JP2014125592A - Sealing resin composition, and semiconductor device - Google Patents

Sealing resin composition, and semiconductor device Download PDF

Info

Publication number
JP2014125592A
JP2014125592A JP2012284736A JP2012284736A JP2014125592A JP 2014125592 A JP2014125592 A JP 2014125592A JP 2012284736 A JP2012284736 A JP 2012284736A JP 2012284736 A JP2012284736 A JP 2012284736A JP 2014125592 A JP2014125592 A JP 2014125592A
Authority
JP
Japan
Prior art keywords
resin composition
mass
less
spherical silica
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012284736A
Other languages
Japanese (ja)
Other versions
JP6351927B2 (en
Inventor
Toshiyuki Yamane
俊幸 山根
Shigeki Takahashi
滋樹 高橋
Takeshi Maeda
剛 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2012284736A priority Critical patent/JP6351927B2/en
Publication of JP2014125592A publication Critical patent/JP2014125592A/en
Application granted granted Critical
Publication of JP6351927B2 publication Critical patent/JP6351927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing resin composition which sufficiently reduces wire displacement in molding, can sufficiently enhance moldability, and is suitable for a compression molding method, and a semiconductor device using the composition.SOLUTION: A sealing resin composition contains (A) a biphenyl type epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) spherical silica, as essential components. The sealing resin composition has a compression degree of 12% or more and 19% or less which is defined by the following expression: compression degree (%)={(tap bulk density-initial bulk density)/tap bulk density}×100. A semiconductor device is constituted by sealing a semiconductor element with compression molding using such a sealing resin composition.

Description

本発明は、半導体素子等の電子部品の封止材料として使用される樹脂組成物、及びこれを用いた半導体装置に関する。   The present invention relates to a resin composition used as a sealing material for electronic components such as semiconductor elements, and a semiconductor device using the same.

トランジスタ、IC、LSI等の半導体装置における封止材料として、エポキシ樹脂をベースとし、これに硬化剤や硬化促進剤、さらにはシリカ粉末等の無機充填剤、着色剤等を配合した樹脂組成物が広く用いられている。   As a sealing material in semiconductor devices such as transistors, ICs, LSIs, etc., there is a resin composition based on an epoxy resin, in which a curing agent, a curing accelerator, an inorganic filler such as silica powder, and a colorant are blended. Widely used.

従来、このような封止材料を用いた封止プロセスは、トランスファ成形が一般的であった。しかし、近時、半導体素子上の封止の厚みが薄かったり、あるいはボンディングワイヤが細線かつ長い場合に有用な方法として、圧縮成形法が注目されてきている。   Conventionally, transfer molding is generally used as a sealing process using such a sealing material. However, recently, compression molding has been attracting attention as a useful method when the sealing thickness on the semiconductor element is thin or the bonding wire is thin and long.

すなわち、近年、電子部品のプリント配線板への高密度実装化に伴い、半導体装置はピン挿入型のパッケージから表面実装型のパッケージにその主流が移ってきており、さらに、表面実装型パッケージも薄型化・小型化が進んでいる。薄型化・小型化された表面実装型パッケージでは、半導体素子のパッケージに対する占有体積も大きくなり、半導体素子を覆う被覆の肉厚は薄くなる。また、半導体素子の多機能化、大容量化に伴い、チップ面積の増大、多ピン化が進み、さらには電極パッド数の増加によって、パッドピッチ、パッドサイズの縮小化、いわゆる狭パッドピッチ化も進んでいる。   In other words, with the recent trend toward high-density mounting of electronic components on printed wiring boards, the mainstream of semiconductor devices has shifted from pin insertion type packages to surface mounting type packages, and surface mounting type packages have also become thinner. Downsizing and downsizing. In the surface-mounted package that is reduced in thickness and size, the occupied volume of the semiconductor element with respect to the package is increased, and the thickness of the coating covering the semiconductor element is reduced. In addition, with the increase in the functionality and capacity of semiconductor elements, the chip area and the number of pins have increased, and further, the increase in the number of electrode pads has led to a reduction in pad pitch and pad size, so-called narrow pad pitch. Progressing.

一方、半導体素子を搭載する基板は、半導体素子ほどの電極パッドの狭ピッチ化ができないため、半導体装置から引き出すボンディングワイヤのワイヤ長を長くしたり、ワイヤを細線化したりすることにより多端子化に対応している。しかしながら、ワイヤが細くなると、後の樹脂封止工程でワイヤが樹脂の注入圧力により流されやすくなる。特に、サイドゲート方式のトランスファ成形ではこの傾向が著しい。   On the other hand, since the substrate on which the semiconductor element is mounted cannot be made as narrow as the electrode pads as the semiconductor element, the number of terminals can be increased by increasing the wire length of the bonding wire drawn from the semiconductor device or by making the wire thinner. It corresponds. However, if the wire becomes thin, the wire is likely to be flowed by the injection pressure of the resin in the subsequent resin sealing step. This tendency is particularly remarkable in the side gate type transfer molding.

そこで、トランスファ成形に代わる封止プロセスとして、圧縮成形法が用いられるようになってきている(例えば、特許文献1参照。)。この方法は、被封止物(例えば、半導体素子を実装した基板等)を上型に吸着させる一方、これに対向させるように、下型に粉粒状樹脂(封止材料)を供給し、下型を上昇させながら、被封止物と封止材料を加圧して封止成形するものである。圧縮成形法によれば、溶融した粉粒状樹脂が被封止物の主面と略平行な方向に流動するため、流動量を少なくすることができ、樹脂の流れによる被封止物(例えば、半導体素子を実装した基板におけるワイヤや配線等)の変形・破損を低減させることが期待できる。   Therefore, a compression molding method has been used as a sealing process instead of transfer molding (see, for example, Patent Document 1). In this method, an object to be sealed (for example, a substrate on which a semiconductor element is mounted) is adsorbed to the upper mold, while powder resin (sealing material) is supplied to the lower mold so as to oppose it. While raising the mold, the object to be sealed and the sealing material are pressurized and sealed. According to the compression molding method, since the molten granular resin flows in a direction substantially parallel to the main surface of the object to be sealed, the amount of flow can be reduced, and the object to be sealed by the flow of the resin (for example, It can be expected to reduce deformation and breakage of wires, wirings, and the like on a substrate on which a semiconductor element is mounted.

しかしながら、従来のトランスファ成形に用いる封止材料を圧縮成型法に適用しても、その充填性の低さ等から、上記のような所期の効果を十分に得ることはできなかった。圧縮成形法に適した封止材料としては、例えば、エポキシ樹脂、硬化剤、硬化促進剤、無機充填剤等を含有し、粒径100μm〜3mmの粒子が85質量%以上である粒度分布を有する粉粒状の樹脂組成物(例えば、特許文献2参照。)、圧縮度を6〜11%の範囲内に設定することにより、ホッパ等への付着や架橋現象を防止し、流動性の安定化、計量精度の向上を図ったもの(例えば、特許文献3参照。)、固めかさ密度を0.8g/cm以上、1.1g/cmとすることにより、搬送性や秤量精度等を向上させたもの(例えば、特許文献4参照。)等が提案されている。 However, even if the sealing material used for the conventional transfer molding is applied to the compression molding method, the desired effect as described above cannot be obtained sufficiently due to its low filling property. Examples of the sealing material suitable for the compression molding method include an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and the like, and have a particle size distribution in which particles having a particle size of 100 μm to 3 mm are 85% by mass or more. By setting the powdery resin composition (for example, see Patent Document 2) and the degree of compression within a range of 6 to 11%, adhesion to a hopper or the like and a cross-linking phenomenon are prevented, and fluidity is stabilized. By improving the measurement accuracy (see, for example, Patent Document 3), the bulk density is 0.8 g / cm 3 or more and 1.1 g / cm 3 to improve the transportability and weighing accuracy. (For example, refer to Patent Document 4) and the like have been proposed.

しかしながら、いずれも、封止の厚みが薄く、また、細く、かつ長いボンディングワイヤによって接続された半導体素子を封止する材料としては、特に、ワイヤの変形・破損(ワイヤ流れ)の低減や成形性の改善等の点で十分ではなかった。   However, in any case, the sealing thickness is thin, and the materials for sealing semiconductor elements connected by thin and long bonding wires are particularly reduced in wire deformation / breakage (wire flow) and formability. It was not enough in terms of improvement.

特開2008−279599号公報JP 2008-279599 A 特開2011−153173号公報JP 2011-153173 A 特開2000−232188号公報JP 2000-232188 A 特開2008−303366号公報JP 2008-303366 A

本発明は、上記従来技術の課題を解決するためになされたもので、圧縮成形法に好適で、成形時のワイヤ流れを十分に低減し、かつ成形性を十分に向上させることができる封止用樹脂組成物、及びそのような封止用樹脂組成物を用いて封止された高い信頼性を有する半導体装置を提供することを目的としている。   The present invention has been made to solve the above-described problems of the prior art, and is suitable for a compression molding method, which can sufficiently reduce wire flow during molding and sufficiently improve moldability. An object of the present invention is to provide a highly reliable semiconductor device encapsulated with the resin composition for encapsulating, and such an encapsulating resin composition.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、後述するような、粉粒状の封止用樹脂組成物の圧縮度が、圧縮成形法におけるワイヤ流れの低減や成形性を左右する「樹脂の融け性」の重要な指標であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the degree of compression of the powdery sealing resin composition, as described later, reduces wire flow and moldability in the compression molding method. As a result, the present invention has been completed.

すなわち、本発明の一態様に係る封止用樹脂組成物は、(A)ビフェニル型エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、及び(D)球状シリカを必須成分とする粉粒状の半導体封止用樹脂組成物であって、下記式で定義される圧縮度が12%以上19%以下であることを特徴としている。
圧縮度(%)={(タップかさ密度−初期かさ密度)/タップかさ密度}×100
なお、上記式中、タップかさ密度及び初期かさ密度は、それぞれJIS R1628に準拠して測定される値である。
That is, the sealing resin composition according to one embodiment of the present invention includes (A) a biphenyl type epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) spherical silica as essential components. A powdery resin composition for encapsulating a semiconductor, wherein the degree of compression defined by the following formula is 12% or more and 19% or less.
Compressibility (%) = {(tap bulk density−initial bulk density) / tap bulk density} × 100
In the above formula, the tap bulk density and the initial bulk density are values measured according to JIS R1628, respectively.

また、本発明の他の態様に係る半導体装置は、上記封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなることを特徴としている。   Moreover, the semiconductor device which concerns on the other aspect of this invention is characterized by sealing a semiconductor element by compression molding using the said resin composition for sealing.

本発明によれば、圧縮成形法に好適で、成形時のワイヤ流れを十分に低減し、かつ成形性を十分に向上させることができる封止用樹脂組成物、及びそのような封止用樹脂組成物を用いて封止された信頼性の高い半導体装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, it is suitable for the compression molding method, the wire flow at the time of shaping | molding can fully be reduced, and the resin composition for sealing which can fully improve moldability, and such resin for sealing A highly reliable semiconductor device sealed with the composition can be obtained.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

まず、本発明の封止用樹脂組成物に用いられる各成分について説明する。
本発明に用いられる(A)成分のビフェニル型エポキシ樹脂は、ビフェニル骨格を有するエポキシ樹脂であれば、分子構造、分子量等に制限されることなく一般に電子部品の封止材料に使用されているものを広く用いることができる。なお、本発明におけるビフェニル骨格には、ビフェニル環のうち少なくとも一方の芳香族環水素添加してなるものも含まれる。
ビフェニル型エポキシ樹脂の具体例としては、例えば、4,4’−ビス(2,3−エポキシプロポキシ)ビフェニル、4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニル、エピクロルヒドリンと4,4’−ビフェノール、または4,4’−(3,3’,5,5’−テトラメチル)ビフェノールのようなビフェノール化合物とを反応させて得られるエポキシ樹脂等が挙げられる。これらの中でも、4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニル、4,4’−(3,3’,5,5’−テトラメチル)ビフェニルのグリシジルエーテルが好ましい。ビフェニル型エポキシ樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
First, each component used for the resin composition for sealing of this invention is demonstrated.
As long as the biphenyl type epoxy resin of component (A) used in the present invention is an epoxy resin having a biphenyl skeleton, it is generally used as a sealing material for electronic parts without being limited by molecular structure, molecular weight, etc. Can be widely used. The biphenyl skeleton in the present invention includes those obtained by hydrogenation of at least one aromatic ring of biphenyl rings.
Specific examples of the biphenyl type epoxy resin include, for example, 4,4′-bis (2,3-epoxypropoxy) biphenyl, 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5, Epoxy obtained by reacting 5′-tetramethylbiphenyl, epichlorohydrin and a biphenol compound such as 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol Examples thereof include resins. Among these, 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl, 4,4 ′-(3,3 ′, 5,5′-tetra Methyl) biphenyl glycidyl ether is preferred. A biphenyl type epoxy resin may be used individually by 1 type, and 2 or more types may be mixed and used for it.

ビフェニル型エポキシ樹脂として使用される市販品を例示すると、例えば、三菱化学(株)製のYX−4000(エポキシ当量185、軟化点105℃)、同YX−4000H(エポキシ当量193、軟化点105℃)、日本化薬(株)製のNC−3000(エポキシ当量273、軟化点58℃)、同NC−3000H(エポキシ当量288、軟化点91℃)(以上、いずれも商品名)等が挙げられる。   Examples of commercially available products used as biphenyl type epoxy resins include, for example, YX-4000 (epoxy equivalent 185, softening point 105 ° C.), YX-4000H (epoxy equivalent 193, softening point 105 ° C.) manufactured by Mitsubishi Chemical Corporation. ), NC-3000 (epoxy equivalent 273, softening point 58 ° C.), NC-3000H (epoxy equivalent 288, softening point 91 ° C.) (all are trade names) manufactured by Nippon Kayaku Co., Ltd. .

ビフェニル型エポキシ樹脂の使用により、後述する(D)成分の球状シリカを高い含有量で使用しても組成物の溶融粘度を好的な範囲に維持することができ、耐熱性に優れる封止用樹脂組成物を得ることができる。   By using a biphenyl type epoxy resin, the melt viscosity of the composition can be maintained in a favorable range even when spherical silica of component (D) described later is used in a high content, and for sealing with excellent heat resistance A resin composition can be obtained.

本発明の封止用樹脂組成物には、ビフェニル型エポキシ樹脂以外のエポキシ樹脂の1種以上を本発明の効果を阻害しない範囲で配合することができる。ビフェニル型エポキシ樹脂以外のエポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等の複素環型エポキシ樹脂、スチルベン型二官能エポキシ化合物、ナフタレン型エポキシ樹脂、縮合環芳香族炭化水素変性エポキシ樹脂、脂環型エポキシ樹脂等が挙げられる。   In the sealing resin composition of the present invention, one or more epoxy resins other than the biphenyl type epoxy resin can be blended within a range that does not impair the effects of the present invention. Examples of epoxy resins other than biphenyl type epoxy resins include cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, dicyclopentadiene type epoxy resins, Heterocyclic epoxy resins such as triphenolmethane type epoxy resins and triazine nucleus-containing epoxy resins, stilbene type bifunctional epoxy compounds, naphthalene type epoxy resins, condensed ring aromatic hydrocarbon modified epoxy resins, alicyclic type epoxy resins, etc. It is done.

本発明に用いられる(B)成分のフェノール樹脂硬化剤としては、上記(A)成分のビフェニル型エポキシ樹脂のエポキシ基と反応し得るフェノール性水酸基を分子中に2個以上有するものであれば、特に制限されることなく使用される。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、アラルキル型フェノール樹脂、ナフタレン型フェノール樹脂、シクロペンタジエン型フェノール樹脂、トリフェノールアルカン型フェノール樹脂、多官能型フェノール樹脂等を使用することができる。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。   As the phenol resin curing agent of component (B) used in the present invention, if it has two or more phenolic hydroxyl groups in the molecule that can react with the epoxy group of the biphenyl type epoxy resin of component (A), It is used without particular limitation. Specifically, a phenol novolac resin, a cresol novolac resin, an aralkyl type phenol resin, a naphthalene type phenol resin, a cyclopentadiene type phenol resin, a triphenolalkane type phenol resin, a polyfunctional type phenol resin, or the like can be used. These may be used individually by 1 type, and may mix and use 2 or more types.

(B)成分のフェノール樹脂硬化剤としては、流動性、難燃性の観点から、下記一般式(1)で表されるフェノール樹脂が好ましい。

Figure 2014125592
式(1)中、Rはフェノール性水酸基を有する1価の有機基、Rはフェノール性水酸基を有する2価の有機基、nは1〜5の整数である。
は、下記式(1−1)〜(1−3)で示される基から選ばれることが好ましく、Rは、下記式(1−4)〜(1−6)で示される基から選ばれることが好ましい。原料の入手のしやすさの観点からは、Rは下記式(1−1)で示される基がより好ましく、Rは下記式(1−4)で示される基がより好ましい。
Figure 2014125592
Figure 2014125592
式(1−2)、(1−3)、(1−5)、(1−6)において、Rは、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜4のアルキル基、及びメトキシ基、エトシキ基、プロポキシ基、ブトキシ基等の炭素数1〜4のアルコキシ基から選ばれ、なかでも水素原子、メチル基、メトキシ基が好ましく、水素原子がより好ましい。式(1−3)、及び(1−6)において、複数のRはすべてが同一であっても異なっていてもよい。 (B) As a phenol resin hardening | curing agent of a component, the phenol resin represented by following General formula (1) from a fluidity | liquidity and a flame-resistant viewpoint is preferable.
Figure 2014125592
In formula (1), R 1 is a monovalent organic group having a phenolic hydroxyl group, R 2 is a divalent organic group having a phenolic hydroxyl group, and n is an integer of 1 to 5.
R 1 is preferably selected from the groups represented by the following formulas (1-1) to (1-3), and R 2 is selected from the groups represented by the following formulas (1-4) to (1-6). It is preferable to be selected. From the viewpoint of easy availability of raw materials, R 1 is more preferably a group represented by the following formula (1-1), and R 2 is more preferably a group represented by the following formula (1-4).
Figure 2014125592
Figure 2014125592
In formulas (1-2), (1-3), (1-5), and (1-6), R 3 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, or an isobutyl group. Selected from an alkyl group having 1 to 4 carbon atoms such as, and an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, and among them, a hydrogen atom, a methyl group, and a methoxy group are preferable. A hydrogen atom is more preferable. In the formulas (1-3) and (1-6), all of the plurality of R 3 may be the same or different.

一般式(1)で表されるフェノール樹脂は、例えば、Rが上記式(1−1)、Rが上記式(1−4)で表される基の場合、次式に示すように、酸性触媒の存在下、イミダゾリジリノン、フェノール、及びホルムアルデヒドを反応させることにより合成することができる。

Figure 2014125592
For example, when R 1 is a group represented by the above formula (1-1) and R 2 is a group represented by the above formula (1-4), the phenol resin represented by the general formula (1) is represented by the following formula: It can be synthesized by reacting imidazolidinone, phenol, and formaldehyde in the presence of an acidic catalyst.
Figure 2014125592

一般式(1)で表されるフェノール樹脂として市販品を使用することもできる。市販品としては、例えば、昭和電工(株)製のTAM−005(商品名)等が挙げられる。   A commercial item can also be used as a phenol resin represented by General formula (1). As a commercial item, Showa Denko Co., Ltd. product TAM-005 (brand name) etc. are mentioned, for example.

この(B)成分のフェノール樹脂硬化剤の配合量は、上記(A)成分のエポキシ樹脂が有するエポキシ基数(a)に対する(B)成分のフェノール樹脂硬化剤が有するフェノール性水酸基数(b)の比(b)/(a)が0.5以上1.6以下となる範囲が好ましく、0.6以上1.4以下となる範囲がより好ましい。比(b)/(a)が0.5以上であれば、硬化物のガラス転移点が良好となり、一方、1.6以下であれば、反応性が良好になるとともに、十分な架橋密度を有することができ、耐熱性に優れ、かつ高強度の硬化物を得ることができる。   The blending amount of the (B) component phenolic resin curing agent is the number of phenolic hydroxyl groups (b) of the (B) component phenolic resin curing agent with respect to the epoxy group number (a) of the (A) component epoxy resin. The range in which the ratio (b) / (a) is from 0.5 to 1.6 is preferred, and the range from 0.6 to 1.4 is more preferred. When the ratio (b) / (a) is 0.5 or more, the glass transition point of the cured product is good. On the other hand, when the ratio is 1.6 or less, the reactivity is good and sufficient crosslinking density is obtained. Therefore, a cured product having excellent heat resistance and high strength can be obtained.

本発明に用いられる(C)成分の硬化促進剤としては、イミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−ウンデシルイミダゾール、1,2−ジメチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2−フェニル−4−ヒドロキシメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニル−4,5−ジ(シアノエトキシ)メチルイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、1−ベンジル−2−フェニルイミダゾール塩酸塩、1−ベンジル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2′−メチルイミダゾリル−(1′)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2′−ウンデシルイミダゾリル−(1′)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2′−エチル−4′−メチルイミダゾリル−(1′)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2′−メチルイミダゾリル−(1′)]−エチル−s−トリアジン、2−フェニルイミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニルイミダゾリン等のイミダゾール類;1,8−ジアザビシクロ[5,4,0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4,3,0]ノネン、5,6−ジブチルアミノ−1,8−ジアザビシクロ[5,4,0]ウンデセン−7等のジアザビシクロ化合物及びこれらの塩;トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン、トリ(p‐メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2‐ビス(ジフェニルホスフィノ)エタン等の有機ホスフィン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリフェニルホスフィントリフェニルボラン等のテトラ‐またはトリフェニルボロン塩等が挙げられる。これらの中でも、流動性及び成形性が良好であるという観点から、イミダゾール類が好ましい。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。   Examples of the curing accelerator for the component (C) used in the present invention include imidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-undecylimidazole, and 1,2-dimethyl. Imidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2 -Methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2 − Phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2- Undecylimidazolium trimellitate, 1-cyanoethyl-2-phenyl-4,5-di (cyanoethoxy) methylimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 1-benzyl-2-phenyl Imidazole hydrochloride, 1-benzyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino- 6- [2'-Undecylimidazolyl- (1 ')] Ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'- Imidazoles such as methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenylimidazoline; 1,8-diazabicyclo [5, Diazabicyclo such as 4,0] undecene-7 (DBU), 1,5-diazabicyclo [4,3,0] nonene, 5,6-dibutylamino-1,8-diazabicyclo [5,4,0] undecene-7 Compounds and salts thereof; triethylamine, triethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, Tertiary amines such as tanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; trimethylphosphine, triethylphosphine, tributylphosphine, diphenylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) ) Organic phosphine compounds such as phosphine, methyldiphenylphosphine, dibutylphenylphosphine, tricyclohexylphosphine, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane; tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetra- or triphenylboron salts such as tetraphenylborate and triphenylphosphine triphenylborane. Among these, imidazoles are preferable from the viewpoint of good fluidity and moldability. These may be used individually by 1 type, and may mix and use 2 or more types.

この(C)成分の硬化促進剤の配合量は、(A)成分のビフェニル型エポキシ樹脂と(B)成分のフェノール樹脂硬化剤の合計量100質量部に対して、通常、0.5質量部以上5.0質量部以下、好ましくは1.5質量部以上4.0質量部以下、より好ましくは2.5質量部以上3.5質量部以下である。配合量が0.5質量部未満では、硬化性の促進にあまり効果がなく、逆に5.0質量部を超えると、組成物の流動性、成形性等が低下する。   The blending amount of the curing accelerator of component (C) is usually 0.5 parts by mass with respect to 100 parts by mass of the total amount of biphenyl type epoxy resin of component (A) and phenolic resin curing agent of component (B). The amount is 5.0 parts by mass or less, preferably 1.5 parts by mass or more and 4.0 parts by mass or less, more preferably 2.5 parts by mass or more and 3.5 parts by mass or less. If the blending amount is less than 0.5 parts by mass, the curability is not very effective. On the other hand, if it exceeds 5.0 parts by mass, the fluidity and moldability of the composition are lowered.

本発明に用いられる(D)成分の球状シリカは、全体として、平均粒径が10μm以上30μm以下であることが好ましく、12μm以上25μm以下であることがより好ましい。平均粒径が10μm未満では、樹脂組成物の流動性が低下し、成形性が損なわれるおそれがある。一方、平均粒径が30μmを超えると、発泡するおそれがある。なお、球状シリカの平均粒径は、例えば、レーザー回折式粒度分布測定装置により求めることができ、平均粒径は、同装置で測定された粒度分布において積算重量が50%になる粒径(d50)である。   The spherical silica as the component (D) used in the present invention preferably has an average particle size of 10 μm or more and 30 μm or less as a whole, and more preferably 12 μm or more and 25 μm or less. When the average particle size is less than 10 μm, the fluidity of the resin composition is lowered and the moldability may be impaired. On the other hand, if the average particle size exceeds 30 μm, there is a risk of foaming. The average particle size of the spherical silica can be determined by, for example, a laser diffraction type particle size distribution measuring device, and the average particle size is a particle size (d50 with an integrated weight of 50% in the particle size distribution measured with the same device. ).

また、(D)成分の球状シリカは、(D1)粒径5μm未満の球状シリカを15質量%以上30質量%以下、さらに好ましくは15質量%以上25質量%以下、(D2)粒径5μm以上50μm未満の球状シリカを50質量%以上80質量%以下、(D3)粒径50μm以上の球状シリカを5質量%以上20質量%以下含有することが好ましい。さらに、(D1)粒径5μm未満の球状シリカと、(D2)粒径5μm以上50μm未満の球状シリカの比(D1)/(D2)が、0.15以上0.50以下、さらに好ましくは0.15以上0.45以下の範囲であることが好ましい。   Further, the spherical silica of component (D) is (D1) spherical silica having a particle size of less than 5 μm, 15% by mass to 30% by mass, more preferably 15% by mass to 25% by mass, and (D2) particle size of 5 μm or more. It is preferable that spherical silica having a particle size of less than 50 μm is contained in an amount of 50% by mass to 80% by mass and (D3) spherical silica having a particle size of 50 μm or more is contained in an amount of 5% by mass to 20% by mass. Furthermore, the ratio (D1) / (D2) of (D1) spherical silica having a particle size of less than 5 μm and (D2) spherical silica having a particle size of 5 μm or more and less than 50 μm is 0.15 or more and 0.50 or less, more preferably 0 It is preferably in the range of not less than 15 and not more than 0.45.

(D)成分の球状シリカが上記要件を満たす粒度分布を有すると、樹脂組成物は良好な融解性を示し、このような封止用樹脂組成物を用いることで、ワイヤ流れや樹脂漏れ等の不具合の発生のない半導体装置を得ることができる。
粒径5μm未満の球状シリカ(D1)の含有量が15質量%未満で、かつ粒径50μm以上の球状シリカ(D3)の含有量が20質量%を超えるか、あるいは、粒径5μm未満の球状シリカ(D1)と、粒径5μm以上50μm未満の球状シリカ(D2)の比(D1)/(D2)が0.50を超えると、樹脂組成物の融解性が高くなって、下型のキャビティ内に供給する際や、減圧下において、加熱溶融した樹脂組成物が飛散する、いわゆる「樹脂漏れ」が発生しやすくなるおそれがある。
また、粒径5μm未満の球状シリカ(D1)の含有量が30質量%を超え、かつ粒径50μm以上の球状シリカ(D3)の含有量が50質量%未満であるか、あるいは、粒径5μm未満の球状シリカ(D1)と、粒径5μm以上50μm未満の球状シリカ(D2)の比(D1)/(D2)が0.15未満であると、樹脂組成物の融解性が低くなって、ワイヤ流れ性が不良になるおそれがある。
When the spherical silica of component (D) has a particle size distribution satisfying the above requirements, the resin composition exhibits good melting properties, and by using such a sealing resin composition, wire flow, resin leakage, etc. A semiconductor device free from defects can be obtained.
The content of spherical silica (D1) having a particle size of less than 5 μm is less than 15% by mass and the content of spherical silica (D3) having a particle size of 50 μm or more exceeds 20% by mass, or spherical particles having a particle size of less than 5 μm When the ratio (D1) / (D2) of the silica (D1) and the spherical silica (D2) having a particle size of 5 μm or more and less than 50 μm exceeds 0.50, the meltability of the resin composition increases, and the lower mold cavity There is a possibility that a so-called “resin leakage” is likely to occur when the heated and melted resin composition is scattered when being supplied inside or under reduced pressure.
Further, the content of spherical silica (D1) having a particle size of less than 5 μm exceeds 30% by mass and the content of spherical silica (D3) having a particle size of 50 μm or more is less than 50% by mass, or the particle size is 5 μm. When the ratio (D1) / (D2) of the spherical silica (D1) less than 5 μm and the spherical silica (D2) having a particle size of 5 μm or more and less than 50 μm is less than 0.15, the resin composition has low melting property, There is a possibility that the wire flowability becomes poor.

(D)成分の球状シリカの配合量は、特に限定されるものではないが、組成物の全量に対して80質量%以上95質量%以下の範囲が好ましく、85質量%以上93質量%以下の範囲がより好ましい。80質量%未満では、線膨張係数が増大して、成形品の寸法精度、耐湿性、機械的強度等が低下し、また、95質量%を超えると、溶融粘度が大きくなって流動性が低下するとともに、成形性が低下するおそれがある。   (D) Although the compounding quantity of the spherical silica of a component is not specifically limited, The range of 80 mass% or more and 95 mass% or less is preferable with respect to the whole quantity of a composition, 85 mass% or more and 93 mass% or less. A range is more preferred. If it is less than 80% by mass, the coefficient of linear expansion increases and the dimensional accuracy, moisture resistance, mechanical strength, etc. of the molded product decreases. If it exceeds 95% by mass, the melt viscosity increases and the fluidity decreases. In addition, the moldability may be reduced.

本発明の封止用樹脂組成物には、以上の各成分の他、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される、シリカ以外の無機充填剤(例えば、アルミナ、窒化ケイ素、窒化アルミ、窒化ホウ素等);カップリング剤;合成ワックス、天然ワックス、高級脂肪酸、高級脂肪酸等の金属塩等の離型剤;カーボンブラック、コバルトブルー等の着色剤;シリコーンオイル、シリコーンゴム等の低応力付与剤、ハイドロタルサイト類、イオン捕捉剤等を配合することができる。   In the sealing resin composition of the present invention, in addition to the above components, inorganic fillers other than silica (for example, alumina) generally blended in this type of composition within a range not inhibiting the effects of the present invention. Coupling agents; mold release agents such as synthetic wax, natural wax, higher fatty acid, higher fatty acid and other metal salts; colorants such as carbon black and cobalt blue; silicone oil, Low stress imparting agents such as silicone rubber, hydrotalcites, ion scavengers and the like can be blended.

カップリング剤としては、エポキシシラン系、アミノシラン系、ウレイドシラン系、ビニルシラン系、アルキルシラン系、有機チタネート系、アルミニウムアルコレート系等のカップリング剤が使用される。成形性、難燃性、硬化性等の観点からは、なかでもアミノシラン系カップリング剤が好ましく、特に、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン等が好ましい。   As the coupling agent, an epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, aluminum alcoholate, or the like is used. From the viewpoints of moldability, flame retardancy, curability, etc., aminosilane coupling agents are preferred, and in particular, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane. Γ-aminopropylmethyldiethoxysilane and the like are preferable.

カップリング剤の配合量は、組成物全体の0.01質量%以上3質量%以下となる範囲が好ましく、0.1質量%以上1質量%以下となる範囲がより好ましい。組成物全体の0.01質量%未満では、成形性の向上にあまり効果がなく、逆に3質量%を超えると、成形時に発泡して成形品にボイドや表面膨れ等が発生するおそれがある。   The amount of the coupling agent to be blended is preferably in the range of 0.01% by mass to 3% by mass and more preferably in the range of 0.1% by mass to 1% by mass of the entire composition. If it is less than 0.01% by mass of the whole composition, it is not very effective for improving moldability. Conversely, if it exceeds 3% by mass, foaming may occur during molding and voids or surface swelling may occur in the molded product. .

本発明の封止用樹脂組成物を調製するにあたっては、(A)ビフェニル型エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)球状シリカ、及び前述した必要に応じて配合される各種成分をミキサー等によって十分に混合(ドライブレンド)した後、熱ロールやニーダ等の混練装置により溶融混練し、冷却後、適当な大きさに粉砕する。粉砕方法は、特に制限されず、一般的な粉砕機、例えば、スピードミル、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミル等を用いることができる。好ましくは、スピードミルである。粉砕物は、その後、篩い分級やエアー分級等によって所定の粒度分布を持つ粒子集合体に調整することができる。   In preparing the sealing resin composition of the present invention, (A) a biphenyl type epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, (D) spherical silica, and the above-described necessity. The various components to be blended are sufficiently mixed (dry blended) with a mixer or the like, then melt-kneaded with a kneading apparatus such as a hot roll or a kneader, cooled, and pulverized to an appropriate size. The pulverization method is not particularly limited, and general pulverizers such as a speed mill, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, and a grinder mill can be used. A speed mill is preferable. The pulverized product can then be adjusted to a particle aggregate having a predetermined particle size distribution by sieving classification, air classification or the like.

本発明の封止用樹脂組成物は、下記式で定義される圧縮度が12%以上19%以下であり、好ましくは13%以上18%以下である。
圧縮度(%)={(タップかさ密度−初期かさ密度)/タップかさ密度}×100
上記式中、タップかさ密度及び初期かさ密度は、それぞれJIS R1628に準拠して測定される値である。
ここで、樹脂組成物の圧縮度は、樹脂組成物の粒度分布に依存し、Tyler篩による標準篩法で測定される粒度分布において、24メッシュ通過粒子が全体の25質量%未満であると、圧縮度が12%未満となり、成形品の表面に巣が発生するおそれがある。また、24メッシュ通過粒子が50質量%を超えると、圧縮度が19%を超える場合があり、成形時に樹脂漏れが発生しやすくなる。
In the sealing resin composition of the present invention, the degree of compression defined by the following formula is 12% or more and 19% or less, preferably 13% or more and 18% or less.
Compressibility (%) = {(tap bulk density−initial bulk density) / tap bulk density} × 100
In the above formula, the tap bulk density and the initial bulk density are values measured according to JIS R1628, respectively.
Here, the degree of compression of the resin composition depends on the particle size distribution of the resin composition, and in the particle size distribution measured by a standard sieving method using a Tyler sieve, 24 mesh passing particles are less than 25% by mass of the total, The degree of compression becomes less than 12%, and there is a possibility that a nest is generated on the surface of the molded product. On the other hand, if the 24 mesh particles exceed 50% by mass, the degree of compression may exceed 19%, and resin leakage tends to occur during molding.

本発明の封止用樹脂組成物は、さらに、以下の条件(i)〜(iii)の少なくとも1つを満足していることが、圧縮成形装置の安定的な作動や樹脂の成形性の観点から好ましい。条件(i)〜(iii)の2つ以上を満足していることがより好ましく、すべてを満足していることがより一層好ましい。
(i)Tyler篩による標準篩法で得られる粒度分布において、0.2mm超0.6mm以下の粒径範囲、及び0.6mm超1.4mm以下の粒径範囲に、それぞれ1つのピークを有する(以下、0.2mm超0.6mm以下の粒径範囲にあるピークを「第1のピーク」、0.6mm超1.4mm以下の粒径範囲にあるピークを「第2のピーク」ともいう)。
(ii)Tyler篩による標準篩法で得られる粒度分布において、第1のピークを構成する粒子が全体の5質量%以上30質量%以下、第2のピークを構成する粒子が全体の20質量%以下である。第1のピークを構成する粒子が全体の10質量%以上20質量%以下、第2のピークを構成する粒子が全体の5質量%以上20質量%以下であることがより好ましい。
(iii)Tyler篩による標準篩法で得られる粒度分布において、粒径0.2mm以下の成分が全体の25質量%未満、粒径1.4mm超の成分が全体の25質量%未満である。粒径0.2mm以下の成分が全体の25質量%以上であると、圧縮成形用金型に供給する際に粒子が舞い上がりやすく、飛散した粒子による汚染や、計量不良等が生ずることがある。また、粒径1.4mm超の成分が全体の25質量%以上であると、硬化物にボイド等の充填不良部が発生するおそれがある。粒径0.2mm以下の成分が全体の0.1質量%以上20質量%以下、粒径1.4mm超の成分が全体の1.0質量%以上15質量%以下であるとより好ましい。
The sealing resin composition of the present invention further satisfies at least one of the following conditions (i) to (iii) from the viewpoint of stable operation of the compression molding apparatus and resin moldability: To preferred. It is more preferable that two or more of the conditions (i) to (iii) are satisfied, and it is even more preferable that all of the conditions (i) to (iii) are satisfied.
(I) In the particle size distribution obtained by the standard sieving method using a Tyler sieve, each has one peak in the particle size range of more than 0.2 mm and 0.6 mm or less and in the particle size range of more than 0.6 mm and 1.4 mm or less. (Hereinafter, the peak in the particle size range of more than 0.2 mm and 0.6 mm or less is also referred to as “first peak”, and the peak in the particle size range of more than 0.6 mm and 1.4 mm or less is also referred to as “second peak”. ).
(Ii) In the particle size distribution obtained by the standard sieving method using a Tyler sieve, the particles constituting the first peak are 5% by mass or more and 30% by mass or less of the whole, and the particles constituting the second peak are 20% by mass of the whole. It is as follows. More preferably, the particles constituting the first peak are 10% by mass or more and 20% by mass or less of the whole, and the particles constituting the second peak are 5% by mass or more and 20% by mass or less of the whole.
(Iii) In the particle size distribution obtained by the standard sieving method using a Tyler sieve, the component having a particle size of 0.2 mm or less is less than 25% by mass, and the component having a particle size of more than 1.4 mm is less than 25% by mass. When the component having a particle size of 0.2 mm or less is 25% by mass or more of the whole, the particles are likely to rise when being supplied to the compression molding die, which may cause contamination by scattered particles and poor measurement. Moreover, there exists a possibility that defective filling parts, such as a void, may generate | occur | produce in hardened | cured material as a component with a particle size exceeding 1.4 mm is 25 mass% or more of the whole. More preferably, the component having a particle size of 0.2 mm or less is 0.1% by mass or more and 20% by mass or less, and the component having a particle size of 1.4 mm or more is 1.0% by mass or more and 15% by mass or less.

本発明の半導体装置は、上記封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することにより製造することができる。以下、その方法の一例を記載する。
まず、圧縮成型用金型の上型に、半導体素子を実装した基板を供給した後、下型のキャビティ内に上記封止用樹脂組成物を供給する。次に、上型及び下型を所要の型締圧力にて型締めすることにより、下型キャビティーで加熱溶融した封止用樹脂組成物に半導体素子を浸漬する。次に、下型キャビティー内の加熱溶融した封止用樹脂組成物をキャビティ底面部材で押圧し、減圧下で、所要の圧力を加えて圧縮成形する。成形条件は、温度120℃以上200℃以下、圧力2MPa以上20MPa以下とすることが好ましい。
The semiconductor device of this invention can be manufactured by sealing a semiconductor element by compression molding using the said resin composition for sealing. Hereinafter, an example of the method will be described.
First, a substrate on which a semiconductor element is mounted is supplied to an upper mold of a compression molding mold, and then the sealing resin composition is supplied into a cavity of a lower mold. Next, the upper die and the lower die are clamped at a required clamping pressure to immerse the semiconductor element in the sealing resin composition heated and melted in the lower die cavity. Next, the heat-melted sealing resin composition in the lower mold cavity is pressed by the cavity bottom member, and compression molding is performed by applying a required pressure under reduced pressure. The molding conditions are preferably a temperature of 120 ° C. or more and 200 ° C. or less and a pressure of 2 MPa or more and 20 MPa or less.

このようにして得られる半導体装置は、圧縮度を前述した範囲に設定した封止用樹脂組成物により封止されているので、成形時のワイヤ流れ等の発生が抑制され、また、成形性も向上して、高い信頼性を有する半導体装置を得ることができる。
さらに、封止用樹脂組成物として、上記粒度分布を有するものを使用した場合には、封止用樹脂組成物を下型のキャビティーに供給する際の飛散や、減圧下で加熱溶融した樹脂が飛散する、いわゆる「樹脂漏れ」が抑制されるため、より一層高い信頼性を有する半導体装置を得ることができる。
Since the semiconductor device thus obtained is sealed with the sealing resin composition whose compression degree is set in the above-described range, the occurrence of wire flow during molding is suppressed, and the moldability is also good. As a result, a highly reliable semiconductor device can be obtained.
Furthermore, when the resin composition having the above particle size distribution is used as the sealing resin composition, the resin composition that is dispersed when the sealing resin composition is supplied to the lower mold cavity or heat-melted under reduced pressure is used. Since so-called “resin leakage” is suppressed, a semiconductor device with even higher reliability can be obtained.

なお、本発明の半導体装置において封止される半導体素子は、特に限定されるものではなく、例えば、IC、LS、ダイオード、サイリスタ、トランジスタ等が例示されるが、ワイヤ流れが生じやすい、封止後の厚さが0.2mm以上1.5mm以下となるような半導体素子の場合に、本発明は特に有用である。   The semiconductor element to be sealed in the semiconductor device of the present invention is not particularly limited, and examples thereof include IC, LS, diode, thyristor, transistor, etc. The present invention is particularly useful in the case of a semiconductor element having a later thickness of 0.2 mm to 1.5 mm.

次に、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。また、以下の記載において、「部」は「質量部」を示すものとする。さらに、得られた半導体封止用樹脂組成物の圧縮度は、次のような方法で測定したものである。
[圧縮度]
ホソカワミクロン(株)製のパウダーテスターを用い、JIS R1628に準拠して、初期かさ密度(n=10の平均値)及びタップかさ密度(n=10の平均値)を測定し、前述の式(1)より算出した。なお、測定容器として、ステンレス鋼(SUS304)製の容積100ccの有底円筒状の容器を使用した。また、タッピングはタップ高さ20mm、タップ速度60回/分、タップ時間3分間の条件で行った。
Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to these Examples at all. In the following description, “part” means “part by mass”. Furthermore, the compressibility of the obtained resin composition for encapsulating a semiconductor is measured by the following method.
[Compression degree]
Using a powder tester manufactured by Hosokawa Micron Co., Ltd., the initial bulk density (average value of n = 10) and tap bulk density (average value of n = 10) were measured in accordance with JIS R1628. ). In addition, the bottomed cylindrical container made from stainless steel (SUS304) and having a capacity of 100 cc was used as the measurement container. The tapping was performed under the conditions of a tap height of 20 mm, a tap speed of 60 times / minute, and a tap time of 3 minutes.

(実施例1)
ビフェニルエポキシ樹脂として3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニルのエポキシ化物(三菱化学(株)製 商品名 YX−4000HK;エポキシ当量193、加水分解性塩素量450ppm、軟化点105℃)5.2部、フェノール樹脂として一般式(1)中、Rが式(1−1)で表される基、Rが式(1−4)で表される基、nが1〜2である窒素含有フェノール樹脂(昭和電工(株)製 商品名TAM−105;水酸基当量163、軟化点77℃;フェノール樹脂Iと表記)4.0部、硬化促進剤として2−フェニル−4−ヒドロキチメチル−5−メチルイミダゾール(四国化成(株)製 商品名 2P4MHZ;硬化促進剤Iと表記)0.25部、球状シリカ((株)龍森製 商品名 MSR−8030;平均粒径12μm;球状シリカIと表記)85部、同球状シリカ(アドマテックス(株)製 商品名 SO−25R;平均粒径0.5μm;粒状シリカIIと表記)5部、シランカップリング剤の3−フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング(株)製 商品名 Z−6883)0.30部、及び着色剤としてカーボンブラック(三菱化学(株)製 商品名 MA−100)0.25部を常温でミキサーを用いて混合した後、熱ロールを用いて120℃で加熱混練した。冷却後、五橋製作所(株)製のスピードミルを用いて粉砕した後、10種類の篩(9メッシュ、10メッシュ、12メッシュ、20メッシュ、24メッシュ、28メッシュ、48メッシュ、65メッシュ、及び100メッシュの篩)を通過させる量を表1に示すように調整することで、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
Example 1
Epoxy product of 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl as a biphenyl epoxy resin (trade name YX-4000HK, manufactured by Mitsubishi Chemical Corp .; epoxy equivalent 193, hydrolyzable chlorine content 450 ppm , Softening point 105 ° C.) 5.2 parts as a phenol resin, in general formula (1), R 1 is a group represented by formula (1-1), R 2 is a group represented by formula (1-4) , N is 1 to 2, nitrogen-containing phenol resin (trade name TAM-105 manufactured by Showa Denko KK; hydroxyl group equivalent 163, softening point 77 ° C .; expressed as phenol resin I) 4.0 parts, 2 as a curing accelerator -Phenyl-4-hydroxymethyl-5-methylimidazole (trade name 2P4MHZ manufactured by Shikoku Kasei Co., Ltd .; expressed as curing accelerator I), 0.25 parts, spherical silica (trade name MSR-8030 manufactured by Tatsumori Co., Ltd.) ; Uniform particle size 12 μm; Spherical silica I) 85 parts, Spherical silica (trade name SO-25R manufactured by Admatechs Co., Ltd .; average particle size 0.5 μm; Granular silica II) 5 parts, silane coupling agent 3-phenylaminopropyltrimethoxysilane (trade name Z-6883 manufactured by Toray Dow Corning Co., Ltd.) 0.30 part, and carbon black (trade name MA-100 manufactured by Mitsubishi Chemical Co., Ltd.) as a colorant. After mixing 25 parts at room temperature using a mixer, it was heat-kneaded at 120 ° C. using a hot roll. After cooling and pulverizing using a speed mill manufactured by Gohashi Seisakusho, 10 types of sieves (9 mesh, 10 mesh, 12 mesh, 20 mesh, 24 mesh, 28 mesh, 48 mesh, 65 mesh, and A resin composition for semiconductor encapsulation containing 40.9 wt% of 24 mesh passing particles was obtained by adjusting the amount of passing the 100 mesh sieve) as shown in Table 1. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(実施例2)
球状シリカ(MSR−8030)を80部、球状シリカ(SO−25R)を10部用いた以外は実施例1と同様にして、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
(Example 2)
Resin composition for semiconductor encapsulation containing 40.9% by weight of 24 mesh passing particles in the same manner as in Example 1 except that 80 parts of spherical silica (MSR-8030) and 10 parts of spherical silica (SO-25R) were used. I got a thing. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(実施例3)
球状シリカ(MSR−8030)を75部、球状シリカ(SO−25R)を15部用いた以外は実施例1と同様にして、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
(Example 3)
Resin composition for semiconductor encapsulation containing 40.9% by weight of 24 mesh passing particles in the same manner as in Example 1 except that 75 parts of spherical silica (MSR-8030) and 15 parts of spherical silica (SO-25R) were used. I got a thing. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(実施例4)
粒度分布が表1に示す粒度分布になるようにした以外は実施例2と同様にして、24メッシュ通過粒子を27.5重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は12.8%であった。
Example 4
A resin composition for encapsulating a semiconductor containing 27.5% by weight of 24 mesh passing particles was obtained in the same manner as in Example 2 except that the particle size distribution was changed to the particle size distribution shown in Table 1. The compressibility of the obtained resin composition for encapsulating a semiconductor was 12.8%.

(実施例5)
3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニルのエポキシ化物(YX−4000HK)及び窒素含有フェノール樹脂(TAM−105)の配合量をそれぞれ5.3部及び4.1部とし、かつ硬化促進剤としてDBU(硬化促進剤IIと表記)を0.10部用いた以外は実施例1と同様にして、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
(Example 5)
The blending amounts of 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl epoxidized product (YX-4000HK) and nitrogen-containing phenol resin (TAM-105) were 5.3 parts and 4. 1 part, and for semiconductor encapsulation containing 40.9% by weight of 24 mesh passing particles in the same manner as in Example 1 except that 0.10 parts of DBU (indicated as hardening accelerator II) was used as a hardening accelerator. A resin composition was obtained. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(実施例6)
3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニルのエポキシ化物(YX−4000HK)及び2−フェニル−4−ヒドロキチメチル−5−メチルイミダゾール(2P4MHZ)の配合量をそれぞれ6.1部及び0.20部とし、かつフェノール樹脂として多官能型フェノール樹脂(明和化成(株)製 商品名MEH−7500;水酸基当量97、軟化点109.6℃;フェノール樹脂IIと表記)を3.1部用いた以外は実施例2と同様にして、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
(Example 6)
3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl epoxidized product (YX-4000HK) and 2-phenyl-4-hydroxymethyl-5-methylimidazole (2P4MHZ) 6.1 parts and 0.20 parts respectively, and polyfunctional phenol resin as phenol resin (trade name MEH-7500 manufactured by Meiwa Kasei Co., Ltd .; hydroxyl group equivalent 97, softening point 109.6 ° C .; expressed as phenol resin II ) Was used in the same manner as in Example 2 except that 3.1 parts of a resin composition for semiconductor encapsulation containing 24. 9% by weight of 24 mesh particles was obtained. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(実施例7)
球状シリカ(MSR−8030)及び球状シリカ(SO−25R)に代えて、球状シリカ(マイクロン社製 商品名 ST7010−25;平均粒径13.3μm;球状シリカIIIと表記)90部を用いた以外は実施例1と同様にして、24メッシュ通過粒子を40.9重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は16.6%であった。
(Example 7)
Instead of using spherical silica (MSR-8030) and spherical silica (SO-25R), 90 parts of spherical silica (trade name ST7010-25 manufactured by Micron Corporation; average particle size 13.3 μm; expressed as spherical silica III) was used. Obtained a resin composition for encapsulating a semiconductor containing 40.9% by weight of 24 mesh passing particles in the same manner as in Example 1. The compressibility of the obtained resin composition for encapsulating a semiconductor was 16.6%.

(比較例1)
粒度分布が表1に示す粒度分布になるようにした以外は粒度分布が表1に示す粒度分布になるようにした以外は実施例2と同様にして、24メッシュ通過粒子を12.3重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は9.3%であった。
(Comparative Example 1)
Except for changing the particle size distribution to the particle size distribution shown in Table 1, the particle size distribution was changed to the particle size distribution shown in Table 1 and in the same manner as in Example 2, 12.3 wt% A semiconductor sealing resin composition was obtained. The compressibility of the obtained resin composition for encapsulating a semiconductor was 9.3%.

(比較例2)
粒度分布が表1に示す粒度分布になるようにした以外は粒度分布が表1に示す粒度分布になるようにした以外は実施例2と同様にして、24メッシュ通過粒子を12.3重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は10.5%であった。
(Comparative Example 2)
Except for changing the particle size distribution to the particle size distribution shown in Table 1, the particle size distribution was changed to the particle size distribution shown in Table 1 and in the same manner as in Example 2, 12.3 wt% A semiconductor sealing resin composition was obtained. The compressibility of the obtained resin composition for encapsulating a semiconductor was 10.5%.

(比較例3)
粒度分布が表1に示す粒度分布になるようにした以外は粒度分布が表1に示す粒度分布になるようにした以外は実施例2と同様にして、24メッシュ通過粒子を52.3重量%含む半導体封止用樹脂組成物を得た。得られた半導体封止用樹脂組成物の圧縮度は20.0%であった。
(Comparative Example 3)
Except for changing the particle size distribution to the particle size distribution shown in Table 1, the particle size distribution was changed to the particle size distribution shown in Table 1, and in the same manner as in Example 2, the 24-mesh particles passed was 52.3 wt%. A semiconductor sealing resin composition was obtained. The compressibility of the obtained resin composition for encapsulating a semiconductor was 20.0%.

上記各実施例及び各比較例で得られた封止用樹脂組成物について、下記に示す方法で各種特性を評価した。結果を組成等とともに表1に示す。   About the resin composition for sealing obtained in each said Example and each comparative example, various characteristics were evaluated by the method shown below. The results are shown in Table 1 together with the composition and the like.

[成形性(ボイド、外観)]
50mm×50mm×0.54mmのFBGA(Fine pitch Ball Grid Array)を、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0PMa、硬化時間2分間の条件で圧縮成形した後、得られた成形品(FBGA)の表面における「巣」の発生を目視にて観察し、下記の基準により評価した。
○:「巣」の発生なし
△:「巣」がわずかに発生
×:「巣」が多数発生
[樹脂漏れ]
50mm×50mm×0.54mmのFBGAを、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0PMa、硬化時間2分間の条件で圧縮成形し、金型周辺部への樹脂漏れを目視にて観察し、下記の基準により評価した。
○:樹脂漏れなし
△:樹脂漏れがわずかに発生
×:樹脂漏れが多数発生
[ワイヤ流れ率]
50mm×50mm×0.54mmのFBGAを、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0PMa、硬化時間2分間の条件で圧縮成形した後、得られた成形品(FBGA)内部のワイヤをX線観察装置(ポニー工業(株)製)で観察し、最大変形部のワイヤ流れ率(封止前のワイヤの位置と封止後のワイヤの位置との最大距離のワイヤの長さに対する比率(%))を求めた。
[Moldability (void, appearance)]
50 mm × 50 mm × 0.54 mm FBGA (Fine pitch Ball Grid Array) was compression molded using a sealing resin composition under conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 PMa, and a curing time of 2 minutes. Thereafter, the occurrence of “nest” on the surface of the obtained molded product (FBGA) was visually observed and evaluated according to the following criteria.
○: No “nest” occurred △: “Nest” slightly generated ×: Many “nests” occurred [resin leakage]
FBGA of 50 mm × 50 mm × 0.54 mm was compression molded using a sealing resin composition under conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 PMa, and a curing time of 2 minutes. The resin leakage was visually observed and evaluated according to the following criteria.
○: No resin leakage △: Slight resin leakage ×: Many resin leakages [Wire flow rate]
FBGA of 50 mm × 50 mm × 0.54 mm was compression molded using a sealing resin composition under conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 PMa, and a curing time of 2 minutes, and then the obtained molded product (FBGA) The inside wire is observed with an X-ray observation apparatus (Pony Industry Co., Ltd.), and the wire flow rate of the maximum deformed portion (the maximum distance between the position of the wire before sealing and the position of the wire after sealing) Of the wire to the length of the wire (%)).

Figure 2014125592
Figure 2014125592

表1から明らかなように、圧縮度が12%以上19%以下の範囲にある本発明の実施例の封止用樹脂組成物は、成形性、樹脂漏れ及びワイヤ流れ率がいずれも良好であったのに対し、圧縮度が12%未満の比較例1、2では成形性が不良であり、また、圧縮度が19%を超える比較例では樹脂漏れが多数発生した。   As is clear from Table 1, the sealing resin compositions of Examples of the present invention having a degree of compression in the range of 12% to 19% all had good moldability, resin leakage, and wire flow rate. On the other hand, in Comparative Examples 1 and 2 with a compression degree of less than 12%, the moldability was poor, and in the Comparative Example with a compression degree exceeding 19%, many resin leaks occurred.

本発明の封止用樹脂組成物は、最適な圧縮度を有するため、良好な融け性が発現し、成形性に優れるとともに、成形時のワイヤ流れも低減される。したがって、封止の厚みが薄く、また、長く、かつ細いワイヤによって接続された半導体素子の封止材料として有用であり、信頼性の高い樹脂封止型半導体装置を製造することができる。   Since the sealing resin composition of the present invention has an optimal compressibility, it exhibits good meltability and excellent moldability, and the wire flow during molding is reduced. Accordingly, a resin-encapsulated semiconductor device that is thin as a sealing material and is useful as a sealing material for a semiconductor element connected by a long and thin wire and having high reliability can be manufactured.

Claims (6)

(A)ビフェニル型エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、及び(D)球状シリカを必須成分とする粉粒状の封止用樹脂組成物であって、
下記式で定義される圧縮度が12%以上19%以下であることを特徴とする封止用樹脂組成物。
圧縮度(%)={(タップかさ密度−初期かさ密度)/タップかさ密度}×100
(A) a biphenyl type epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) a granular sealing resin composition containing spherical silica as essential components,
A compression resin composition defined by the following formula is 12% or more and 19% or less.
Compressibility (%) = {(tap bulk density−initial bulk density) / tap bulk density} × 100
(D)球状シリカは、(D1)粒径5μm未満の球状シリカを15質量%以上30質量%以下、(D2)粒径5μm以上50μm未満の球状シリカを50質量%以上80質量%以下、(D)粒径50μm以上の球状シリカを5質量%以上20質量%以下含有し、かつ(D1)粒径5μm未満の球状シリカと、(D2)粒径5μm以上50μm未満の球状シリカの比(D1)/(D2)が、0.15以上0.50以下の範囲にあることを特徴とする請求項1記載の封止用樹脂組成物。   (D) Spherical silica is (D1) 15% by mass to 30% by mass of spherical silica having a particle size of less than 5 μm, (D2) 50% by mass to 80% by mass of spherical silica having a particle size of 5 μm to less than 50 μm, ( D) Ratio of spherical silica having a particle diameter of 50 μm or more and 5% by mass or more and 20% by mass or less and (D1) spherical silica having a particle diameter of less than 5 μm and (D2) spherical silica having a particle diameter of 5 μm or more and less than 50 μm (D1 ) / (D2) is in the range of 0.15 or more and 0.50 or less, The sealing resin composition according to claim 1. Tyler篩による標準篩法で測定される粒度分布において、24メッシュ通過粒子が25質量%以上50質量%以下であることを特徴とする請求項1または2記載の封止用樹脂組成物。   The resin composition for sealing according to claim 1 or 2, wherein 24 mesh particles are 25% by mass or more and 50% by mass or less in a particle size distribution measured by a standard sieving method using a Tyler sieve. (B)フェノール樹脂硬化剤は、下記一般式(1)で表されるフェノール樹脂を含むことを特徴とする請求項1乃至3のいずれか1項記載の封止用樹脂組成物。
Figure 2014125592
(式(1)中、Rはフェノール性水酸基を有する1価の有機基、Rはフェノール性水酸基を有する2価の有機基、nは1〜5の整数である)
The resin composition for sealing according to any one of claims 1 to 3, wherein (B) the phenol resin curing agent contains a phenol resin represented by the following general formula (1).
Figure 2014125592
(In formula (1), R 1 is a monovalent organic group having a phenolic hydroxyl group, R 2 is a divalent organic group having a phenolic hydroxyl group, and n is an integer of 1 to 5)
(D)球状シリカの含有量が、組成物全体の80質量%以上95質量%以下であることを特徴とする請求項1乃至4のいずれか1項記載の封止用樹脂組成物。   (D) Content of spherical silica is 80 to 95 mass% of the whole composition, The sealing resin composition of any one of Claims 1 thru | or 4 characterized by the above-mentioned. 請求項1乃至5のいずれか1項記載の封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなることを特徴とする半導体装置。   A semiconductor device comprising a semiconductor element sealed by compression molding using the sealing resin composition according to claim 1.
JP2012284736A 2012-12-27 2012-12-27 Resin composition for sealing and method for manufacturing semiconductor device Active JP6351927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284736A JP6351927B2 (en) 2012-12-27 2012-12-27 Resin composition for sealing and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284736A JP6351927B2 (en) 2012-12-27 2012-12-27 Resin composition for sealing and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2014125592A true JP2014125592A (en) 2014-07-07
JP6351927B2 JP6351927B2 (en) 2018-07-04

Family

ID=51405357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284736A Active JP6351927B2 (en) 2012-12-27 2012-12-27 Resin composition for sealing and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP6351927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424284A (en) * 2018-07-31 2021-02-26 京瓷株式会社 Sheet-like sealing resin composition and semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302506A (en) * 1998-04-16 1999-11-02 Tatsumori:Kk Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000178413A (en) * 1998-12-16 2000-06-27 Tokuyama Corp Spherical silica for semiconductor encapsulant
JP2000232188A (en) * 1999-02-12 2000-08-22 Nitto Denko Corp Granular semiconductor sealing material and semiconductor device using the same
JP2008081562A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2009188142A (en) * 2008-02-06 2009-08-20 Kyocera Chemical Corp Epoxy resin tablet for semiconductor sealing, and manufacturing method thereof
JP2009286843A (en) * 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Epoxy resin composition for encapsulating semiconductor and semiconductor device using same
JP2010159400A (en) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd Granulated epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for manufacturing the semiconductor device
JP2011153173A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2014118461A (en) * 2012-12-14 2014-06-30 Kyocera Chemical Corp Resin composition for granular semiconductor sealing and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302506A (en) * 1998-04-16 1999-11-02 Tatsumori:Kk Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000178413A (en) * 1998-12-16 2000-06-27 Tokuyama Corp Spherical silica for semiconductor encapsulant
JP2000232188A (en) * 1999-02-12 2000-08-22 Nitto Denko Corp Granular semiconductor sealing material and semiconductor device using the same
JP2008081562A (en) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2009188142A (en) * 2008-02-06 2009-08-20 Kyocera Chemical Corp Epoxy resin tablet for semiconductor sealing, and manufacturing method thereof
JP2009286843A (en) * 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd Epoxy resin composition for encapsulating semiconductor and semiconductor device using same
JP2010159400A (en) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd Granulated epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for manufacturing the semiconductor device
JP2011153173A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2014118461A (en) * 2012-12-14 2014-06-30 Kyocera Chemical Corp Resin composition for granular semiconductor sealing and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424284A (en) * 2018-07-31 2021-02-26 京瓷株式会社 Sheet-like sealing resin composition and semiconductor device
CN112424284B (en) * 2018-07-31 2023-09-26 京瓷株式会社 Resin composition for sheet-like encapsulation and semiconductor device

Also Published As

Publication number Publication date
JP6351927B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP2019151685A (en) Resin composition for semiconductor sealing for transfer compression mold method and semiconductor device
KR100547069B1 (en) Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
JP5663250B2 (en) Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP6832193B2 (en) Resin composition and resin-sealed semiconductor device
JP6235969B2 (en) Powdered resin composition for compression molding and resin-encapsulated semiconductor device
JP6888870B2 (en) Resin composition for encapsulating semiconductors and semiconductor devices
JP2017031371A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
JP2019176023A (en) Semiconductor-sealing resin composition and semiconductor device
JP2014118461A (en) Resin composition for granular semiconductor sealing and semiconductor device
JP6351927B2 (en) Resin composition for sealing and method for manufacturing semiconductor device
JPWO2019146617A1 (en) Resin composition for sealing
CN117795002A (en) Epoxy resin composition, liquid compression molding material, top encapsulation material, and semiconductor device
JP2022075509A (en) Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
KR102506974B1 (en) Resin composition for sealing flake shape, and semiconductor device
JP7002866B2 (en) Resin composition for encapsulating powdered and granular semiconductors and semiconductor devices
KR102137550B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
KR20170013644A (en) Epoxy Resin Composition for Sealing Semiconductor
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP2013234305A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2013189490A (en) Epoxy resin composition for encapsulation and semiconductor device
KR20190053057A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
KR101980948B1 (en) Granule type epoxy resin composition for semiconductor encapsulation and semiconductor device encapsulated by using the same
KR102545654B1 (en) Epoxy Resin Composition for Sealing Semiconductor
JP2017053861A (en) Method for evaluating fusibility of granular resin composition, and method for manufacturing resin-sealed semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6351927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150