板126で適宜区画して、複数の配管121からの地下水5も処理出来る形態について以下説明する。図4は減圧容器の構造例2を示す図であり、減圧容器122の内空123の上断面図となる。   Although the example corresponding to the situation where the number of pipes 121 is one was shown in the above description, there may be a situation where groundwater 5 from a plurality of pipes 121 is processed. Therefore, a mode in which the inner space 123 of the decompression vessel 122 is appropriately partitioned by the weir plate 126 and the groundwater 5 from the plurality of pipes 121 can be treated will be described below. FIG. 4 is a view showing Structural Example 2 of the decompression container, and is an upper cross-sectional view of the inner space 123 of the decompression container 122.

この例においては、減圧容器122の内空123を堰板126にて複数に区切り、複数の区画127(第1の区画)を形成している。図4に示す例では、複数の区画127が、減圧容器122の内空123で環状に連なる形で配置されている。各区画127には、配管121が1本ずつ接続されており、各々の配管121から排出される地下水5は、該当区画127に流入することになる。   In this example, the inner space 123 of the decompression vessel 122 is divided into a plurality of barrier plates 126 to form a plurality of compartments 127 (first compartments). In the example shown in FIG. 4, the plurality of compartments 127 are arranged in a ring shape in the inner space 123 of the decompression vessel 122. One pipe 121 is connected to each section 127, and the groundwater 5 discharged from each pipe 121 flows into the corresponding section 127.

一方、環状に連なった各区画127群の中心、すなわち減圧容器122の内空123の中心は、各区画の堰板126で囲まれ、各区画127に共通の区画129(第2の区画)となる。従って、地下水5で満水となった各区画127において堰板126を越流した、いずれの区画127の地下水5も、区画129に流れ込むことになる。この区画129には水中ポンプ118が設置されており、流れ込んできた地下水5は、この水中ポンプ118によって地表3に排水される。   On the other hand, the center of each compartment 127 grouped in a ring shape, that is, the center of the inner space 123 of the decompression vessel 122 is surrounded by the dam plate 126 of each compartment, and the compartment 129 (second compartment) common to each compartment 127 and Become. Therefore, the groundwater 5 in any section 127 that has overflowed the weir plate 126 in each section 127 filled with the groundwater 5 flows into the section 129. A submersible pump 118 is installed in the section 129, and the groundwater 5 that has flowed in is drained to the ground surface 3 by the submersible pump 118.

これによれば、複数の孔110や自噴井戸130から集水された地下水5を、減圧容器122の内空123における各区画127に導いて区画毎に貯留し、地下水5で満たされたいずれかの区画127から堰板126を介し越流した分の地下水5のみが、各区画共通の区画129(各配管で共有する1区画)で集められ、水中ポンプ118で地表3に排水されることになる。よって、各孔110や自噴井戸130に連通する配管121が導かれた各区画127内では、孔110や自噴井戸130毎の集水速度に相違があっても、時間経過と共にいずれも満水となって水位が一定に保たれ、減圧容器122の内空123の容積も一定となる。そのため、減圧容器122の内空123に対して負圧を安定的にかけやすくなり、複数の孔110や自噴井戸130から集水し、これを地表3に排水する地下水5の量も安定しやすくなる。   According to this, the groundwater 5 collected from the plurality of holes 110 and the self-injection wells 130 is guided to each section 127 in the inner space 123 of the decompression vessel 122 and stored for each section. Only the groundwater 5 that has overflowed from the section 127 via the dam plate 126 is collected in the section 129 common to each section (one section shared by each pipe) and drained to the surface 3 by the submersible pump 118. Become. Therefore, in each section 127 to which the pipe 121 communicating with each hole 110 and the self-injection well 130 is led, even if there is a difference in the water collection speed for each hole 110 and the self-injection well 130, all of them become full over time. Thus, the water level is kept constant, and the volume of the inner air 123 of the decompression vessel 122 is also constant. Therefore, it becomes easy to stably apply a negative pressure to the inner space 123 of the decompression vessel 122, and the amount of groundwater 5 that collects water from the plurality of holes 110 and the self-injection well 130 and drains it to the ground surface 3 is also easily stabilized. .

以上、本実施形態によれば、所望の範囲での効率的な水位低下を良好な施工性にて実現可能となる。   As mentioned above, according to this embodiment, it becomes possible to implement | achieve the efficient water level fall in a desired range with favorable workability.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

1 帯水層
2 地盤
3 地表
5 地下水
10 既存構造物
11 地上部分
12 地下部分
13 床版
14 側壁
15 地下空間
50 止水・山留壁
110 孔
111 孔の内空
113 バルブ機構
114 バルブ機構の内空
118 水中ポンプ
120 真空ポンプ
121 配管
122 減圧容器
123 減圧容器の内空
124 貯水容器
126 堰板
127 区画(第1の区画)
128 区画(他方の区画)
129 各区画共通の他方の区画
130 自噴井戸
131 井戸孔
132 井戸管
133 フィルター材
135 井戸管の内空
DESCRIPTION OF SYMBOLS 1 Aquifer 2 Ground 3 Ground surface 5 Groundwater 10 Existing structure 11 Above-ground part 12 Underground part 13 Floor slab 14 Side wall 15 Underground space 50 Water stop / mountain wall 110 Hole 111 Inside of hole 113 Valve mechanism 114 Inside of valve mechanism Empty 118 Submersible pump 120 Vacuum pump 121 Piping 122 Depressurized container 123 Inner space 124 of decompressed container Water storage container 126 Dam plate 127 Section (first section)
128 sections (the other section)
129 Other compartment 130 common to each compartment Self-injection well 131 Well hole 132 Well pipe 133 Filter material 135 Inner space of well pipe

Claims (5)

地下構造物のうち地下水に接する部位に、地下構造物内外を連通する孔を形成し、真空ポンプにより前記孔に負圧をかけて、地下構造物外側の地下水を地下構造物内空に流入させることを特徴とする水圧抑制方法。   A hole communicating with the inside and outside of the underground structure is formed in the part of the underground structure that contacts the groundwater, and a negative pressure is applied to the hole by a vacuum pump, so that the groundwater outside the underground structure flows into the underground structure. The water pressure suppression method characterized by the above-mentioned. 前記孔から所定深度の地層に至る井戸を削孔し、真空ポンプにより前記孔に負圧をかけ、前記井戸を介して集水した地下構造物外側の地下水を地下構造物内空に流入させることを特徴とする請求項1に記載の水圧抑制方法。   Drilling a well from the hole to the formation at a predetermined depth, applying a negative pressure to the hole with a vacuum pump, and flowing the groundwater outside the underground structure collected through the well into the air in the underground structure The water pressure suppression method according to claim 1, wherein: 前記孔に連結した配管を所定容器の内空に接続し、当該所定容器の内空を真空ポンプで減圧することで、前記孔を介して集水した地下構造物外側の地下水を所定容器内に排出させ、当該所定容器内に排出された地下水を水中ポンプで排水することを特徴とする請求項1または2に記載の水圧抑制方法。   The pipe connected to the hole is connected to the inner space of the predetermined container, and the inner space of the predetermined container is depressurized by a vacuum pump, so that the groundwater outside the underground structure collected through the hole is placed in the predetermined container. The water pressure suppression method according to claim 1 or 2, wherein the groundwater discharged and discharged into the predetermined container is drained by a submersible pump. 前記所定容器内を堰板で区画し、第1の区画に前記配管を接続して前記地下水を排出させ、当該第1の区画から堰板を越流し第2の区画に流れ込んだ地下水を、水中ポンプで排水することを特徴とする請求項3に記載の水圧抑制方法。   The inside of the predetermined container is partitioned by a dam plate, the pipe is connected to the first partition to discharge the groundwater, and the groundwater flowing from the first partition over the dam plate to the second partition is submerged in water. The method for suppressing water pressure according to claim 3, wherein the water is drained by a pump. 前記所定容器内における前記第1の区画を複数に区画し、区画毎に配管を接続して、各々の配管から、当該配管が接続された該当区画に前記地下水を流入させ、各区画から堰板を越流し前記第1の区画共通の第2の区画に流れ込んだ地下水を水中ポンプで排水することを特徴とする請求項4に記載の水圧抑制方法。   The first compartment in the predetermined container is divided into a plurality of sections, pipes are connected to the sections, and the groundwater flows from the respective pipes into the corresponding sections to which the pipes are connected. The water pressure suppression method according to claim 4, wherein the groundwater that has flowed over and flows into the second section common to the first section is drained by a submersible pump.
JP2012288278A 2012-12-28 2012-12-28 Hydraulic pressure suppression method Pending JP2014129690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288278A JP2014129690A (en) 2012-12-28 2012-12-28 Hydraulic pressure suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288278A JP2014129690A (en) 2012-12-28 2012-12-28 Hydraulic pressure suppression method

Publications (1)

Publication Number Publication Date
JP2014129690A true JP2014129690A (en) 2014-07-10

Family

ID=51408278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288278A Pending JP2014129690A (en) 2012-12-28 2012-12-28 Hydraulic pressure suppression method

Country Status (1)

Country Link
JP (1) JP2014129690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199765A (en) * 2018-05-17 2019-11-21 清水建設株式会社 Weight balance immersion method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199765A (en) * 2018-05-17 2019-11-21 清水建設株式会社 Weight balance immersion method
JP7042687B2 (en) 2018-05-17 2022-03-28 清水建設株式会社 Weight balance water immersion method

Similar Documents

Publication Publication Date Title
JP5724222B2 (en) Pumping unit, soft soil improvement method, ground excavation method, contaminated soil purification method, and condensate method
CN103883796B (en) Silt particle mud district hand pick formula jacking construction device and method
CN103967028A (en) Immersed tube drainage structure and method for handling suddenly-produced foundation pit water bursting and fountains through immersed tube drainage structure
WO2007129693A1 (en) Soil improvement method
JP6019822B2 (en) Groundwater drainage apparatus and method
CN110409420B (en) Underground continuous wall with pit facing surface and precipitation function
JP5659566B2 (en) Pumping equipment, soft ground improvement method, ground excavation method, contaminated soil purification method, and condensate method
JP5213216B2 (en) Ground improvement method
JP3867984B2 (en) Pumping equipment
JP5780855B2 (en) Groundwater pumping equipment
KR101290411B1 (en) Method of separating air and water and its apparatus for suction drain method
JP2007303270A5 (en)
JP4114944B2 (en) Ground improvement method
CN109750684B (en) Multipurpose dewatering well structure and manufacturing method thereof
JP5142348B2 (en) How to prevent ground liquefaction
JP2014129690A (en) Hydraulic pressure suppression method
CN105696611A (en) Foundation pit dewatering device for sand layer with high water permeability
CN103806459A (en) Waste residue collection method for deepwater open caisson construction
CN108708385B (en) Integrated directional vacuum well point pipe
CN116537236A (en) Civil engineering foundation pit drainage structure and construction method thereof
JP5872960B2 (en) Structure of Kamaba
CN113585311B (en) Vacuum dewatering method with dewatering well penetrating through deep foundation pit
JP5929089B2 (en) Liquefaction countermeasure structure and liquefaction countermeasure construction method
JP6040552B2 (en) Groundwater level lowering method and system using vacuum deep well
JP2003328344A (en) High lift wellpoint apparatus