JP2014127045A - Operation supporting system, and operation supporting method - Google Patents

Operation supporting system, and operation supporting method Download PDF

Info

Publication number
JP2014127045A
JP2014127045A JP2012283600A JP2012283600A JP2014127045A JP 2014127045 A JP2014127045 A JP 2014127045A JP 2012283600 A JP2012283600 A JP 2012283600A JP 2012283600 A JP2012283600 A JP 2012283600A JP 2014127045 A JP2014127045 A JP 2014127045A
Authority
JP
Japan
Prior art keywords
model
power
ship
propulsion
correcting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283600A
Other languages
Japanese (ja)
Other versions
JP5986920B2 (en
Inventor
Yoji Nakano
要治 中野
Norihiro Fukuda
憲弘 福田
Tetsuya Yamaguchi
哲也 山口
Takehiro Naka
丈博 名嘉
Musashi Sakamoto
武蔵 坂本
Akira Ishikawa
暁 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012283600A priority Critical patent/JP5986920B2/en
Publication of JP2014127045A publication Critical patent/JP2014127045A/en
Application granted granted Critical
Publication of JP5986920B2 publication Critical patent/JP5986920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To modify an energy prediction model of a passenger boat to match with the reality by using monitoring data of a past record, and to present energy prediction with a higher degree of precision and a fuel optimum operation plan.SOLUTION: A demand for electric power is predicted with the use of an energy prediction model of a passenger boat, weather and marine phenomenon prediction data, and a plan of a sea route, and a fuel optimum operation plan which is an operation plan with the optimal fuel consumption efficiency is presented. Actual performance of energy of the passenger boat, weather and a marine phenomenon, and an operation state is monitored on the basis of the fuel optimum operation plan. A model corresponding to the fuel optimum operation plan is modified on the basis of the monitoring result. In that case, the model is modified by setting a correlation function with an individual parameter by multivariable analysis with the use of accumulated data of similar sea routes of the same ship in the same season, and by combining contribution of each parameter with the use of a contribution coefficient.

Description

本発明は、運航支援システムに関し、特に客船等の運航支援システムに関する。   The present invention relates to an operation support system, and more particularly to an operation support system for passenger ships and the like.

現在においても、天候や海象(Sea condition)等に応じた運転は、船長の経験と勘に頼っていることが多い。船舶の運航情報はその航海限りで活用されるのみであり、データベースとして取得・蓄積されることがほとんどなく、次の航海に活用されていない。   Even now, operation according to the weather, sea conditions, etc. often relies on the experience and intuition of the captain. Ship operation information is only used for the duration of the voyage, is rarely acquired and stored as a database, and is not used for the next voyage.

現状の技術において、一般船を対象としたシステムは、一部メーカが商品化している。また、船舶の運航情報を取得し、データベース化する試みが進められている。   In the current technology, some manufacturers have commercialized systems for general ships. In addition, attempts are being made to acquire ship operation information and create a database.

しかし、これらの対象は、一般商船がほとんどであり、客船には適用できていない。一般商船は、推進機が1つの直接推進(燃料消費は推進機効率のみで決まる)であり、燃料削減には、推進機のみを検討すれば良く、推進モデルのみを対象とする。   However, most of these objects are general merchant ships and cannot be applied to passenger ships. General merchant ships have a single propulsion unit (fuel consumption is determined only by propulsion unit efficiency). To reduce fuel, only the propulsion unit needs to be considered and only the propulsion model is targeted.

これに対し、客船は、推進に使うエネルギーに匹敵するエネルギーを船内の居住系に利用している。また、推進機と別の複数の発電機で発電し、その電気で推進モータと船内電力の双方をまかなう。そのため、推進モデルのほかに、船内電力機器モデル、発電機モデルも合わせて検討する必要があり、加えて排熱利用が船内電力に影響するため、非常に複雑になる。   In contrast, passenger ships use energy comparable to the energy used for propulsion for their inhabited systems. In addition, power is generated by a plurality of generators separate from the propulsion device, and the electricity is used for both the propulsion motor and the inboard power. For this reason, in addition to the propulsion model, it is necessary to consider an inboard power equipment model and a generator model, and in addition, the use of exhaust heat affects the inboard power.

[公知技術]
運航支援システムの精度向上のため、運航データを蓄積してモデルの修正補正に適用する例もある。例えば、この技術分野における公知技術として、特許文献1(特開2012−86604号公報)が開示されている。この公知技術は、一般商船に関するもので、推進モデルのみを対象にしている。
[Known technology]
In order to improve the accuracy of the operation support system, there is an example in which operation data is accumulated and applied to correction correction of the model. For example, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2012-86604) is disclosed as a known technique in this technical field. This known technique relates to general merchant ships, and only targets propulsion models.

また、この技術分野における公知技術として、特許文献2(特表2009−505210号公報)に船舶でのエネルギー源の使用を最適化する技術が開示されている。この公知技術では、燃料効率に関して最適化された船舶のコンピュータシミュレーションモデルを作成する。なお、コンピュータシミュレーションモデルを作成する際、船舶のコア構成要素及び構造特徴を説明する式群から式を選択し、船舶のコア構成要素及び構造についての特徴データ群からデータを選択する。更に、コンピュータシミュレーションモデルを使用して船舶の燃料効率を最適化する。しかし、この公知技術では、エネルギー源の使用を最適化することは考慮されているが、エネルギー予測に基づくシミュレーションや居住区のエネルギー需要も想定した最適化については考慮されていない。   In addition, as a known technique in this technical field, Japanese Patent Application Laid-Open No. 2009-505210 discloses a technique for optimizing use of an energy source in a ship. This known technique creates a computer simulation model of a ship that is optimized for fuel efficiency. When creating a computer simulation model, an equation is selected from a group of equations describing the core components and structural features of the ship, and data is selected from a feature data group regarding the core components and structures of the vessel. In addition, a computer simulation model is used to optimize the fuel efficiency of the ship. However, this known technique considers optimizing the use of energy sources, but does not consider optimization based on simulation based on energy prediction and energy demand in residential areas.

特開2012−86604号公報JP 2012-86604 A 特表2009−505210号公報Special table 2009-505210

上記のように、従来の運航支援システムは、電力のほとんど(大半)が推進系統において消費されるため、効率の良い推進エネルギーで運航できるように気象海象情報からルートを選定するものであった。また推進系統は1つであり、効率の良い推進エネルギーは推進器特性のみで決まっていた。   As described above, since most (most) of the power is consumed in the propulsion system in the conventional operation support system, the route is selected from the meteorological information so that it can be operated with efficient propulsion energy. In addition, there is one propulsion system, and efficient propulsion energy is determined only by the propeller characteristics.

客船のような大型船で、しかも低速運航が主流になれば、上記の運航支援システムでは対応できず、また燃料費の高騰もあいまって、新たな運航支援システムと省エネとなる運航指針が求められていた。   If a large ship such as a passenger ship becomes mainstream, and the low-speed operation becomes mainstream, the above-mentioned operation support system will not be able to handle it, and combined with rising fuel costs, a new operation support system and operation guidelines that save energy will be required. It was.

客船の運航支援システムのモデルの妥当性は、不明である。また、荒天の場合の運航モデルが実態とは乖離していることも考えられるし、長期間の使用により、発電エンジンや推進器の状態が変化して燃費悪化することや、客船の外表面状態が変化して推進抵抗が増加することも考えられる。しかし、それらの考慮については示されていない。   The validity of the model of the cruise ship support system is unknown. In addition, the operational model in the case of stormy weather may be different from the actual situation, and the long-term use may change the state of the power generation engine and propulsion device and deteriorate the fuel consumption, and the outer surface condition of the passenger ship It is also possible that propulsion resistance will increase due to changes. However, these considerations are not shown.

そこで、運航モニタリングデータに基づいて、モデルの修正・補正して、精度を向上する必要がある。特許文献1(特開2012−86604号公報)を参照しても、その推進モデルは、比較的穏やかな海象を基準にモデル化してあり、荒れた海象では精度が十分とはいえない。   Therefore, it is necessary to improve the accuracy by correcting and correcting the model based on the operation monitoring data. Even with reference to Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-86604), the propulsion model is modeled on the basis of relatively calm sea conditions, and the accuracy is not sufficient in rough sea conditions.

客船は一般の商船より複雑な系であるため、モデルの補正修正を一般解として導出することは現状困難である。   Since passenger ships are more complex than ordinary merchant ships, it is currently difficult to derive correction corrections for models as general solutions.

本発明に係る運航支援システムは、客船のエネルギー予測モデル、気象海象予測データ、及び航路案を用いて、電力需要予測を行い、燃料消費効率が最適な運航計画である燃費最適運航計画を提示する機構と、燃費最適運航計画に基づいて、客船のエネルギー、気象海象、及び運航状態の実績をモニタリングする機構と、モニタリング結果に基づいて、燃費最適運航計画に対するモデルを修正する機構を備える。モデルを修正する機構は、同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせて、船内電力モデルを補正する機構と、風向依存性、推進電力の順で、推進速度と消費電力の関係を示す船舶の推進モデルを補正する機構を備える。   The operation support system according to the present invention uses a passenger ship energy prediction model, weather and sea state prediction data, and a route plan to predict power demand, and presents an optimal fuel consumption operation plan that is an operation plan with optimal fuel consumption efficiency. Based on the mechanism and the optimum fuel consumption operation plan, a mechanism for monitoring the energy of the passenger ship, the weather condition, and the operation state, and a mechanism for correcting the model for the optimum fuel consumption operation plan based on the monitoring result are provided. The mechanism that modifies the model uses the accumulated data of similar routes in the same ship and the same season, sets the correlation function with individual parameters by multivariate analysis, and combines the contribution of each parameter using the contribution coefficient. A mechanism for correcting the ship's power model, and a mechanism for correcting the ship's propulsion model indicating the relationship between propulsion speed and power consumption in the order of wind direction dependency and propulsion power.

本発明に係る運航支援方法は、電子機器により実施される運航支援方法である。この運航支援方法では、客船のエネルギー予測モデル、気象海象予測データ、及び航路案を用いて、電力需要予測を行い、燃料消費効率が最適な運航計画である燃費最適運航計画を提示する。また、前記燃費最適運航計画に基づいて、客船のエネルギー、気象海象、及び運航状態の実績をモニタリングする。また、モニタリング結果に基づいて、前記燃費最適運航計画に対するモデルを修正する際に、同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせて、船内電力モデルを補正する。また、風向依存性、推進電力の順で、推進速度と消費電力の関係を示す船舶の推進モデルを補正する。   The operation support method according to the present invention is an operation support method implemented by an electronic device. In this operation support method, power demand prediction is performed using an energy prediction model of a passenger ship, weather and sea state prediction data, and a route plan, and an optimal fuel consumption operation plan, which is an operation plan with optimal fuel consumption efficiency, is presented. Moreover, based on the said fuel consumption optimal operation plan, the track record of the energy of a passenger ship, a weather sea condition, and an operation state is monitored. Based on the monitoring results, when correcting the model for the fuel efficiency optimal operation plan, using the accumulated data of similar routes in the same ship and the same season, a correlation function with individual parameters is set by multivariable analysis. The ship power model is corrected by combining contributions for each parameter using the contribution coefficient. In addition, the ship propulsion model indicating the relationship between propulsion speed and power consumption is corrected in the order of wind direction dependency and propulsion power.

本発明に係るプログラムは、上記の運航支援方法における処理を、計算機等の電子機器に実行させるためのプログラムである。なお、本発明に係るプログラムは、記憶装置や記憶媒体に格納することが可能である。   The program which concerns on this invention is a program for making electronic devices, such as a computer, perform the process in said operation support method. The program according to the present invention can be stored in a storage device or a storage medium.

客船等の運航支援システムにおいて、現状よりも精度の高いエネルギー予測、燃費最適運航計画の提示が可能となる。   In an operation support system for passenger ships, it becomes possible to present energy predictions and fuel consumption optimal operation plans with higher accuracy than the current situation.

本発明に係る運航支援システムの構成例を示す図である。It is a figure showing the example of composition of the operation support system concerning the present invention. 運航支援装置とエネルギー利用監視装置の他の配置例を示す図である。It is a figure which shows the other example of arrangement | positioning of an operation assistance apparatus and an energy utilization monitoring apparatus. 実施形態に係る運航支援装置の構成例を示す図である。It is a figure which shows the structural example of the operation assistance apparatus which concerns on embodiment.

<実施形態>
以下に、本発明の実施形態について添付図面を参照して説明する。
<Embodiment>
Embodiments of the present invention will be described below with reference to the accompanying drawings.

本実施形態では、客船のエネルギー予測モデルと気象海象予測データ、航路案を用いて、電力需要予測を行い、燃料消費効率が最適(燃料消費量が最小)な運航計画(燃費最適運航計画)を示し、客船のエネルギーと気象海象、運航状態の実績をモニタリング(監視)し、燃費最適運航計画に対するモデルを修正する。   In this embodiment, power demand is predicted using the passenger ship's energy prediction model, meteorological and sea state prediction data, and the route plan, and an operation plan (optimum fuel consumption operation plan) with optimal fuel consumption efficiency (minimum fuel consumption) is made. Monitoring, monitoring the ship's energy, weather conditions, and operational status, and revising the model for the optimal fuel efficiency operation plan.

[システム構成]
図1を参照して、本発明に係る運航支援システムの構成例について説明する。
[System configuration]
With reference to FIG. 1, the structural example of the operation support system which concerns on this invention is demonstrated.

本発明に係る運航支援システムは、運航支援装置10と、エネルギー利用監視装置20を含む。   The operation support system according to the present invention includes an operation support device 10 and an energy utilization monitoring device 20.

運航支援装置10は、運航計画1、気象海象予測データ2、船位置情報3、船内イベント計画4、船性能データ5、及び運航実績データ6を用いて、電力需要予測を行い、燃費最適運航計画7を作成する。また、運航支援装置10は、モニタリングの結果に基づいて、燃費最適運航計画7に対するモデルを修正する。   The operation support device 10 uses the operation plan 1, weather and sea state prediction data 2, ship position information 3, inboard event plan 4, ship performance data 5, and operation result data 6 to predict power demand, and the optimum fuel consumption operation plan. 7 is created. Further, the operation support device 10 corrects the model for the fuel efficiency optimal operation plan 7 based on the result of monitoring.

運航計画1は、事前に(予め)作成された運航計画である。気象海象予測データ2は、人工衛星等から逐次通知される気象海象の予測データである。船位置情報3は、GPS等から逐次通知される船舶の位置データである。船内イベント計画4は、船内のイベントスケジュールである。なお、船内イベント計画4は、運航実績データ6に基づいて作成されることもある。船性能データ5は、船舶の性能を示すデータである。船性能データ5は、データベース化されている。運航実績データ6は、モニタリングの結果として得られた実績値(実測値)を示すデータである。運航実績データ6は、データベース化されている。燃費最適運航計画7は、燃料消費効率が最適(燃料消費量が最小)な運航計画である。燃費最適運航計画7は、モデルの修正後、運航計画1として使用される。   The operation plan 1 is an operation plan created in advance (in advance). The meteorological sea state prediction data 2 is meteorological sea state prediction data sequentially notified from an artificial satellite or the like. The ship position information 3 is ship position data sequentially notified from GPS or the like. The inboard event plan 4 is an inboard event schedule. The inboard event plan 4 may be created based on the operation result data 6. The ship performance data 5 is data indicating the performance of the ship. The ship performance data 5 is made into a database. The operation record data 6 is data indicating a record value (actual value) obtained as a result of monitoring. The operation result data 6 is made into a database. The fuel consumption optimal operation plan 7 is an operation plan in which the fuel consumption efficiency is optimal (the fuel consumption is minimum). The fuel consumption optimal operation plan 7 is used as the operation plan 1 after the model is corrected.

エネルギー利用監視装置20は、燃費最適運航計画7に基づいて、客船のエネルギーと気象海象、運航状態の実績をモニタリングする。例えば、エネルギー利用監視装置20は、燃費最適運航計画7に基づく運航中に、様々なセンサーの集合であるセンサー群21を介して、推進系統や電力系統、気象海象、船内機器の状態等をそれぞれモニタリングする。   The energy usage monitoring device 20 monitors the passenger ship's energy, weather conditions, and operational status based on the fuel efficiency optimal operation plan 7. For example, the energy usage monitoring device 20 indicates the state of the propulsion system, power system, meteorological state, onboard equipment, etc. via the sensor group 21 which is a set of various sensors during the operation based on the optimum fuel consumption operation plan 7. Monitor.

特に、客船のエネルギーは、気象海象や船速、客船の固有の推進性能により決まる推進エネルギーと、船内電力エネルギーと、が大部分を占める。   In particular, the energy of a passenger ship is mainly comprised of propulsion energy determined by weather conditions, ship speed, and the propulsion performance inherent to the passenger ship, and inboard power energy.

推進エネルギー予測モデルは、当初は、モデル計算とモデル試験から設定するため、実船とは乖離していることも想定される。そこで、エネルギー利用監視装置20は、気象海象データ(波高、風速、潮流の向きを速度、風の向きと速度、喫水)と、使用したエンジンと、そのエンジンの出力/回転数/燃料供給量と、客船の推進速度の関係を、運航実績データ6としてデータベース化する。運航支援装置10は、元の推進エネルギー予測モデルを運航実績データ6に合わせて、補正・適正化する。   Since the propulsion energy prediction model is initially set from model calculation and model test, it is assumed that it is different from the actual ship. Therefore, the energy utilization monitoring device 20 has meteorological sea state data (wave height, wind speed, tidal current direction speed, wind direction and speed, draft), the engine used, the output / rotation speed / fuel supply amount of the engine. Then, the relationship between the propulsion speeds of the cruise ship is made into a database as operation result data 6. The operation support apparatus 10 corrects and optimizes the original propulsion energy prediction model according to the operation result data 6.

また、長期のエンジン使用中に、船舶の状態が変化して燃費悪化の懸念がある。例えば、推進器の軸振動増強や、プロペラの変形、客船の外表面変化(塗装剥離、藤壺付着等)による推進抵抗変化等が想定される。運航支援装置10は、船性能データ5に対してのずれ(乖離)を認識し、その状況での燃費算出、最適運航を提示できるように、その時の客船の状態に合わせて運航支援システムの推進エネルギー予測モデルを補正・修正する。   In addition, there is a concern that the state of the ship changes during long-term engine use and fuel consumption deteriorates. For example, it is assumed that propulsion unit shaft vibration is enhanced, propeller deformation, propulsion resistance change due to changes in the outer surface of a passenger ship (coating peeling, fujitsumi adhesion, etc.). The operation support device 10 recognizes the deviation (divergence) from the ship performance data 5 and promotes the operation support system in accordance with the state of the passenger ship at that time so that fuel consumption calculation and optimum operation can be presented in that situation. Correct and correct the energy prediction model.

また、エネルギー利用監視装置20は、船内電力エネルギーについても、主要な機器の運転状態と電力のモニタリングデータの実績値を、運航実績データ6としてデータベース化する。運航支援装置10は、元の船内電力エネルギー予測モデルを運航実績データ6に合わせて、修正・適正化する。   Moreover, the energy utilization monitoring apparatus 20 also makes the database of the operation values of the main devices and the actual values of the power monitoring data as the operation actual data 6 for the onboard power energy. The operation support apparatus 10 corrects and optimizes the original shipboard power energy prediction model according to the operation result data 6.

[備考]
なお、エネルギー利用監視装置20は船内にあると好適であるが、運航支援装置10は必ずしも船内になくても良い。例えば、図2に示すように、エネルギー利用監視装置20を船内に設置し、運航支援装置10を船外に設置することも可能である。この場合、運航支援装置10とエネルギー利用監視装置20は、互いに無線通信を行うものとする。
[Remarks]
In addition, although it is suitable for the energy utilization monitoring apparatus 20 to exist in a ship, the operation assistance apparatus 10 does not necessarily need to be in a ship. For example, as shown in FIG. 2, it is also possible to install the energy utilization monitoring device 20 on the ship and install the operation support device 10 outside the ship. In this case, it is assumed that the operation support device 10 and the energy usage monitoring device 20 perform wireless communication with each other.

[運航支援装置の構成例]
図3を参照して、上記の運航支援装置10の構成例について説明する。
[Example configuration of navigation support equipment]
With reference to FIG. 3, the structural example of said operation support apparatus 10 is demonstrated.

運航支援装置10は、運航計画作成部11と、モデル修正部12を備える   The operation support apparatus 10 includes an operation plan creation unit 11 and a model correction unit 12.

運航計画作成部11は、運航計画1、気象海象予測データ2、船位置情報3、船内イベント計画4、船性能データ5、及び運航実績データ6を用いて、電力需要予測を行い、燃費最適運航計画7を作成する。   The operation plan creation unit 11 uses the operation plan 1, weather and sea state prediction data 2, ship position information 3, inboard event plan 4, ship performance data 5, and operation result data 6 to predict power demand and to operate fuel efficiency optimally. Create plan 7.

モデル修正部12は、エネルギー利用監視装置20によるモニタリングの結果に基づいて、燃費最適運航計画7に対するモデルを修正する。   The model correction unit 12 corrects the model for the fuel efficiency optimal operation plan 7 based on the result of monitoring by the energy usage monitoring device 20.

ここでは、モデル修正部12は、船内電力モデル修正部121と、推進モデル修正部122と、発電モデル修正部123を備える。   Here, the model correction unit 12 includes an inboard power model correction unit 121, a propulsion model correction unit 122, and a power generation model correction unit 123.

船内電力モデル修正部121、推進モデル修正部122、及び発電モデル33の各々は、比較的似たデータを用いて、多変数解析により補正係数を設定して適用する。具体的には、同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせる。   Each of the inboard power model correction unit 121, the propulsion model correction unit 122, and the power generation model 33 sets and applies a correction coefficient by multivariable analysis using relatively similar data. Specifically, using the accumulated data of similar routes in the same ship and the same season, a correlation function with individual parameters is set by multivariable analysis, and contributions for each parameter are combined using a contribution coefficient.

なお、多変数解析とは、複数の値からなるデータ(多変量データ)を基にして、データ間の相互関連を分析する統計学的手法である。主要な因子毎に、差を一次関数又は二次関数等で表現し、それらの主成分を選定して組み合わせていくものである。   Multivariable analysis is a statistical technique for analyzing the correlation between data based on data consisting of a plurality of values (multivariate data). For each major factor, the difference is expressed by a linear function or a quadratic function, and those principal components are selected and combined.

[船内電力モデル修正部]
船内電力モデル修正部121は、船内電力モデルについて、気温(A)、天候(B)、乗客数(C)、排熱利用量(D)、時刻(E)、等の個別のパラメータに対する相関関数F(x)を基に、最小二乗法を用いて、船内電力(船内での使用電力)の予測値と実績値の差(Δ)を設定する。ここでは、船内電力の予測値と実績値の差(Δ)の標準偏差で精度を判定し、精度の良いものから順に相関関数を設定する。必要に応じて相関度下位の関数を設定後に上位の関数を見直しすることにより、精度を向上させる。このようにして、精度の高い数パラメータの相関関数を設定・選定し、それらのパラメータの相関関数を組み合わせて補正関数Δを求め、補正関数Δを基に船内電力モデルを補正して適用する。
[Inboard power model correction section]
The inboard power model correction unit 121 is a correlation function for individual parameters such as temperature (A), weather (B), number of passengers (C), exhaust heat utilization (D), time (E), etc. Based on F (x), the difference (Δ) between the predicted value and the actual value of the inboard power (power used in the ship) is set using the least square method. Here, the accuracy is determined based on the standard deviation of the difference (Δ) between the predicted value of the inboard power and the actual value, and the correlation function is set in order from the highest accuracy. The accuracy is improved by reviewing the upper function after setting the lower correlation function as necessary. In this way, a highly accurate correlation function of several parameters is set and selected, a correction function Δ is obtained by combining the correlation functions of these parameters, and the ship power model is corrected and applied based on the correction function Δ.

Δ=fa(A)+fb(B)+fc(C)+fd(D)+fe(E)+・・・   Δ = fa (A) + fb (B) + fc (C) + fd (D) + fe (E) +.

[推進モデル修正部]
推進モデル修正部122は、船舶の推進モデル(推進速度と消費電力の関係を示すモデル)について、風向依存性、推進電力の順で補正する。
[Propulsion Model Modification Department]
The propulsion model correction unit 122 corrects the ship propulsion model (model indicating the relationship between the propulsion speed and power consumption) in the order of wind direction dependency and propulsion power.

風向依存性については、風向の角度と推進電力の予測値と実績値の関係をグラフ化して、N次式に近似して補正する。ここでは、Nとして4〜6を適用する。   Regarding the wind direction dependency, the relationship between the angle of the wind direction, the predicted value of the propulsion power, and the actual value is graphed and corrected by approximating the Nth order equation. Here, 4 to 6 are applied as N.

推進電力については、基本的には船速の3乗に比例するので、船速の3乗(A)、船速の2乗(B)、船速の1乗(C)、相対風速(D)、相対潮流(E)、推進器出力(F)、喫水(G)、エンジン室温度(H)、水温(I)、堆積量(乗客数ほか)(J)、等の個別のパラメータに対する相関関数F(x)を基に、最小二乗法を用いて、推進電力の予測値と実績値の差(Δ)を設定する。予測値と実績値の差(Δ)の標準偏差で精度を判定し、精度の良いものから順に相関関数を設定する。必要に応じて相関度下位の関数を設定後に上位の関数を見直しすることにより、精度を向上させる。このようにして、精度の高い数パラメータの相関関数を設定・選定し、それらのパラメータの相関関数を組み合わせて補正関数Δを求め、補正関数Δを基に推進モデルを補正して適用する。   The propulsion power is basically proportional to the third power of the boat speed, so the third power of the boat speed (A), the second power of the boat speed (B), the first power of the boat speed (C), the relative wind speed (D ), Relative tidal current (E), propulsion device output (F), draft (G), engine room temperature (H), water temperature (I), accumulation (number of passengers, etc.) (J), etc. Based on the function F (x), the difference (Δ) between the predicted value and the actual value of the propulsion power is set using the least square method. The accuracy is determined by the standard deviation of the difference (Δ) between the predicted value and the actual value, and the correlation function is set in order from the highest accuracy. The accuracy is improved by reviewing the upper function after setting the lower correlation function as necessary. In this way, a highly accurate correlation function of several parameters is set and selected, a correction function Δ is obtained by combining the correlation functions of these parameters, and the propulsion model is corrected and applied based on the correction function Δ.

Δ=fa(A)+fb(B)+fc(C)+fd(D)+fe(E)+・・・   Δ = fa (A) + fb (B) + fc (C) + fd (D) + fe (E) +.

[発電モデル修正部]
発電モデル修正部123は、発電モデルについて、発電出力毎の燃料消費量の予測値と実績値の関係を用いて、予測値に基づくモデルを、実績値に基づくモデルに補正する。
[Power generation model correction section]
The power generation model correcting unit 123 corrects the model based on the predicted value to the model based on the actual value using the relationship between the predicted value of the fuel consumption for each power generation output and the actual value for the power generation model.

[実施結果]
ある客船の運航データベースから、ある航路の3回目のデータから作成したモデルで、4回目、5回目の航路の各時刻のエネルギー予測結果と実績を比較した結果は、燃料消費量の差が標準偏差で10%であったが、6回のデータから作成したモデルで7回目を検証した結果は、差の標準偏差が6%に、10回のデータから作成したモデルでは差の標準偏差が4%になり、精度向上を確認できた。
[Result]
A model created from the data for the third time on a route from a cruise database of a passenger ship shows that the difference in fuel consumption is the standard deviation when the results of energy predictions and actual results for the fourth and fifth times are compared. The result of the 7th verification with a model created from 6 data is 6%, and the standard deviation of the difference is 4% in the model created from 10 data. And improved accuracy was confirmed.

なお、上記の説明では、補正係数として予測値を補正したが、実際には、実績データが蓄積した段階で、モデル自体を見直すことが望ましい。そうすることで、予測値と実績値の差を小さくすることができ、差のばらつき(分布)も小さくなるので、本実施形態における補正係数の算出の精度も向上する。実際に、本実施形態における10回のデータを基にモデル自体を見直すと、差の標準偏差が3%になった。   In the above description, the predicted value is corrected as the correction coefficient. However, in practice, it is desirable to review the model itself when the performance data is accumulated. By doing so, the difference between the predicted value and the actual value can be reduced, and the variation (distribution) of the difference is also reduced, so that the accuracy of calculating the correction coefficient in the present embodiment is also improved. Actually, when the model itself was reviewed based on the 10 data in this embodiment, the standard deviation of the difference was 3%.

[本実施形態の作用・効果]
以上のように、実績のモニタリングデータを利用して、客船のエネルギー予測モデルを実際に合わせて修正することで、より精度の高いエネルギー予測、燃費最適運航計画の提示ができるようになる。
[Operation and effect of this embodiment]
As described above, it is possible to present more accurate energy prediction and optimum fuel consumption operation plan by using the actual monitoring data and correcting the energy prediction model of the passenger ship according to the actual situation.

本発明に係る運航支援システムは、比較的似た状況(航路・季節等)で運用することを想定している。一般商船とは異なり、客船は1日〜10日程度の比較的短い航路を季節に応じて繰り返し運航するため、似た状況のデータを蓄積可能であり、その場合の蓄積データを用いたモデル修正・補正を行う。   The operation support system according to the present invention is assumed to be operated in a relatively similar situation (route, season, etc.). Unlike ordinary merchant ships, passenger ships operate relatively short routes of about 1 to 10 days depending on the season, so it is possible to accumulate data in similar situations, and model correction using accumulated data in that case・ Correction is performed.

本発明に係る運航支援システムは、対象船舶に搭載しても良いし、衛星等に搭載し、その衛星等から地上(陸上局)や対象船舶と通信するようにしても良い。   The operation support system according to the present invention may be mounted on a target ship, or may be mounted on a satellite or the like and communicate with the ground (land station) or the target ship from the satellite or the like.

なお、本発明に係る運航支援システムは、モニタリングの結果に基づいて、機器毎の経時変化を分析することにより、機器のメンテナンス時期の予測にも適用できる。   Note that the operation support system according to the present invention can be applied to the prediction of the maintenance time of equipment by analyzing the change over time for each equipment based on the result of monitoring.

<ハードウェアの例示>
以下に、本発明に係る運航支援システムを実現するための具体的なハードウェアの例について説明する。
<Example of hardware>
Below, the example of the concrete hardware for implement | achieving the operation assistance system which concerns on this invention is demonstrated.

図示しないが、本発明に係る運航支援システムは、プログラムに基づいて駆動し所定の処理を実行するプロセッサと、当該プログラムや各種データを記憶するメモリと、ネットワークとの通信に用いられるインターフェースを備えた計算機等の電子機器によって実現される場合がある。   Although not shown, the navigation support system according to the present invention includes a processor that is driven based on a program and executes predetermined processing, a memory that stores the program and various data, and an interface used for communication with a network. It may be realized by an electronic device such as a computer.

上記のプロセッサの例として、CPU(Central Processing Unit)、ネットワークプロセッサ(NP:Network Processor)、マイクロプロセッサ(microprocessor)、マイクロコントローラ(microcontroller)、或いは、専用の機能を有する半導体集積回路(LSI:Large Scale Integration)等が考えられる。   Examples of the processor include a CPU (Central Processing Unit), a network processor (NP), a microprocessor, a microcontroller (microcontroller), or a semiconductor integrated circuit (LSI: Large Scale) having a dedicated function. Integration) or the like.

上記のメモリの例として、RAM(Random Access Memory)、ROM(Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)やフラッシュメモリ等の半導体記憶装置、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の補助記憶装置、又は、DVD(Digital Versatile Disk)等のリムーバブルディスクや、SDメモリカード(Secure Digital memory card)等の記憶媒体(メディア)等が考えられる。また、バッファ(buffer)やレジスタ(register)等でも良い。或いは、DAS(Direct Attached Storage)、FC−SAN(Fibre Channel − Storage Area Network)、NAS(Network Attached Storage)、IP−SAN(IP − Storage Area Network)等を用いたストレージ装置でも良い。   Examples of the memory include semiconductor storage devices such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EEPROM (Electrically Erasable and Programmable Read Only Memory), a flash memory, and an HDD (Hold SMD). An auxiliary storage device such as State Drive), a removable disk such as a DVD (Digital Versatile Disk), a storage medium such as an SD memory card (Secure Digital memory card), or the like is conceivable. Further, a buffer, a register, or the like may be used. Alternatively, DAS (Direct Attached Storage), FC-SAN (Fibre Channel-Storage Area Network), NAS (Network Attached Storage), IP-SAN (IP-Storage Area), etc. may be used.

なお、上記のプロセッサ及び上記のメモリは、一体化していても良い。例えば、近年では、マイコン等の1チップ化が進んでいる。従って、電子機器等に搭載される1チップマイコンが、上記のプロセッサ及び上記のメモリを備えている事例も考えられる。   Note that the processor and the memory may be integrated. For example, in recent years, a single chip such as a microcomputer has been developed. Therefore, a case where a one-chip microcomputer mounted on an electronic device or the like includes the processor and the memory can be considered.

上記のインターフェースの例として、ネットワーク通信に対応した基板(マザーボード、I/Oボード)やチップ等の半導体集積回路、NIC(Network Interface Card)等のネットワークアダプタや同様の拡張カード、アンテナ等の通信装置、接続口(コネクタ)等の通信ポート等が考えられる。   Examples of the interfaces include semiconductor integrated circuits such as substrates (motherboards and I / O boards) and chips that support network communication, network adapters such as NIC (Network Interface Card), and similar expansion cards and communication devices such as antennas. A communication port such as a connection port (connector) is conceivable.

また、ネットワークの例として、インターネット、LAN(Local Area Network)、無線LAN(Wireless LAN)、WAN(Wide Area Network)、バックボーン(Backbone)、ケーブルテレビ(CATV)回線、固定電話網、携帯電話網、WiMAX(IEEE 802.16a)、3G(3rd Generation)、専用線(lease line)、IrDA(Infrared Data Association)、Bluetooth(登録商標)、シリアル通信回線、データバス等が考えられる。   Examples of the network include the Internet, a LAN (Local Area Network), a wireless LAN (Wireless LAN), a WAN (Wide Area Network), a backbone (Backbone), a cable television (CATV) line, a fixed telephone network, a mobile phone network, WiMAX (IEEE 802.16a), 3G (3rd Generation), dedicated line (lease line), IrDA (Infrared Data Association), Bluetooth (registered trademark), serial communication line, data bus, and the like can be considered.

なお、運航支援システムの内部の構成要素は、モジュール(module)、コンポーネント(component)、或いは専用デバイス、又はこれらの起動(呼出)プログラムでも良い。   The internal components of the operation support system may be a module, a component, a dedicated device, or an activation (calling) program thereof.

但し、実際には、これらの例に限定されない。   However, actually, it is not limited to these examples.

<備考>
以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。
<Remarks>
As mentioned above, although embodiment of this invention was explained in full detail, actually, it is not restricted to said embodiment, Even if there is a change of the range which does not deviate from the summary of this invention, it is included in this invention.

10… 運航支援装置
11… 運航計画作成部
12… モデル修正部
121… 船内電力モデル修正部
122… 推進モデル修正部
123… 発電モデル修正部
13… 機器状態管理部
20… エネルギー利用監視装置
21… センサー群
DESCRIPTION OF SYMBOLS 10 ... Operation support apparatus 11 ... Operation plan preparation part 12 ... Model correction part 121 ... Inboard electric power model correction part 122 ... Propulsion model correction part 123 ... Electric power generation model correction part 13 ... Equipment state management part 20 ... Energy utilization monitoring apparatus 21 ... Sensor group

Claims (9)

客船のエネルギー予測モデル、気象海象予測データ、及び航路案を用いて、電力需要予測を行い、燃料消費効率が最適な運航計画である燃費最適運航計画を提示する手段と、
前記燃費最適運航計画に基づいて、客船のエネルギー、気象海象、及び運航状態の実績をモニタリングする手段と、
モニタリング結果に基づいて、前記燃費最適運航計画に対するモデルを修正する手段と
を具備し、
前記モデルを修正する手段は、
同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせて、船内電力モデルを補正する手段と、
風向依存性、推進電力の順で、推進速度と消費電力の関係を示す船舶の推進モデルを補正する手段と
を具備する
運航支援システム。
A means for predicting electricity demand using a passenger ship energy prediction model, meteorological and sea state prediction data, and a route plan, and presenting an optimal fuel consumption operation plan that is an optimal operation plan with fuel consumption efficiency;
Based on the fuel efficiency optimal operation plan, means for monitoring the energy of the cruise ship, the weather conditions, and the actual operation status;
Means for correcting a model for the fuel efficiency optimal operation plan based on a monitoring result,
The means for modifying the model is:
Using the accumulated data of similar routes in the same ship and the same season, set a correlation function with individual parameters by multivariate analysis, and correct the inboard power model by combining contributions for each parameter using the contribution coefficient Means,
A navigation support system comprising means for correcting a propulsion model of a ship indicating a relationship between propulsion speed and power consumption in the order of wind direction dependency and propulsion power.
請求項1に記載の運航支援システムであって、
発電出力毎の燃料消費量の予測値と実績値の関係を用いて、予測値に基づくモデルから実績値に基づくモデルに、発電モデルを補正する手段と
を更に具備し、
前記船内電力モデルを補正する手段は、
前記個別のパラメータに対する相関関数を基に、最小二乗法を用いて、船内電力の予測値と実績値との差を設定する手段と、
前記船内電力の使用電力の予測値と実績値との差の標準偏差で精度を判定する手段と、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に船内電力モデルを補正して適用する手段と
を具備する
運航支援システム。
The operation support system according to claim 1,
Means for correcting the power generation model from the model based on the predicted value to the model based on the actual value using the relationship between the predicted value of the fuel consumption for each power generation output and the actual value;
The means for correcting the ship power model is:
Based on the correlation function for the individual parameters, using a least square method, a means for setting the difference between the predicted value of the inboard power and the actual value;
Means for determining the accuracy by the standard deviation of the difference between the predicted value and the actual value of the used power of the ship power;
An operation support system comprising: means for setting a correlation function of the numerical parameter with high accuracy, obtaining a correction function by combining the correlation function of the numerical parameter, and correcting and applying the inboard power model based on the correction function .
請求項1又は2に記載の運航支援システムであって、
前記船舶の推進モデルを補正する手段は、
風向の角度と推進電力の予測値と実績値の関係をグラフ化して、N次式に近似して風向依存性を補正する手段と、
船速の3乗を含む個別のパラメータに対する相関関数を基に、最小二乗法を用いて、推進電力の予測値と実績値との差を設定する手段と、
前記推進電力の予測値と実績値との差の標準偏差で精度を判定する手段と、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に推進電力モデルを補正して適用する手段と
を具備する
運航支援システム。
The operation support system according to claim 1 or 2,
Means for correcting the propulsion model of the ship,
A graph that plots the relationship between the wind direction angle, the predicted value of the propulsion power, and the actual value, and approximates the Nth order equation to correct the wind direction dependency;
A means for setting a difference between a predicted value and an actual value of propulsion power using a least square method based on a correlation function for individual parameters including the cube of a ship speed;
Means for determining accuracy with a standard deviation of the difference between the predicted value and the actual value of the propulsion power;
An operation support system comprising: means for setting a correlation function of the number parameter with high accuracy, obtaining a correction function by combining the correlation function of the number parameter, and correcting and applying the propulsion power model based on the correction function .
電子機器により実施される運航支援方法であって、
客船のエネルギー予測モデル、気象海象予測データ、及び航路案を用いて、電力需要予測を行い、燃料消費効率が最適な運航計画である燃費最適運航計画を提示することと、
前記燃費最適運航計画に基づいて、客船のエネルギー、気象海象、及び運航状態の実績をモニタリングすることと、
モニタリング結果に基づいて、前記燃費最適運航計画に対するモデルを修正する際に、
同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせて、船内電力モデルを補正することと、
風向依存性、推進電力の順で、推進速度と消費電力の関係を示す船舶の推進モデルを補正することと
を含む
運航支援方法。
A navigation support method implemented by an electronic device,
Using the passenger ship's energy prediction model, meteorological and sea state prediction data, and the route plan, predicting electricity demand, and presenting the optimum fuel consumption operation plan, which is the operation plan with optimal fuel consumption efficiency,
Based on the fuel efficiency optimum operation plan, monitoring the energy of the passenger ship, the weather conditions, and the operation status,
Based on the monitoring results, when correcting the model for the fuel efficiency optimal operation plan,
Using the accumulated data of similar routes in the same ship and the same season, set a correlation function with individual parameters by multivariate analysis, and correct the inboard power model by combining contributions for each parameter using the contribution coefficient And
An operation support method including correcting a ship's propulsion model indicating the relationship between propulsion speed and power consumption in the order of wind direction dependency and propulsion power.
請求項4に記載の運航支援方法であって、
発電出力毎の燃料消費量の予測値と実績値の関係を用いて、予測値に基づくモデルから実績値に基づくモデルに、発電モデルを補正する際に、
前記個別のパラメータに対する相関関数を基に、最小二乗法を用いて、船内電力の予測値と実績値との差を設定することと、
前記船内電力の使用電力の予測値と実績値との差の標準偏差で精度を判定することと、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に船内電力モデルを補正して適用することと
を更に含む
運航支援方法。
The operation support method according to claim 4,
When correcting the power generation model from the model based on the predicted value to the model based on the actual value using the relationship between the predicted value of the fuel consumption for each power generation output and the actual value,
Based on the correlation function for the individual parameters, using a least square method, setting the difference between the predicted value of the inboard power and the actual value;
Determining the accuracy by the standard deviation of the difference between the predicted value and the actual value of power used in the ship,
The operation support method further includes: setting a correlation function of the high-precision number parameter, obtaining a correction function by combining the correlation function of the number parameter, correcting the ship power model based on the correction function, and applying the correction function. .
請求項4又は5に記載の運航支援方法であって、
前記船舶の推進モデルを補正する際に、
風向の角度と推進電力の予測値と実績値の関係をグラフ化して、N次式に近似して風向依存性を補正することと、
船速の3乗を含む個別のパラメータに対する相関関数を基に、最小二乗法を用いて、推進電力の予測値と実績値との差を設定することと、
前記推進電力の予測値と実績値との差の標準偏差で精度を判定することと、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に推進電力モデルを補正して適用することと
を更に含む
運航支援方法。
The operation support method according to claim 4 or 5,
When correcting the propulsion model of the ship,
Graphing the relationship between the wind direction angle and the predicted value of propulsion power and the actual value, approximating the Nth order equation and correcting the wind direction dependency,
Based on the correlation function for individual parameters including the cube of the ship speed, using the least square method, setting the difference between the predicted value and the actual value of the propulsion power,
Determining accuracy by standard deviation of the difference between the predicted value and the actual value of the propulsion power;
The operation support method further includes: setting a correlation function of the numerical parameter with high accuracy, obtaining a correction function by combining the correlation function of the numerical parameter, correcting and applying the propulsion power model based on the correction function .
客船のエネルギー予測モデル、気象海象予測データ、及び航路案を用いて、電力需要予測を行い、燃料消費効率が最適な運航計画である燃費最適運航計画を提示するステップと、
前記燃費最適運航計画に基づいて、客船のエネルギー、気象海象、及び運航状態の実績をモニタリングするステップと、
モニタリング結果に基づいて、前記燃費最適運航計画に対するモデルを修正する際に、
同一船、同一季節の類似航路の蓄積データを用いて、多変数解析により個別のパラメータとの相関関数を設定し、寄与度係数を用いてパラメータ毎の寄与を組み合わせて、船内電力モデルを補正するステップと、
風向依存性、推進電力の順で、推進速度と消費電力の関係を示す船舶の推進モデルを補正するステップと
を電子機器に実行させるための
プログラム。
Using the passenger ship's energy prediction model, meteorological and sea state prediction data, and route plan, predicting power demand, and presenting an optimal fuel consumption operation plan, which is an operation plan with optimal fuel consumption efficiency;
Monitoring the cruise ship's energy, weather conditions, and operational status based on the fuel efficiency optimal operation plan; and
Based on the monitoring results, when correcting the model for the fuel efficiency optimal operation plan,
Using the accumulated data of similar routes in the same ship and the same season, set a correlation function with individual parameters by multivariate analysis, and correct the inboard power model by combining contributions for each parameter using the contribution coefficient Steps,
A program for causing an electronic device to execute a step of correcting a ship's propulsion model indicating the relationship between propulsion speed and power consumption in the order of wind direction dependency and propulsion power.
請求項7に記載のプログラムであって、
発電出力毎の燃料消費量の予測値と実績値の関係を用いて、予測値に基づくモデルから実績値に基づくモデルに、発電モデルを補正する際に、
前記個別のパラメータに対する相関関数を基に、最小二乗法を用いて、船内電力の予測値と実績値との差を設定するステップと、
前記船内電力の使用電力の予測値と実績値との差の標準偏差で精度を判定するステップと、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に船内電力モデルを補正して適用するステップと
を更に電子機器に実行させるための
プログラム。
The program according to claim 7,
When correcting the power generation model from the model based on the predicted value to the model based on the actual value using the relationship between the predicted value of the fuel consumption for each power generation output and the actual value,
Based on the correlation function for the individual parameters, using a least square method, setting the difference between the predicted value of the inboard power and the actual value;
Determining accuracy with a standard deviation of a difference between a predicted value and an actual value of power used in the ship;
A step of setting a highly accurate correlation function of several parameters, obtaining a correction function by combining the correlation functions of the number parameters, correcting the ship power model based on the correction function, and applying the correction function to the electronic device is further executed. Program to let you.
請求項7又は8に記載のプログラムであって、
前記船舶の推進モデルを補正する際に、
風向の角度と推進電力の予測値と実績値の関係をグラフ化して、N次式に近似して風向依存性を補正するステップと、
船速の3乗を電子機器に実行させるための個別のパラメータに対する相関関数を基に、最小二乗法を用いて、推進電力の予測値と実績値との差を設定するステップと、
前記推進電力の予測値と実績値との差の標準偏差で精度を判定するステップと、
該精度の高い数パラメータの相関関数を設定し、該数パラメータの相関関数を組み合わせて補正関数を求め、該補正関数を基に推進電力モデルを補正して適用するステップと
を更に電子機器に実行させるための
プログラム。
The program according to claim 7 or 8,
When correcting the propulsion model of the ship,
Graphing the relationship between the wind direction angle, the predicted value of the propulsion power, and the actual value, and correcting the wind direction dependency by approximating the Nth order equation;
Setting the difference between the predicted value and the actual value of the propulsion power using the least square method based on the correlation function for the individual parameter for causing the electronic device to execute the cube of the ship speed;
Determining accuracy with a standard deviation of the difference between the predicted value and the actual value of the propulsion power;
A step of setting a highly accurate correlation function of several parameters, obtaining a correction function by combining the correlation functions of the number parameters, correcting the propulsion power model based on the correction function, and further applying to the electronic device Program to let you.
JP2012283600A 2012-12-26 2012-12-26 Operation support system and operation support method Active JP5986920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283600A JP5986920B2 (en) 2012-12-26 2012-12-26 Operation support system and operation support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283600A JP5986920B2 (en) 2012-12-26 2012-12-26 Operation support system and operation support method

Publications (2)

Publication Number Publication Date
JP2014127045A true JP2014127045A (en) 2014-07-07
JP5986920B2 JP5986920B2 (en) 2016-09-06

Family

ID=51406473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283600A Active JP5986920B2 (en) 2012-12-26 2012-12-26 Operation support system and operation support method

Country Status (1)

Country Link
JP (1) JP5986920B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016032068A1 (en) * 2014-08-27 2016-03-03 삼성에스디에스 주식회사 Device and method for early detection of abnormalities
WO2016031065A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Power consumption estimation device, appliance management system, power consumption estimation method, and program
KR20160051921A (en) * 2014-10-29 2016-05-12 삼성중공업 주식회사 Method for optimizing energy efficiency of vessel
KR20160094809A (en) * 2015-02-02 2016-08-10 대우조선해양 주식회사 Bridge system for unmanned vessel and control method thereof
CN111046491A (en) * 2019-11-28 2020-04-21 中国船舶工业系统工程研究院 Method and device for estimating oil consumption of large ship diesel engine
CN113853480A (en) * 2019-05-22 2021-12-28 国立研究开发法人海上·港湾·航空技术研究所 Ship host monitoring method, host monitoring system, host state prediction system and navigation condition prediction system
JP2022502775A (en) * 2018-09-26 2022-01-11 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Equipment, methods, and computer programs for operating vessels
US20220009605A1 (en) * 2020-07-08 2022-01-13 Brunswick Corporation Systems and methods for planning consumption of power by devices aboard a marine vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713230B1 (en) * 2016-09-21 2017-03-07 주식회사 티원아이티 Method of monitoring of ship and system performing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143732U (en) * 1984-08-24 1986-03-22 三菱重工業株式会社 Power demand monitoring and control equipment for ship kitchens and laundry equipment
JPH02138815A (en) * 1988-11-18 1990-05-28 Japan Radio Co Ltd Track programming apparatus
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel
WO2011055512A1 (en) * 2009-11-04 2011-05-12 川崎重工業株式会社 Maneuvering control method and maneuvering control system
JP2012086604A (en) * 2010-10-18 2012-05-10 Universal Shipbuilding Corp Ship operation support system
JP2012515395A (en) * 2009-01-16 2012-07-05 ザ・ボーイング・カンパニー Navigation efficiency analysis
JP2012153341A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Ship power monitoring system, ship power control system, and method of monitoring power of regular line ship

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143732U (en) * 1984-08-24 1986-03-22 三菱重工業株式会社 Power demand monitoring and control equipment for ship kitchens and laundry equipment
JPH02138815A (en) * 1988-11-18 1990-05-28 Japan Radio Co Ltd Track programming apparatus
JP2009286230A (en) * 2008-05-28 2009-12-10 Mitsui Eng & Shipbuild Co Ltd Operation support system of marine vessel and operation support method of marine vessel
JP2012515395A (en) * 2009-01-16 2012-07-05 ザ・ボーイング・カンパニー Navigation efficiency analysis
WO2011055512A1 (en) * 2009-11-04 2011-05-12 川崎重工業株式会社 Maneuvering control method and maneuvering control system
JP2012086604A (en) * 2010-10-18 2012-05-10 Universal Shipbuilding Corp Ship operation support system
JP2012153341A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Ship power monitoring system, ship power control system, and method of monitoring power of regular line ship

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160063434A1 (en) * 2014-08-27 2016-03-03 Samsung Sds Co., Ltd. Apparatus and method for early detection of abnormality
WO2016032068A1 (en) * 2014-08-27 2016-03-03 삼성에스디에스 주식회사 Device and method for early detection of abnormalities
JPWO2016031065A1 (en) * 2014-08-29 2017-04-27 三菱電機株式会社 Power consumption estimation device, device management system, power consumption estimation method and program
WO2016031065A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Power consumption estimation device, appliance management system, power consumption estimation method, and program
KR20160051921A (en) * 2014-10-29 2016-05-12 삼성중공업 주식회사 Method for optimizing energy efficiency of vessel
KR101644557B1 (en) * 2014-10-29 2016-08-01 삼성중공업 주식회사 Method for optimizing energy efficiency of vessel
KR20160094809A (en) * 2015-02-02 2016-08-10 대우조선해양 주식회사 Bridge system for unmanned vessel and control method thereof
KR102328275B1 (en) * 2015-02-02 2021-11-17 대우조선해양 주식회사 Bridge system for unmanned vessel and control method thereof
JP2022502775A (en) * 2018-09-26 2022-01-11 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Equipment, methods, and computer programs for operating vessels
CN113853480A (en) * 2019-05-22 2021-12-28 国立研究开发法人海上·港湾·航空技术研究所 Ship host monitoring method, host monitoring system, host state prediction system and navigation condition prediction system
CN113853480B (en) * 2019-05-22 2024-04-19 国立研究开发法人海上·港湾·航空技术研究所 Main engine monitoring method, main engine monitoring system, main engine state prediction system and navigation condition prediction system for ship
CN111046491A (en) * 2019-11-28 2020-04-21 中国船舶工业系统工程研究院 Method and device for estimating oil consumption of large ship diesel engine
CN111046491B (en) * 2019-11-28 2023-07-25 中国船舶工业系统工程研究院 Method and device for estimating fuel consumption of diesel engine of large ship
US20220009605A1 (en) * 2020-07-08 2022-01-13 Brunswick Corporation Systems and methods for planning consumption of power by devices aboard a marine vessel

Also Published As

Publication number Publication date
JP5986920B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5986920B2 (en) Operation support system and operation support method
Dalgic et al. Advanced logistics planning for offshore wind farm operation and maintenance activities
Van Kuik et al. Long-term research challenges in wind energy–a research agenda by the European Academy of Wind Energy
JP5931712B2 (en) Energy optimal operation system, energy optimal operation method
Dalgic et al. Investigation of optimum crew transfer vessel fleet for offshore wind farm maintenance operations
US20140336853A1 (en) Methods for automatically optimizing ship performance and devices thereof
JP5020106B2 (en) Wind power generation prediction system, method and program
US20140324495A1 (en) Wind turbine maintenance optimizer
CN102282472A (en) Analyzing voyage efficiencies
CN105041572A (en) Systems and methods for optimizing operation of a wind farm
JP6038094B2 (en) Ship propulsion performance prediction apparatus and method, and ship operation support system
CN101014915A (en) Method for testing of a combined dynamic positioning and power management system
JP2013531580A (en) Ship fuel saving system using energy efficiency optimization for realizing ship operation instruction optimization, method thereof, and recording medium storing computer program by the method
JP2006193124A (en) Operation management device for vessel, method therefor, and operation management system for vessel
US20150199471A1 (en) Energy system optimization
Shagar et al. Effect of load changes on hybrid shipboard power systems and energy storage as a potential solution: A review
JP5078128B2 (en) Operation method, prediction error compensation device, meteorological power generation planning device, and program
JP5859469B2 (en) Energy management system and energy management method
Bolvashenkov et al. Safety-critical electrical drives: topologies, reliability, performance
Abdulla et al. Statistical availability analysis of wave energy converters
JP2016143336A (en) Method and apparatus for optimizing configuration of distributed energy system
CN108843497B (en) Yaw control method and equipment of wind generating set
JP7410897B2 (en) Power generation management system and power generation management method
JP6429523B2 (en) Photovoltaic power generation forecast system
Münsterberg Simulation-based evaluation of operation and maintenance logistics concepts for offshore wind power plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R151 Written notification of patent or utility model registration

Ref document number: 5986920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151