JP2014128329A - Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel - Google Patents

Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel Download PDF

Info

Publication number
JP2014128329A
JP2014128329A JP2012286701A JP2012286701A JP2014128329A JP 2014128329 A JP2014128329 A JP 2014128329A JP 2012286701 A JP2012286701 A JP 2012286701A JP 2012286701 A JP2012286701 A JP 2012286701A JP 2014128329 A JP2014128329 A JP 2014128329A
Authority
JP
Japan
Prior art keywords
pulse wave
photoelectric pulse
waveform
peripheral arterial
artery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012286701A
Other languages
Japanese (ja)
Inventor
Kazuto Takeda
一人 武田
Isao Kuwaoka
勲 桑岡
Hiroki Kotoge
博揮 小峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Aso LLC
Original Assignee
Asahi Kasei Corp
Aso LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Aso LLC filed Critical Asahi Kasei Corp
Priority to JP2012286701A priority Critical patent/JP2014128329A/en
Publication of JP2014128329A publication Critical patent/JP2014128329A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric pulse wave analysis method and a photoelectric pulse wave analysis device for a peripheral arterial vessel, capable of analyzing a photoelectric pulse wave of a peripheral arterial vessel by a simple and easy method without imposing a load on a subject, and obtaining analysis information effective in decision of the presence/absence of obstruction of the peripheral arterial vessel, a degree of the obstruction and an obstructed region.SOLUTION: A photoelectric pulse wave analysis method and a photoelectric pulse wave analysis device for a peripheral arterial vessel has: a measurement step S1 of irradiating the surface of a lower limb body 10 of a subject with light of a prescribed wavelength, and measuring a reflection light amount or a transmission light amount of the light; a photoelectric pulse wave detection step S2 of detecting a waveform of a photoelectric pulse wave from a change of the reflection light amount or the transmission light amount; and a comparison step S3 of comparing the waveform with a reference waveform. The reference waveform is classified based on the presence/absence of obstruction of the peripheral arterial vessel or a degree of the obstruction.

Description

本発明は、体表面からの反射光量又は透過光量によって末梢動脈血管の光電脈波解析方法および光電脈波解析装置に関する。   The present invention relates to a photoelectric pulse wave analyzing method and a photoelectric pulse wave analyzing apparatus for peripheral arterial blood vessels based on the amount of reflected light or transmitted light from the body surface.

末梢動脈疾患(PAD)は、閉塞性動脈硬化症に代表されるように、主に大血管が慢性的に閉塞することによって、軽い場合には冷感、重症の場合には下肢の壊死にまで至ることがある病気である。この末梢動脈疾患を診断する主な方法として、血管造影、足関節上腕血圧比(ABI検査)、皮膚灌流圧測定(SPP検査)によるものがある。このうち、血管造影は、造影剤を注入することから被験者への負担が大きく、費用もかかる検査である。   Peripheral arterial disease (PAD), as represented by obstructive arteriosclerosis, is mainly due to chronic occlusion of large blood vessels, causing coldness in mild cases and necrosis of the lower limbs in severe cases. It is a disease that can be reached. The main methods for diagnosing this peripheral arterial disease include angiography, ankle brachial blood pressure ratio (ABI test), and skin perfusion pressure measurement (SPP test). Among these, angiography is a test that incurs a heavy burden on the subject because it injects a contrast medium and is expensive.

ABI検査は、足首と上腕の血圧を測定することで動脈の狭窄や閉塞の有無を推定するもので、使用する機器の種類によって測定値が異なったり、血圧計の帯(カフ)の上腕と足首への巻き方によって測定値に誤差が生じたりし、血管の硬化状態の影響で測定値から正しく診断できないことがある。また、カフを巻いて圧をかけることが、被験者への負担となることがある。   The ABI test estimates the presence or absence of arterial stenosis or occlusion by measuring the blood pressure of the ankle and upper arm. The measured value varies depending on the type of equipment used, and the upper arm and ankle of the sphygmomanometer band (cuff) Depending on the winding method, an error may occur in the measurement value, and the measurement value may not be correctly diagnosed due to the influence of the sclerosing state of the blood vessel. In addition, it may be a burden on the subject to wrap the cuff and apply pressure.

SPP検査は、皮膚の表面の小さな血管の中の血液の流れを測定するもので、測定に時間が掛る上に、閉塞部位の特定ができない。また、SPP検査は、測定のために使用するレーザセンサの操作が複雑であり、取扱いに経験を要する。また、ABI検査と同様に、カフを巻いて圧をかけることが被験者への負担となることがある。   The SPP test measures the blood flow in the small blood vessels on the surface of the skin, and takes a long time to measure and cannot identify the occlusion site. Moreover, the operation of the laser sensor used for the measurement is complicated in the SPP inspection, and experience is required for handling. In addition, as with the ABI test, it may be a burden on the subject to apply pressure by wrapping the cuff.

また、動脈硬化度の指標を算出する方法としては、血圧計の帯(カフ)の内圧変化から脈波波形を検出し、この脈波波形を解析して脈波伝播速度(PWV)などを算出する方法が知られている。脈波伝播速度(PWV)の一形態として、上腕と足首とに巻いたカフを一定圧に保持し、上腕及び足首から採取した脈波波形を解析して算出される上腕−足首脈波伝播速度(baPWV)がある(例えば、特許文献1参照)。   In addition, as a method for calculating an index of arteriosclerosis, a pulse wave waveform is detected from a change in internal pressure of a sphygmomanometer cuff, and the pulse wave velocity is analyzed to calculate a pulse wave velocity (PWV). How to do is known. As one form of the pulse wave velocity (PWV), the upper arm-ankle pulse wave velocity calculated by analyzing a pulse wave waveform collected from the upper arm and ankle while holding a cuff wound around the upper arm and ankle at a constant pressure. (For example, see Patent Document 1).

動脈硬化度の指標としてbaPWVを用いる場合には、上腕及び足首に2つのカフの装着が必要となることから、単一のカフを上腕に装着してPWVを測定し、測定したPWVに基づいて動脈硬化度を示す指標を取得できる血圧情報測定装置も知られている(例えば、特許文献2参照)。
また、動脈硬化の状態を測定する方法として、心臓の収縮状態を反映する時間と大動脈脈波および末梢動脈の光電脈波の波形から脈波が血管を伝搬する時間から動脈の硬化度をしる方法がしられている(例えば、非特許文献1)。
When baPWV is used as an index of the degree of arteriosclerosis, it is necessary to attach two cuffs to the upper arm and ankle. Therefore, PWV is measured by attaching a single cuff to the upper arm, and based on the measured PWV. A blood pressure information measuring device that can acquire an index indicating the degree of arteriosclerosis is also known (see, for example, Patent Document 2).
In addition, as a method for measuring the state of arteriosclerosis, the degree of arteriosclerosis is determined from the time when the heart contracts and the time when the pulse wave propagates through the blood vessel from the waveform of the aortic pulse wave and the photoelectric pulse wave of the peripheral artery. There is a method (for example, Non-Patent Document 1).

特開2011−92556号公報JP 2011-92556 A 特開2011−177249号公報JP 2011-177249 A

http://www.nihonkohden.co.jp/iryo/techinfo/pwtt/principle.htmlhttp://www.nihonkohden.co.jp/iryo/techinfo/pwtt/principle.html

しかし、引用文献1及び引用文献2に記載されているように、カフの内圧変化から脈波波形を検出する方法では、ABI検査やSPP検査と同様に、カフを巻いて圧をかけることが被験者への負担となるという課題が依然として残る。また、上腕と足首へのカフの巻き方によって測定値にバラツキが生じるため、正確な測定ができないという問題もある。   However, as described in Cited Document 1 and Cited Document 2, in the method of detecting the pulse wave waveform from the change in the internal pressure of the cuff, as in the ABI test and the SPP test, it is subject to applying pressure by winding the cuff. The problem of becoming a burden on the company remains. In addition, there is a problem that accurate measurement cannot be performed because the measurement value varies depending on how the cuff is wound around the upper arm and the ankle.

また、非特許文献1に記載される心電図の測定と大動脈および末梢血管の光電脈波の測定による脈波が血管を伝搬する時間の測定による動脈硬化は、心臓から光電脈波測定部位までの平均的な動脈硬化が測定できるだけで、人間の血管の硬化や末梢動脈血管の閉塞の有無や閉塞部位の判定はできない。   In addition, arteriosclerosis based on the measurement of the electrocardiogram described in Non-Patent Document 1 and the measurement of the time required for the pulse wave to propagate through the blood vessels in the aorta and peripheral blood vessels is the average from the heart to the photoelectric pulse wave measurement site. It is only possible to measure arteriosclerosis, and it is not possible to determine the presence or absence of occlusion of peripheral arterial blood vessels or the occlusion site of human blood vessels.

このように、従来の診断方法では、造影剤を注入したり、血圧計の帯(カフ)を被験者に巻いたりするなど、被験者への負担が大きいという問題もあった。   As described above, the conventional diagnostic method has a problem that the burden on the subject is large, such as injecting a contrast medium or winding a sphygmomanometer band (cuff) around the subject.

そこで、本発明は、被験者に負担を与えることなく且つ簡便な方法によって、末梢動脈血管の光電脈波の解析を行うことができ、末梢動脈血管の閉塞の有無、閉塞の程度及び閉塞部位の判定に有効な解析情報を得ることができる末梢動脈血管の光電脈波解析方法および光電脈波解析装置を提供するものである。   Therefore, the present invention can analyze the photoelectric pulse wave of the peripheral arterial blood vessel without burdening the subject and by a simple method, and determine whether the peripheral arterial blood vessel is occluded, the degree of occlusion, and the occluded site. The present invention provides a photoelectric pulse wave analysis method and a photoelectric pulse wave analysis device for peripheral arterial blood vessels that can obtain effective analysis information.

本発明は、上記課題を解決するために、被験者の体表面の複数の箇所に所定波長の光を照射し、この複数の箇所の光の反射光量を測定する反射光測定ステップと、前記複数の反射光量の変化から複数の光電脈波の波形を検出する光電脈波形検出ステップと、前記複数の波形同士を比較する比較ステップと、を有する末梢動脈血管の光電脈波解析方法および光電脈波解析装置を提供するものである。   In order to solve the above problem, the present invention irradiates a plurality of locations on the body surface of a subject with light of a predetermined wavelength, and measures the reflected light amount of the light reflected at the plurality of locations, Photoelectric pulse wave analysis method and photoelectric pulse wave analysis of peripheral arterial blood vessel, comprising: a photoelectric pulse waveform detection step for detecting a plurality of photoelectric pulse wave waveforms from a change in reflected light amount; and a comparison step for comparing the plurality of waveforms. A device is provided.

本発明によれば、血液が心臓の収縮により大動脈起始部に押し出されるときに発生する血管内の圧力の変化が末梢方向に伝わっていくときの波動を光電脈波の波形として検出することができ、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている基準波形と比較することにより、末梢動脈血管の閉塞の有無又は閉塞の程度の判定に有効な解析情報を得ることができる。すなわち、本発明によれば、造影剤を注入したり、カフを巻いて圧をかけたりする等の負担を被験者に与えることなく且つ簡便な方法によって、末梢動脈血管の閉塞の有無又は閉塞の程度の判定に有効な解析情報を得ることができる。   According to the present invention, it is possible to detect, as a waveform of a photoelectric pulse wave, a wave when a change in pressure in a blood vessel that is generated when blood is pushed out to the aortic root by contraction of the heart is transmitted to the distal direction. It is possible to obtain analysis information effective for determining the presence or degree of occlusion of peripheral arterial blood vessels by comparing with a reference waveform classified based on the presence or absence or degree of occlusion of peripheral arterial blood vessels it can. That is, according to the present invention, the presence or absence of occlusion of the peripheral arterial blood vessels or the degree of occlusion can be performed by a simple method without burdening the subject such as injecting a contrast agent or applying pressure by winding a cuff. It is possible to obtain analysis information that is effective for the determination.

また、本発明の末梢動脈血管の光電脈波解析方法は、前記反射光測定ステップが、被験者の膝裏部、足首前側部、足首後側部、足首外側部、足背部、足底部の群から選ばれる1又は2以上の被測定部位に所定波長の光を照射し、この光の反射光量を測定する。   Further, in the photoelectric pulse wave analysis method for peripheral arterial blood vessels of the present invention, the reflected light measurement step is performed from the group of the subject's back of the knee, the front side of the ankle, the back side of the ankle, the outside of the ankle, the back of the foot, and the bottom of the foot. One or two or more measured parts to be measured are irradiated with light of a predetermined wavelength, and the amount of reflected light is measured.

本発明によれば、被験者の膝より下部における末梢動脈血管の閉塞の有無、閉塞の程度及び閉塞部位の判定に有効な解析情報を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the analysis information effective in the presence or absence of the obstruction | occlusion of the peripheral artery blood vessel below a test subject's knee, the degree of obstruction | occlusion, and the obstruction | occlusion site | part can be obtained.

本発明の末梢動脈血管の光電脈波解析方法は、前記反射光測定ステップが、被験者の上肢の動脈が分岐する前の動脈近傍と動脈分岐した部分の近傍の群から選ばれる1又は2以上の被測定部位に所定波長の光を照射し、この光の反射光量を測定する。   In the method for analyzing a photoelectric pulse wave of a peripheral arterial blood vessel according to the present invention, the reflected light measurement step includes one or more selected from a group in the vicinity of an artery before the artery of the upper limb of the subject branches and a portion in the vicinity of the branched portion of the artery. The measurement site is irradiated with light of a predetermined wavelength, and the amount of reflected light of this light is measured.

本発明によれば、被験者の上肢の末梢動脈血管の閉塞の有無、閉塞の程度及び閉塞部位の判定に有効な解析情報を得ることができる。また、カフは腕や足首全体に巻いてしまうため、分岐後の各々の血管について閉塞・狭窄の有無を判定することができなかったが、本発明によって、分岐後の各々の血管について、閉塞・狭窄の有無を判定することができ、閉塞・狭窄が起こっている血管を正確に特定することができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, the analysis information effective in the presence or absence of the peripheral artery blood vessel of a test subject's upper limb, the degree of obstruction | occlusion, and determination of an obstruction | occlusion site | part can be obtained. In addition, since the cuff wraps around the entire arm and ankle, the presence or absence of occlusion / stenosis for each blood vessel after branching could not be determined. The presence or absence of stenosis can be determined, and the blood vessel in which occlusion / stenosis has occurred can be accurately identified.

また、本発明の末梢動脈血管の光電脈波解析方法は、前記比較ステップが、前記波形のピーク位置、振幅の大きさ、波形パターンの群から選ばれる1又は2以上の比較対象に基づいて前記基準波形と比較する。   Further, in the method for analyzing a photoelectric pulse wave of a peripheral arterial blood vessel of the present invention, the comparison step is based on one or more comparison targets selected from a group of a peak position of the waveform, a magnitude of an amplitude, and a waveform pattern. Compare with reference waveform.

本発明によれば、光電脈波のピーク位置又は振幅の大きさによって波形を定量的に比較することができる一方、光電脈波のパターンによって波形を定性的に比較することもできるので、光電脈波の多面的な解析を行うことができる。   According to the present invention, the waveform can be quantitatively compared with the peak position or amplitude of the photoelectric pulse wave, while the waveform can also be qualitatively compared with the pattern of the photoelectric pulse wave. Multifaceted analysis of waves can be performed.

また、本発明の末梢動脈血管の光電脈波解析方法は、前記反射光測定ステップが、それぞれの下肢において2以上の被測定部位からの反射光量を測定すると共に、前記比較ステップが、各被測定部位の前記波形を比較して波形の変化を検出する波形変化検出ステップを備えている。   Moreover, in the photoelectric pulse wave analysis method for peripheral arterial blood vessels according to the present invention, the reflected light measurement step measures the amount of reflected light from two or more measurement sites in each lower limb, and the comparison step includes each measurement target. A waveform change detecting step is provided for detecting a change in the waveform by comparing the waveforms of the parts.

本発明によれば、被験者のそれぞれの下肢において、2以上の被測定部位における波形の変化を検出することが可能になり、末梢動脈血管の閉塞部位の判定に有効な解析情報を得ることができる。   According to the present invention, it is possible to detect a change in waveform at two or more measured sites in each lower limb of a subject, and to obtain analysis information effective for determining a blocked site of a peripheral artery blood vessel. .

また、本発明の末梢動脈血管の光電脈波解析方法は、前記所定波長の光が赤外光である。   In the method for analyzing a peripheral artery blood vessel in the present invention, the light having the predetermined wavelength is infrared light.

本発明によれば、被験者の下肢体表面に照射される赤外光が皮膚深部に至り、光電脈波の波形を確実に検出することができる。   According to the present invention, infrared light applied to the surface of the lower limbs of the subject reaches the deep part of the skin, and the waveform of the photoelectric pulse wave can be reliably detected.

また、本発明の末梢動脈血管の光電脈波解析方法は、前記基準波形が、皮膚灌流圧(SPP)の値との相関関係に基づいて分類されている。   In the method for analyzing a photoelectric pulse wave of a peripheral artery blood vessel of the present invention, the reference waveform is classified based on a correlation with a value of skin perfusion pressure (SPP).

本発明によれば、被験者から検出された光電脈波の波形を基準波形と比較することにより、基準波形を介して被験者から検出された光電脈波の波形とSPP値との相関を取ることができる。SPP値は、値の大小が末梢動脈疾患(PAD)の程度を表しているから、光電脈波の波形に基づいてPAD疾患の程度を数値化することができ、末梢動脈血管の閉塞の有無又は閉塞の程度の判定に有効な解析情報を得ることができる。   According to the present invention, by comparing the waveform of the photoelectric pulse wave detected from the subject with the reference waveform, the correlation between the waveform of the photoelectric pulse wave detected from the subject via the reference waveform and the SPP value can be obtained. it can. Since the magnitude of the SPP value represents the degree of peripheral artery disease (PAD), the degree of PAD disease can be quantified based on the waveform of the photoelectric pulse wave, Effective analysis information can be obtained for determining the degree of occlusion.

本発明の光電脈波測定方法は、造影剤を注入したり、カフを巻いて圧をかけたりする等の負担を被験者に与えることなく且つ簡便な方法によって、末梢動脈血管の閉塞の有無、閉塞の程度及び閉塞部位の判定に有効な解析情報を得ることができる効果がある。   According to the photoelectric pulse wave measuring method of the present invention, the peripheral arterial blood vessel is blocked or not blocked by a simple method without burdening the subject such as injecting a contrast medium or applying pressure by winding a cuff. It is possible to obtain analysis information that is effective for determining the degree and the obstruction site.

本発明に係る光電脈波測定方法の一実施例を示す流れ図。The flowchart which shows one Example of the photoelectric pulse wave measuring method which concerns on this invention. 光電脈波測定方法に使用する機器の一実施例を示す構成図。The block diagram which shows one Example of the apparatus used for the photoelectric pulse wave measuring method. 下肢体の動脈を示す図。The figure which shows the artery of a leg body. 赤外光の照射部の一実施例を示す図。The figure which shows one Example of the irradiation part of infrared light. 赤外光の照射部の一実施例を示す図。The figure which shows one Example of the irradiation part of infrared light. 光電脈波のピーク位置を示す図。The figure which shows the peak position of a photoelectric pulse wave. 光電脈波の振幅を示す図。The figure which shows the amplitude of a photoelectric pulse wave. 光電脈波のパターン変化の一例を示す図。The figure which shows an example of the pattern change of a photoelectric pulse wave.

本発明の実施の形態を図示する実施例に基づいて説明する。   Embodiments of the present invention will be described based on examples shown in the drawings.

本発明に係る末梢動脈血管の光電脈波解析方法は、被験者の下肢体10表面に所定波長の光を照射し、この光の反射光量を測定する反射光測定ステップS1と、前記反射光量の変化から光電脈波の波形を検出する光電脈波形検出ステップS2と、前記波形を基準波形と比較する比較ステップS3と、を有し、前記基準波形は、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている。なお、反射光測定ステップS1における反射光量を用いる一例として、以下では下肢を対象に説明する。一方で、透過光量を用いる例としては、生体内を深く透過させる必要のない指先等が挙げられる。   In the method for analyzing a peripheral arterial blood vessel according to the present invention, a reflected light measuring step S1 for irradiating a surface of a lower limb 10 of a subject with light of a predetermined wavelength and measuring a reflected light amount of the light, and a change in the reflected light amount. A photoelectric pulse waveform detecting step S2 for detecting a waveform of the photoelectric pulse wave from the reference signal, and a comparing step S3 for comparing the waveform with a reference waveform, wherein the reference waveform indicates whether or not the peripheral arterial blood vessel is occluded or the degree of occlusion. It is classified based on. Note that, as an example of using the reflected light amount in the reflected light measurement step S1, the following description will be made on the lower limb. On the other hand, examples of using the transmitted light amount include a fingertip that does not need to penetrate deeply inside the living body.

光電脈波は、血液が心臓の収縮により大動脈起始部に押し出されたときに発生した血管内の圧力の変化が末梢方向に伝わっていくときの波動を、赤外光などを用いて波形として描出するものであり、一定の光量を被験者に照射して、血液によって吸収された光以外の残った光を反射光として検出し、その変動成分を計測することにより得られる。   The photoelectric pulse wave is a wave that is generated when the blood pressure is pushed to the origin of the aorta due to the contraction of the heart and is transmitted to the distal direction. It is drawn and obtained by irradiating the subject with a certain amount of light, detecting the remaining light other than the light absorbed by blood as reflected light, and measuring the fluctuation component.

図2は、本発明に係る末梢動脈血管の光電脈波測定方法に使用する光電脈波測定装置の機器構成の一実施例を示す図である。図示の実施例において、光電脈波計測装置は、被験者の下肢体10の表面に装着する測定端子12と、この測定端子12の周囲を覆う遮光体11を有し、測定端子12による反射光測定により得られた反射光量の変化をコンピュータ13で解析し、光電脈波の波形を検出する。   FIG. 2 is a diagram showing an embodiment of the device configuration of the photoelectric pulse wave measuring apparatus used in the method for measuring the photoelectric pulse wave of the peripheral arterial blood vessel according to the present invention. In the illustrated embodiment, the photoelectric pulse wave measuring apparatus has a measurement terminal 12 to be worn on the surface of the lower limb body 10 of a subject and a light shield 11 covering the periphery of the measurement terminal 12, and the reflected light measurement by the measurement terminal 12 is performed. The computer 13 analyzes the change in the amount of reflected light obtained by the above, and detects the waveform of the photoelectric pulse wave.

測定端子12は、例えば赤外光などの所定波長の光を発光する発光素子と、フォトダイオードやフォトトランジスタなどの光を受ける受光素子を備え、実施例では、被験者の下肢体10表面に赤外光を照射し、その反射光を測定する。遮光体11は、例えば遮光性の布などからなり、被測定部位の周囲を覆って、室内蛍光灯など外部からの光の影響を排除する。照射光としては、光が皮膚深部に至り、光電脈波の波形を確実に検出することができることから、赤外光を用いることが好ましいが、赤外光に限定されるものではない。   The measurement terminal 12 includes, for example, a light emitting element that emits light of a predetermined wavelength such as infrared light, and a light receiving element that receives light such as a photodiode or a phototransistor. Light is irradiated and the reflected light is measured. The light shielding body 11 is made of, for example, a light shielding cloth and covers the periphery of the measurement site to eliminate the influence of light from the outside such as an indoor fluorescent lamp. As the irradiation light, it is preferable to use infrared light since the light reaches the deep part of the skin and the waveform of the photoelectric pulse wave can be reliably detected. However, the irradiation light is not limited to infrared light.

コンピュータ13は、測定端子12を制御する制御部14と、測定端子12によって測定される反射光量の変化から光電脈波の波形を検出して解析する解析部15と、基準波形を記憶する記憶部16を備えている。また、本発明の照射部、測定部、検出部、比較部を制御する機能を有している。制御部14は、測定端子12から照射する赤外光の光量や照射時間などを制御する。解析部15は、検出した光電脈波の波形と、記憶部16に記憶された基準波形とを、波形のピーク位置、振幅の大きさ、波形パターンに基づいて比較する。記憶部16には、末梢動脈血管の閉塞の有無又は閉塞の程度との関連性を検証した光電脈波の波形を基準波形として記憶してあり、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類してある。実施例の場合、記憶部16には、基準波形を皮膚灌流圧(SPP)の値との相関関係に基づいて分類して記憶している。   The computer 13 includes a control unit 14 that controls the measurement terminal 12, an analysis unit 15 that detects and analyzes the waveform of the photoelectric pulse wave from a change in the amount of reflected light measured by the measurement terminal 12, and a storage unit that stores a reference waveform 16 is provided. Moreover, it has the function to control the irradiation part of this invention, a measurement part, a detection part, and a comparison part. The control unit 14 controls the amount of infrared light irradiated from the measurement terminal 12 and the irradiation time. The analysis unit 15 compares the detected waveform of the photoelectric pulse wave with the reference waveform stored in the storage unit 16 based on the peak position of the waveform, the magnitude of the amplitude, and the waveform pattern. The storage unit 16 stores, as a reference waveform, a waveform of a photoelectric pulse wave that verifies the relationship with the presence or absence or degree of occlusion of peripheral arterial blood vessels. Based on classification. In the embodiment, the storage unit 16 classifies and stores the reference waveform based on the correlation with the value of the skin perfusion pressure (SPP).

次に、本発明に係る末梢動脈血管の光電脈波解析方法について説明する。   Next, the photoelectric pulse wave analysis method for peripheral arterial blood vessels according to the present invention will be described.

図3に示すように、人の下肢体の動脈は、大腿部から膝下で前脛骨動脈21、後脛骨動脈22、腓骨動脈23の3つに分岐し、前脛骨動脈21は足首から更に足背動脈24へ、後脛骨動脈22は足底動脈25へと繋がっている。膝より下部の下肢体において、末梢動脈血管の閉塞の有無、閉塞の程度又は閉塞部位の判定に有効な解析情報を得るために、光電脈波の被測定部位は、左右の下肢体それぞれについて、膝裏部1、足首前側部2(前脛骨動脈21が支配する体表面近くの血管群が対象)、足首後側部3(後脛骨動脈22が支配する体表面近くの血管群が対象)、足首外側部4(腓骨動脈23が支配する体表面近くの血管群が対象)、足背部5、足底部6の6箇所とすることが好ましい(図4及び図5)。   As shown in FIG. 3, the arteries of the lower limbs of a person branch from the thigh to the knee under the anterior tibial artery 21, the posterior tibial artery 22, and the radial artery 23, and the anterior tibial artery 21 further extends from the ankle to the foot. The dorsal artery 24 and the posterior tibial artery 22 are connected to the plantar artery 25. In the lower limbs below the knee, in order to obtain effective analysis information for determining the presence or absence of the peripheral arterial blood vessels, the degree of occlusion or the site of occlusion, the measured site of photoelectric pulse wave is for each of the left and right lower limbs, Back of knee 1, anterior ankle 2 (subject to blood vessels near the body surface governed by anterior tibial artery 21), posterior ankle 3 (subject to blood vessels near the body surface governed by posterior tibial artery 22), It is preferable that there are six locations, namely, the ankle outer side 4 (the target is a blood vessel group near the body surface governed by the radial artery 23), the foot back 5 and the sole 6 (FIGS. 4 and 5).

なお、被測定部位は、膝裏部1、足首前側部2、足首後側部3、足首外側部4、足背部5、足底部6の任意の1箇所又は2〜5箇所を選択してもよい。また、被測定部位は、図4及び図5に示す部位に限定されるものではなく、7箇所以上を選択してもよい。   Note that the measurement site may be any one or 2 to 5 locations of the knee back portion 1, the ankle front side portion 2, the ankle rear side portion 3, the ankle outer side portion 4, the foot dorsal portion 5, and the sole portion 6. Good. Further, the measurement site is not limited to the site shown in FIGS. 4 and 5, and seven or more sites may be selected.

図1に示すように、末梢動脈血管の光電脈波解析方法は、照射部によって被験者の下肢体10表面に所定波長の光を照射し、この光の反射光量を測定する反射光測定ステップS1と、反射光量の変化から光電脈波の波形を検出する光電脈波形検出ステップS2と、この波形を基準波形と比較する比較ステップS3と、を有する。   As shown in FIG. 1, the photoelectric pulse wave analysis method for peripheral arterial blood vessels includes a reflected light measurement step S1 in which the irradiation unit irradiates the surface of the lower limb body 10 of the subject with a predetermined wavelength and measures the amount of reflected light of the light. And a photoelectric pulse waveform detection step S2 for detecting the waveform of the photoelectric pulse wave from the change in the amount of reflected light, and a comparison step S3 for comparing this waveform with the reference waveform.

測定部による反射光測定ステップS1は、図2に示す光電脈波測定装置を使用し、被験者の体位は臥位にて安静状態で、左右の下肢に対して測定を行う。   In the reflected light measurement step S1 by the measurement unit, the photoelectric pulse wave measuring device shown in FIG. 2 is used, and the subject's body posture is resting in the prone position, and measurement is performed on the left and right lower limbs.

光電脈波の被測定部位は、左右それぞれの下肢において、図4及び図5に示すように、膝裏部1、足首前側部2、足首後側部3、足首外側部4、足背部5及び足底部6の6箇所であり、この6箇所の被測定部位に測定端子12を装着して、5秒間分の光電脈波を採取する。測定の際に、室内蛍光灯など外部からの光の影響を排除するために、被測定部位の周囲を遮光性の布などの遮光体11で覆う。   As shown in FIGS. 4 and 5, the photoelectric pulse waves are measured at the lower limbs on the left and right legs, as shown in FIGS. 4 and 5. The measurement terminals 12 are attached to the six portions to be measured, and the photoelectric pulse waves for 5 seconds are collected. At the time of measurement, in order to eliminate the influence of light from the outside such as an indoor fluorescent lamp, the periphery of the measurement site is covered with a light shielding body 11 such as a light shielding cloth.

測定端子12は、所定光量の赤外光を各被測定部位に5秒間ずつ照射し、その反射光を測定する。測定端子12が測定した5秒間分の反射光量の変化からなる光電脈波は、コンピュータ13の記憶部16に記憶される。   The measurement terminal 12 irradiates each measurement site with infrared light of a predetermined light amount for 5 seconds and measures the reflected light. A photoelectric pulse wave consisting of a change in the amount of reflected light for 5 seconds measured by the measurement terminal 12 is stored in the storage unit 16 of the computer 13.

検出部による光電脈波形検出ステップS2は、それぞれの被測定部位において、記録時間(5秒間)に含まれる光電脈波を一拍ごとに分離し、得られた波形に加算平均、正規化などの処理を施して波形の整形を行う。例えば、一拍ごとに分離された複数拍の光電脈波の波形を加算平均してノイズを取り除くことができる。この波形整形処理を行った光電脈波の波形は、基準波形との比較対象として記憶部16に記憶される。   The photoelectric pulse waveform detection step S2 by the detection unit separates the photoelectric pulse wave included in the recording time (5 seconds) for each beat at each measurement site, and adds the average, normalization, etc. to the obtained waveform. Perform processing to shape the waveform. For example, noise can be removed by averaging the waveforms of photoelectric pulse waves of a plurality of beats separated for each beat. The waveform of the photoelectric pulse wave subjected to this waveform shaping process is stored in the storage unit 16 as a comparison target with the reference waveform.

比較部による比較ステップS3は、光電脈波形検出ステップS2において波形整形処理を行った光電脈波の波形を記憶部16に記憶されている基準波形と比較する。この比較は、コンピュータ13の解析部15において行われ、実施例の場合、波形のピーク位置、振幅の大きさ、波形パターンに基づいて比較される。なお、比較の対象は、波形のピーク位置、振幅の大きさ、波形パターンに限定されるものではない。   In the comparison step S3 by the comparison unit, the waveform of the photoelectric pulse wave subjected to the waveform shaping process in the photoelectric pulse waveform detection step S2 is compared with the reference waveform stored in the storage unit 16. This comparison is performed in the analysis unit 15 of the computer 13, and in the case of the embodiment, the comparison is made based on the peak position of the waveform, the magnitude of the amplitude, and the waveform pattern. Note that the comparison target is not limited to the peak position of the waveform, the magnitude of the amplitude, and the waveform pattern.

波形のピーク位置については、例えば図6に示すように、光電脈波形のピーク位置が、脈波開始位置からどの程度ずれているかを脈波全体に対する割合で評価する。図6の例では、脈波全体に対してピーク位置が22%ずれている。末梢動脈血管の閉塞の有無又は閉塞の程度によって、脈波全体に対するピーク位置が変化し、一般的に閉塞が進むほどピーク位置が後ろにシフトすることから、比較ステップS3は、このピーク位置を定量的に評価することにより、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている基準波形との比較が可能になる。   As for the peak position of the waveform, for example, as shown in FIG. 6, the degree to which the peak position of the photoelectric pulse waveform deviates from the pulse wave start position is evaluated as a ratio to the entire pulse wave. In the example of FIG. 6, the peak position is shifted by 22% with respect to the entire pulse wave. The peak position of the whole pulse wave changes depending on whether or not the peripheral artery blood vessel is occluded, and generally the peak position shifts backward as the occlusion progresses. Therefore, the comparison step S3 quantifies this peak position. The evaluation can be compared with a reference waveform classified based on the presence or absence of the peripheral arterial blood vessel or the degree of the occlusion.

波形の振幅の大きさについては、例えば図7に示すように、脈波振幅の減衰の度合いで評価する。末梢動脈血管の閉塞の有無又は閉塞の程度によって、脈波振幅の減衰の度合いが変化し、一般的に閉塞が進むほど振幅の減衰が大きくなることから、比較ステップS3は、この振幅の大きさを定量的に評価することにより、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている基準波形との比較が可能になる。すなわち、図7に示すP1→P2→P3となるほど、閉塞が進んでいることとなる。   For example, as shown in FIG. 7, the magnitude of the amplitude of the waveform is evaluated based on the degree of attenuation of the pulse wave amplitude. Since the degree of attenuation of the pulse wave amplitude changes depending on whether or not the peripheral artery blood vessel is occluded or the degree of occlusion, the amplitude attenuation generally increases as the occlusion progresses. Can be compared with a reference waveform classified based on whether or not the peripheral artery blood vessel is occluded or the degree of occlusion. That is, the blocking progresses as P1 → P2 → P3 shown in FIG.

波形パターンは、例えば図8に示すように、末梢動脈血管の閉塞の有無又は閉塞の程度によって、光電脈波の波形が変化する。波形パターンについては、基準波形を末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて幾つかのパターンに分類してあり、比較対象の光電脈波の波形と分類された基準波形との相関を評価することにより、基準波形との比較が可能になる。   In the waveform pattern, for example, as shown in FIG. 8, the waveform of the photoelectric pulse wave changes depending on whether or not the peripheral artery blood vessel is occluded or the degree of occlusion. Regarding the waveform pattern, the reference waveform is classified into several patterns based on whether or not the peripheral arterial blood vessels are occluded or the degree of occlusion, and the correlation between the comparison target waveform and the classified reference waveform The evaluation enables comparison with a reference waveform.

比較ステップS3は、光電脈波形のピーク位置及び振幅の大きさを、定量的な相関係数として評価し、光電脈波の波形パターンを、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている基準波形と比較して定性的に評価することができる。例えば、基準波形は、既知の評価手段によって評価された末梢動脈血管の閉塞の有無又は閉塞の程度と、光電脈波の各波形パターンとの相関関係を評価して、複数の波形パターンを分類してある。既知の評価手段としては、値の大小が末梢動脈疾患(PAD)の程度を表していることから、皮膚灌流圧測定(SPP検査)を用いることが好ましい。   The comparison step S3 evaluates the peak position and amplitude magnitude of the photoelectric pulse waveform as a quantitative correlation coefficient, and determines the waveform pattern of the photoelectric pulse wave based on whether or not the peripheral artery blood vessel is occluded or the degree of occlusion. It can be qualitatively evaluated by comparing with the classified reference waveform. For example, the reference waveform is classified into a plurality of waveform patterns by evaluating the correlation between each waveform pattern of the photoelectric pulse wave and the presence / absence level of the peripheral arterial blood vessel evaluated by a known evaluation means. It is. As a known evaluation means, it is preferable to use skin perfusion pressure measurement (SPP test) because the magnitude of the value represents the degree of peripheral arterial disease (PAD).

また、比較ステップ3は、それぞれの下肢体10において、複数の被測定部位での光電脈波の波形を比較して波形の変化を検出する波形変化検出ステップを備えることが好ましい。波形変化検出ステップを備えることにより、比較ステップ3は、光電脈波の波形を基準波形と比較するだけでなく、2以上の被測定部位における光電脈波の波形変化を検出することが可能になり、末梢動脈血管の閉塞部位の判定に有効な解析情報を得ることができる。   Moreover, it is preferable that the comparison step 3 includes a waveform change detection step that detects the change in the waveform by comparing the waveforms of the photoelectric pulse waves at a plurality of measurement sites in each lower limb body 10. By providing the waveform change detection step, the comparison step 3 can not only compare the waveform of the photoelectric pulse wave with the reference waveform but also detect the waveform change of the photoelectric pulse wave at two or more measured sites. In addition, it is possible to obtain analysis information effective for determining the occlusion site of the peripheral artery blood vessel.

記憶部16に記憶する基準波形は、以下の方法により得られる。   The reference waveform stored in the storage unit 16 is obtained by the following method.

既知の評価手段によって末梢動脈血管の閉塞の有無又は閉塞の程度が評価された複数の被験者に対して、図2に示す光電脈波測定装置を使用し、光電脈波の波形を検出する。複数の被験者において、健常人とPAD患者との間で、既知の評価手段による差異と光電脈波の波形との差異について相関関係を評価する。光電脈波の波形は、波形のピーク位置、振幅の大きさ、波形パターンについて評価する。このうち、波形のピーク位置及び振幅の大きさは、定量的な相関係数として評価し、波形パターンは、健康人とPAD患者との間でのパターンの違いを評価する。   The photoelectric pulse wave measurement device shown in FIG. 2 is used to detect the waveform of the photoelectric pulse wave for a plurality of subjects whose presence or degree of occlusion of the peripheral arterial blood vessel has been evaluated by a known evaluation means. In a plurality of subjects, a correlation is evaluated between a healthy person and a PAD patient with respect to a difference between a known evaluation means and a waveform of a photoelectric pulse wave. The waveform of the photoelectric pulse wave is evaluated with respect to the waveform peak position, amplitude magnitude, and waveform pattern. Among these, the peak position of the waveform and the magnitude of the amplitude are evaluated as a quantitative correlation coefficient, and the waveform pattern is evaluated for a pattern difference between a healthy person and a PAD patient.

既知の評価手段としては、膚灌流圧測定(SPP検査)を用いることができる。SPP値は、値の大小がPAD疾患の程度を表していることから、このSPP値の変化と光電脈波の波形変化との相関を取ることにより、光電脈波の波形を末梢動脈血管の閉塞の程度に基づいて分類でき、基準波形として記憶部16に記憶することができる。   As a known evaluation means, skin perfusion pressure measurement (SPP test) can be used. Since the magnitude of the SPP value represents the degree of PAD disease, by correlating the change in the SPP value with the change in the waveform of the photoelectric pulse, the waveform of the photoelectric pulse is occluded in the peripheral arterial blood vessel. And can be stored in the storage unit 16 as a reference waveform.

1 膝裏部
2 足首前側部
3 足首後側部
4 足首外側部
5 足背部
6 足底部
10 下肢
11 遮光体
12 測定端子
13 コンピュータ
14 制御部
15 解析部
16 記憶部
21 前脛骨動脈
22 後脛骨動脈
23 腓骨動脈
24 足背動脈
25 足底動脈
S1 反射光測定ステップ
S2 光電脈波形検出ステップ
S3 比較ステップ
DESCRIPTION OF SYMBOLS 1 Knee back part 2 Ankle front part 3 Ankle rear part 4 Ankle outer part 5 Foot back part 6 Foot bottom part 10 Lower limb 11 Shading body 12 Measuring terminal 13 Computer 14 Control part 15 Analysis part 16 Storage part 21 Anterior tibial artery 22 Retrotibial artery 23 radial artery 24 foot dorsal artery 25 plantar artery S1 reflected light measurement step S2 photoelectric pulse waveform detection step S3 comparison step

Claims (11)

被験者の体表面の複数の箇所に所定波長の光を照射し、この複数の箇所の光の反射光量又は透過光量を測定する測定ステップと、前記複数の反射光量又は透過光量の変化から複数の光電脈波の波形を検出する光電脈波形検出ステップと、前記複数の波形同士を比較する比較ステップと、を有する末梢動脈血管の光電脈波解析方法。   A measurement step of irradiating a plurality of locations on the body surface of the subject with light of a predetermined wavelength and measuring a reflected light amount or a transmitted light amount of the light at the plurality of locations, and a plurality of photoelectric signals based on a change in the reflected light amount or the transmitted light amount. A photoelectric pulse wave analysis method for peripheral arterial blood vessels, comprising: a photoelectric pulse waveform detection step for detecting a pulse wave waveform; and a comparison step for comparing the plurality of waveforms. 前記体表面の複数の箇所の少なくとも一カ所が、下肢の動脈の分岐前の動脈近傍であり、他の少なくとも一カ所が前記動脈の分岐後の動脈近傍であることを特徴とする請求項1に記載の末梢動脈血管の光電脈波解析方法。   The at least one of the plurality of locations on the body surface is in the vicinity of the artery before branching of the lower limb artery, and at least one other location is in the vicinity of the artery after branching of the artery. 2. A method for analyzing a photoelectric pulse wave of a peripheral arterial blood vessel. 前記体表面の複数の箇所の少なくとも一カ所である下肢の動脈の分岐前の動脈近傍が、被験者の膝裏部であり、他の少なくとも一カ所が分岐後の動脈近傍が足首前側部、足首後側部、足首外側部、足背部、足底部の群から選ばれる1又は2以上の被測定部位であることを特徴とする請求項2記載の末梢動脈血管の光電脈波解析方法。   The vicinity of the artery before branching of the lower limb artery, which is at least one of the plurality of points on the body surface, is the back of the subject's knee, and at least one other part is the vicinity of the artery after branching, the anterior side of the ankle, the back of the ankle 3. The method for analyzing a photoelectric pulse wave of a peripheral arterial blood vessel according to claim 2, wherein the measurement part is one or more measured sites selected from the group consisting of a side part, an ankle outer part, a foot back part, and a sole part. 前記体表面の複数の箇所の少なくとも一カ所が、上肢の動脈の分岐前の動脈近傍であり、他の少なくとも一カ所が前記動脈の分岐後の動脈近傍であることを特徴とする請求項1に記載の末梢動脈血管の光電脈波解析方法。   The at least one of the plurality of locations on the body surface is in the vicinity of the artery before the branch of the artery of the upper limb, and at least one other location is in the vicinity of the artery after the branch of the artery. 2. A method for analyzing a photoelectric pulse wave of a peripheral arterial blood vessel. 前記複数の波形同士を比較するステップが、分岐前の動脈近傍の光電脈波の波形と分岐後の光電脈波の検出された波形であることを特徴とする請求項1記載の末梢動脈血管の光電脈波解析方法。   2. The peripheral arterial blood vessel according to claim 1, wherein the step of comparing the plurality of waveforms is a waveform of a photoelectric pulse wave in the vicinity of an artery before branching and a detected waveform of the photoelectric pulse wave after branching. Photoelectric pulse wave analysis method. 前記複数の波形同士を比較するステップが、分岐後の動脈近傍の2以上の被測定部位分岐後の光電脈波の波形同士を比較することを特徴とする請求項1記載の末梢動脈血管の光電脈波解析方法。   The peripheral arterial vascular photoelectric sensor according to claim 1, wherein the step of comparing the plurality of waveforms compares the waveforms of photoelectric pulse waves after branching of two or more measured sites near the artery after branching. Pulse wave analysis method. 被験者の体表面の複数に所定波長の光を照射し、この光の反射光量又は透過光量を測定する測定ステップと、前記反射光量又は透過光量の変化から光電脈波の波形を検出する光電脈波形検出ステップと、前記波形を基準波形と比較する比較ステップと、を有し、
前記基準波形は、末梢動脈血管の閉塞の有無又は閉塞の程度に基づいて分類されている末梢動脈血管の光電脈波解析方法。
A measurement step of irradiating a plurality of light on the body surface of the subject with light of a predetermined wavelength and measuring a reflected light amount or a transmitted light amount of the light, and a photoelectric pulse waveform detecting a waveform of the photoelectric pulse wave from the change in the reflected light amount or the transmitted light amount A detection step, and a comparison step for comparing the waveform with a reference waveform,
The reference waveform is a photoelectric pulse wave analysis method for peripheral arterial blood vessels classified based on whether or not the peripheral arterial blood vessels are occluded or the degree of occlusion.
前記比較ステップが、前記波形のピーク位置、振幅の大きさ、波形パターンの群から選ばれる1又は2以上の比較対象に基づいて比較する請求項1又は7記載の末梢動脈血管の光電脈波解析方法。   The photoelectric pulse wave analysis of peripheral arterial blood vessels according to claim 1 or 7, wherein the comparison step performs comparison based on one or more comparison targets selected from a group of the peak position, amplitude magnitude, and waveform pattern of the waveform. Method. 前記所定波長の光が赤外光である請求項1から8のいずれか記載の末梢動脈血管の光電脈波解析方法。   9. The method of analyzing a peripheral arterial blood vessel according to claim 1, wherein the light having the predetermined wavelength is infrared light. 前記基準波形が、皮膚灌流圧(SPP)の値との相関関係に基づいて分類されている請求項1から9のいずれか記載の末梢動脈血管の光電脈波解析方法。   10. The method of analyzing a peripheral arterial blood vessel according to claim 1, wherein the reference waveform is classified based on a correlation with a value of skin perfusion pressure (SPP). 被験者の体表面の複数の箇所に所定波長の光を照射する照射部と、この複数の箇所の光の反射光量又は透過光量を測定する測定部と、前記複数の反射光量又は透過光量の変化から複数の光電脈波の波形を検出する光電脈波形検出する検出部と、前記複数の波形同士を比較する比較する比較部と、を有する末梢動脈血管の光電脈波解析装置。   From an irradiation unit that irradiates a plurality of locations on the body surface of the subject with light of a predetermined wavelength, a measurement unit that measures the amount of reflected or transmitted light of the plurality of locations, and a change in the amount of reflected or transmitted light A photoelectric pulse wave analysis device for peripheral arterial blood vessels, comprising: a detection unit for detecting a waveform of a plurality of photoelectric pulse waves; and a comparison unit for comparing the plurality of waveforms.
JP2012286701A 2012-12-28 2012-12-28 Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel Pending JP2014128329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286701A JP2014128329A (en) 2012-12-28 2012-12-28 Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286701A JP2014128329A (en) 2012-12-28 2012-12-28 Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel

Publications (1)

Publication Number Publication Date
JP2014128329A true JP2014128329A (en) 2014-07-10

Family

ID=51407369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286701A Pending JP2014128329A (en) 2012-12-28 2012-12-28 Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel

Country Status (1)

Country Link
JP (1) JP2014128329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076001A1 (en) * 2014-11-10 2016-05-19 テルモ株式会社 Skin perfusion pressure measurement device
JP2018175579A (en) * 2017-04-18 2018-11-15 学校法人 埼玉医科大学 Ankle hemodynamics index calculation device, ankle hemodynamics index calculation method, ankle hemodynamics index calculation program, and blood pressure measuring device
JP2019514635A (en) * 2016-03-28 2019-06-06 ジェンドゥ・イノベイションズ・プライベイト・リミテッドJendo Innovations (Pvt) Ltd System and method for monitoring vascular health
CN112326982A (en) * 2018-04-24 2021-02-05 深圳市帝迈生物技术有限公司 Full-automatic sampling blood cell analysis and measurement device and determination method of test tube type

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076001A1 (en) * 2014-11-10 2016-05-19 テルモ株式会社 Skin perfusion pressure measurement device
CN107106056A (en) * 2014-11-10 2017-08-29 泰尔茂株式会社 The measure device of skin perfusion pressure
CN107106056B (en) * 2014-11-10 2020-03-27 泰尔茂株式会社 Measuring device for skin perfusion pressure
JP2019514635A (en) * 2016-03-28 2019-06-06 ジェンドゥ・イノベイションズ・プライベイト・リミテッドJendo Innovations (Pvt) Ltd System and method for monitoring vascular health
JP7045084B2 (en) 2016-03-28 2022-03-31 ジェンドゥ・イノベイションズ・プライベイト・リミテッド Systems and methods for monitoring vascular health
JP2018175579A (en) * 2017-04-18 2018-11-15 学校法人 埼玉医科大学 Ankle hemodynamics index calculation device, ankle hemodynamics index calculation method, ankle hemodynamics index calculation program, and blood pressure measuring device
CN112326982A (en) * 2018-04-24 2021-02-05 深圳市帝迈生物技术有限公司 Full-automatic sampling blood cell analysis and measurement device and determination method of test tube type
CN112326982B (en) * 2018-04-24 2024-04-19 深圳市帝迈生物技术有限公司 Full-automatic sample injection blood cell analysis measuring device and test tube type determining method

Similar Documents

Publication Publication Date Title
US20190150763A1 (en) Obtaining cardiovascular parameters using arterioles related transient time
US20210244302A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
CN111629666B (en) Systems and methods for sensing physiological parameters
Nabeel et al. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation
JP6373005B2 (en) Dynamic optical tomography imaging apparatus, method and system
Spigulis et al. Optical multichannel sensing of skin blood pulsations
JP2007527773A (en) Method and apparatus for optical detection of mixed venous and arterial pulsations in tissue
WO2015049963A1 (en) Bio-information measurement device and method therefor
US20140142434A1 (en) System and method of measurement of systolic blood pressure
US10750956B2 (en) System and method for blood pressure measurement
KR20160123321A (en) Method for determining pulse wave velocity in an artery
US11154208B2 (en) System and method of measurement of average blood pressure
WO2017189376A1 (en) Monitoring treatment of peripheral artery disease (pad) using diffuse optical imaging
US20210177283A1 (en) Determining blood flow using laser speckle imaging
JP2014128329A (en) Photoelectric pulse wave analysis method and photoelectric pulse wave analysis device for peripheral arterial vessel
KR101432038B1 (en) Apparatus and method for measuring blood pressure
CN108366743A (en) The method and apparatus for estimating aorta Pulse transit time according to the time interval measured between the datum mark of ballistocardiogram
US11638534B2 (en) Continuous monitoring of the perfusion of an organ or extremity
EP1671581A1 (en) Method and device for detection of arterial occlusions in arms and legs
KR20190105421A (en) apparatus and method for measuring blood presure based on PPG
Sola et al. Ambulatory monitoring of the cardiovascular system: the role of pulse wave velocity
JP2018068556A (en) Intrathoracic pressure estimation device
Huotari et al. Arterial pulse wave analysis based on PPG and EMFi measurements
Zheng et al. Pulse arrival time based indices as surrogates of ankle brachial index for the assessment of peripheral arterial disease
Livneh et al. Detection of Peripheral Artery Stenosis Utilizing Wavelet Coherence Analysis