JP2014127260A - Method of manufacturing solid electrolyte battery - Google Patents

Method of manufacturing solid electrolyte battery Download PDF

Info

Publication number
JP2014127260A
JP2014127260A JP2012281248A JP2012281248A JP2014127260A JP 2014127260 A JP2014127260 A JP 2014127260A JP 2012281248 A JP2012281248 A JP 2012281248A JP 2012281248 A JP2012281248 A JP 2012281248A JP 2014127260 A JP2014127260 A JP 2014127260A
Authority
JP
Japan
Prior art keywords
battery
solid electrolyte
current collector
negative electrode
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012281248A
Other languages
Japanese (ja)
Inventor
Yuji Yamashita
勇司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012281248A priority Critical patent/JP2014127260A/en
Publication of JP2014127260A publication Critical patent/JP2014127260A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a stacked solid electrolyte battery, by which a short circuit between collectors is prevented during manufacturing and a battery structure efficiently stacked as a stacked battery is obtained.SOLUTION: In a method of manufacturing a solid electrolyte battery, a laminate is cut by the engagement of two cutting blades disposed on a positive electrode side and a negative electrode side to obtain a battery structure, the laminate including at least a positive electrode, a solid electrolyte and a negative electrode between first and second collector foils. In the method, blade surfaces of the two cutting blades are brought into contact each other in an electrolyte layer.

Description

本発明は集電箔間に少なくとも固体電解質及び電極を有する電池構造部材が積層された固体電解質電池の製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolyte battery in which a battery structural member having at least a solid electrolyte and an electrode is laminated between current collecting foils.

近年、積層型電池に対する需要が高まっており、大量の積層型電池を効率よく短時間で製造する方法が求められている。積層型電池を効率よく製造する方法として、集電体間に、正電極、電解質及び負電極と、これらの電極及び電解質を覆う絶縁体からなる電池構造体が連続形成された薄肉で帯状の被切断体を製造し、この被切断体に切断刃を下降させることにより、積層型電池に積層される電池構造体を得る方法が考えられている。   In recent years, the demand for stacked batteries has increased, and a method for efficiently manufacturing a large number of stacked batteries in a short time is required. As a method for efficiently manufacturing a laminated battery, a thin, strip-shaped covering in which a battery structure composed of a positive electrode, an electrolyte, a negative electrode, and an insulator covering these electrodes and the electrolyte is continuously formed between current collectors. A method of obtaining a battery structure laminated on a laminated battery by manufacturing a cut body and lowering a cutting blade on the cut body has been considered.

しかしながら、被切断体の切断の際に、最初に切断される一方の集電箔が切断刃から押下力を受けて曲げ変形するおそれがある。そして、一方の集電箔が曲げ変形した状態で切断刃をさらに下降させると、一方の集電箔の曲げ部及び他方の集電箔が接触して、短絡を起こすおそれがある。   However, when cutting the object to be cut, one of the current collector foils that is cut first may be bent and deformed by receiving a pressing force from the cutting blade. When the cutting blade is further lowered in a state where one of the current collector foils is bent and deformed, the bent portion of the one current collector foil and the other current collector foil may come into contact with each other, thereby causing a short circuit.

ここで、切断刃による切断の際に積層型電池における短絡を防止する方法として、本切断に先立って集電箔を仮切断し、仮切断した切断面に絶縁処理を施す方法が開示されている(例えば、特許文献1参照)。   Here, as a method for preventing a short circuit in the laminated battery at the time of cutting with a cutting blade, a method is disclosed in which the current collector foil is temporarily cut prior to the main cutting and an insulating treatment is performed on the temporarily cut surface. (For example, refer to Patent Document 1).

特開2008−053103号公報JP 2008-053103 A

しかしながら、特許文献1の方法では、端部変形による正極/負極間に短絡が生ずるというリスクがある。   However, in the method of Patent Document 1, there is a risk that a short circuit occurs between the positive electrode and the negative electrode due to end deformation.

そこで、本願発明は、製造時に集電体間の短絡を防止して、効率良く積層型電池に積層される電池構造体を得る積層型固体電解質電池の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a stacked solid electrolyte battery that prevents a short circuit between current collectors during manufacturing and obtains a battery structure that is efficiently stacked on a stacked battery.

上記課題を解決するために、本願発明によれば、第1及び第2の集電箔間に少なくとも正電極、固体電解質及び負電極を有する積層体を、正電極側及び負電極側に配置された2つの切断刃のかみ合わせにより切断して電池構造体を得る、固体電解質電池の製造方法であって、前記2つの切断刃の刃面同士が電解質層内で接触することを特徴とする方法が提供される。   In order to solve the above problems, according to the present invention, a laminate having at least a positive electrode, a solid electrolyte, and a negative electrode is disposed between the first and second current collector foils on the positive electrode side and the negative electrode side. A method for manufacturing a solid electrolyte battery, wherein the battery structure is obtained by cutting by engaging two cutting blades, wherein the blade surfaces of the two cutting blades are in contact with each other in the electrolyte layer. Provided.

また、前記切断刃による切断に先立って、レーザを用いて集電箔を切断することが好ましい。   Prior to cutting with the cutting blade, it is preferable to cut the current collector foil using a laser.

本願発明によれば、被切断体を切断する際に2つの切断刃の刃面同士を電解質層内で接触させているため、集電箔同士が接触して短絡するリスクを低減することができる。   According to the present invention, since the blade surfaces of the two cutting blades are in contact with each other in the electrolyte layer when the object to be cut is cut, it is possible to reduce the risk that the current collector foils are in contact with each other and short-circuited. .

本発明の固体電解質電池の製造工程の概略図である。It is the schematic of the manufacturing process of the solid electrolyte battery of this invention. 図1の製造工程の停止位置T8における拡大図である。It is an enlarged view in the stop position T8 of the manufacturing process of FIG. レーザ光により集電箔を切断する工程の概略図である。It is the schematic of the process of cut | disconnecting current collection foil with a laser beam.

以下、本発明を図面を参照して説明する。ここでは、積層型電池としてのバイポーラ型電池の製造方法について説明する。ここで、図1は、本実施例のバイポーラ型電池の製造方法を有効に実施するための製造工程の概略図である。なお、図1では、説明を容易にするために連続電池構造体1における負極層13、固体電解質層14及び正極層15を露出させた状態で図示しているが(断面図)、実際には絶縁材料によって覆われている。   The present invention will be described below with reference to the drawings. Here, a method for manufacturing a bipolar battery as a stacked battery will be described. Here, FIG. 1 is a schematic view of a manufacturing process for effectively carrying out the bipolar battery manufacturing method of the present embodiment. In FIG. 1, for ease of explanation, the negative electrode layer 13, the solid electrolyte layer 14, and the positive electrode layer 15 in the continuous battery structure 1 are shown exposed (cross-sectional view). Covered with insulating material.

本実施例のバイポーラ型電池の製造方法の概略構成は、集電箔(集電体)11、12間に、負極層13、固体電解質層14及び正極層15を積層して、これらの積層体の周囲を絶縁層6で覆った電池構造体2を集電箔11、12の平面方向に連続形成した連続電池構造体(被切断体)1を、所定位置(絶縁層6が形成された領域)で切断して、バイポーラ型電池に積層される電池構造体2を得るバイポーラ型電池の製造方法であり、連続電池構造体1を2つの切断刃37及び38で切断することを特徴としている。   The schematic structure of the bipolar battery manufacturing method of this example is that a negative electrode layer 13, a solid electrolyte layer 14, and a positive electrode layer 15 are laminated between current collector foils (current collectors) 11, 12, and these laminated bodies. A continuous battery structure (a body to be cut) 1 in which a battery structure 2 whose periphery is covered with an insulating layer 6 is continuously formed in the plane direction of the current collector foils 11 and 12 is formed at a predetermined position (region where the insulating layer 6 is formed ) To obtain a battery structure 2 to be stacked on the bipolar battery, and is characterized by cutting the continuous battery structure 1 with two cutting blades 37 and 38.

図1において、集電箔供給ローラ23には集電箔11が巻き回されており、集電箔供給ローラ23から送り出された集電箔11は、ガイドローラ24にガイドされながら、搬送コンベア25(搬送手段)の搬送面に進入し、矢印X方向に搬送される。搬送コンベア25は、無端回動式のベルトコンベアであり、不図示の搬送動作制御回路によって、駆動・停止が制御される。   In FIG. 1, the current collector foil 11 is wound around the current collector foil supply roller 23, and the current collector foil 11 sent out from the current collector foil supply roller 23 is guided by the guide roller 24 while being conveyed by the conveyor 25. It enters the conveying surface of (conveying means) and is conveyed in the direction of arrow X. The conveyance conveyor 25 is an endless rotation type belt conveyor, and driving / stopping is controlled by a conveyance operation control circuit (not shown).

図1のT1〜T8は、集電箔11上に形成される絶縁層6の停止位置を示しており、該搬送動作制御回路は、絶縁層6が停止位置T1〜T8にて所定時間停止されるように、搬送コンベア25を間欠駆動する。なお、隣接する各停止位置の間隔は、全て同じに設定されている。また、集電箔11の材料としては、アルミニウム箔、ステンレス箔、銅箔を例示できる。   T1 to T8 in FIG. 1 indicate the stop position of the insulating layer 6 formed on the current collector foil 11, and the transport operation control circuit stops the insulating layer 6 at the stop positions T1 to T8 for a predetermined time. Thus, the conveyor 25 is intermittently driven. The intervals between adjacent stop positions are all set to be the same. Examples of the material of the current collector foil 11 include aluminum foil, stainless steel foil, and copper foil.

(ステップS101)
停止位置T1には、インクジェットヘッドで構成される第1の絶縁材供給部31が設けられており、この第1の絶縁材供給部31から噴射された絶縁材料によって集電箔11上に平面視矩形の下絶縁層6aが形成される。ここで、下絶縁層6aに用いられる材料としては、ポリエチレン、ポリセロ、ポリプロピレン、コーテッドポリエステル、ナイロン、コーテッドポリプロピレン、ポリスチレン、ポリビニルアルコール、ポリカーボネート、ポリ塩化ビニリデン、ポリイミドを例示できる。なお、後述する中絶縁層6b及び上絶縁層6cについても、下絶縁層6aと同じ材料を使用することができる。また、第1の絶縁材供給部31によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて下絶縁層6aを形成してもよい。
(Step S101)
At the stop position T1, a first insulating material supply unit 31 configured by an ink jet head is provided, and the insulating material sprayed from the first insulating material supply unit 31 is viewed on the current collector foil 11 in plan view. A rectangular lower insulating layer 6a is formed. Here, examples of the material used for the lower insulating layer 6a include polyethylene, polycello, polypropylene, coated polyester, nylon, coated polypropylene, polystyrene, polyvinyl alcohol, polycarbonate, polyvinylidene chloride, and polyimide. The same material as that of the lower insulating layer 6a can be used for the middle insulating layer 6b and the upper insulating layer 6c described later. Further, the lower insulating layer 6a may be formed by spray printing, electrostatic spraying, or sputtering instead of the ink jet method by the first insulating material supply unit 31.

(ステップS102)
停止位置T2には、インクジェットヘッドで構成される第2の絶縁材供給部32が設けられており、第2の絶縁材供給部32から噴射された絶縁材料によって下絶縁層6a上に平面視矩形の中絶縁層6bが形成される。ここで、中絶縁層6bは、矢印X方向の寸法が下絶縁層6aよりも小さく設定されており、下絶縁層6aの上面における左右(矢印X方向)両側の領域は、中絶縁層6bが形成されていない中絶縁層非形成領域61aとなっている。なお、第2の絶縁材供給部32によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて中絶縁層6aを形成してもよい。
(Step S102)
The stop position T2 is provided with a second insulating material supply unit 32 composed of an inkjet head, and is rectangular in plan view on the lower insulating layer 6a by the insulating material sprayed from the second insulating material supply unit 32. The middle insulating layer 6b is formed. Here, the middle insulating layer 6b is set to have a dimension in the arrow X direction smaller than that of the lower insulating layer 6a. The regions on both the left and right sides (in the arrow X direction) on the upper surface of the lower insulating layer 6a The middle insulating layer non-formation region 61a is not formed. Note that the middle insulating layer 6a may be formed by spray printing, electrostatic spraying, or sputtering instead of the ink jet method by the second insulating material supply unit 32.

(ステップS103)
停止位置T2とT3との間には、インクジェットヘッドで構成される正極層供給部33が矢印X1方向に往復移動可能に設けられており、この正極層供給部33から噴射された正極層材料によって、停止位置T2及びT3にてそれぞれ停止している下絶縁層6a間の集電箔11上に平面視矩形の正極層15を形成する。ここで、正極層15に用いられる正極活物質としては、スピネルLiMn、溶液系のリチウムイオン電池で使用される遷移金属とリチイウムの複合酸化物を例示できる。具体的には、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物を例示できる。この他、LiFePOなどの遷移金属とリチウムのリン酸化合物や硫酸化合物;V、MnO、TiS、MoS、MoOなどの遷移金属酸化物や硫化物;PbO、AgO、NiOOHなどを使用することもできる。また、正極活物質にポリマー、重合開始剤、導電助剤、溶媒を混合してもよい。なお、正極層供給部33によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて正極層15を形成してもよい。
(Step S103)
Between the stop positions T2 and T3, a positive electrode layer supply unit 33 constituted by an ink jet head is provided so as to be able to reciprocate in the direction of the arrow X1, and depending on the positive electrode layer material injected from the positive electrode layer supply unit 33, A positive electrode layer 15 having a rectangular shape in plan view is formed on the current collector foil 11 between the lower insulating layers 6a stopped at the stop positions T2 and T3. Here, examples of the positive electrode active material used for the positive electrode layer 15 include spinel LiMn 2 O 4 , and a composite oxide of transition metal and lithium used in a solution-type lithium ion battery. Specifically, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, Li · such LiFeO 2 Examples thereof include Fe-based composite oxides. In addition, transition metal and lithium phosphate compounds and sulfate compounds such as LiFePO 4 ; transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 ; PbO 2 , AgO, NiOOH or the like can also be used. Moreover, you may mix a polymer, a polymerization initiator, a conductive support agent, and a solvent with a positive electrode active material. Note that the positive electrode layer 15 may be formed by spray printing, electrostatic spraying, or sputtering instead of the ink jet method by the positive electrode layer supply unit 33.

(ステップS104)
停止位置T3とT4との間には、インクジェットヘッドで構成される電解質層供給部34が矢印X2方向に往復移動可能に設けられており、この電解質層供給部34から噴射された電解質材料によって、停止位置T3及びT4にそれぞれ停止している下絶縁層6aの中絶縁層非形成領域61aと正極層15上に平面視矩形の固体電解質層14が形成される。ここで、固体電解質層14のイオン導電性物質としては、ポリエチレンオキシド、ポリプロピレンオキシドを例示できる。粉末状のイオン導電性物質に粘性バインダーを混合することもできる。この粘性バインダーとしては、ポリビニールアルコール(PVA)、メチルセルロース、ニトロセルロース、エチルセルロースを例示できる。このように粘性バインダーを混合することにより、固体電解質層14の強度を増すことができる。なお、電解質層供給部34によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて固体電解質層14を形成してもよい。
(Step S104)
Between the stop positions T3 and T4, an electrolyte layer supply unit 34 constituted by an inkjet head is provided so as to be able to reciprocate in the direction of the arrow X2, and by the electrolyte material injected from the electrolyte layer supply unit 34, The solid electrolyte layer 14 having a rectangular shape in plan view is formed on the middle insulating layer non-formation region 61a and the positive electrode layer 15 which are stopped at the stop positions T3 and T4, respectively. Here, examples of the ion conductive material of the solid electrolyte layer 14 include polyethylene oxide and polypropylene oxide. A viscous binder may be mixed with the powdered ion conductive material. Examples of the viscous binder include polyvinyl alcohol (PVA), methyl cellulose, nitrocellulose, and ethyl cellulose. Thus, the intensity | strength of the solid electrolyte layer 14 can be increased by mixing a viscous binder. Note that the solid electrolyte layer 14 may be formed using spray printing, electrostatic spraying, or sputtering instead of the ink jet method using the electrolyte layer supply unit 34.

(ステップS105)
停止位置T5には、インクジェットヘッドで構成される第3の絶縁材供給部35が設けられており、第3の絶縁材供給部35から噴射された絶縁材料によって中絶縁層6b上に平面視矩形状の上絶縁層6cが形成される。ここで、上絶縁層6cの矢印X方向の寸法は、中絶縁層6bよりも大きく、下絶縁層6aと同じに設定されている。したがって、上絶縁層6cは、停止位置T4、T5間及び停止位置T5、T6間で停止している固定電解質層14上にも部分的に形成されている。なお、第3の絶縁材供給部35によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて上絶縁層6cを形成してもよい。
(Step S105)
At the stop position T5, a third insulating material supply unit 35 constituted by an ink jet head is provided, and the insulating material sprayed from the third insulating material supply unit 35 is rectangular on the middle insulating layer 6b in plan view. An upper insulating layer 6c having a shape is formed. Here, the dimension of the upper insulating layer 6c in the arrow X direction is larger than that of the middle insulating layer 6b and is set to be the same as that of the lower insulating layer 6a. Therefore, the upper insulating layer 6c is also partially formed on the stationary electrolyte layer 14 that is stopped between the stop positions T4 and T5 and between the stop positions T5 and T6. Note that the upper insulating layer 6c may be formed using spray printing, electrostatic spraying, or sputtering instead of the ink jet method using the third insulating material supply unit 35.

(ステップS106)
停止位置T5とT6との間には、インクジェットヘッドで構成される負極層供給部36が矢印X3方向に往復移動可能に設けられており、この負極層供給部36から噴射された負極層材料によって、停止位置T2及びT3にてそれぞれ停止している上絶縁層6c間の固体電解質層14上に負極層13が形成される。ここで、負極層13を構成する負極活物質としては、遷移金属酸化物、遷移金属とリチウムの複合酸化物、チタンの酸化物、チタンとリチウムとの複合酸化物を例示できる。また、負極活物質にポリマー、重合開始剤、導電助剤、溶媒を混合して負極層13の材料としてもよい。なお、負極層供給部36によるインクジェット方式に代えて、スプレー印刷、静電噴霧、スパッタリングを用いて負極層13を形成してもよい。
(Step S106)
Between the stop positions T5 and T6, a negative electrode layer supply unit 36 composed of an inkjet head is provided so as to be reciprocally movable in the direction of arrow X3. The negative electrode layer material injected from the negative electrode layer supply unit 36 The negative electrode layer 13 is formed on the solid electrolyte layer 14 between the upper insulating layers 6c stopped at the stop positions T2 and T3. Here, examples of the negative electrode active material constituting the negative electrode layer 13 include transition metal oxides, composite oxides of transition metals and lithium, oxides of titanium, and composite oxides of titanium and lithium. Alternatively, the negative electrode active material may be mixed with a polymer, a polymerization initiator, a conductive additive, and a solvent to form a material for the negative electrode layer 13. Note that the negative electrode layer 13 may be formed using spray printing, electrostatic spraying, or sputtering instead of the ink jet method using the negative electrode layer supply unit 36.

(ステップS107)
停止位置T6とT7との間には、集電箔12を巻き回した集電箔供給ローラ26が設けられており、集電箔供給ローラ26から送り出された集電箔12は、ガイドローラ27を介して、負極層13及び上絶縁層6c上に供給される。負極層13及び上絶縁層6c上に集電箔12が供給されることにより、連続電池構造体1が製造され、この連続電池構造体1は停止位置T6からT7に移動しながら、押圧ローラ28、29に押圧される。集電箔12の材料は、集電箔11と同じである。
(Step S107)
Between the stop positions T6 and T7, a current collector foil supply roller 26 around which the current collector foil 12 is wound is provided. The current collector foil 12 fed from the current collector foil supply roller 26 is provided with a guide roller 27. Is supplied onto the negative electrode layer 13 and the upper insulating layer 6c. The current collector foil 12 is supplied onto the negative electrode layer 13 and the upper insulating layer 6c, whereby the continuous battery structure 1 is manufactured. The continuous battery structure 1 moves from the stop position T6 to T7, and the pressing roller 28 is moved. , 29 is pressed. The material of the current collector foil 12 is the same as that of the current collector foil 11.

(ステップS108)
停止位置T8には、連続電池構造体1から電池構造体2を切り離すための切断を行う切断部21が設けられている。この切断部21は、不図示の昇降装置によって2つの切断刃37及び38が昇降駆動され、連続電池構造体1が停止(搬送コンベア25が停止)しているときに昇降して、噛み合い、連続電池構造体1を切断する。
(Step S108)
At the stop position T8, a cutting unit 21 that performs cutting for separating the battery structure 2 from the continuous battery structure 1 is provided. The cutting unit 21 is lifted and lowered when the two cutting blades 37 and 38 are driven up and down by a lifting device (not shown) and the continuous battery structure 1 is stopped (the conveyor 25 is stopped). The battery structure 1 is cut.

ここで、2つの切断刃による連続電池構造体1の切断を図2において詳細に説明する。停止位置T8において、連続電池構造体1が停止すると、2つの切断刃37及び38が昇降駆動され昇降して、噛み合い、連続電池構造体1を切断する。この際、2つの切断刃37及び38は、刃面同士が電解質層14内で接触するよう制御されている。なお、図1では、連続電池構造体1の1箇所のみで切断を行っているが、図2に示すように、連続電池構造体1の上下面を押さえ冶具39で支え、両側から切断してもよい。   Here, the cutting | disconnection of the continuous battery structure 1 by two cutting blades is demonstrated in detail in FIG. When the continuous battery structure 1 is stopped at the stop position T8, the two cutting blades 37 and 38 are lifted and lowered to engage with each other, and the continuous battery structure 1 is cut. At this time, the two cutting blades 37 and 38 are controlled so that the blade surfaces come into contact with each other in the electrolyte layer 14. In FIG. 1, the cutting is performed at only one location of the continuous battery structure 1, but as shown in FIG. 2, the upper and lower surfaces of the continuous battery structure 1 are supported by the holding jig 39 and cut from both sides. Also good.

この切断刃による切断を行う前に、図3に示すように、レーザ光40により集電箔11及び12のみを裁断し、次いで切断刃37及び38により、上記のように切断を行うことが好ましい。ここで、高エネルギーのレーザ光で金属性の集電箔を溶断する場合、溶断金属部分が塊状になり、電池構造によっては短絡を起こす要因となるため、最小限のエネルギーで金属集電箔を裁断することが好ましい。レーザ光としては、金属箔、セラミック(活物質、電解質)に対して吸収係数が高く、高出力化が可能な炭酸ガスレーザやYAGレーザを用いることが好ましい。このように、電極端部の変形がしにくいレーザ光で集電箔をあらかじめ裁断しておくことにより、短絡を確実に防止することができる。   Before performing cutting with this cutting blade, it is preferable to cut only the current collector foils 11 and 12 with a laser beam 40 and then cut with the cutting blades 37 and 38 as described above, as shown in FIG. . Here, when the metallic current collector foil is melted with a high-energy laser beam, the melted metal part becomes agglomerated and may cause a short circuit depending on the battery structure. It is preferable to cut. As the laser light, it is preferable to use a carbon dioxide gas laser or a YAG laser that has a high absorption coefficient with respect to metal foil and ceramic (active material, electrolyte) and can achieve high output. As described above, the current collector foil is cut in advance with the laser beam which is difficult to deform the electrode end portion, so that the short circuit can be surely prevented.

最後に、連続電池構造体1の端部を、絶縁材料、例えば下絶縁層6aに用いられる樹脂により絶縁処理される。そして切断された各電池構造体2は順次積層され、不図示のプレス装置でプレスされることにより、バイポーラ型電池が製造される。   Finally, the end portion of the continuous battery structure 1 is insulated with an insulating material, for example, a resin used for the lower insulating layer 6a. Then, the cut battery structures 2 are sequentially stacked and pressed by a pressing device (not shown) to manufacture a bipolar battery.

上述の実施例では、集電箔11、12を同じ金属で構成したが、本願発明は、集電箔11、12を異なる金属で構成したバイポーラ型ではない積層型電池にも適用することができる。また、絶縁層6が無く、集電箔11、12間に負極層13、固体電解質層14及び正極層15が連続形成された連続電池構造体(被切断体)を所定の位置で切断する方法にも本願発明は適用することができる。この場合、切断後に、負極層13、固体電解質層14及び正極層15を絶縁層で覆うことが好ましい。さらに、実施例では連続電池構造体1を切断しているが、本発明の方法は、中型、大型サイズの電池構造体から、電池設計の任意の所望電池サイズに裁断する場合にも用いることができる。   In the above embodiment, the current collector foils 11 and 12 are made of the same metal. However, the present invention can also be applied to a non-bipolar stacked battery in which the current collector foils 11 and 12 are made of different metals. . Also, a method of cutting a continuous battery structure (a body to be cut) in which the insulating layer 6 is not provided and the negative electrode layer 13, the solid electrolyte layer 14, and the positive electrode layer 15 are continuously formed between the current collector foils 11 and 12 at a predetermined position. The present invention can also be applied. In this case, it is preferable to cover the negative electrode layer 13, the solid electrolyte layer 14, and the positive electrode layer 15 with an insulating layer after cutting. Furthermore, although the continuous battery structure 1 is cut | disconnected in an Example, the method of this invention can be used also when cutting to the desired battery size of a battery design from the battery structure of medium size and a large sized size. it can.

1 連続電池構造体
2 電池構造体
6 絶縁層
T1〜T9 停止位置
11、12 集電箔
13 負極層
14 固体電解質層
15 正極層
21 切断部
23、26 集電箔供給ローラ
24、27 ガイドローラ
25 搬送コンベア
28、29 押圧ローラ
31 第1の絶縁材供給部
32 第2の絶縁材供給部
33 正極層供給部
34 電解質層供給部
35 第3の絶縁材供給部
36 負極層供給部
37、38 切断刃
39 押さえ冶具
40 レーザ光
DESCRIPTION OF SYMBOLS 1 Continuous battery structure 2 Battery structure 6 Insulating layer T1-T9 Stop position 11, 12 Current collecting foil 13 Negative electrode layer 14 Solid electrolyte layer 15 Positive electrode layer 21 Cutting part 23, 26 Current collecting foil supply roller 24, 27 Guide roller 25 Conveyor 28, 29 Press roller 31 First insulating material supply unit 32 Second insulating material supply unit 33 Positive electrode layer supply unit 34 Electrolyte layer supply unit 35 Third insulating material supply unit 36 Negative electrode layer supply unit 37, 38 Cutting Blade 39 Holding jig 40 Laser light

Claims (2)

第1及び第2の集電箔間に少なくとも正電極、固体電解質及び負電極を有する積層体を、正電極側及び負電極側に配置された2つの切断刃のかみ合わせにより切断して電池構造体を得る、固体電解質電池の製造方法であって、前記2つの切断刃の刃面同士が電解質層内で接触することを特徴とする固体電解質電池の製造方法。   A battery structure in which a laminate having at least a positive electrode, a solid electrolyte, and a negative electrode between the first and second current collector foils is cut by meshing two cutting blades disposed on the positive electrode side and the negative electrode side. A manufacturing method of a solid electrolyte battery, wherein the blade surfaces of the two cutting blades are in contact with each other in the electrolyte layer. 前記切断刃による切断に先立って、レーザを用いて集電箔を切断する、請求項1記載の方法。   The method according to claim 1, wherein the current collector foil is cut with a laser prior to cutting with the cutting blade.
JP2012281248A 2012-12-25 2012-12-25 Method of manufacturing solid electrolyte battery Pending JP2014127260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281248A JP2014127260A (en) 2012-12-25 2012-12-25 Method of manufacturing solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281248A JP2014127260A (en) 2012-12-25 2012-12-25 Method of manufacturing solid electrolyte battery

Publications (1)

Publication Number Publication Date
JP2014127260A true JP2014127260A (en) 2014-07-07

Family

ID=51406619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281248A Pending JP2014127260A (en) 2012-12-25 2012-12-25 Method of manufacturing solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP2014127260A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014169A (en) * 2016-07-19 2018-01-25 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
CN109755659A (en) * 2017-11-07 2019-05-14 丰田自动车株式会社 all-solid-state battery
WO2019131503A1 (en) * 2017-12-28 2019-07-04 日立造船株式会社 All-solid-state battery, method for manufacturing same, and processing device
CN112385069A (en) * 2018-07-13 2021-02-19 日立造船株式会社 Manufacturing equipment of all-solid-state secondary battery
WO2021091976A1 (en) * 2019-11-07 2021-05-14 Sion Power Corporation Electrode cutting instrument
US11431033B2 (en) 2018-10-25 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method for producing all-solid-state battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014169A (en) * 2016-07-19 2018-01-25 セイコーインスツル株式会社 Electrochemical cell and method for manufacturing the same
CN109755659A (en) * 2017-11-07 2019-05-14 丰田自动车株式会社 all-solid-state battery
JP7082142B2 (en) 2017-12-28 2022-06-07 日立造船株式会社 All-solid-state battery, its manufacturing method and processing equipment
CN111527638A (en) * 2017-12-28 2020-08-11 日立造船株式会社 All-solid-state battery, and manufacturing method and processing device thereof
KR20200103778A (en) * 2017-12-28 2020-09-02 히다치 조센 가부시키가이샤 All-solid-state battery, its manufacturing method and processing device
JPWO2019131503A1 (en) * 2017-12-28 2020-12-17 日立造船株式会社 All-solid-state battery, its manufacturing method and processing equipment
EP3734741A4 (en) * 2017-12-28 2021-12-08 Hitachi Zosen Corporation All-solid-state battery, method for manufacturing same, and processing device
WO2019131503A1 (en) * 2017-12-28 2019-07-04 日立造船株式会社 All-solid-state battery, method for manufacturing same, and processing device
KR102544158B1 (en) * 2017-12-28 2023-06-14 히다치 조센 가부시키가이샤 All-solid-state battery, its manufacturing method and processing device
CN112385069A (en) * 2018-07-13 2021-02-19 日立造船株式会社 Manufacturing equipment of all-solid-state secondary battery
US11431033B2 (en) 2018-10-25 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method for producing all-solid-state battery
WO2021091976A1 (en) * 2019-11-07 2021-05-14 Sion Power Corporation Electrode cutting instrument
CN114616065A (en) * 2019-11-07 2022-06-10 赛昂能源有限公司 Electrode cutting instrument

Similar Documents

Publication Publication Date Title
JP2014127260A (en) Method of manufacturing solid electrolyte battery
KR101561445B1 (en) Electrode Manufacturing Device of Novel Structure
JP5359136B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP6183348B2 (en) Electrode body and method for producing electrode body
WO2013065535A1 (en) Cell provided with spiral electrode, and method for manufacturing same
JP4899723B2 (en) Multilayer battery manufacturing method and manufacturing apparatus
JP2013187077A (en) Wound type and stack type electrode battery
JP5983767B2 (en) Separator cutting apparatus for electric device and cutting method therefor
KR102079929B1 (en) Manufacturing Method for Electrodes Having Uniform Quality and Manufacturing Method for Electrode Assembly with the Same
US9502712B2 (en) Method of manufacturing battery electrode
JP2013073757A (en) Electrode plate and wound type electrode battery
KR20150083914A (en) Electric device, and apparatus and method for bonding separator of electric device
KR101738776B1 (en) A Method of Preparing an Electrode for Improving Capacity of Battery and the Electrode Manufactured by The Same
US20110293996A1 (en) Stacked secondary battery and production method thereof
KR102085637B1 (en) Cutting Device Using Laser
KR101605665B1 (en) Electrical device separator conveyance device and conveyance method
WO2014141640A1 (en) Laminate exterior cell
JP2014164982A (en) Electrode for battery, battery, method of manufacturing electrode for battery, and apparatus of manufacturing electrode for battery
WO2013031938A1 (en) Secondary battery
JP4603857B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2014116080A (en) Electricity storage device and method for manufacturing electricity storage device
KR102052589B1 (en) Electrode, rechargeable battery and fablicating method of electrode
CN109841907B (en) Method for manufacturing wound electrode assembly
WO2014041849A1 (en) Stacked secondary cell
JP2019102196A (en) Manufacturing method of battery