JP2014129232A - SINGLE CRYSTAL SUBSTRATE BASED ON β-Ga2O3 - Google Patents

SINGLE CRYSTAL SUBSTRATE BASED ON β-Ga2O3 Download PDF

Info

Publication number
JP2014129232A
JP2014129232A JP2014036391A JP2014036391A JP2014129232A JP 2014129232 A JP2014129232 A JP 2014129232A JP 2014036391 A JP2014036391 A JP 2014036391A JP 2014036391 A JP2014036391 A JP 2014036391A JP 2014129232 A JP2014129232 A JP 2014129232A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crystal substrate
growth
twinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014036391A
Other languages
Japanese (ja)
Other versions
JP5777756B2 (en
Inventor
Kimiyoshi Koshi
公祥 輿
Haruka Sakamoto
春香 坂本
Shinya Watanabe
信也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Koha Co Ltd
Original Assignee
Tamura Corp
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Koha Co Ltd filed Critical Tamura Corp
Priority to JP2014036391A priority Critical patent/JP5777756B2/en
Publication of JP2014129232A publication Critical patent/JP2014129232A/en
Application granted granted Critical
Publication of JP5777756B2 publication Critical patent/JP5777756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal substrate based on β-GaOin which a twinning is efficiently suppressed.SOLUTION: A single crystal substrate based on β-GaOobtained from a single crystal based on β-GaOin which a twinning during the growth is suppressed having an average number of twin crystals along a direction perpendicular to a growth axis on a principal plane per cm of less than 30.7. The single crystal substrate may be obtained by growing the single crystal based on β-GaOin an EFG (edge-defined film-fed growth) process without carrying out a step for necking and shoulder expansion. However, when the width of the seed crystal 20 and the single crystal based on β-GaO25 are called W1 and W2, respectively, the W2 is preferably 110% or less of the W1 since the twinning tends to proceed when the ratio of the W2 to the W1 is big even without carrying out the necking step.

Description

本発明は、β−Ga系単結晶基板に関し、特に、双晶化が抑えられたβ−Ga系単結晶基板に関する。 The present invention relates to a β-Ga 2 O 3 single crystal substrate, and more particularly to a β-Ga 2 O 3 single crystal substrate in which twinning is suppressed.

従来、ブリッジマン法により種結晶とほぼ同じ大きさのInP単結晶を成長させる結晶成長方法が知られている(例えば、非特許文献1参照)。非特許文献1に記載された方法によれば、双晶を含まないInP単結晶を得ることができる。   Conventionally, a crystal growth method is known in which an InP single crystal having the same size as a seed crystal is grown by the Bridgeman method (see, for example, Non-Patent Document 1). According to the method described in Non-Patent Document 1, an InP single crystal containing no twins can be obtained.

F. Matsumoto, et al. Journal of Crystal Growth 132 (1993) pp.348-350.F. Matsumoto, et al. Journal of Crystal Growth 132 (1993) pp.348-350.

しかし、ブリッジマン法により単結晶を成長させる場合、結晶成長後にルツボを単結晶から引き剥がす必要があるため、ルツボが結晶との密着性の高い材料からなる場合は、成長させた単結晶を取り出すことが難しい。   However, when a single crystal is grown by the Bridgman method, it is necessary to peel the crucible from the single crystal after crystal growth. It is difficult.

例えば、Ga結晶の成長には、通常、Irからなるルツボが用いられるが、Irはβ−Ga系単結晶に対する密着性が高い。そのため、ブリッジマン法を用いてβ−Ga系単結晶を成長させた場合、ルツボから単結晶を取り出すことが難しい。 For example, a crucible made of Ir is usually used to grow a Ga 2 O 3 crystal, but Ir has high adhesion to a β-Ga 2 O 3 single crystal. Therefore, when a β-Ga 2 O 3 single crystal is grown using the Bridgman method, it is difficult to take out the single crystal from the crucible.

したがって、本発明の目的は、双晶化が抑えられたβ−Ga系単結晶基板を提供することである。 Accordingly, an object of the present invention is to provide a β-Ga 2 O 3 single crystal substrate in which twinning is suppressed.

本発明の一態様は、上記目的を達成するために、下記の[1]〜[3]のβ−Ga系単結晶基板を提供する。 In order to achieve the above object, one embodiment of the present invention provides the following [1] to [3] β-Ga 2 O 3 -based single crystal substrates.

[1]主面上の成長軸に垂直な方向の1cm当りの双晶の平均数が30.7本未満であるβ−Ga系単結晶基板。 [1] A β-Ga 2 O 3 single crystal substrate in which the average number of twins per cm in the direction perpendicular to the growth axis on the main surface is less than 30.7.

[2]前記主面上の成長軸はb軸である、前記[1]記載のβ−Ga系単結晶基板。
[3]前記双晶の平均数がほぼ0本である前記[1]あるいは[2]に記載のβ−Ga系単結晶基板。
[2] The β-Ga 2 O 3 single crystal substrate according to [1], wherein a growth axis on the main surface is a b-axis.
[3] The β-Ga 2 O 3 single crystal substrate according to [1] or [2], wherein the average number of twins is approximately zero.

本発明によれば、双晶化が効果的に抑えられたβ−Ga系単結晶基板を提供することができる。 According to the present invention, it is possible to provide a β-Ga 2 O 3 single crystal substrate in which twinning is effectively suppressed.

図1は、本発明の実施の形態に係るβ−Ga系単結晶基板を得るためのβ−Ga系単結晶を製造するためのEFG結晶製造装置の一部の垂直断面図である。Figure 1 is a partial vertical section of the EFG crystal manufacturing apparatus for manufacturing a β-Ga 2 O 3 single crystal to obtain a β-Ga 2 O 3 system single crystal substrate according to the embodiment of the present invention FIG. 図2は、β−Ga系単結晶の成長中の様子を表す斜視図である。FIG. 2 is a perspective view illustrating a state during the growth of the β-Ga 2 O 3 single crystal. 図3(a)〜(c)は、本発明の実施の形態のβ−Ga系単結晶基板を得るためのβ−Ga系単結晶を製造するための種結晶とβ−Ga系単結晶との境界付近の部分拡大図である。FIGS. 3A to 3C show a seed crystal and a β for producing a β-Ga 2 O 3 single crystal for obtaining a β-Ga 2 O 3 single crystal substrate according to an embodiment of the present invention. it is a partially enlarged view of the vicinity of the boundary between -ga 2 O 3 system single crystal. 図4は、比較例としての境界近傍にネック部を有する種結晶とβ−Ga系単結晶の部分拡大図である。FIG. 4 is a partially enlarged view of a seed crystal having a neck portion in the vicinity of the boundary as a comparative example and a β-Ga 2 O 3 single crystal.

〔実施の形態〕
本発明においては、EFG(Edge-defined film-fed growth)法により、ネッキングや大きく肩を広げる工程を行わずにβ−Ga系単結晶を成長させる。
Embodiment
In the present invention, a β-Ga 2 O 3 single crystal is grown by EFG (Edge-defined film-fed growth) method without performing necking or a step of broadening the shoulder.

ネッキング工程とは、種結晶を結晶の原料の融液に接触させる際に、細いネック部を形成する工程である。ネック部を形成した後は、所望の大きさになるまで幅を拡げながら結晶を成長させ(肩拡げ工程)、その後、所望の幅を保ったまま結晶を成長させる。   The necking step is a step of forming a thin neck portion when the seed crystal is brought into contact with the crystal raw material melt. After the neck portion is formed, the crystal is grown while expanding the width until a desired size is obtained (shoulder expansion step), and then the crystal is grown while maintaining the desired width.

ネッキング工程を行うことにより、種結晶に含まれる転位が成長結晶へ引き継がれることを防止できるが、β−Ga系単結晶を成長させる際にネッキング工程を行う場合、ネッキング工程後の大きく肩を広げる工程において双晶が発生しやすい。 By performing the necking step, it is possible to prevent dislocations contained in the seed crystal from being transferred to the grown crystal. However, when the necking step is performed when growing a β-Ga 2 O 3 single crystal, Twinning is likely to occur in the process of expanding the shoulder.

なお、結晶の引き上げ速度を上げる等の方法で、ネッキング工程後にβ−Ga系単結晶を急激に冷やすことにより双晶化を抑えることができるが、熱衝撃によりβ−Ga系単結晶にクラックが生じる。 Note that twinning can be suppressed by rapidly cooling the β-Ga 2 O 3 single crystal after the necking step by a method such as increasing the pulling rate of the crystal. However, β-Ga 2 O 3 can be suppressed by thermal shock. Cracks occur in the system single crystal.

図1は、本実施の形態のβ−Ga系単結晶基板を得るためのβ−Ga系単結晶の製造に係るEFG結晶製造装置の一部の垂直断面図である。このEFG結晶製造装置10は、Ga系融液12を受容するルツボ13と、このルツボ13内に設置されたスリット14Aを有するダイ14と、スリット14Aの開口14Bを除くルツボ13の上面を閉塞する蓋15と、β−Ga系種結晶(以下、「種結晶」という)20を保持する種結晶保持具21と、種結晶保持具21を昇降可能に支持するシャフト22とを有する。 Figure 1 is a partial vertical sectional view of the EFG crystal manufacturing apparatus according to the preparation of β-Ga 2 O 3 single crystal to obtain a β-Ga 2 O 3 system single crystal substrate of the present embodiment. The EFG crystal manufacturing apparatus 10 includes a crucible 13 for receiving a Ga 2 O 3 melt 12, a die 14 having a slit 14A installed in the crucible 13, and an upper surface of the crucible 13 excluding an opening 14B of the slit 14A. , A seed crystal holder 21 that holds a β-Ga 2 O 3 -based seed crystal (hereinafter referred to as “seed crystal”) 20, and a shaft 22 that supports the seed crystal holder 21 so as to be movable up and down. Have

ルツボ13は、β−Ga系粉末を溶解させて得られたGa系融液12を収容する。ルツボ13は、Ga系融液12を収容しうる耐熱性を有するイリジウム等の金属材料からなる。 The crucible 13 contains a Ga 2 O 3 melt 12 obtained by dissolving β-Ga 2 O 3 powder. The crucible 13 is made of a metal material such as iridium having heat resistance that can accommodate the Ga 2 O 3 melt 12.

ダイ14は、Ga系融液12を毛細管現象により上昇させるためのスリット14Aを有する。 The die 14 has a slit 14A for raising the Ga 2 O 3 -based melt 12 by capillary action.

蓋15は、ルツボ13から高温のGa系融液12が蒸発することを防止し、さらにスリット14Aの上面以外の部分にGa系融液12の蒸気が付着することを防ぐ。 The lid 15 prevents the high-temperature Ga 2 O 3 melt 12 from evaporating from the crucible 13 and further prevents the vapor of the Ga 2 O 3 melt 12 from adhering to a portion other than the upper surface of the slit 14A. .

種結晶20を下降させて毛細管現象で上昇したGa系融液12に接触させ、Ga系融液12と接触した種結晶20を引き上げることにより、平板状のβ−Ga系単結晶25を成長させる。β−Ga系単結晶25の結晶方位は種結晶20の結晶方位と等しく、β−Ga系単結晶25の結晶方位を制御するためには、例えば、種結晶20の底面の面方位及び水平面内の角度を調整する。 The seed crystal 20 is lowered and brought into contact with the Ga 2 O 3 melt 12 that has risen by capillary action, and the seed crystal 20 in contact with the Ga 2 O 3 melt 12 is pulled up to pull up the plate-like β-Ga 2. An O 3 single crystal 25 is grown. crystal orientation of the β-Ga 2 O 3 single crystal 25 is equal to the crystal orientation of the seed crystal 20, in order to control the crystal orientation of the β-Ga 2 O 3 single crystal 25 is, for example, the bottom surface of the seed crystal 20 Adjust the plane orientation and angle in the horizontal plane.

図2は、本実施の形態のβ−Ga系単結晶基板を得るためのβ−Ga系単結晶の製造時における、β−Ga系単結晶の成長中の様子を表す斜視図である。図2中の面26は、スリット14Aのスリット方向と平行なβ−Ga系単結晶25の主面である。成長させたβ−Ga系単結晶25を切り出してβ−Ga系基板を形成する場合は、β−Ga系基板の所望の主面の面方位にβ−Ga系単結晶25の面26の面方位を一致させる。例えば、(101)面を主面とするβ−Ga系基板を形成する場合は、面26の面方位を(101)とする。また、成長させたβ−Ga系単結晶25は、新たなβ−Ga系単結晶を成長させるための種結晶として用いることができる。 2, at the time of manufacture of the β-Ga 2 O 3 single crystal to obtain a β-Ga 2 O 3 system single crystal substrate of the present embodiment, β-Ga 2 O 3 system single crystal-growing It is a perspective view showing a mode. A surface 26 in FIG. 2 is a main surface of the β-Ga 2 O 3 single crystal 25 parallel to the slit direction of the slit 14A. If cut out β-Ga 2 O 3 single crystal 25 is grown to form a β-Ga 2 O 3 system board, the plane orientation of the desired major surface of the β-Ga 2 O 3 based substrate beta-Ga The plane orientation of the face 26 of the 2 O 3 system single crystal 25 is matched. For example, when a β-Ga 2 O 3 -based substrate having the (101) plane as the main surface is formed, the plane orientation of the plane 26 is set to (101). The grown β-Ga 2 O 3 single crystal 25 can be used as a seed crystal for growing a new β-Ga 2 O 3 single crystal.

β−Ga系単結晶25及び種結晶20は、β−Ga単結晶、又は、Cu、Ag、Zn、Cd、Al、In、Si、Ge、Sn等の元素が添加されたβ−Ga単結晶である。β−Ga結晶は単斜晶系に属するβ-ガリア構造を有し、その典型的な格子定数はa=12.23Å、b=3.04Å、c=5.80Å、α=γ=90°、β=103.8°である。 The β-Ga 2 O 3 single crystal 25 and the seed crystal 20 are added with β-Ga 2 O 3 single crystal or elements such as Cu, Ag, Zn, Cd, Al, In, Si, Ge, and Sn. Β-Ga 2 O 3 single crystal. The β-Ga 2 O 3 crystal has a β-gallia structure belonging to a monoclinic system, and typical lattice constants thereof are a 0 = 12.23Å, b 0 = 3.04Å, c 0 = 5.80Å, α = γ = 90 ° and β = 103.8 °.

β−Ga系単結晶の成長中に発生する双晶は、鏡面対称な2つのβ−Ga系結晶からなる。β−Ga系結晶の双晶の対称面(双晶面)は、(100)面である。EFG法によりβ−Ga系単結晶を成長させる場合、ネッキング工程後の大きく肩を広げる工程において双晶が発生しやすい。 Twins generated during the growth of the β-Ga 2 O 3 single crystal are composed of two mirror-symmetric β-Ga 2 O 3 crystals. The twin symmetry plane (twin plane) of the β-Ga 2 O 3 based crystal is the (100) plane. When a β-Ga 2 O 3 single crystal is grown by the EFG method, twins are likely to be generated in the step of greatly expanding the shoulder after the necking step.

図3(a)〜(c)は、本実施の形態のβ−Ga系単結晶基板を得るためのβ−Ga系単結晶の製造時における、種結晶とβ−Ga系単結晶との境界付近の部分拡大図である。種結晶20及びβ−Ga系単結晶25の幅をそれぞれW1及びW2とすると、図3(a)においてはW1=W2、図3(b)においてはW1>W2、図3(c)においてはW1<W2である。 3A to 3C show the seed crystal and β-Ga at the time of manufacturing the β-Ga 2 O 3 single crystal for obtaining the β-Ga 2 O 3 single crystal substrate of the present embodiment. It is the elements on larger scale near the boundary with 2 O 3 system single crystal. If the widths of the seed crystal 20 and the β-Ga 2 O 3 based single crystal 25 are W1 and W2, respectively, W1 = W2 in FIG. 3A, W1> W2 in FIG. 3B, and FIG. ), W1 <W2.

図3(a)〜(c)のいずれにおいても、種結晶20とβ−Ga系単結晶25との境界近傍には、ネッキング工程により形成されるネック部が存在しない。このため、β−Ga系単結晶25は双晶を含まないか、含んでいても少量である。なお、ネッキング工程を行わない場合であっても、W2のW1に対する比が大きくなると双晶化が進む傾向があるため、W2はW1の110%以下であることが求められる。 3A to 3C, there is no neck portion formed by the necking process in the vicinity of the boundary between the seed crystal 20 and the β-Ga 2 O 3 single crystal 25. For this reason, the β-Ga 2 O 3 -based single crystal 25 does not contain twins or a small amount even if it contains them. Even when the necking step is not performed, twinning tends to proceed as the ratio of W2 to W1 increases, so W2 is required to be 110% or less of W1.

また、上記のW2とW1の関係は、種結晶20とβ−Ga系単結晶25のすべての方向の幅において成り立つ。すなわち、本実施の形態においては、すべての方向においてGa系単結晶25の幅が種結晶20の幅の110%以下である。 The relationship between W2 and W1 is established in the widths in all directions of the seed crystal 20 and the β-Ga 2 O 3 single crystal 25. That is, in this embodiment, the width of the Ga 2 O 3 single crystal 25 is 110% or less of the width of the seed crystal 20 in all directions.

さらに、β−Ga系単結晶25の双晶化をより効果的に抑えるためには、すべての方向においてGa系単結晶25の幅が種結晶20の幅の100%以下であることが好ましく、すべての方向においてGa系単結晶25の幅が種結晶20の幅と等しいことがより好ましい。 Furthermore, in order to more effectively suppress twinning of the β-Ga 2 O 3 single crystal 25, the width of the Ga 2 O 3 single crystal 25 is 100% or less of the width of the seed crystal 20 in all directions. Preferably, the width of the Ga 2 O 3 single crystal 25 is equal to the width of the seed crystal 20 in all directions.

種結晶20の幅W1に対するGa系単結晶25の幅W2は、例えば、Ga系単結晶25を成長させる際の温度条件により制御することができる。この場合は、Ga系単結晶25を成長させる際の温度が低いほどその幅W2が大きくなる。 The width W2 of the Ga 2 O 3 single crystal 25 relative to the width W1 of the seed crystal 20 can be controlled by, for example, the temperature conditions when the Ga 2 O 3 single crystal 25 is grown. In this case, the width W2 increases as the temperature at which the Ga 2 O 3 -based single crystal 25 is grown is lower.

図4は、比較例としての境界近傍にネック部を有する種結晶とβ−Ga系単結晶の部分拡大図である。種結晶120とβ−Ga系単結晶125の境界近傍にはネック部121が存在する。β−Ga系単結晶125はネッキング工程後の大きく肩を広げる工程を経て形成されるため、多くの双晶を含むことが多い。 FIG. 4 is a partially enlarged view of a seed crystal having a neck portion in the vicinity of the boundary as a comparative example and a β-Ga 2 O 3 single crystal. A neck portion 121 exists in the vicinity of the boundary between the seed crystal 120 and the β-Ga 2 O 3 single crystal 125. Since the β-Ga 2 O 3 single crystal 125 is formed through a process of greatly expanding the shoulder after the necking process, it often contains many twins.

例えば、β−Ga系単結晶125をb軸方向に成長させた場合、主面(図4の紙面に平行な面)上のb軸に垂直な方向の1cm当たりの双晶の平均数は、30.7〜37.0本である。 For example, when the β-Ga 2 O 3 -based single crystal 125 is grown in the b-axis direction, the average number of twins per cm in the direction perpendicular to the b-axis on the main surface (plane parallel to the paper surface of FIG. 4) The number is 30.7-37.0.

一方、本発明によれば、Ga系単結晶25をb軸方向に成長させた場合であっても、面26上のb軸に垂直な方向の1cm当たりの双晶の平均数がほぼ0本であるGa系単結晶25を形成することができる。 On the other hand, according to the present invention, even when the Ga 2 O 3 single crystal 25 is grown in the b-axis direction, the average number of twins per cm in the direction perpendicular to the b-axis on the surface 26 is Almost no Ga 2 O 3 single crystal 25 can be formed.

以下に、本実施の形態のβ−Ga系単結晶基板を得るためのGa系単結晶25の育成条件の一例について述べる。 Hereinafter, an example of the growth conditions of the Ga 2 O 3 single crystal 25 for obtaining the β-Ga 2 O 3 single crystal substrate of the present embodiment will be described.

例えば、Ga系単結晶25の育成は、窒素雰囲気下で行われる。 For example, the growth of the Ga 2 O 3 single crystal 25 is performed in a nitrogen atmosphere.

種結晶20は、Ga系単結晶25とほぼ同じ大きさか、より大きいため、通常の結晶育成に用いられる種結晶よりも大きく、熱衝撃に弱い。そのため、Ga系融液12に接触させる前の種結晶20のダイ14からの高さは、ある程度低いことが好ましく、例えば、10mmである。また、Ga系融液12に接触させるまでの種結晶20の降下速度は、ある程度低いことが好ましく、例えば、1mm/minである。 Since the seed crystal 20 is approximately the same size or larger than the Ga 2 O 3 single crystal 25, it is larger than the seed crystal used for normal crystal growth and is vulnerable to thermal shock. Therefore, the height from the die 14 of the seed crystal 20 before being brought into contact with the Ga 2 O 3 melt 12 is preferably low to some extent, for example, 10 mm. The descending speed of the seed crystal 20 until it contacts with the Ga 2 O 3 melt 12 is preferably low to some extent, for example, 1 mm / min.

種結晶20をGa系融液12に接触させた後の引き上げるまでの待機時間は、温度をより安定させて熱衝撃を防ぐために、ある程度長いことが好ましく、例えば、10minである。 The waiting time until the seed crystal 20 is pulled up after being brought into contact with the Ga 2 O 3 melt 12 is preferably long to some extent in order to stabilize the temperature and prevent thermal shock, for example, 10 minutes.

ルツボ13中の原料を溶かすときの昇温速度は、ルツボ13周辺の温度が急上昇して種結晶20に熱衝撃が加わることを防ぐために、ある程度低いことが好ましく、例えば、11時間掛けて原料を溶かす。   The rate of temperature rise when melting the raw material in the crucible 13 is preferably low to some extent in order to prevent the temperature around the crucible 13 from rising rapidly and causing thermal shock to the seed crystal 20. Melt.

(実施の形態の効果)
本実施の形態のβ−Ga系単結晶基板によれば、ネッキングや大きく肩を広げる工程を行わずに成長させられたGa系単結晶から得られることにより、双晶化が効果的に抑えられる。
(Effect of embodiment)
According to the β-Ga 2 O 3 single crystal substrate of the present embodiment, twinning is achieved by being obtained from a Ga 2 O 3 single crystal grown without performing necking or a step of broadening the shoulder. Is effectively suppressed.

通常、EFG法によりβ−Ga系単結晶を育成する場合、結晶をそのb軸方向に成長させると特に双晶化しやすい。しかし、本実施の形態によれば、β−Ga系単結晶をb軸方向に成長させる場合であっても双晶化を抑えることができる。 Usually, when a β-Ga 2 O 3 single crystal is grown by the EFG method, it is particularly easy to twine if the crystal is grown in the b-axis direction. However, according to the present embodiment, twinning can be suppressed even when a β-Ga 2 O 3 single crystal is grown in the b-axis direction.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

10…EFG結晶製造装置、20…種結晶、25…β−Ga系単結晶 10 ... EFG crystal manufacturing apparatus, 20 ... seed crystal, 25 ... β-Ga 2 O 3 single crystal

Claims (3)

主面上の成長軸に垂直な方向の1cm当りの双晶の平均数が30.7本未満であるβ−Ga系単結晶基板。 A β-Ga 2 O 3 single crystal substrate in which the average number of twins per cm in the direction perpendicular to the growth axis on the main surface is less than 30.7. 前記主面上の成長軸はb軸である請求項1に記載のβ−Ga系単結晶基板。 The β-Ga 2 O 3 single crystal substrate according to claim 1, wherein a growth axis on the main surface is a b-axis. 前記双晶の平均数がほぼ0本である請求項1あるいは2に記載のβ−Ga系単結晶基板。 The β-Ga 2 O 3 single crystal substrate according to claim 1 or 2, wherein the average number of twins is approximately zero.
JP2014036391A 2014-02-27 2014-02-27 β-Ga2O3-based single crystal substrate Active JP5777756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036391A JP5777756B2 (en) 2014-02-27 2014-02-27 β-Ga2O3-based single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036391A JP5777756B2 (en) 2014-02-27 2014-02-27 β-Ga2O3-based single crystal substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011249891A Division JP5491483B2 (en) 2011-11-15 2011-11-15 Method for growing β-Ga 2 O 3 single crystal

Publications (2)

Publication Number Publication Date
JP2014129232A true JP2014129232A (en) 2014-07-10
JP5777756B2 JP5777756B2 (en) 2015-09-09

Family

ID=51408002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036391A Active JP5777756B2 (en) 2014-02-27 2014-02-27 β-Ga2O3-based single crystal substrate

Country Status (1)

Country Link
JP (1) JP5777756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066756A (en) * 2014-09-25 2016-04-28 株式会社Flosfia Method for manufacturing crystal laminate structure, and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal
JP2001181091A (en) * 1999-12-27 2001-07-03 Namiki Precision Jewel Co Ltd Method for growing rutile single crystal
JP2004262684A (en) * 2003-02-24 2004-09-24 Univ Waseda METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
JP2006312571A (en) * 2005-05-09 2006-11-16 Koha Co Ltd METHOD FOR PRODUCING Ga2O3-BASED CRYSTAL
JP2011190134A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Process and apparatus for producing gallium oxide single crystal
WO2013035472A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Substrate for epitaxial growth, and crystal laminate structure
JP2013086988A (en) * 2011-10-14 2013-05-13 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3-BASED SUBSTRATE, AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
JP2013103863A (en) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3 CRYSTAL
JP2013103864A (en) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal
JP2001181091A (en) * 1999-12-27 2001-07-03 Namiki Precision Jewel Co Ltd Method for growing rutile single crystal
JP2004262684A (en) * 2003-02-24 2004-09-24 Univ Waseda METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
JP2006312571A (en) * 2005-05-09 2006-11-16 Koha Co Ltd METHOD FOR PRODUCING Ga2O3-BASED CRYSTAL
JP2011190134A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Process and apparatus for producing gallium oxide single crystal
WO2013035472A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Substrate for epitaxial growth, and crystal laminate structure
JP2013086988A (en) * 2011-10-14 2013-05-13 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3-BASED SUBSTRATE, AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
JP2013103863A (en) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3 CRYSTAL
JP2013103864A (en) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066756A (en) * 2014-09-25 2016-04-28 株式会社Flosfia Method for manufacturing crystal laminate structure, and semiconductor device

Also Published As

Publication number Publication date
JP5777756B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5491483B2 (en) Method for growing β-Ga 2 O 3 single crystal
JP5864998B2 (en) Method for growing β-Ga 2 O 3 single crystal
WO2016133172A1 (en) Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
US9926646B2 (en) Method for growing B-Ga2O3-based single crystal
EP2990509B1 (en) Method for growing beta-ga2o3-based single crystal
US20110308447A1 (en) Sapphire seed and method of manufacturing the same, and method of manufacturing sapphire single crystal
JP5777756B2 (en) β-Ga2O3-based single crystal substrate
JP6645409B2 (en) Silicon single crystal manufacturing method
WO2016147673A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD
JP5172881B2 (en) Compound semiconductor single crystal manufacturing apparatus and manufacturing method thereof
JP6645408B2 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
RU2528995C1 (en) Method of producing large-size gallium antimonide monocrystals
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP5698171B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPS60118696A (en) Method for growing indium phosphide single crystal
JP2004345887A (en) Method for manufacturing compound semiconductor single crystal
JP2003055085A (en) Method of manufacturing compound semiconductor single crystal
JP2004244233A (en) Method of manufacturing gallium arsenide single crystal
JP2000327475A (en) Apparatus for production of compound semiconductor single crystal and its production
JP2013087045A (en) Gallium phosphide single crystal and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5777756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350