JP2014125639A - High-corrosion-resistance magnesium-based material and production method thereof, and surface treatment method for magnesium-based material - Google Patents

High-corrosion-resistance magnesium-based material and production method thereof, and surface treatment method for magnesium-based material Download PDF

Info

Publication number
JP2014125639A
JP2014125639A JP2012280479A JP2012280479A JP2014125639A JP 2014125639 A JP2014125639 A JP 2014125639A JP 2012280479 A JP2012280479 A JP 2012280479A JP 2012280479 A JP2012280479 A JP 2012280479A JP 2014125639 A JP2014125639 A JP 2014125639A
Authority
JP
Japan
Prior art keywords
magnesium
film
based material
hydroxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012280479A
Other languages
Japanese (ja)
Other versions
JP6115912B2 (en
Inventor
Takahiro Ishizaki
貴裕 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Priority to JP2012280479A priority Critical patent/JP6115912B2/en
Publication of JP2014125639A publication Critical patent/JP2014125639A/en
Application granted granted Critical
Publication of JP6115912B2 publication Critical patent/JP6115912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium-based material provided with a film having a corrosion resistance improving effect, its production method and a surface treatment method capable of coping with large members at low costs.SOLUTION: A magnesium-based material consists of a substrate composed of magnesium or a magnesium alloy and a film formed on the surface of the substrate. The film is composed of magnesium hydroxide (Mg(OH)) and an Mg-Al type laminar double hydroxide. For diffraction peaks in an X-ray diffraction of the surface of the film, the ratio (Y/X) of the peak intensity (Y) of the (003) plane of the Mg-Al type laminar double hydroxide to the peak intensity (X) of the (101) plane of the magnesium hydroxide is 0.05-0.3.

Description

本発明は、耐食性が向上されたマグネシウム系材料及びその製造方法、並びに、マグネシウム系材料の表面処理方法に関する。詳しくは、防食効果が高く、密着性にも優れた皮膜を有するマグネシウム系材料、並びに、かかる皮膜を有効に形成することができ、低コストで大型の部材にも適用可能なマグネシウム系材料の表面処理方法及びこの表面処理方法を含むマグネシウム系材料の製造方法に関する。   The present invention relates to a magnesium-based material with improved corrosion resistance, a method for producing the same, and a surface treatment method for the magnesium-based material. Specifically, a magnesium-based material having a film having a high anticorrosion effect and excellent adhesion, and a surface of a magnesium-based material that can effectively form such a film and can be applied to a large-sized member at low cost The present invention relates to a treatment method and a method for producing a magnesium-based material including the surface treatment method.

マグネシウム及びマグネシウム合金(本明細書において、これらを総称してマグネシウム系材料とすることがある。)は、実用化されている各種の金属材料の中でも極めて軽い合金であり、これに加えて比強度がアルミニウムや鋼等よりも大きいという特性を有することから、航空宇宙機器の構造部材等に使用されている。また、上記利点に加えてリサイクル可能性もあることから、近年では、携帯電話やカメラ、ノートパソコンの筐体や、自動車部品、建築物の構造部材等にも使用されるようになっている。   Magnesium and magnesium alloys (in the present specification, these may be collectively referred to as magnesium-based materials) are extremely light alloys among various metal materials that have been put into practical use. Is larger than aluminum, steel, etc., and is used for structural members of aerospace equipment. In addition to the above-mentioned advantages, there is a possibility of recycling, and in recent years, it has been used for cellular phones, cameras, notebook computer cases, automobile parts, building structural members, and the like.

マグネシウム系材料は、上記のような多くの利点を有する金属材料であるが、非常に活性な金属でありこの点が問題となっている。即ち、マグネシウム系材料は、耐食性においては他の金属材料よりも劣る面があり、表面が酸化等により腐食しやすいという欠点がある。そのため、マグネシウム系材料の耐食性を向上させるために様々な方法が検討されている。   The magnesium-based material is a metal material having many advantages as described above, but is a very active metal, and this is a problem. That is, the magnesium-based material has a surface inferior to other metal materials in terms of corrosion resistance, and has a drawback that the surface is easily corroded by oxidation or the like. Therefore, various methods have been studied in order to improve the corrosion resistance of the magnesium-based material.

マグネシウム系材料の耐食性向上のための方法として最も簡易なものとしては、材料にアクリル系有機樹脂等の塗料を直接塗布するものがある。もっとも、このような塗料の塗布による対処は根本的なものではない。マグネシウム系材料は高活性であり、塗料の塗布の段階で既に酸化していることが多い、この状態で塗料塗布しても塗料膜の密着性が悪く、剥離が生じてしまう。従って、塗料の塗布は外観の仕上げ処理には有用であるが、それ自体を耐食性向上のための処理とすることはできない。そこで、マグネシウム系材料に密着性を考慮した皮膜形成のための処理方法として、各種の化成処理や陽極酸化処理が知られている。   The simplest method for improving the corrosion resistance of a magnesium-based material is to directly apply a paint such as an acrylic organic resin to the material. However, such a countermeasure by applying a paint is not fundamental. Magnesium-based materials are highly active, and are often already oxidized at the coating application stage. Even if the coating is applied in this state, the adhesion of the coating film is poor and peeling occurs. Therefore, the application of the paint is useful for finishing the appearance, but cannot itself be a treatment for improving the corrosion resistance. Therefore, various chemical conversion treatments and anodization treatments are known as treatment methods for forming a film in consideration of adhesion to a magnesium-based material.

例えば、特許文献1、2には、マグネシウム系材料の化成処理として、リン酸塩を含む処理液による表面処理方法が記載されている。この方法は、処理対象となるマグネシウム系材料からなる部材を、リン酸塩(リン酸水素二アンモニウム(特許文献1)、メタリン酸、ピロリン酸等(特許文献2))を含む処理液に浸漬し、加熱等して皮膜を形成するものである。これらリン酸塩を処理液とする化成処理は、古くから行われてきた化成処理であるクロメート処理に対して、有害なクロム酸塩を使用する必要がなく、環境問題に配慮した皮膜形成処理が可能となっている。   For example, Patent Documents 1 and 2 describe a surface treatment method using a treatment liquid containing phosphate as a chemical conversion treatment of a magnesium-based material. In this method, a member made of a magnesium-based material to be treated is immersed in a treatment solution containing a phosphate (diammonium hydrogen phosphate (Patent Document 1), metaphosphoric acid, pyrophosphoric acid, etc. (Patent Document 2)). The film is formed by heating or the like. The chemical conversion treatment using these phosphates as the treatment liquid does not require the use of harmful chromate treatments compared to the chromate treatment, which has been performed for a long time. It is possible.

また、特許文献3では、水蒸気によるマグネシウム系材料の表面処理が開示されている。この表面処理方法では、マグネシウム系材料に対して、ブラスト処理等の前処理を行うことなく、所定温度の蒸気で養生して表面に水酸化マグネシウムからなる皮膜を形成するものである。   Patent Document 3 discloses surface treatment of a magnesium-based material with water vapor. In this surface treatment method, a magnesium-based material is cured with steam at a predetermined temperature to form a film made of magnesium hydroxide on the surface without performing pretreatment such as blast treatment.

特開平11−29874号公報JP-A-11-29874 特開2002−322567号公報JP 2002-322567 A 特開2010−7147号公報JP 2010-7147 A

しかしながら、従来のマグネシウム系材料の表面処理方法には未だ改善点が存在する。即ち、特許文献1、2の表面処理法では、表面処理後にリン酸塩由来の不純物が処理液に残留するため再利用が困難であり、使用済み処理液の処理等のためコストが上昇する。また、処理後の被処理材にもこの不順部が付着しているため、洗浄処理が必要となる。一方、特許文献3記載の方法は、純水を使用すること、及び、溶液ではなく水蒸気による気相の処理であることから上記のような問題はない。しかし、この文献記載の方法では、皮膜の膜厚制御が難しい。そのため、大型の被処理材に対して均質な皮膜を形成するのが困難である。   However, there are still improvements in the conventional surface treatment methods for magnesium-based materials. That is, in the surface treatment methods of Patent Documents 1 and 2, since impurities derived from phosphate remain in the treatment liquid after the surface treatment, it is difficult to reuse, and the cost increases due to the treatment of the used treatment liquid. In addition, since the irregular portion is also attached to the processed material after processing, cleaning processing is necessary. On the other hand, the method described in Patent Document 3 does not have the above-described problems because it uses pure water and is a gas phase treatment using water vapor instead of a solution. However, in the method described in this document, it is difficult to control the film thickness of the film. Therefore, it is difficult to form a uniform film on a large material to be processed.

また、上記従来の表面処理法により製造されるマグネシウム系材料の耐食性についてみると、特許文献1、2のような処理液への浸漬により形成される皮膜は、軟質で剥離しやすく、その膜厚も不十分であり、十分な防食皮膜として作用しないことがある。また、特許文献3記載の方法により形成される皮膜は、水酸化マグネシウムという水溶性のない皮膜を適用する点で防食効果が期待できるものの、上記のような膜質の均一性から改善の余地がある他、更なる防食効果の向上が求められている。   In addition, regarding the corrosion resistance of the magnesium-based material produced by the conventional surface treatment method, the film formed by immersion in the treatment liquid as in Patent Documents 1 and 2 is soft and easy to peel off, and its film thickness Is insufficient, and may not act as a sufficient anticorrosion film. Moreover, although the film formed by the method described in Patent Document 3 can be expected to have an anticorrosive effect in terms of applying a water-insoluble film called magnesium hydroxide, there is room for improvement from the uniformity of the film quality as described above. In addition, further improvement of the anticorrosion effect is demanded.

本発明は以上のような背景のもとになされたものであり、従来よりも耐食性向上効果の高い皮膜を有するマグネシウム系材料を提供するものである。そして、この耐食性向上効果の高い皮膜を形成することができ、かつ、低コストで大型部材にも対応可能な表面処理方法及びこれを備えるマグネシウム系材料の製造法を提供するものである。   The present invention has been made based on the background as described above, and provides a magnesium-based material having a film having a higher effect of improving corrosion resistance than the conventional one. The present invention also provides a surface treatment method capable of forming a film having a high effect of improving the corrosion resistance and capable of dealing with a large-sized member at a low cost and a method for producing a magnesium-based material including the surface treatment method.

本発明者は、上記課題を解決するため鋭意検討を行い、水酸化マグネシウムをベースとする皮膜を有するマグネシウム系材料を起点とする開発を行った。これは、上記の通り、水酸化マグネシウムは、化学的に安定な物質であり防食皮膜として有用だからである。もっとも、水酸化マグネシウムも全く侵食を受けない防食皮膜ではなく、塩水中の塩素イオン等のアニオン(陰イオン)による侵食まで回避できるわけではない。   The present inventor has intensively studied to solve the above problems, and has developed from a magnesium-based material having a film based on magnesium hydroxide. This is because magnesium hydroxide is a chemically stable substance and is useful as an anticorrosion film as described above. However, magnesium hydroxide is not an anticorrosive film that is not eroded at all, and erosion by anions (anions) such as chloride ions in salt water cannot be avoided.

そこで、本発明者は、水酸化マグネシウムを皮膜のベースとしつつ、耐食性を向上させる要素を追加することとした。そして、この追加要素としてAl−Mg系の層状複水酸化物(Layered Double Hydroxide:LDH)の効果的な適用を見出した。   Therefore, the present inventor decided to add an element for improving the corrosion resistance while using magnesium hydroxide as the base of the film. And as this additional element, the effective application of the layered double hydroxide (Layered Double Hydroxide: LDH) of Al-Mg type | system | group was discovered.

層状複水酸化物とは、2価の金属(Mg)の水酸化物に3価の金属(Al)のイオンが固溶した複水酸化物が積層構造を形成してなる化合物である。この積層構造においては、複水酸化物基本層が正の電荷を持つことから、層間に負の電荷の陰イオンを挟んだ構造を維持している。   The layered double hydroxide is a compound in which a double hydroxide in which trivalent metal (Al) ions are dissolved in a divalent metal (Mg) hydroxide forms a laminated structure. In this laminated structure, since the double hydroxide base layer has a positive charge, a structure in which an anion having a negative charge is sandwiched between the layers is maintained.

この層状複水酸化物の特徴として、ホスト−ゲスト反応による陰イオン交換能が挙げられる。これは、層状複水酸化物は、他の陰イオンや水分子等の分子(ゲスト物質)が近接したとき、その基本層(ホスト層)の構造を維持しつつ、層間に包含していた陰イオンとゲスト物質とを交換し、ゲスト物質を取り込むことができるというものである。そして、かかるイオン交換能は、層状複水酸化物を含む皮膜の耐食性向上に有用である。皮膜が塩水等の腐食環境に曝されたとき、環境中の陰イオンを取り込むことで皮膜の侵食を抑制できると考えられるからである。   A characteristic of this layered double hydroxide is an anion exchange ability by a host-guest reaction. This is because the layered double hydroxide maintains the structure of its basic layer (host layer) when other anions and molecules such as water molecules (guest materials) are in close proximity, and the anion contained between the layers. The ion can be exchanged with the guest material, and the guest material can be taken in. Such ion exchange capacity is useful for improving the corrosion resistance of a film containing a layered double hydroxide. This is because, when the film is exposed to a corrosive environment such as salt water, it is considered that the erosion of the film can be suppressed by incorporating anions in the environment.

但し、層状複水酸化物を防食皮膜に適用するとしても、その適正な含有量があるといえる。そこで、本発明者は、水酸化マグネシウムと層状複水酸化とからなる皮膜を有するマグネシウム材料について、好適な構成及びこれを形成するための方法について更なる検討を行い、本発明に想到した。   However, even when the layered double hydroxide is applied to the anticorrosion film, it can be said that there is an appropriate content thereof. Therefore, the present inventor has further studied a preferred configuration and a method for forming the magnesium material having a film made of magnesium hydroxide and layered double hydroxide, and have arrived at the present invention.

即ち、本発明は、マグネシウム又はマグネシウム合金からなる基材と、前記基材表面上に形成された皮膜とからなるマグネシウム系材料において、前記皮膜は、水酸化マグネシウム(Mg(OH))と、次式で示されるMg−Al系層状複水酸化物とからなり、皮膜表面についてなされるX線回折の回折ピークについて、前記水酸化マグネシウムの(101)面のピーク強度(X)と、前記Mg−Al系層状複水酸化物の(003)面のピーク強度(Y)との比(Y/X)が、0.05〜0.3であることを特徴とするマグネシウム系材料である。 That is, the present invention relates to a magnesium-based material composed of a base material made of magnesium or a magnesium alloy and a film formed on the surface of the base material, wherein the film comprises magnesium hydroxide (Mg (OH) 2 ), The diffraction peak of the X-ray diffraction formed on the surface of the film is composed of the Mg—Al-based layered double hydroxide represented by the following formula, and the peak intensity (X) of the (101) plane of the magnesium hydroxide and the Mg -A magnesium-based material characterized in that the ratio (Y / X) to the peak intensity (Y) of the (003) plane of the Al-based layered double hydroxide is 0.05 to 0.3.

Figure 2014125639
(式中、陰イオンであるAn−は、炭酸イオン(CO 2−)、硝酸イオン(NO )、フッ素イオン(F)の少なくともいずれかである)
Figure 2014125639
(Wherein is A n- is an anion, carbonate ions (CO 3 2-), nitrate ion (NO 3 -), fluoride ion (F - at least either of))

以下、本発明についてより詳細に説明する。上記の通り、本発明はマグネシウム系材料からなる基材上に、水酸化マグネシウムと適正量のAl−Mg系層状複水酸化物とからなる皮膜を形成することを特徴とする。以下の説明では、これら各構成について説明する。   Hereinafter, the present invention will be described in more detail. As described above, the present invention is characterized in that a film made of magnesium hydroxide and an appropriate amount of an Al—Mg layered double hydroxide is formed on a base material made of a magnesium-based material. In the following description, each of these configurations will be described.

基材となるマグネシウム系材料は、純マグネシウム又はマグネシウム合金である。マグネシウム合金としては、少なくとも1質量%以上のアルミニウムを含むマグネシウム合金が好ましい。本発明では、Al−Mg系層状複水酸化物を必須の構成とするが、その形成にあっては、構成元素であるアルミニウムを合金素地から供給するのが合理的だからである。また、アルミニウムは、マグネシウムに合金化することで強度を向上させる合金元素であり、工業的なマグネシウム合金においては必須ともいえる元素だからである。   The magnesium-based material serving as the base material is pure magnesium or a magnesium alloy. As the magnesium alloy, a magnesium alloy containing at least 1% by mass of aluminum is preferable. In the present invention, the Al—Mg-based layered double hydroxide is an essential component because it is reasonable to supply aluminum, which is a constituent element, from the alloy base. Moreover, aluminum is an alloy element that improves strength by alloying with magnesium, and is an essential element in industrial magnesium alloys.

このマグネシウム合金の例としては、Mg−Al−Zn合金が挙げられ、より具体的には、Mg−(2.5〜3.5質量%)Al−(0.6〜1.4質量%)Zn合金(AZ31合金)、Mg−(5.5〜7.2質量%)Al−(0.5〜1.5質量%)Zn合金(AZ61合金)、Mg−(7.5〜9.2質量%)Al−(0.2〜1.0質量%)Zn合金(AZ80合金)、Mg−(8.3〜9.7質量%)Al−(0.35〜1.0質量%)Zn合金(AZ91合金)が挙げられる。尚、合金の特性上の観点から、マグネシウム合金におけるアルミニウムの添加量は、10質量%を上限とするのが好ましい。また、アルミニウムはマグネシウム合金基材へ添加が好ましい元素ではあるが、純マグネシウム、又は、アルミニウムを含まないマグネシウム合金が基材であっても良い。後述するように、本発明に係る表面処理方法により、皮膜中にAl−Mg系層状複水酸化物を形成することができるからである。例えば、Mg−Zn系合金、Mg−希土類元素系合金等もマグネシウムの強度を向上させた合金であるが、これらについても本発明の基材として適用できる。   An example of this magnesium alloy is an Mg—Al—Zn alloy, and more specifically, Mg— (2.5 to 3.5% by mass) Al— (0.6 to 1.4% by mass). Zn alloy (AZ31 alloy), Mg- (5.5-7.2 mass%) Al- (0.5-1.5 mass%) Zn alloy (AZ61 alloy), Mg- (7.5-9.2) Mass%) Al- (0.2 to 1.0 mass%) Zn alloy (AZ80 alloy), Mg- (8.3 to 9.7 mass%) Al- (0.35 to 1.0 mass%) Zn An alloy (AZ91 alloy) is mentioned. From the viewpoint of the characteristics of the alloy, the amount of aluminum added to the magnesium alloy is preferably 10% by mass. Aluminum is an element that is preferably added to the magnesium alloy base material, but pure magnesium or a magnesium alloy that does not contain aluminum may be the base material. This is because, as will be described later, an Al—Mg-based layered double hydroxide can be formed in the film by the surface treatment method according to the present invention. For example, an Mg—Zn alloy, an Mg—rare earth element alloy, and the like are alloys with improved magnesium strength, but these can also be applied as the base material of the present invention.

基材上の皮膜について、その主な構成は水酸化マグネシウムである。上記の通り水酸化マグネシウムは、化学的に安定であり本来的に防食皮膜として有用だからである。この水酸化マグネシウムは、Al−Mg系層状複水酸化物のマトリックスであるが、微細粒子が緻密に結合した状態のものが好ましい。水酸化マグネシウムは、結晶子径が10〜100nmの微細なものが好ましい。このような好適な水酸化マグネシウムの形成については、後述の本発明に係る表面処理方法における処理温度、圧力により達成される。   The main composition of the coating on the substrate is magnesium hydroxide. As described above, magnesium hydroxide is chemically stable and inherently useful as an anticorrosion film. This magnesium hydroxide is an Al—Mg-based layered double hydroxide matrix, but preferably in a state in which fine particles are closely bound. Magnesium hydroxide preferably has a fine crystallite diameter of 10 to 100 nm. Such suitable formation of magnesium hydroxide is achieved by the treatment temperature and pressure in the surface treatment method according to the present invention described later.

そして、水酸化マグネシウム中に包含されるAl−Mg系層状複水酸化物について、層間の陰イオン(化1の式におけるAn−)は、炭酸イオン、硝酸イオン、フッ素イオンとする。これらを対象とするのは、腐食反応を促進する塩化物イオンや硫酸イオン等とイオン交換反応が可能な陰イオンだからである。 Then, the Al-Mg-based layered double hydroxide is incorporated into the magnesium hydroxide, the (A n-in the chemical formula 1) anion layers and carbonate ions, nitrate ions, and fluoride ions. These are targeted because they are anions capable of ion-exchange reaction with chloride ions, sulfate ions, etc. that promote the corrosion reaction.

本発明は、Al−Mg系層状複水酸化物の含有量として、皮膜表面についてなされるX線回折の回折ピークを基に、水酸化マグネシウムの(101)のピーク強度(X)と、Mg−Al系層状複水酸化物の(003)面のピーク強度(Y)との比(Y/X)が、0.05〜0.3とする。Al−Mg系層状複水酸化物は、上記した陰イオン交換能により皮膜を保護し、マグネシウム系材料の耐食性を向上させるが、ピーク強度比Y/Xが0.05未満の場合、その量が少なすぎるため皮膜が有効に保護されず侵食を受けるおそれがある。一方、ピーク強度比Y/Xの上限を0.3とするのは、Al−Mg系層状複水酸化物の混合量が増加すると、皮膜の主物質である水酸化マグネシウムの皮膜形成時にクラック等が形成されやすくなるためである。このピーク強度比Y/Xのより好ましい範囲は、0.1〜0.25である。   In the present invention, the content of the Al—Mg-based layered double hydroxide is based on the diffraction peak of X-ray diffraction performed on the film surface, and the peak intensity (X) of (101) of magnesium hydroxide, Mg— The ratio (Y / X) to the peak intensity (Y) of the (003) plane of the Al-based layered double hydroxide is set to 0.05 to 0.3. The Al—Mg-based layered double hydroxide protects the film by the above-described anion exchange ability and improves the corrosion resistance of the magnesium-based material. However, when the peak intensity ratio Y / X is less than 0.05, the amount is Since the amount is too small, the film is not effectively protected and may be eroded. On the other hand, the upper limit of the peak intensity ratio Y / X is set to 0.3 when the mixing amount of the Al—Mg-based layered double hydroxide increases, cracks and the like occur during the formation of the magnesium hydroxide film, which is the main material of the film. This is because it becomes easier to form. A more preferable range of the peak intensity ratio Y / X is 0.1 to 0.25.

本発明において、Al−Mg系層状複水酸化物の含有量の規定のためにX線回折におけるピーク強度を用いるのは、Al−Mg系層状複水酸化物は微細な化合物であり(電子)顕微鏡等での観察が困難であるからである。そして、X線回折は比較的簡易な分析手段であり、本発明におけるAl−Mg系層状複水酸化物のような不可視の微量物質の定量性についても一定の信頼性があるからである。ここで、ピーク強度比産出の基準となる水酸化マグネシウムの回折ピークとして(101)面の回折ピークを適用するのは、皮膜分析において最も強度の高いピークだからである。この水酸化マグネシウム(101)面のピークは、2θ=38°付近でみられる。一方、Al−Mg系層状複水酸化物の回折ピークとして(003)面の回折ピークを適用するのは、Al−Mg系層状複水酸化物の回折ピークの中で最も強い強度を示すからである。そして、Al−Mg系層状複水酸化物の回折ピークの位置は、包含する陰イオンの大きさによって多少異なるものの、2θ=11°付近で見られる。   In the present invention, the peak intensity in the X-ray diffraction is used to define the content of the Al—Mg-based layered double hydroxide. The Al—Mg-based layered double hydroxide is a fine compound (electrons). This is because observation with a microscope or the like is difficult. This is because X-ray diffraction is a comparatively simple analytical means, and there is a certain reliability with respect to the quantitativeness of invisible trace substances such as the Al—Mg-based layered double hydroxide in the present invention. Here, the diffraction peak of (101) plane is applied as the diffraction peak of magnesium hydroxide, which is the standard for peak intensity ratio production, because it is the peak with the highest intensity in the film analysis. This peak of the magnesium hydroxide (101) plane is seen around 2θ = 38 °. On the other hand, the (003) plane diffraction peak is applied as the diffraction peak of the Al—Mg layered double hydroxide because it shows the strongest intensity among the diffraction peaks of the Al—Mg layered double hydroxide. is there. The position of the diffraction peak of the Al—Mg-based layered double hydroxide can be seen around 2θ = 11 °, although it varies somewhat depending on the size of the anions included.

以上説明した水酸化マグネシウム及びAl−Mg系層状複水酸化物からなる皮膜は、その厚さが10〜100μmのものが好ましい。10μm未満では、微小な傷が生じた場合、そこから基材の侵食が発生することになる。また、100μmを超えるばあい、応力や熱衝撃により皮膜に割れ、剥離が生じることがある。   The film made of magnesium hydroxide and Al—Mg layered double hydroxide described above preferably has a thickness of 10 to 100 μm. If it is less than 10 μm, when a minute scratch occurs, the base material erodes therefrom. When the thickness exceeds 100 μm, the film may be cracked or peeled off due to stress or thermal shock.

尚、本発明に係るマグネシウム系材料について、その形状は限定されることはなく、板状、管状等あらゆる形状のものが適用できる。また、寸法についても制限はない。後述のように、本発明に係るマグネシウム系材料の製造方法で行われる表面処理方法においては、形状的制限・寸法的制限なく皮膜を形成することができるからである。更に、皮膜の形成は部分的なものであってもよく、片面又は両面のいずれでも良い。   In addition, about the magnesium-type material which concerns on this invention, the shape is not limited and the thing of all shapes, such as plate shape and a tubular shape, is applicable. Moreover, there is no restriction | limiting also about a dimension. This is because, as will be described later, in the surface treatment method performed by the method for producing a magnesium-based material according to the present invention, a film can be formed without any shape limitation or dimensional limitation. Furthermore, the formation of the film may be partial, and may be either single-sided or double-sided.

次に、本発明に係るマグネシウム系材料の製造方法について説明する。上記の通り、本発明はマグネシウム系材料に水酸化マグネシウムをベースにした皮膜を形成したものである。ここで、マグネシウム系材料に水酸化マグネシウムからなる皮膜を形成する方法としては、特許文献3が開示しており、マグネシウム系材料を水蒸気に養生(曝露)する。この水蒸気による皮膜形成は、水酸化マグネシウムを効果的に生成する処理としては有用であり、本願発明でもその基礎的な技術要素となり得る。但し、この従来の表面処理法を基にするマグネシウム系材料の製造方法では、膜厚制御が困難であるという問題があり、更に、本発明で必須とするAl−Mg系層状複水酸化物を有効量生成できないと考えられる。   Next, the manufacturing method of the magnesium-type material which concerns on this invention is demonstrated. As described above, the present invention is a magnesium-based material formed with a film based on magnesium hydroxide. Here, Patent Document 3 discloses a method for forming a film made of magnesium hydroxide on a magnesium-based material, and the magnesium-based material is cured (exposed) with water vapor. This film formation with water vapor is useful as a treatment for effectively producing magnesium hydroxide, and can be a basic technical element in the present invention. However, the conventional method for producing a magnesium-based material based on the surface treatment method has a problem that it is difficult to control the film thickness. Further, the Al—Mg-based layered double hydroxide that is essential in the present invention is used. It is considered that an effective amount cannot be generated.

本発明者は、本発明に係るマグネシウム系材料の製造方法として、膜厚制御の問題を解決する方法として、水蒸気で処理する際の圧力を制御し、所定範囲の圧力で保持することで、緻密な水酸化マグネシウム皮膜を基材上に均一に形成できるとした。   As a method for manufacturing a magnesium-based material according to the present invention, the present inventor controls the pressure during treatment with water vapor as a method for solving the problem of film thickness control, and maintains the pressure within a predetermined range, thereby achieving a precise density. It was assumed that a uniform magnesium hydroxide film could be uniformly formed on the substrate.

また、Al−Mg系層状複水酸化物の生成について、従来の水蒸気養生でもAl−Mg系層状複水酸化物は微量ながら生成していると考えられる。Al−Mg系層状複水酸化物は、マグネシウムの水酸化物にアルミニウムが固溶したものを基本とする。従って、マグネシウム合金基材にアルミニウムが含まれている場合に限れば、両者の水酸化物が生成し、ここに陰イオンとして処理雰囲気(大気)から炭酸イオンを取り込むことでAl−Mg系層状複水酸化物が生成すると考えられる。ただ、Al−Mg系層状複水酸化物の単位層は正の電荷を有する水酸化物であり、電荷的な中性状態を維持するためには陰イオンの供給が必要となる。この点、処理雰囲気から十分な陰イオンが供給できるとは考えられない。従って、単に水蒸気で処理をしても、生成できるAl−Mg系層状複水酸化物は極微量であり、本発明で規定するような効果的な量は不可能である。   Moreover, about the production | generation of an Al-Mg type | system | group layered double hydroxide, it is thought that the Al-Mg type | system | group layered double hydroxide is produced | generated in a trace amount also by the conventional steam curing. The Al—Mg-based layered double hydroxide is based on a solid solution of magnesium in magnesium hydroxide. Therefore, only when the magnesium alloy base material contains aluminum, both hydroxides are formed, and by incorporating carbonate ions from the treatment atmosphere (air) as anions, Al—Mg-based layered composites are formed. It is thought that hydroxide is formed. However, the unit layer of the Al—Mg-based layered double hydroxide is a hydroxide having a positive charge, and an anion needs to be supplied in order to maintain a charge neutral state. In this regard, it cannot be considered that sufficient anions can be supplied from the processing atmosphere. Therefore, the amount of the Al—Mg-based layered double hydroxide that can be produced by simply treating with water vapor is extremely small, and an effective amount as defined in the present invention is impossible.

そこで、本発明者は、Al−Mg系層状複水酸化物を安定的に生成する手段として、上記の考察を基に、処理雰囲気中に陰イオンの供給源となる化合物を添加することとした。この処理雰囲気への陰イオンの供給源となる化合物の添加方法としては、従来の純水による蒸気を用いるのに替えて、陰イオンを含む炭酸塩、硝酸塩、フッ化物塩の水溶液の蒸気を利用することで可能となる。   Therefore, the present inventor decided to add a compound serving as a source of anions to the processing atmosphere as a means for stably generating the Al—Mg-based layered double hydroxide based on the above consideration. . As a method of adding a compound serving as an anion supply source to the treatment atmosphere, instead of using a conventional pure water vapor, an anion-containing carbonate, nitrate, or fluoride salt vapor is used. This is possible.

以上から、本発明に係るマグネシウム系材料の製造方法は、マグネシウム又はマグネシウム合金からなる基材を、温度150〜170℃、圧力0.4〜0.9MPaの処理液蒸気に接触させて皮膜を形成する工程を含み、前記処理液は、炭酸塩、硝酸塩、フッ化物塩の少なくともいずれかを含む水溶液であるものとする。   From the above, the method for producing a magnesium-based material according to the present invention forms a film by bringing a base material made of magnesium or a magnesium alloy into contact with a treatment liquid vapor at a temperature of 150 to 170 ° C. and a pressure of 0.4 to 0.9 MPa. The treatment liquid is an aqueous solution containing at least one of carbonate, nitrate, and fluoride salt.

このマグネシウム系材料の製造方法では、マグネシウム系材料からなる基材を、所定温度・圧力の処理液の蒸気中に曝露することで、基材表面に水酸化マグネシウムとAl−Mg系層状複水酸化物とからなる皮膜を形成するものである。   In this method for producing a magnesium-based material, magnesium hydroxide and an Al—Mg-based layered double hydroxide are exposed on the surface of the substrate by exposing the substrate made of the magnesium-based material to the vapor of a treatment liquid at a predetermined temperature and pressure. A film made of a material is formed.

ここで、処理液とは、炭酸塩、硝酸塩、フッ化物塩の少なくともいずれかを含む水溶液である。これらの塩はアルカリ金属(リチウム、ナトリウム、カリウム等)の塩(炭酸ナトリウム、硝酸ナトリウム等)や、アルカリ土類金属(カルシウム、ストロンチウム、バリウム等)の塩(炭酸カルシウム、硝酸カルシウム等)の他、貴金属の塩、コモンメタルの塩等が適用できる。これらの塩は、1種又は複数種を組み合わせて処理液とすることができる。   Here, the treatment liquid is an aqueous solution containing at least one of carbonate, nitrate, and fluoride salt. These salts include salts of alkali metals (lithium, sodium, potassium, etc.) (sodium carbonate, sodium nitrate, etc.) and salts of alkaline earth metals (calcium, strontium, barium, etc.) (calcium carbonate, calcium nitrate, etc.) Noble metal salt, common metal salt, etc. can be applied. These salts can be used as a treatment liquid by combining one kind or a plurality of kinds.

また、本発明に係るマグネシウム系材料の製造方法は、純マグネシウム又はアルミニウムを含まないマグネシウム合金を基材とする場合でも皮膜を形成し、本発明に係るマグネシウム系材料の製造が可能である。これは、処理液の塩としてアルミニウムを含む塩(炭酸アルミニウム、硝酸アルミニウム)を適用することで、処理液中にアルミニウム(イオン)を含有させることができ、これがAl−Mg系層状複水酸化物の構成元素となるからである。このとき、アルミニウム塩は、Al−Mg系層状複水酸化物の構成成分である、アルミニウムと陰イオンの双方の供給源となる。尚、この場合、アルミニウム塩と共に炭酸ナトリウム等の上記の他の塩の双方から処理液を製造しても良い。   Moreover, the manufacturing method of the magnesium-type material which concerns on this invention forms a membrane | film | coat, even when it uses a magnesium alloy which does not contain pure magnesium or aluminum as a base material, and can manufacture the magnesium-type material which concerns on this invention. This is because by applying a salt containing aluminum (aluminum carbonate, aluminum nitrate) as a salt of the treatment liquid, the treatment liquid can contain aluminum (ions), which is an Al—Mg-based layered double hydroxide. It is because it becomes a constituent element. At this time, the aluminum salt serves as a supply source of both aluminum and anions, which are constituent components of the Al—Mg-based layered double hydroxide. In this case, the treatment liquid may be produced from both the aluminum salt and the other salt such as sodium carbonate.

そして、本発明では処理液の塩濃度を調整することで、皮膜中のAl−Mg系層状複水酸化物の含有量を制御することができ、塩濃度の上昇に伴いAl−Mg系層状複水酸化物の含有量は増加する。好ましい処理液の塩濃度は、1mM〜1Mである。この塩濃度は、従来のリン酸塩溶液等による化成処理で使用する処理液よりも極めて低減されている。本発明は、高温・高圧雰囲気により活性化された水を利用するものであり、処理液の塩濃度(陰イオンの供給量)はAl−Mg系層状複水酸化物の形成に必要な量程度で足りるからである。より好ましくは、処理液の塩濃度は、10mM〜0.5Mである。   In the present invention, the content of the Al—Mg layered double hydroxide in the film can be controlled by adjusting the salt concentration of the treatment liquid. The hydroxide content increases. A preferable salt concentration of the treatment solution is 1 mM to 1M. This salt concentration is extremely reduced as compared with the treatment liquid used in the chemical conversion treatment with a conventional phosphate solution or the like. The present invention uses water activated by a high-temperature, high-pressure atmosphere, and the salt concentration of the treatment liquid (anion supply amount) is about the amount necessary for forming an Al—Mg-based layered double hydroxide. Because it is enough. More preferably, the salt concentration of the treatment liquid is 10 mM to 0.5M.

本発明では、マグネシウム系材料の蒸気による皮膜形成処理について、温度に加えて圧力制御を必須構成とする。圧力を高圧制御して一定圧で処理することで、水分子の活性を高め、基材と水との反応効率が向上する。これにより、緻密な皮膜を密着性良好な状態で形成することができる。また、圧力を一定に保持することで、均一な皮膜を形成することができる。   In the present invention, in addition to the temperature, the pressure control is an essential component for the film formation treatment with the vapor of the magnesium-based material. By controlling the pressure at a high pressure and processing at a constant pressure, the activity of water molecules is increased, and the reaction efficiency between the substrate and water is improved. Thereby, a dense film can be formed with good adhesion. Moreover, a uniform film can be formed by keeping the pressure constant.

本発明では、温度150〜170℃、圧力0.4〜0.9MPaの処理液蒸気により処理を行う。処理温度を150〜170℃とするのは、150℃未満では緻密な水酸化マグネシウムが形成されず、また、Al−Mg系層状複水酸化物の生成も不十分となる。一方、170℃を越えると、層状複水酸化物の存在量が減少するため、これを上限とする。処理圧力については、0.4MPa未満では緻密な水酸化マグネシウムが形成されない。また、0.9MPaを超えると皮膜形成の反応速度が速くなりすぎるため、皮膜の形成時にクラックが形成されやすくなるためである。好ましい処理条件は、温度155〜165℃、圧力0.5〜0.8MPaである。   In the present invention, the treatment is performed with a treatment liquid vapor at a temperature of 150 to 170 ° C. and a pressure of 0.4 to 0.9 MPa. When the treatment temperature is set to 150 to 170 ° C., dense magnesium hydroxide is not formed at a temperature lower than 150 ° C., and the generation of Al—Mg-based layered double hydroxide is insufficient. On the other hand, when the temperature exceeds 170 ° C., the amount of the layered double hydroxide decreases, so this is the upper limit. With respect to the treatment pressure, if it is less than 0.4 MPa, dense magnesium hydroxide is not formed. On the other hand, if it exceeds 0.9 MPa, the reaction rate of the film formation becomes too fast, so that cracks are likely to be formed when the film is formed. Preferred treatment conditions are a temperature of 155 to 165 ° C. and a pressure of 0.5 to 0.8 MPa.

処理液の水蒸気による処理時間は、3〜8時間が好ましい。処理時間と皮膜厚さには相関があり、処理時間の増加に伴い皮膜は厚くなる。好適な膜厚の皮膜を形成するためには上記時間とするのが好ましい。尚。処理液の水蒸気と基材の接触の方法については特に限定はない。例えば、圧力容器に基材を処理液と共に配置し、温度・圧力を制御して発生した水蒸気雰囲気に基材を曝露することで処理が可能である。   The treatment time of the treatment liquid with water vapor is preferably 3 to 8 hours. There is a correlation between the treatment time and the film thickness, and the film becomes thicker as the treatment time increases. In order to form a film having a suitable thickness, the above time is preferable. still. There is no particular limitation on the method for contacting the water vapor of the treatment liquid with the substrate. For example, the substrate can be disposed in a pressure vessel together with the treatment liquid, and the substrate can be exposed to a water vapor atmosphere generated by controlling temperature and pressure.

以上の処理がなされたマグネシウム系材料については、洗浄等の後処理を適宜に行っても良いし、行わなくても良い。処理液中の塩濃度は低いことから、処理後のマグネシウム系材料表面の不純物吸着量は低減されているからである。また、処理後のマグネシウム系材料については、塗装を行っても良い。   The magnesium-based material subjected to the above treatment may or may not be appropriately subjected to post-treatment such as washing. This is because the amount of impurities adsorbed on the surface of the magnesium-based material after the treatment is reduced because the salt concentration in the treatment liquid is low. Moreover, you may perform coating about the magnesium-type material after a process.

また、本発明に係るマグネシウム系材料の製造については、皮膜形成の処理前に基材について、酸化膜除去処理、脱脂処理、酸洗処理、防錆処理、除錆処理等の前処理は不要である。本発明は高温高圧の蒸気を基材表面に作用させるものであるので、基材表面に不純物が付着していても水蒸気の清浄作用により除去されるからである。   In addition, for the production of the magnesium-based material according to the present invention, pretreatment such as oxide film removal treatment, degreasing treatment, pickling treatment, rust prevention treatment, and rust removal treatment is not required for the base material before the film formation treatment. is there. This is because, in the present invention, high-temperature and high-pressure steam is applied to the surface of the base material, so even if impurities adhere to the surface of the base material, they are removed by the cleaning action of water vapor.

そして、以上説明したマグネシウム系材料の製造方法は、所定の塩を含む処理液の水蒸気を用いて、マグネシウム系材料からなる基材について表面処理を行うことを中心とする。そして、この表面処理方法は、マグネシウム系材料からなる部材、構造物等についても有用である。即ち、これら部材等を基材として、上記の水蒸気処理を行うことで、好適な皮膜を形成し耐食性を向上させることができる。   And the manufacturing method of the magnesium-type material demonstrated above centers on performing surface treatment about the base material which consists of magnesium-type materials using the water vapor | steam of the process liquid containing a predetermined salt. This surface treatment method is also useful for members, structures and the like made of a magnesium-based material. That is, by performing the steam treatment using these members as a base material, a suitable film can be formed and the corrosion resistance can be improved.

そして、本発明に係る表面処理方法は、圧力の規定はあるものの、水蒸気を基材に接触させることで可能であるから、被処理材に形状的制限・寸法的制限はない。また、上記の通り、この前処理方法は、洗浄等の前処理は不要であることから、その有用性は高いといえる。   And although the surface treatment method according to the present invention is possible by bringing water vapor into contact with the base material, although there is a regulation of pressure, there is no shape restriction or dimensional restriction on the material to be treated. Further, as described above, this pretreatment method is highly useful because pretreatment such as washing is unnecessary.

以上説明したいように、本発明に係るマグネシウム系材料は、化学的安定性の高い水酸化マグネシウムに、環境中で腐食要因となるアニオンを取り込むことのできるAl−Mg系層状複水酸化物を適正量組み合わせた皮膜を有し、この皮膜により高い耐食性を有する。そして、本発明に係るマグネシウム系材料の表面処理方法は、簡易でありながら有効性が高く、大型の部材や構造物に対応でき、更に、洗浄等の前処理も不要であることから広範な利用が期待できる。   As described above, the magnesium-based material according to the present invention is suitable for magnesium hydroxide having high chemical stability by using an Al-Mg-based layered double hydroxide capable of incorporating anions that cause corrosion in the environment. The film has a combined amount, and this film has high corrosion resistance. The surface treatment method for a magnesium-based material according to the present invention is simple but highly effective, can be used for large-sized members and structures, and further requires no pretreatment such as cleaning, so that it can be widely used. Can be expected.

本実施形態で使用した蒸気養生装置の構成を説明する図。The figure explaining the structure of the steam curing apparatus used by this embodiment. 実施例1、比較例1について測定した分極曲線。The polarization curve measured about Example 1 and the comparative example 1. FIG. 実施例1、2及び比較例2の皮膜について行ったX線回折分析の結果。The result of the X-ray diffraction analysis performed about the film | membrane of Examples 1, 2 and Comparative Example 2. FIG. 実施例1、2及び比較例2について測定した分極曲線。Polarization curves measured for Examples 1 and 2 and Comparative Example 2. 実施例3、4の皮膜について行ったX線回折分析の結果。The result of the X-ray diffraction analysis performed about the membrane | film | coat of Example 3 and 4. FIG.

以下、本発明の実施形態について、実施例を比較例と共に記す。   Hereinafter, about an embodiment of the present invention, an example is described with a comparative example.

第1実施形態:本実施形態では、マグネシウム系材料としてマグネシウム合金を試験材とし、これを表面処理して皮膜を形成し、処理後のマグネシウム合金の耐食性について処理を行わないものとに比較を行いつつ評価した。試験材は、A31合金押し出し材(ケーエステクノス株式会社製)であり、これを20×20mm、厚さ1.5mmに切り出したものを試験片とした。 First embodiment : In this embodiment, a magnesium alloy is used as a magnesium-based material as a test material, and this is surface-treated to form a film, and the corrosion resistance of the magnesium alloy after treatment is compared with that not subjected to treatment. While evaluating. The test material was an A31 alloy extruded material (manufactured by Kieste Knos Co., Ltd.), which was cut into 20 × 20 mm and a thickness of 1.5 mm as a test piece.

上記試験片について、図1に示す蒸気養生装置を用いて皮膜形成のための表面処理を行った。図1の蒸気養生装置は、横型のオートクレーブであり、下部に蒸気源となる処理液が注入されている。また、装置上部から試験片を複数吊り下げられるようになっている。表面処理は、1mMの炭酸ナトリウムを水1Lに溶解した水溶液を処理液とし、温度160℃、圧力0.7MPaとして処理時間を6時間として温度及び圧力を保持して表面処理した。   About the said test piece, the surface treatment for film formation was performed using the steam curing apparatus shown in FIG. The steam curing apparatus in FIG. 1 is a horizontal autoclave, and a processing liquid serving as a steam source is injected into the lower part. A plurality of test pieces can be suspended from the upper part of the apparatus. In the surface treatment, an aqueous solution obtained by dissolving 1 mM sodium carbonate in 1 L of water was used as a treatment liquid, and the surface treatment was performed at a temperature of 160 ° C., a pressure of 0.7 MPa, a treatment time of 6 hours, and the temperature and pressure maintained.

そして、表面処理後のマグネシウム試験片及び表面処理を行っていないマグネシウム試験片について、耐食性の評価及び皮膜の密着性を評価した。耐食性評価は、まず、腐食試験を行った。腐食試験は、各試験片を5重量%塩水(関東化学株式会社製)に浸漬し、液温を35℃として72時間保持した。浸漬後の各試験片について、腐食発生の有無を目視にて判定し、腐食が全くない状態を「◎」とし、腐食が発生した場合を「×」と判定した。また、耐食性評価として、ポテンショスタットを使用した分極曲線の測定を行った。分極測定は、5wt%のNaCl水溶液を利用し、測定温度25℃、電位掃印速度0.5mV/sとした。   And about the magnesium test piece after surface treatment, and the magnesium test piece which has not performed surface treatment, the corrosion resistance evaluation and the adhesiveness of the film were evaluated. In the corrosion resistance evaluation, first, a corrosion test was performed. In the corrosion test, each test piece was immersed in 5% by weight salt water (manufactured by Kanto Chemical Co., Inc.), and the liquid temperature was maintained at 35 ° C. for 72 hours. About each test piece after immersion, the presence or absence of corrosion generation | occurrence | production was judged visually, the state which has no corrosion was set to "(double-circle)", and the case where corrosion generate | occur | produced was determined to be "x". In addition, as a corrosion resistance evaluation, a polarization curve using a potentiostat was measured. For the polarization measurement, a 5 wt% NaCl aqueous solution was used, the measurement temperature was 25 ° C., and the potential sweep rate was 0.5 mV / s.

皮膜の密着性評価は、密着性試験キット(Elcometer社製:Elcometer 107 Cross Hatch Cutter)を使用した。この試験は、皮膜形成後の試験片表面に碁盤状にカットを入れ、その上に荷重40Nでテープを貼付し、一定時間後にテープを剥離して皮膜の剥離状態を目し観察するものである。そして、剥離が全くない場合「◎」とし、剥離が生じた場合を「×」と判定した。尚、皮膜については、予め光学顕微鏡観察で膜厚を測定している。   For the evaluation of the adhesion of the film, an adhesion test kit (Elcometer 107 Cross Hatch Cutter) was used. In this test, the surface of a test piece after film formation is cut into a grid shape, a tape is applied thereon with a load of 40 N, the tape is peeled off after a predetermined time, and the peeled state of the film is observed and observed. . And when there was no peeling at all, it was determined as “◎”, and when peeling occurred, it was determined as “x”. In addition, about the membrane | film | coat, the film thickness is previously measured by optical microscope observation.

以上の腐食試験の結果及び皮膜密着性評価の結果を表1に示す。また、測定した分極曲線を図2に示す。   The results of the above corrosion test and the results of the film adhesion evaluation are shown in Table 1. The measured polarization curve is shown in FIG.

Figure 2014125639
Figure 2014125639

表1から、炭酸ナトリウム溶液を処理液とする表面処理によりマグネシウム合金の耐食性が飛躍的に向上することがわかる。これは、図2の分極曲線からも確認することができ、比較例1の表面処理のないマグネシウム試験片の腐食電位は−1.484V(vs.SCE)であるのに対し、実施例1の表面処理をしたマグネシウム試験片の腐食電位は、−1.074V(vs.SCE)である。また、この腐食電位における腐食電流密度は、比較例1で7.2×10−5A/cmであるのに対し、実施例1は8.5×10−9A/cmである。即ち、実施例1の方が比較例1より400mV以上貴であり、腐食電流密度も4桁以上小さくなっている。従って、実施例1の皮膜形成により耐食性が著しく向上していることが確認できる。そして、実施例1については、形成した皮膜の密着性も優れている。 From Table 1, it can be seen that the corrosion resistance of the magnesium alloy is dramatically improved by the surface treatment using the sodium carbonate solution as the treatment liquid. This can also be confirmed from the polarization curve of FIG. 2, and the corrosion potential of the magnesium test piece without surface treatment of Comparative Example 1 is −1.484 V (vs. SCE), whereas that of Example 1 The corrosion potential of the surface-treated magnesium test piece is -1.074 V (vs. SCE). Further, the corrosion current density at this corrosion potential is 7.2 × 10 −5 A / cm 2 in Comparative Example 1, whereas Example 1 is 8.5 × 10 −9 A / cm 2 . That is, Example 1 is 400 mV or more noble than Comparative Example 1, and the corrosion current density is 4 digits or more smaller. Therefore, it can be confirmed that the corrosion resistance is remarkably improved by the film formation of Example 1. And about Example 1, the adhesiveness of the formed membrane | film | coat is also excellent.

第2実施形態:この実施形態は、第1実施形態と同様のマグネシウム合金を試験片として、皮膜形成のための処理液の構成及び表面処理の条件を変更して皮膜形成を行い、耐食性評価等を行った。 Second Embodiment : In this embodiment, the same magnesium alloy as that in the first embodiment is used as a test piece, and the film formation is performed by changing the composition of the treatment liquid and the surface treatment conditions for film formation, and the corrosion resistance evaluation is performed. Went.

実施例2として、処理液の炭酸ナトリウム濃度を100mMとし、第1実施形態と同様の装置及び条件で皮膜形成の処理を行った。また、比較例2として、処理液に純水を適用し第1実施形態と同様の装置及び条件で皮膜形成の処理を行った。更に、比較例3として、第1実施形態と同様の処理液(炭酸ナトリウム濃度:1mM)を用いつつ、表面処理の条件を温度140℃、圧力0.35MPaとして処理した。   As Example 2, the sodium carbonate concentration of the treatment liquid was set to 100 mM, and the film formation treatment was performed under the same apparatus and conditions as in the first embodiment. In Comparative Example 2, pure water was applied to the treatment liquid, and film formation was performed using the same apparatus and conditions as in the first embodiment. Further, as Comparative Example 3, the same treatment liquid as in the first embodiment (sodium carbonate concentration: 1 mM) was used, and the surface treatment conditions were a temperature of 140 ° C. and a pressure of 0.35 MPa.

実施例2、比較例2、3で蒸気養生した試験片については、まず、腐食試験による耐食性評価、膜厚測定、皮膜の密着性評価を行った。これらの評価方法は第1実施形態と同様である。この結果を表2に示す。表2には第1実施形態の実施例1、比較例1の結果も記載している。   The test pieces steam-cured in Example 2 and Comparative Examples 2 and 3 were first subjected to corrosion resistance evaluation, film thickness measurement, and film adhesion evaluation by a corrosion test. These evaluation methods are the same as those in the first embodiment. The results are shown in Table 2. Table 2 also shows the results of Example 1 and Comparative Example 1 of the first embodiment.

Figure 2014125639
Figure 2014125639

表2から、処理液の塩濃度を変更しても耐食性及び密着性が良好な皮膜形成が可能であることが確認できる。これに対し、比較例2の純水を処理液とした場合も、腐食試験では耐食性が良好な皮膜が形成されたといえる。但し、比較例2の場合、目視上は腐食発生と断定することはできないものの、皮膜の変色が生じるといった点で不具合があった。   From Table 2, it can be confirmed that even if the salt concentration of the treatment liquid is changed, it is possible to form a film having good corrosion resistance and adhesion. On the other hand, even when the pure water of Comparative Example 2 was used as the treatment liquid, it can be said that a film having good corrosion resistance was formed in the corrosion test. However, in the case of Comparative Example 2, there was a problem in that discoloration of the film occurred although it could not be determined visually that corrosion occurred.

一方、比較例3の結果から、処理液に炭酸ナトリウム塩を用いても、表面処理の条件を好適範囲よりも低温、低圧にした場合には、マグネシウム合金の耐食性は向上しない。比較例3では、膜厚が薄く、耐食性も表面処理しない試験片と同等である。また、皮膜は形成されたものの容易に剥離した。   On the other hand, from the results of Comparative Example 3, even when sodium carbonate is used as the treatment liquid, the corrosion resistance of the magnesium alloy is not improved when the surface treatment conditions are lower than the preferred range and low pressure. In Comparative Example 3, the film thickness is thin and the corrosion resistance is equivalent to a test piece that is not surface-treated. Moreover, although the film was formed, it peeled easily.

ここまでの評価結果から、実施例1、2及び比較例2のように、好適条件で蒸気養生することで、密着性の良好な皮膜が形成されることがわかる。この皮膜は水酸化マグネシウムが主であると推定されるが、適切条件で蒸気養生したことで、緻密な水酸化マグネシウムが強固に基材に密着しているものと考えられる。そのため、比較例2においても、腐食試験の試験条件(5%塩水浸漬)では明確な腐食発生が認められなかったと考えられる。   From the evaluation results so far, it can be seen that, as in Examples 1 and 2 and Comparative Example 2, a film with good adhesion is formed by steam curing under suitable conditions. This film is presumed to be mainly magnesium hydroxide, but it is considered that dense magnesium hydroxide is firmly adhered to the base material by steam curing under appropriate conditions. Therefore, also in Comparative Example 2, it is considered that no clear corrosion was observed under the test conditions of the corrosion test (5% salt water immersion).

そこで、次に、実施例1、2及び比較例2で形成した皮膜について、その構成を検討すると共に、これらについて分極曲線の測定を行い、耐食性の相違を厳密に評価した。皮膜の構成検討は、それぞれについてX線回折分析を行った。また、分極曲線測定は、第1実施形態と同様の条件で行った。そして、X線回折分析の結果については、水酸化マグネシウムの(101)面と同定されるピークのピーク強度(X)と、Mg−Al系層状複水酸化物の(003)面と同定されるピークのピーク強度(Y)との比(Y/X)を算出した。また、分極曲線の結果から、腐食電位及び腐食電流密度を測定した。図3にX線回折の結果を、図4に分極曲線測定結果を示す。また、表3に、各数値を示す。   Then, next, while examining the structure about the film | membrane formed in Example 1, 2 and the comparative example 2, while measuring the polarization curve about these, the difference in corrosion resistance was evaluated strictly. For the examination of the composition of the film, X-ray diffraction analysis was performed for each. The polarization curve measurement was performed under the same conditions as in the first embodiment. And as a result of the X-ray diffraction analysis, the peak intensity (X) of the peak identified as the (101) plane of magnesium hydroxide and the (003) plane of the Mg—Al-based layered double hydroxide are identified. The ratio (Y / X) of the peak to the peak intensity (Y) was calculated. Moreover, the corrosion potential and the corrosion current density were measured from the result of the polarization curve. FIG. 3 shows the result of X-ray diffraction, and FIG. 4 shows the result of polarization curve measurement. Table 3 shows each numerical value.

Figure 2014125639
Figure 2014125639

図3のX線回折分析の結果において、2θ=18.5°、32.8°、37.9°、50.8°、58.7°、62.1°、72.1°付近のピークが、それぞれ水酸化マグネシウムの(001)面、(100)面、(101)面、(102)面、(110)面、(111)面、(201)面に相当する。そして、37.9°付近のピークが水酸化マグネシウムの(101)面のピークとなる。一方、2θ=11.3°、22.6゜付近に見られるピークがAl−Mg系層状複水酸化物([Mg2+ 1−xAl3+ (OH)][CO 2− x/2・yHO])の(003)面、(006)面のピークと同定される。11.3°付近のピークがAl−Mg系層状複水酸化物の(003)面のピークとなる。図3から、実施例1、2で形成された皮膜は、水酸化マグネシウムとAl−Mg系層状複水酸化物とから構成されていることが確認できる。一方、比較例2で形成された皮膜については、水酸化マグネシウムが主体であるが、Al−Mg系層状複水酸化物のピークはきわめて低いものであった。比較例2においては、処理液(純水)からの炭酸イオンの供給は少なく、処理雰囲気(大気)から炭酸イオンを微量取り込みAl−Mg系層状複水酸化物を生成すると考えられるが、その生成量は極めて少ないものと考えられる。 In the result of the X-ray diffraction analysis of FIG. 3, peaks near 2θ = 18.5 °, 32.8 °, 37.9 °, 50.8 °, 58.7 °, 62.1 °, 72.1 °. Respectively correspond to the (001) plane, (100) plane, (101) plane, (102) plane, (110) plane, (111) plane, and (201) plane of magnesium hydroxide. A peak near 37.9 ° is a peak on the (101) plane of magnesium hydroxide. On the other hand, peaks observed in the vicinity of 2θ = 11.3 ° and 22.6 ° are Al—Mg-based layered double hydroxide ([Mg 2+ 1-x Al 3+ x (OH) 2 ] [CO 3 2− x / 2 · yH 2 O]) are identified as (003) plane and (006) plane peaks. The peak near 11.3 ° is the peak of the (003) plane of the Al—Mg layered double hydroxide. From FIG. 3, it can be confirmed that the films formed in Examples 1 and 2 are composed of magnesium hydroxide and an Al—Mg layered double hydroxide. On the other hand, although the film formed in Comparative Example 2 was mainly composed of magnesium hydroxide, the peak of the Al—Mg-based layered double hydroxide was extremely low. In Comparative Example 2, the supply of carbonate ions from the treatment liquid (pure water) is small, and it is considered that a small amount of carbonate ions are taken in from the treatment atmosphere (air) to produce an Al—Mg layered double hydroxide. The amount is considered very small.

表2には、各皮膜における水酸化マグネシウム(101)面のピーク強度(X)とMg−Al系層状複水酸化物(003)面のピーク強度(Y)との比(Y/X)を示すが、実施例1、2においては、ピーク強度比Y/Xが、0.06、0.19となっているのに対し、比較例1では、0.005となっている。このことから、処理液に塩(炭酸ナトリウム)を添加したことで効果的なMg−Al系層状複水酸化物の生成がなされたことがわかる。また、処理液の塩濃度を調整することで皮膜中のMg−Al系層状複水酸化物の含有量を調節できることもわかる。   Table 2 shows the ratio (Y / X) between the peak intensity (X) of the magnesium hydroxide (101) plane and the peak intensity (Y) of the Mg—Al-based layered double hydroxide (003) plane in each coating. As shown, in Examples 1 and 2, the peak intensity ratio Y / X is 0.06 and 0.19, whereas in Comparative Example 1, it is 0.005. From this, it can be seen that an effective Mg-Al-based layered double hydroxide was formed by adding a salt (sodium carbonate) to the treatment liquid. Moreover, it turns out that content of the Mg-Al type | system | group layered double hydroxide in a membrane | film | coat can be adjusted by adjusting the salt concentration of a process liquid.

また、実施例1、2のX線回折の結果において、水酸化マグネシウム(101)面のピークの半値幅から皮膜中の水酸化マグネシウムの結晶子径を算出したところ、25nmであった。つまり、これらの実施例における皮膜は、ナノオーダーの極めて微細なものであることが確認された。   Further, in the results of X-ray diffraction of Examples 1 and 2, the crystallite diameter of magnesium hydroxide in the film was calculated from the half-value width of the peak of the magnesium hydroxide (101) plane, and was 25 nm. That is, it was confirmed that the coating films in these examples were extremely fine on the nano order.

そして、分極曲線に基づく耐食性評価の結果をみると、腐食電位は実施例1、2が−1.074V(vs.SCE)であり、比較例2が−1.083V(vs.SCE)であった。わずかながら実施例1、2の方が腐食電位は貴であるが、さほど大きな差はない。しかし、腐食電流密度についてみると、実施例1、2で8.2×10−9A/cm、3.2×10−10A/cmであるのに対し、比較例2は、5.5×10−6A/cmと実施例は比較例よりも3桁以上低くなっている。よって、実施例1、2は比較例2よりも耐食性が良好であるといえる。この分極曲線の結果から、Mg−Al系層状複水酸化物を一定量以上含有する皮膜は、Mg−Al系層状複水酸化物が少ない或いは全くない皮膜に対して、初期における耐食性は大きな差はないものの、環境中の腐食物質(アニオン)による浸食が開始したときにおいて大きな差が生じると考えられる。この差は、好適量含まれるMg−Al系層状複水酸化物が腐食物質を取り込んでその浸食を抑制することにより生じるものと推定される。 Then, looking at the results of the corrosion resistance evaluation based on the polarization curve, the corrosion potentials of Examples 1 and 2 were -1.074 V (vs. SCE), and Comparative Example 2 was -1.083 V (vs. SCE). It was. Although the corrosion potentials of Examples 1 and 2 are slightly higher, the difference is not so large. However, regarding the corrosion current density, it is 8.2 × 10 −9 A / cm 2 and 3.2 × 10 −10 A / cm 2 in Examples 1 and 2 , whereas Comparative Example 2 is 5 5 × 10 −6 A / cm 2 and the example are three orders of magnitude lower than the comparative example. Therefore, it can be said that Examples 1 and 2 have better corrosion resistance than Comparative Example 2. From the results of this polarization curve, the film containing a certain amount or more of Mg—Al-based layered double hydroxide has a large difference in initial corrosion resistance from the film containing little or no Mg—Al-based layered double hydroxide. Although there is no, it is considered that a large difference occurs when erosion by the corrosive substance (anion) in the environment starts. This difference is presumed to be caused by Mg—Al-based layered double hydroxide contained in a suitable amount taking in a corrosive substance and suppressing its erosion.

第3実施形態:この実施形態は、第1実施形態と同様のマグネシウム合金を試験片として、皮膜形成のための処理液として硝酸アルミニウム(Al(NO)溶液を用いて皮膜形成を行い、耐食性評価等を行った。実施例3、4として、処理液の炭酸ナトリウム濃度を2mM、200mMとし、第1実施形態と同様の装置及び条件で皮膜形成の処理を行った。 Third Embodiment : In this embodiment, a magnesium alloy similar to that of the first embodiment is used as a test piece, and a film is formed using an aluminum nitrate (Al (NO 3 ) 3 ) solution as a treatment liquid for film formation. The corrosion resistance was evaluated. In Examples 3 and 4, the sodium carbonate concentration of the treatment liquid was set to 2 mM and 200 mM, and film formation was performed under the same apparatus and conditions as in the first embodiment.

実施例3、4で蒸気養生した試験片について、腐食試験による耐食性評価、膜厚測定、皮膜の密着性評価を行った。これらの評価方法は第1実施形態と同様である。また、皮膜表面のX線回折分析を行った。この結果を表4、図5に示す。   The test pieces steam-cured in Examples 3 and 4 were subjected to corrosion resistance evaluation, film thickness measurement, and film adhesion evaluation by a corrosion test. These evaluation methods are the same as those in the first embodiment. Further, X-ray diffraction analysis of the film surface was performed. The results are shown in Table 4 and FIG.

Figure 2014125639
Figure 2014125639

表4から、処理液としてアルミニウム塩の溶液を適用しても耐食性・密着性が良好な皮膜が形成されることがわかる。また、図5からこの実施形態でもAl−Mg系層状複水酸化物(のピークが観察され、水酸化マグネシウム(101)面のピーク強度(X)とMg−Al系層状複水酸化物(003)面のピーク強度(Y)との比(Y/X)も十分な値であった。   From Table 4, it can be seen that even when an aluminum salt solution is applied as the treatment liquid, a film having good corrosion resistance and adhesion is formed. In addition, from FIG. 5, the peak of Al—Mg-based layered double hydroxide (also observed in this embodiment is observed, the peak intensity (X) of the magnesium hydroxide (101) plane and the Mg—Al-based layered double hydroxide (003). The ratio (Y / X) to the peak intensity (Y) of the surface) was also a sufficient value.

以上説明したように、本発明に係るマグネシウム系材料は、従来の各種の表面処理がなされたマグネシウム系材料に対して優れた耐食性を有する。本発明に係る表面処理法は、比較的簡易でありながら、マグネシウム系材料基材にMg−Al系層状複水酸化物を含む皮膜を効率的に形成することができる。この表面処理方法は、形状・寸法を限定することなく施工可能であり、大型の部材に対しても低コストでその耐食性を向上させることができる。
As described above, the magnesium-based material according to the present invention has excellent corrosion resistance with respect to conventional magnesium-based materials subjected to various surface treatments. Although the surface treatment method according to the present invention is relatively simple, a film containing an Mg—Al-based layered double hydroxide can be efficiently formed on a magnesium-based material substrate. This surface treatment method can be applied without limiting the shape and dimensions, and can improve the corrosion resistance of a large member at low cost.

Claims (7)

マグネシウム又はマグネシウム合金からなる基材と、前記基材表面上に形成された皮膜とからなるマグネシウム系材料において、
前記皮膜は、水酸化マグネシウム(Mg(OH))と、次式で示されるMg−Al系層状複水酸化物とからなり、
Figure 2014125639
(式中、陰イオンであるAn−は、炭酸イオン(CO 2−)、硝酸イオン(NO )、フッ素イオン(F)の少なくともいずれかである)
皮膜表面についてなされるX線回折の回折ピークについて、前記水酸化マグネシウムの(101)面のピーク強度(X)と、前記Mg−Al系層状複水酸化物の(003)面のピーク強度(Y)との比(Y/X)が、0.05〜0.3であることを特徴とするマグネシウム系材料。
In a magnesium-based material composed of a base material made of magnesium or a magnesium alloy and a film formed on the surface of the base material,
The film is composed of magnesium hydroxide (Mg (OH) 2 ) and Mg—Al-based layered double hydroxide represented by the following formula:
Figure 2014125639
(Wherein is A n- is an anion, carbonate ions (CO 3 2-), nitrate ion (NO 3 -), fluoride ion (F - at least either of))
Regarding the diffraction peak of X-ray diffraction performed on the film surface, the peak intensity (X) of the (101) plane of the magnesium hydroxide and the peak intensity (Y) of the (003) plane of the Mg—Al-based layered double hydroxide And a ratio (Y / X) of 0.05 to 0.3.
皮膜は、厚さ10〜100μmである請求項1記載のマグネシウム系材料。   The magnesium-based material according to claim 1, wherein the film has a thickness of 10 to 100 μm. 基材はマグネシウム合金からなり、少なくとも1質量%以上のアルミニウムを含むマグネシウム合金である請求項1又は請求項2記載のマグネシウム系材料。   The magnesium-based material according to claim 1 or 2, wherein the base material is made of a magnesium alloy and is a magnesium alloy containing at least 1% by mass of aluminum. 請求項1〜請求項3のいずれかに記載のマグネシウム系材料の製造方法であって、
マグネシウム又はマグネシウム合金からなる基材を、温度150〜170℃、圧力0.4〜0.9MPaの処理液蒸気に接触させて皮膜を形成する工程を含み、
前記処理液は、炭酸塩、硝酸塩、硫酸塩、フッ化物塩の少なくともいずれかを1mM〜1Mの濃度で含む水溶液であるマグネシウム系材料の製造方法。
A method for producing a magnesium-based material according to any one of claims 1 to 3,
Including a step of contacting a base material made of magnesium or a magnesium alloy with a treatment liquid vapor at a temperature of 150 to 170 ° C. and a pressure of 0.4 to 0.9 MPa to form a film,
The method for producing a magnesium-based material, wherein the treatment liquid is an aqueous solution containing at least one of carbonate, nitrate, sulfate, and fluoride salt at a concentration of 1 mM to 1M.
処理液は、アルミニウムの炭酸塩、硝酸塩、硫酸塩、フッ化物塩の少なくともいずれかを含む水溶液である請求項4記載のマグネシウム系材料の製造方法。   The method for producing a magnesium-based material according to claim 4, wherein the treatment liquid is an aqueous solution containing at least one of aluminum carbonate, nitrate, sulfate, and fluoride. マグネシウム又はマグネシウム合金からなるマグネシウム系材料の表面上に耐食性を有する皮膜を形成する表面処理方法において、
前記マグネシウム系材料を温度150〜170℃、圧力0.4〜0.9MPaの処理液蒸気に接触させることで前記皮膜を形成する工程を含み、
前記処理液は、炭酸塩、硝酸塩、硫酸塩、フッ化物塩の少なくともいずれかをmM〜1Mの濃度で含む水溶液であるマグネシウム系材料の表面処理方法。
In a surface treatment method for forming a corrosion-resistant film on the surface of a magnesium-based material made of magnesium or a magnesium alloy,
Including the step of forming the film by bringing the magnesium-based material into contact with a treatment liquid vapor at a temperature of 150 to 170 ° C. and a pressure of 0.4 to 0.9 MPa,
The surface treatment method for a magnesium-based material, wherein the treatment liquid is an aqueous solution containing at least one of carbonate, nitrate, sulfate, and fluoride salt at a concentration of mM to 1M.
処理液は、アルミニウムの炭酸塩、硝酸塩、硫酸塩、フッ化物塩の少なくともいずれかを含む水溶液である請求項6記載のマグネシウム系材料の表面処理方法。
The surface treatment method for a magnesium-based material according to claim 6, wherein the treatment liquid is an aqueous solution containing at least one of aluminum carbonate, nitrate, sulfate, and fluoride salt.
JP2012280479A 2012-12-25 2012-12-25 High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material Active JP6115912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012280479A JP6115912B2 (en) 2012-12-25 2012-12-25 High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280479A JP6115912B2 (en) 2012-12-25 2012-12-25 High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material

Publications (2)

Publication Number Publication Date
JP2014125639A true JP2014125639A (en) 2014-07-07
JP6115912B2 JP6115912B2 (en) 2017-04-19

Family

ID=51405394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280479A Active JP6115912B2 (en) 2012-12-25 2012-12-25 High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material

Country Status (1)

Country Link
JP (1) JP6115912B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030860A (en) * 2014-07-30 2016-03-07 学校法人 芝浦工業大学 Magnesium member comprising film with excellent conductivity and corrosion resistance, and method for producing the same
WO2017135363A1 (en) * 2016-02-05 2017-08-10 学校法人 芝浦工業大学 Aluminum alloy material having high strength and high corrosion resistance, method for manufacturing same, and method for surface treatment of aluminum alloy material
JP2017172013A (en) * 2016-03-24 2017-09-28 富士通株式会社 Component, production method of component, and surface treatment method
CN107670667A (en) * 2017-10-17 2018-02-09 华南理工大学 It is a kind of to be used to analyse nanoporous Ni Fe bimetallic layered hydroxide electrocatalysis materials of oxygen and its preparation method and application
WO2018062360A1 (en) * 2016-09-28 2018-04-05 国立大学法人愛媛大学 Hybrid material manufacturing method, and hybrid material
WO2019069841A1 (en) * 2017-10-02 2019-04-11 学校法人 芝浦工業大学 Highly corrosion-resistant magnesium alloy material and method for producing same
JP2019085598A (en) * 2017-11-02 2019-06-06 学校法人 芝浦工業大学 Method for manufacturing surface coated magnesium alloy base material, capable of simply achieving high corrosion resistance to magnesium alloy base material, surface coated magnesium alloy base material obtained by its manufacturing method, method for repairing surface coated magnesium alloy base material and method for using surface coated magnesium alloy base material
CN112609175A (en) * 2020-11-30 2021-04-06 黑龙江工程学院 Supercritical CO2Preparation method of magnesium alloy chemical conversion film
JP2021123742A (en) * 2020-02-04 2021-08-30 学校法人 芝浦工業大学 Aluminum material and method for treating surface of magnesium material
CN113549913A (en) * 2021-07-22 2021-10-26 重庆大学 Preparation method and application of ternary MgAlLa-LDHs film layer on surface of magnesium alloy
CN114561635A (en) * 2022-01-20 2022-05-31 佛山科学技术学院 LDHs film on surface of magnesium alloy and in-situ crystallization preparation method thereof
CN115896771A (en) * 2022-10-08 2023-04-04 黑龙江工程学院 Method for preparing nano-worm Mg-Al-LDHs conversion film on surface of magnesium alloy

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193078A (en) * 1997-01-07 1998-07-28 Matsushita Electric Ind Co Ltd Metallic formed parts and manufacture thereof
JP2000064057A (en) * 1998-08-21 2000-02-29 Stc:Kk Surface treatment method of magnesium material or magnesium alloy material
JP2002322567A (en) * 2001-04-24 2002-11-08 Chiyoda Chemical Kk Surface treatment method for casting and cast article
US6569264B1 (en) * 1999-01-07 2003-05-27 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
JP2005054238A (en) * 2003-08-05 2005-03-03 Araco Corp Method for surface treatment of magnesium material or magnesium alloy material
JP2006028539A (en) * 2004-07-12 2006-02-02 Denso Corp Surface treatment method for magnesium base material, and method for manufacturing magnesium shaped article
JP2010007147A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Magnesium alloy material, and surface treatment method for magnesium alloy
JP2011012318A (en) * 2009-07-03 2011-01-20 Nissan Motor Co Ltd Magnesium alloy member
WO2011021571A1 (en) * 2009-08-20 2011-02-24 独立行政法人産業技術総合研究所 Method for surface-treating base of magnesium or alloy thereof, and nanostructures
JP2011093784A (en) * 2009-09-30 2011-05-12 National Institute Of Advanced Industrial Science & Technology Silica film, method of forming the same, silica film attached material and production method thereof
JP2012082451A (en) * 2010-10-07 2012-04-26 National Institute Of Advanced Industrial Science & Technology Method for treating surface of magnesium alloy member
JP2012087395A (en) * 2010-10-22 2012-05-10 National Institute Of Advanced Industrial Science & Technology Water-repellent magnesium or magnesium alloy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193078A (en) * 1997-01-07 1998-07-28 Matsushita Electric Ind Co Ltd Metallic formed parts and manufacture thereof
JP2000064057A (en) * 1998-08-21 2000-02-29 Stc:Kk Surface treatment method of magnesium material or magnesium alloy material
US6569264B1 (en) * 1999-01-07 2003-05-27 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
JP2002322567A (en) * 2001-04-24 2002-11-08 Chiyoda Chemical Kk Surface treatment method for casting and cast article
JP2005054238A (en) * 2003-08-05 2005-03-03 Araco Corp Method for surface treatment of magnesium material or magnesium alloy material
JP2006028539A (en) * 2004-07-12 2006-02-02 Denso Corp Surface treatment method for magnesium base material, and method for manufacturing magnesium shaped article
JP2010007147A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Magnesium alloy material, and surface treatment method for magnesium alloy
JP2011012318A (en) * 2009-07-03 2011-01-20 Nissan Motor Co Ltd Magnesium alloy member
WO2011021571A1 (en) * 2009-08-20 2011-02-24 独立行政法人産業技術総合研究所 Method for surface-treating base of magnesium or alloy thereof, and nanostructures
JP2011093784A (en) * 2009-09-30 2011-05-12 National Institute Of Advanced Industrial Science & Technology Silica film, method of forming the same, silica film attached material and production method thereof
JP2012082451A (en) * 2010-10-07 2012-04-26 National Institute Of Advanced Industrial Science & Technology Method for treating surface of magnesium alloy member
JP2012087395A (en) * 2010-10-22 2012-05-10 National Institute Of Advanced Industrial Science & Technology Water-repellent magnesium or magnesium alloy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030860A (en) * 2014-07-30 2016-03-07 学校法人 芝浦工業大学 Magnesium member comprising film with excellent conductivity and corrosion resistance, and method for producing the same
WO2017135363A1 (en) * 2016-02-05 2017-08-10 学校法人 芝浦工業大学 Aluminum alloy material having high strength and high corrosion resistance, method for manufacturing same, and method for surface treatment of aluminum alloy material
JPWO2017135363A1 (en) * 2016-02-05 2018-11-29 学校法人 芝浦工業大学 Aluminum alloy material having high strength and high corrosion resistance, method for producing the same, and surface treatment method for aluminum alloy material
JP2017172013A (en) * 2016-03-24 2017-09-28 富士通株式会社 Component, production method of component, and surface treatment method
JPWO2018062360A1 (en) * 2016-09-28 2019-08-29 国立大学法人愛媛大学 Method for producing hybrid material and hybrid material
WO2018062360A1 (en) * 2016-09-28 2018-04-05 国立大学法人愛媛大学 Hybrid material manufacturing method, and hybrid material
JPWO2019069841A1 (en) * 2017-10-02 2020-11-19 学校法人 芝浦工業大学 Highly corrosion-resistant magnesium alloy material and its manufacturing method
JP7148992B2 (en) 2017-10-02 2022-10-06 学校法人 芝浦工業大学 Highly corrosion-resistant magnesium alloy material and its manufacturing method
WO2019069841A1 (en) * 2017-10-02 2019-04-11 学校法人 芝浦工業大学 Highly corrosion-resistant magnesium alloy material and method for producing same
CN107670667A (en) * 2017-10-17 2018-02-09 华南理工大学 It is a kind of to be used to analyse nanoporous Ni Fe bimetallic layered hydroxide electrocatalysis materials of oxygen and its preparation method and application
CN107670667B (en) * 2017-10-17 2020-01-14 华南理工大学 Nano-porous Ni-Fe bimetal layered hydroxide electrocatalytic material for oxygen evolution and preparation method and application thereof
JP2019085598A (en) * 2017-11-02 2019-06-06 学校法人 芝浦工業大学 Method for manufacturing surface coated magnesium alloy base material, capable of simply achieving high corrosion resistance to magnesium alloy base material, surface coated magnesium alloy base material obtained by its manufacturing method, method for repairing surface coated magnesium alloy base material and method for using surface coated magnesium alloy base material
JP7066128B2 (en) 2017-11-02 2022-05-13 学校法人 芝浦工業大学 A method for manufacturing a surface-coated magnesium alloy base material that can easily realize high corrosion resistance for a magnesium alloy base material, a surface-coated magnesium alloy base material obtained by the manufacturing method, a repair method thereof, and a method for using the same.
JP2021123742A (en) * 2020-02-04 2021-08-30 学校法人 芝浦工業大学 Aluminum material and method for treating surface of magnesium material
CN112609175A (en) * 2020-11-30 2021-04-06 黑龙江工程学院 Supercritical CO2Preparation method of magnesium alloy chemical conversion film
CN112609175B (en) * 2020-11-30 2023-09-15 黑龙江工程学院 Supercritical CO 2 Preparation method of magnesium alloy chemical conversion film
CN113549913A (en) * 2021-07-22 2021-10-26 重庆大学 Preparation method and application of ternary MgAlLa-LDHs film layer on surface of magnesium alloy
CN114561635A (en) * 2022-01-20 2022-05-31 佛山科学技术学院 LDHs film on surface of magnesium alloy and in-situ crystallization preparation method thereof
CN114561635B (en) * 2022-01-20 2023-10-13 佛山科学技术学院 LDHs film on magnesium alloy surface and in-situ crystallization preparation method thereof
CN115896771A (en) * 2022-10-08 2023-04-04 黑龙江工程学院 Method for preparing nano-worm Mg-Al-LDHs conversion film on surface of magnesium alloy

Also Published As

Publication number Publication date
JP6115912B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6115912B2 (en) High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material
Chen et al. Review of corrosion-resistant conversion coatings for magnesium and its alloys
Pommiers et al. Alternative conversion coatings to chromate for the protection of magnesium alloys
Chen et al. Effect of [Ca2+] and [PO43-] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D
Zhong et al. Self-repairing vanadium–zirconium composite conversion coating for aluminum alloys
Krishna et al. Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys
Wang et al. Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance
Xie et al. Studies of several pickling and activation processes for electroless Ni-P plating on AZ31 magnesium alloy
Whelan et al. Corrosion inhibitors for anodised aluminium
Ma et al. Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt% Li–1 wt% Al–0.1 wt% Ce alloy
Guo et al. Characterization of highly corrosion-resistant nanocrystalline Ni coating electrodeposited on Mg–Nd–Zn–Zr alloy from a eutectic-based ionic liquid
Balan et al. Modified silane films for corrosion protection of mild steel
Li et al. Incorporation of LDH nanocontainers into plasma electrolytic oxidation coatings on Mg alloy
JP7148992B2 (en) Highly corrosion-resistant magnesium alloy material and its manufacturing method
Heakal et al. Investigation on the corrosion and hydrogen evolution for AZ91D magnesium alloy in single and anion-containing oxalate solutions
Castano et al. Microstructural evolution of cerium-based coatings on AZ31 magnesium alloys
Treu et al. Characterization of localized surface states of Al 7075-T6 during deposition of cerium-based conversion coatings
Hughes et al. Coatings for corrosion prevention based on rare earths
Cui et al. Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance
Cai et al. Corrosion resistance and mechanisms of Nd (NO3) 3 and polyvinyl alcohol organic-inorganic hybrid material incorporated MAO coatings on AZ31 Mg alloy
Gao et al. Understanding of the corrosion protection by V (IV) conversion coatings from a sol-gel perspective
Howlett et al. Conversion coatings of Mg-alloy AZ91D using trihexyl (tetradecyl) phosphonium bis (trifluoromethanesulfonyl) amide ionic liquid
Zhu et al. Titanium, zirconium and vanadium conversion coatings (TZVCCs) on AZ91D magnesium alloy sheets
JP2015074825A (en) Film formation method by plasma electrolytic oxidation and metal material
JP2014224280A (en) Composition for phosphate chemical-conversion treatment bath and method for forming phosphate chemical-conversion film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6115912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250