JP2014124643A - Covering method of steel material - Google Patents

Covering method of steel material Download PDF

Info

Publication number
JP2014124643A
JP2014124643A JP2012280962A JP2012280962A JP2014124643A JP 2014124643 A JP2014124643 A JP 2014124643A JP 2012280962 A JP2012280962 A JP 2012280962A JP 2012280962 A JP2012280962 A JP 2012280962A JP 2014124643 A JP2014124643 A JP 2014124643A
Authority
JP
Japan
Prior art keywords
steel material
covering
welding
steel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012280962A
Other languages
Japanese (ja)
Other versions
JP5293981B1 (en
Inventor
Hisao Kitagawa
尚男 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012280962A priority Critical patent/JP5293981B1/en
Application granted granted Critical
Publication of JP5293981B1 publication Critical patent/JP5293981B1/en
Publication of JP2014124643A publication Critical patent/JP2014124643A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a covering method of a steel material for covering a surface of a steel material easily with high reliability in covering the surface of the steel material with a corrosion-resistant metal plate.SOLUTION: A plurality of covering plates 12 are arranged on a surface of a steel material 10 so that end parts of the adjacent covering plates 12 overlap each other. Resistance seam welding is carried out continuously on a one side part 11a1 intersecting an overlap part 17 of the plurality of covering plates 12 with the overlap part 17 interposed on the steel material 10 while pressurizing by roller electrodes 32a, 32b. Then, a boundary of the one side part 11a1 of the plurality of covering plates 12 is finally welded so as to close a gap generated between the one side part 11a1 and the steel material 10.

Description

本発明は、橋梁、鉄塔、水槽、タンク、桟橋、ポンツーン等の鋼構造物(鋼材)を金属板によって被覆する鋼材の被覆構造及び方法に関し、特に鋼材を耐食性金属板で被覆して長期耐久性を高める鋼材の被覆構造及び方法に関する。   The present invention relates to a steel structure and method for covering steel structures (steel materials) such as bridges, steel towers, water tanks, tanks, piers, and pontoons with metal plates, and in particular, long-term durability by covering the steel materials with corrosion-resistant metal plates. The present invention relates to a steel coating structure and method for improving the strength.

橋梁、鉄塔、水槽、タンク、桟橋、ポンツーン等の鋼構造物は、腐食により赤錆や黄褐色の浮き錆、流れ錆を生じ、景観を損なうばかりでなく、腐食による肉厚減少に起因して構造物としての強度低下を来たす。このため、なんらかの防食対策が必要とされる。鋼構造物の防食対策としては、塗装工法が一般的であり、長期耐久性を高めた重防食塗装も知られているものの、耐用年数に限りがあるという問題がある。定期的な塗り替えも必要であることからメンテナンスも高いという問題がある。   Steel structures such as bridges, steel towers, aquariums, tanks, piers, and pontoons cause red rust, yellow-brown floating rust, and flow rust due to corrosion, which not only damages the landscape but also reduces the thickness due to corrosion. The strength as a thing is reduced. For this reason, some anticorrosion measures are required. As a corrosion prevention measure for steel structures, a coating method is common, and although heavy anticorrosion coating with improved long-term durability is also known, there is a problem that the service life is limited. There is a problem that maintenance is high because periodic repainting is necessary.

塗装工法のこれらの問題を解決するために、鋼構造物の表面を耐食性のある金属(耐食性金属)の薄板で被覆する方法が知られている。耐食性金属としてはステンレス鋼、ニッケル基合金等が用いられる。これらの金属は耐食性が高く、鋼構造物の表面をこれらの耐食性金属板で覆うことにより、理論的には半永久的な使用が可能になる。   In order to solve these problems of the painting method, a method of coating the surface of a steel structure with a thin plate of corrosion-resistant metal (corrosion-resistant metal) is known. As the corrosion resistant metal, stainless steel, nickel-base alloy or the like is used. These metals have high corrosion resistance, and theoretically, semi-permanent use is possible by covering the surface of the steel structure with these corrosion-resistant metal plates.

耐食性金属板の鋼材への固定方法として、接着剤、はぜ折り(特許文献1参照)、嵌め合い(特許文献2参照)、モルタル、コンクリート(特許文献3参照)、溶接(特許文献4−6参照)を使用した耐食性金属板の被覆方法が知られている。   As a method for fixing a corrosion-resistant metal plate to a steel material, an adhesive, a shell fold (see Patent Document 1), a fitting (see Patent Document 2), mortar, concrete (see Patent Document 3), and welding (Patent Documents 4-6) A method for coating a corrosion-resistant metal plate using a reference is known.

特開2003−253820号公報JP 2003-253820 A 特開2005−213810号公報JP 2005-213810 A 特開平8−232261号公報JP-A-8-232261 特開平11−129090号公報Japanese Patent Laid-Open No. 11-129090 特開平11−179552号公報JP-A-11-179552 特開2007−162117号公報JP 2007-162117 A

しかし、上記の耐食性金属板の被覆方法には以下の問題がある。   However, the above-described coating method of the corrosion-resistant metal plate has the following problems.

社会インフラストラクチャーには50〜100年の耐用年数が要求されるようになっているところ、接着剤を用いた耐食性金属板の被覆方法にあっては、接着剤によって耐食性金属板を貼り付けるだけでは、接合強度が低く、耐食性金属板の脱落が懸念される。   Social infrastructures are required to have a service life of 50 to 100 years. In the method of coating a corrosion-resistant metal plate using an adhesive, simply attaching the corrosion-resistant metal plate with an adhesive The bonding strength is low, and the corrosion-resistant metal plate may be dropped.

特許文献1(はぜ折り)に記載の被覆方法にあっては、施工が容易なものの隙間から水分が浸透し、鋼材が腐食することがある。また、耐食性金属板の板厚が薄い場合、継手部(はぜ折部)の引張強度が弱いといった欠点がある。   In the coating method described in Patent Document 1 (shell folding), although it is easy to construct, moisture may permeate through the gap and the steel material may corrode. Further, when the thickness of the corrosion-resistant metal plate is thin, there is a disadvantage that the tensile strength of the joint portion (folded portion) is weak.

また、特許文献1(はぜ折り)及び特許文献2(嵌め合い)に記載の被覆方法にあっては、鋼材と耐食性金属板の接合が耐食性金属板の周囲のみで行われており、耐食性金属板全体の付着強度が低いという問題がある。また、耐食性金属板同士の接合は、耐食性金属板同士の溶接ではなく、耐食性金属板同士を折り曲げて樹脂でシールしたり、金属板を折り曲げて金属板の上の樹脂フィルム同士を接合したりすることで行われているが、耐食性金属板同士の溶接ほど長期耐久性が高くないという問題がある。   Further, in the coating methods described in Patent Document 1 (Helse Fold) and Patent Document 2 (Fitting), the joining of the steel material and the corrosion-resistant metal plate is performed only around the corrosion-resistant metal plate. There is a problem that the adhesion strength of the whole plate is low. In addition, the corrosion-resistant metal plates are not welded to each other, but the corrosion-resistant metal plates are folded and sealed with resin, or the metal plates are folded and the resin films on the metal plates are joined together. However, there is a problem that long-term durability is not as high as welding between corrosion-resistant metal plates.

特許文献3(モルタル、コンクリート)に記載の被覆方法にあっては、鋼材と耐食性金属板の接合に有機系接着剤やモルタル、コンクリートが用いられており、耐食性金属板の周囲を溶接しない場合、隙間に入り込んだ腐食因子(例えば、塩化物イオン)が濃縮し、隙間腐食を生じたり、金属板が剥離するおそれがある。   In the coating method described in Patent Document 3 (mortar, concrete), an organic adhesive, mortar, or concrete is used for joining the steel material and the corrosion-resistant metal plate, and when the periphery of the corrosion-resistant metal plate is not welded, Corrosion factors (for example, chloride ions) that have entered the gap may concentrate, causing crevice corrosion or peeling of the metal plate.

金属板を鋼材に溶接すれば、特許文献1−3に記載の被覆方法の上記問題を解決することができる。金属板を鋼材に溶接する一般的な溶接方法として、アーク溶接に分類されるプラグ溶接やストリップ溶接が用いられるが、これらの溶接を行うためには、通常0.8mm以上の板厚の耐食性金属板が必要である。これ以下の板厚の耐食性金属薄板を用いる場合、少しでも鋼材表面と耐食性金属板との間に隙間があると、溶接時の熱が放散しにくく、溶接時の熱によって耐食性金属板が溶損する(溶けて無くなる)という問題がある。   If the metal plate is welded to the steel material, the above problem of the coating method described in Patent Documents 1-3 can be solved. As a general welding method for welding a metal plate to a steel material, plug welding or strip welding classified as arc welding is used, but in order to perform these welding, a corrosion-resistant metal having a thickness of usually 0.8 mm or more is used. A board is required. When using a corrosion-resistant metal sheet with a thickness less than this, if there is a gap between the steel surface and the corrosion-resistant metal plate, the heat during welding is difficult to dissipate and the corrosion-resistant metal plate is damaged by the heat during welding. There is a problem of (melting away).

特許文献4(溶接)には、0.8mm以下の板厚の耐食性金属板を鋼材に溶接する方法が記載されている。しかし、特許文献4には、鋼材に一層の耐食性金属板を溶接する方法が記載されているのみであり、複数の耐食性金属板をお互いの端部同士が重なり合うように配置した場合の溶接方法は記載されていない。大面積の鋼材を被覆する場合には、複数の耐食性金属板をお互いの端部同士が重なり合うように配置する必要がある。   Patent Document 4 (welding) describes a method of welding a corrosion-resistant metal plate having a thickness of 0.8 mm or less to a steel material. However, Patent Document 4 only describes a method of welding a single corrosion-resistant metal plate to a steel material, and a welding method in a case where a plurality of corrosion-resistant metal plates are arranged so that their ends overlap each other is described. Not listed. When covering a large area steel material, it is necessary to arrange | position a some corrosion-resistant metal plate so that each edge part may overlap.

特許文献5(溶接)には、複数の耐食性金属板をお互いの端部同士が重なり合うように配置し、隣り合う耐食性金属板の重なり合う端部同士を重なり部に沿って連続的に抵抗シーム溶接することが記載されている。しかし、抵抗シーム溶接だけでは、重なり部に不可避的にすきまができるので、すきまから海水が浸入するおそれがある。   In Patent Document 5 (welding), a plurality of corrosion-resistant metal plates are arranged so that their end portions overlap each other, and the overlapping end portions of adjacent corrosion-resistant metal plates are continuously subjected to resistance seam welding along the overlapping portion. It is described. However, with only resistance seam welding, there is an unavoidable gap in the overlapped area, and there is a risk that seawater may enter through the gap.

特許文献6(溶接)には、図6に示すように、鋼管1の外周に円周方向に複数の被覆材2を隣り合う被覆材の端部同士が重なり合うように配置し、隣り合う被覆材2の重なり合う端部同士を管軸方向に連続的に抵抗シーム溶接し(連続の抵抗シーム溶接部を符号3で示す)、また、複数の被覆材2の端部を鋼管1の周方向に重なり部を避けるようにして不連続に抵抗シーム溶接し(不連続の抵抗シーム溶接部を符号4で示す)、被覆材用帯状部材5を複数の被覆材2の境界を覆うように鋼管1に周方向に巻き付け、被覆材用帯状部材5の一方の端部を鋼管1にTIG溶接し(TIG溶接部を符号6で示す)、被覆材用帯状部材5の他方の端部を被覆材2にTIG溶接する(TIG溶接部を符号7で示す)鋼管の被覆方法が記載されている。   In Patent Document 6 (welding), as shown in FIG. 6, a plurality of coating materials 2 are arranged on the outer periphery of the steel pipe 1 in the circumferential direction so that the ends of the adjacent coating materials overlap each other, and the adjacent coating materials are arranged. The two overlapping ends are continuously resistance seam welded in the pipe axis direction (continuous resistance seam welds are indicated by reference numeral 3), and the ends of the plurality of covering materials 2 are overlapped in the circumferential direction of the steel pipe 1 In order to avoid this, the resistance seam is discontinuously welded (the discontinuous resistance seam weld is indicated by reference numeral 4), and the strip member 5 for the covering material is wrapped around the steel pipe 1 so as to cover the boundaries of the plurality of covering materials 2. Winding in the direction, one end of the strip member 5 for covering material is TIG welded to the steel pipe 1 (the TIG welded portion is indicated by reference numeral 6), and the other end portion of the strip member 5 for covering material is TIG to the covering member 2 A method for coating a steel pipe to be welded (a TIG weld is indicated by 7) is described.

特許文献6に記載の被覆方法によれば、被覆材用帯状部材5によって複数の被覆材2と鋼管1との間に生ずるすきまを塞ぐことができる。また、被覆材用帯状部材5を被覆材2にTIG溶接するときに発生する熱は被覆材2の抵抗シーム溶接部4を介して鋼管1に逃げる。このため、薄い被覆材2が溶損するのを防止することができる。   According to the coating method described in Patent Document 6, the gap formed between the plurality of coating materials 2 and the steel pipe 1 can be closed by the coating material strip-shaped member 5. Further, the heat generated when TIG welding the band member 5 for covering material to the covering material 2 escapes to the steel pipe 1 through the resistance seam welded portion 4 of the covering material 2. For this reason, it can prevent that the thin coating | covering material 2 melts.

しかし、特許文献6に記載の鋼管の被覆方法にあっては、被覆材用帯状部材5を必要とするので、溶接に手間がかかるという問題がある。   However, the steel pipe coating method described in Patent Document 6 requires a belt member 5 for a covering material, and thus there is a problem that it takes time and effort for welding.

本発明は、上記のような事情に鑑みてなされたものであり、鋼材の表面を耐食性金属板で被覆するに際して、高い信頼性でかつ簡便に被覆することができる鋼材の被覆方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and provides a method for coating a steel material that can be coated with high reliability and simplicity when the surface of the steel material is coated with a corrosion-resistant metal plate. With the goal.

上記課題を解決するために、本発明の一態様は、鋼材の表面に複数の被覆板を隣り合う被覆板の端部同士が重なり合うように配置し、ローラ電極によって圧力をかけながら前記複数の被覆板の重なり部と垂直な一辺部を前記鋼材に前記重なり部を挟んで連続的に抵抗シーム溶接し、その後、前記複数の被覆板の前記一辺部の境界を前記鋼材に、前記一辺部と前記鋼材との間に生ずるすきまを塞ぐように本溶接することを特徴とする鋼材の被覆方法である。   In order to solve the above problems, according to one aspect of the present invention, a plurality of coating plates are arranged on the surface of a steel material so that ends of adjacent coating plates overlap each other, and the plurality of coatings are applied while pressure is applied by a roller electrode. One side part perpendicular to the overlapping part of the plates is continuously resistance seam welded with the overlapping part sandwiched between the steel materials, and then the boundary of the one side part of the plurality of covering plates to the steel material, the one side part and the one side This is a method of coating a steel material, characterized in that the main welding is performed so as to close a gap generated between the steel material and the steel material.

本発明によれば、ローラ電極の圧力によって複数の被覆板の重なり部と垂直な一辺部を重なり部の段差にならって変形させ、一辺部と鋼材との間のすきまをできるだけ無くした状態で、一辺部を鋼材に抵抗シーム溶接することができる。複数の被覆板の一辺部の境界を鋼材に本溶接するときに発生する熱は、一辺部の抵抗シーム溶接部を介して鋼材に逃げる。このため、複数の被覆板が溶損するのを防止できる。複数の被覆板の一辺部の境界を覆う金属板を必要としないので、簡便な被覆方法になる。   According to the present invention, the one side perpendicular to the overlapping portion of the plurality of cover plates is deformed according to the step of the overlapping portion by the pressure of the roller electrode, and the gap between the one side and the steel material is eliminated as much as possible. One side can be resistance seam welded to steel. Heat generated when the boundary of one side of the plurality of covering plates is main-welded to the steel material escapes to the steel material via the resistance seam welded portion on one side. For this reason, it can prevent that a some coating | coated board melts. Since the metal plate which covers the boundary of the one side part of a some coating plate is not required, it becomes a simple coating method.

本発明の第一の実施形態の鋼材の被覆方法の工程図(鋼材に被覆板を抵抗シーム溶接した段階を示し、図1(a)は平面図、図1(b)は図1(a)のb−b線断面図、図1(c)は図1(a)のc部断面図である)FIG. 1 is a process diagram of a steel material coating method according to the first embodiment of the present invention (showing a stage in which a coated plate is resistance seam welded to a steel material, FIG. 1A is a plan view, and FIG. 1B is FIG. 1A); (B) is a cross-sectional view taken along the line b-b of FIG. 1, and FIG. 本実施形態の鋼材の被覆方法の工程図(鋼材に被覆板を本溶接し、被覆板に金属板を本溶接した段階を示し、図2(a)は平面図、図2(b)は図2(a)のb−b線断面図、図2(c)は図2(a)のc部断面図である)FIG. 2A is a plan view, and FIG. 2B is a diagram illustrating a stage of a steel material coating method according to the present embodiment, showing a stage in which a steel plate is main welded and a metal plate is main welded to the steel plate. 2 (a) is a cross-sectional view taken along the line bb of FIG. 2, and FIG. 2 (c) is a cross-sectional view of part c of FIG. 本実施形態の鋼材の被覆方法の工程図(金属板に封止板を溶接した段階を示す平面図である)Process drawing of the steel material coating method of the present embodiment (plan view showing a stage where a sealing plate is welded to a metal plate) 本実施形態の鋼材の被覆方法を用いて鋼管に被覆板を被覆した例を示す斜視図The perspective view which shows the example which coat | covered the steel plate with the coating plate using the coating method of the steel materials of this embodiment 本実施形態の鋼材の被覆方法で用いられるインダイレクト抵抗シーム溶接機の概略図(図5(a)は一枚の被覆板を鋼材に溶接する例を示し、図5(b)は二枚の被覆板の重なり部分溶接する例を示す)Schematic diagram of an indirect resistance seam welder used in the steel material coating method of the present embodiment (FIG. 5 (a) shows an example of welding one coated plate to a steel material, and FIG. 5 (b) shows two sheets. (An example of welding the overlapping parts of the cover plate is shown) 従来の鋼管の被覆構造の側面図Side view of conventional steel pipe covering structure

以下、本実施形態の鋼材の被覆方法を詳細に説明する。図1ないし図3は本発明の一実施形態の鋼材の被覆方法の工程図を示す。図1は鋼材10に複数の被覆板12からなる被覆材11a,11b,11cをX軸方向に並べ、被覆材11a,11b,11cを鋼材10に抵抗シーム溶接した段階を示し、図2は被覆材11a,11cを鋼材10に本溶接し、さらに被覆材11a,11b,11cの端部に帯状の金属板15を溶接した段階を示す。図3は金属板15に封止板16を溶接した段階を示す。明細書を通して同一の構成には同一の符号を附す。   Hereinafter, the steel material coating method of the present embodiment will be described in detail. 1 to 3 show process diagrams of a method for coating a steel material according to an embodiment of the present invention. FIG. 1 shows a stage in which coating materials 11a, 11b, and 11c made of a plurality of coating plates 12 are arranged on a steel material 10 in the X-axis direction, and the coating materials 11a, 11b, and 11c are resistance seam welded to the steel material 10, and FIG. The stage which carried out the main welding of the materials 11a and 11c to the steel material 10, and also welded the strip | belt-shaped metal plate 15 to the edge part of coating | covering materials 11a, 11b, and 11c is shown. FIG. 3 shows a stage where the sealing plate 16 is welded to the metal plate 15. Throughout the specification, the same components are denoted by the same reference numerals.

図1に示すように、この実施形態の鋼材10の表面は平面に形成される。鋼材10の表面の幅方向をX軸方向と定義し、幅方向と直交する方向をY軸方向と定義する。複数の被覆材11a,11b,11cはX軸方向に所定の間隔を開けて並べられる。第一の被覆材11aの左側の領域、第一の被覆材11aと第二の被覆材11bとの間、第二の被覆材11bと第三の被覆材11cとの間、及び第三の被覆材11cの右側の領域が鋼材の露出部になる。   As shown in FIG. 1, the surface of the steel material 10 of this embodiment is formed in a plane. The width direction of the surface of the steel material 10 is defined as the X-axis direction, and the direction orthogonal to the width direction is defined as the Y-axis direction. The plurality of covering materials 11a, 11b, and 11c are arranged at predetermined intervals in the X-axis direction. The left region of the first covering material 11a, between the first covering material 11a and the second covering material 11b, between the second covering material 11b and the third covering material 11c, and the third covering The region on the right side of the material 11c is an exposed portion of the steel material.

被覆材11a,11b,11cは、隣り合う被覆板12の端部同士が重なり合うように配置した複数の四角形の被覆板12からなる。複数の被覆板12はY軸方向の端部同士が重なり合うように並べられる(図1(b)の断面図参照)。重なり部17はX軸方向に細長く伸びる。複数の被覆板12はY軸方向のみ重なり合うように並べられていて、X軸方向には重なり合うように並べられていない。すなわち、隣り合う被覆板12は2枚が重なるようには並べられるが、3枚以上重ならないように並べられる。被覆板12は薄いので、3枚以上重ねて溶接すると、溶接時の熱が放散しにくく、欠陥が発生し易いからである。   The covering materials 11a, 11b, and 11c are formed of a plurality of rectangular covering plates 12 arranged so that the ends of the adjacent covering plates 12 overlap each other. The plurality of cover plates 12 are arranged so that ends in the Y-axis direction overlap each other (see the cross-sectional view in FIG. 1B). The overlapping portion 17 extends elongated in the X-axis direction. The plurality of cover plates 12 are arranged so as to overlap only in the Y-axis direction, and are not arranged so as to overlap in the X-axis direction. That is, the adjacent cover plates 12 are arranged so that two sheets overlap each other, but are arranged so as not to overlap three or more sheets. This is because the covering plate 12 is thin, and if three or more sheets are stacked and welded, heat during welding is not easily dissipated and defects are likely to occur.

被覆板12には孔食指数(PI:Pitting Index)が40以上の耐海水性ステンレス鋼又はニッケル基合金が用いられる。ここで、PI=Cr[%]+3.3×Mo[%]+16×N[%]である。タングステンWを含む場合は、PI=Cr[%]+3.3×(Mo[%]+0.5W[%])+16×N[%]である。なお、PIが40未満の被覆板を用いた場合、海水中で腐食が発生するという問題がある。   The covering plate 12 is made of seawater resistant stainless steel or nickel-base alloy having a pitting index (PI) of 40 or more. Here, PI = Cr [%] + 3.3 × Mo [%] + 16 × N [%]. When tungsten W is included, PI = Cr [%] + 3.3 × (Mo [%] + 0.5 W [%]) + 16 × N [%]. In addition, there exists a problem that corrosion generate | occur | produces in seawater when a coating plate with PI less than 40 is used.

被覆材11aの重なり部17と垂直な一辺部11a1は、鋼材10にY軸方向に抵抗シーム溶接される。抵抗シーム溶接部14bを破線で示す。抵抗シーム溶接は、抵抗溶接(溶接継手部に大電流を流し、ここに発生する抵抗熱によって加熱し、圧力を加えて行う溶接)の一種であり、重ね合わせた母材の溶接継手に沿って連続的に行う抵抗溶接である。抵抗シーム溶接は、ローラ電極を回転させながら加圧・通電することによって連続的に溶接を行うものである。抵抗シーム溶接機については後述する。   One side portion 11a1 perpendicular to the overlapping portion 17 of the covering material 11a is resistance seam welded to the steel material 10 in the Y-axis direction. The resistance seam weld 14b is indicated by a broken line. Resistance seam welding is a type of resistance welding (welding where a large current is passed through the welded joint, heated by the resistance heat generated here, and pressure is applied) It is resistance welding performed continuously. In resistance seam welding, welding is continuously performed by applying pressure and energization while rotating a roller electrode. The resistance seam welder will be described later.

被覆材11aの一辺部11a1は重なり部17を挟んで連続的に抵抗シーム溶接される。重なり部17には下側の被覆板12よって段差が形成されており、上側の被覆板12と鋼材10との間に下側の被覆板12の厚さの分だけすきまが空く。抵抗シーム溶接機のローラ電極で圧力をかけて上側の被覆板12を段差にならって曲げ、上側の被覆板12と鋼材10との間のすきまをできるだけ無くした状態で、上側の被覆板12を鋼材10に抵抗シーム溶接する。図1(b)に示すように、上側の被覆板12と鋼材10との間には抵抗シーム溶接部14a1(ナゲット)が形成される。重なり部17では、上側の被覆板12と下側の被覆板12との間にも抵抗シーム溶接部14a1(ナゲット)が形成される。   One side portion 11a1 of the covering material 11a is continuously subjected to resistance seam welding with the overlapping portion 17 interposed therebetween. A step is formed in the overlapping portion 17 by the lower cover plate 12, and a gap is provided between the upper cover plate 12 and the steel material 10 by the thickness of the lower cover plate 12. The upper cover plate 12 is bent in a step by applying pressure with a roller electrode of a resistance seam welder so that the gap between the upper cover plate 12 and the steel material 10 is eliminated as much as possible. Resistance seam welding is performed on the steel material 10. As shown in FIG. 1B, a resistance seam welded portion 14 a 1 (nugget) is formed between the upper cover plate 12 and the steel material 10. In the overlapping portion 17, a resistance seam welded portion 14 a 1 (nugget) is also formed between the upper covering plate 12 and the lower covering plate 12.

被覆材11cの重なり部17と垂直な一辺部11c2は、被覆材11aの一辺部11a1と同様に鋼材10にY軸方向に抵抗シーム溶接される。抵抗シーム溶接部14a1を破線で示す。   The one side portion 11c2 perpendicular to the overlapping portion 17 of the covering material 11c is resistance seam welded to the steel material 10 in the Y-axis direction in the same manner as the one side portion 11a1 of the covering material 11a. The resistance seam weld 14a1 is indicated by a broken line.

図1(a)に示すように、重なり部17は、X軸方向にも連続的に抵抗シーム溶接される。抵抗シーム溶接部を符号14bで示す。図1(c)のY軸方向に沿った断面図に示すように、上側の被覆板12と下側の被覆板12との間、及び下側の被覆板12と鋼材10との間には抵抗シーム溶接部14b(ナゲット)が形成される。   As shown in FIG. 1A, the overlapping portion 17 is continuously resistance seam welded also in the X-axis direction. A resistance seam weld is indicated by 14b. As shown in the cross-sectional view along the Y-axis direction in FIG. 1 (c), between the upper cover plate 12 and the lower cover plate 12 and between the lower cover plate 12 and the steel material 10. A resistance seam weld 14b (nugget) is formed.

さらに、互いに対向する第一の被覆材11aの端部11a2及び第二の被覆材11bの端部11b1も、Y軸方向に連続的に抵抗シーム溶接される。互いに対向する第二の被覆材11bの端部11b2及び第三の被覆材11cの端部11c1も、Y軸方向に連続的に抵抗シーム溶接される。抵抗シーム溶接部を符号14aで示す。   Furthermore, the end portion 11a2 of the first covering material 11a and the end portion 11b1 of the second covering material 11b that face each other are also continuously resistance seam welded in the Y-axis direction. The end portion 11b2 of the second covering material 11b and the end portion 11c1 of the third covering material 11c facing each other are also continuously resistance seam welded in the Y-axis direction. A resistance seam weld is indicated by 14a.

図2(a)に示すように、被覆材11aの重なり部17と垂直な一辺部11a1の境界は、抵抗シーム溶接後、被覆材11aと鋼材10との間のすきまを塞ぐように本溶接される。本溶接部を符号14dで示す(図2(b)の断面図も参照)。本溶接には、TIG溶接、MIG溶接、被覆アーク溶接、プラズマ溶接の少なくとも一つが用いられる。本溶接の溶材にはニッケル合金溶加棒(JIS Z 3334 YNiCrMo−3)など被覆板12よりも耐食性の高い材料が用いられる。被覆材11aの一辺部11a1には予め抵抗シーム溶接部14a1が形成されているので、本溶接時に発生する熱が抵抗シーム溶接部14a1を介して鋼材10に逃げる。このため、本溶接時に発生する熱によって薄い被覆板12が溶損する(溶けて無くなる)のを防止できる。   As shown in FIG. 2 (a), the boundary of one side portion 11a1 perpendicular to the overlapping portion 17 of the covering material 11a is subjected to main welding so as to close the gap between the covering material 11a and the steel material 10 after resistance seam welding. The This welding part is shown by the code | symbol 14d (refer also sectional drawing of FIG.2 (b)). For the main welding, at least one of TIG welding, MIG welding, covered arc welding, and plasma welding is used. A material having higher corrosion resistance than that of the cover plate 12 such as a nickel alloy filler rod (JIS Z 3334 YNiCrMo-3) is used for the melt of the main welding. Since the resistance seam welded portion 14a1 is formed in advance on one side 11a1 of the covering material 11a, the heat generated during the main welding escapes to the steel material 10 via the resistance seam welded portion 14a1. For this reason, it is possible to prevent the thin cover plate 12 from being melted (lost due to melting) by heat generated during the main welding.

被覆材11cの重なり部17と垂直な一辺部11c2の境界も、被覆材11aの一辺部11a1と同様に、抵抗シーム溶接後、被覆材11cと鋼材10との間のすきまを塞ぐように本溶接される。   Similar to the one side portion 11a1 of the covering material 11a, the boundary between the overlapping portion 17 of the covering material 11c and the one side portion 11c2 is also subjected to the main welding so as to close the gap between the covering material 11c and the steel material 10 after resistance seam welding. Is done.

図2(c)のY軸に沿った断面図に示すように、重なり部17も抵抗シーム溶接後、重なり部17に生ずるすきまを塞ぐように本溶接される。本溶接部を符号14cで示す。上側の被覆板12は端部のみが溶けて下側の被覆板12に結合される。重なり合う被覆板12同士の間には抵抗シーム溶接部14bが形成され、下側の被覆板12と鋼材10との間にも抵抗シーム溶接部14bが形成されているので、本溶接時に発生する熱が抵抗シーム溶接部14bを介して鋼材10に逃げる。このため、本溶接時に発生する熱によって薄板の被覆板12が溶損する(溶けて無くなる)のを防止することができる。   As shown in the cross-sectional view along the Y-axis in FIG. 2C, the overlapping portion 17 is also subjected to main welding so as to close the gap generated in the overlapping portion 17 after resistance seam welding. This welding part is shown with the code | symbol 14c. Only the end portion of the upper cover plate 12 melts and is coupled to the lower cover plate 12. A resistance seam weld 14b is formed between the overlapping cover plates 12, and a resistance seam weld 14b is also formed between the lower cover plate 12 and the steel material 10, so that heat generated during the main welding is formed. Escapes to the steel material 10 through the resistance seam weld 14b. For this reason, it is possible to prevent the thin cover plate 12 from being melted (dissolved and lost) by heat generated during the main welding.

図2(a)に示すように、互いに対向する第一の被覆材11aの端部11a2及び第二の被覆材11bの端部11b1には、被覆材11a,11bの端部に沿って細長く伸びる帯状の金属板15が溶接される。溶接には、TIG溶接、MIG溶接、被覆アーク溶接、プラズマ溶接の少なくとも一つが用いられる。金属板15は、第一の被覆材11aの境界を覆う。金属板15の幅方向(X軸方向)の一方の端部が第一の被覆材11aに溶接される。金属板15の幅方向の一方の端部は、第一の被覆材11aの抵抗シーム溶接部14aに位置決めされている。金属板15を溶接するときの熱は抵抗シーム溶接部14aを介して鋼材10に逃げるので、第一の被覆材11aが溶損するのを防止することができる。金属板15の幅方向の他方の端部は鋼材10に溶接される。互いに対向する第二の被覆材11bの端部11b2及び第三の被覆材11cの端部11c1にも、帯状の金属板15が本溶接される。金属板15は、孔食指数(PI:Pitting Index)が40以上の耐海水性ステンレス鋼又はニッケル基合金からなる。PIが40未満の金属板を用いた場合、海水中で腐食が発生するという問題がある。金属板15の板厚は0.8mm以上、好ましくは1.2mm以上に設定される。板厚が0.8mm未満の場合、TIG溶接など一般的な溶接ができないという問題がある。   As shown in FIG. 2A, the end portion 11a2 of the first covering material 11a and the end portion 11b1 of the second covering material 11b that are opposed to each other extend elongated along the end portions of the covering materials 11a and 11b. A strip-shaped metal plate 15 is welded. For welding, at least one of TIG welding, MIG welding, covering arc welding, and plasma welding is used. The metal plate 15 covers the boundary of the first covering material 11a. One end in the width direction (X-axis direction) of the metal plate 15 is welded to the first covering material 11a. One end of the metal plate 15 in the width direction is positioned at the resistance seam weld 14a of the first covering material 11a. Since heat generated when welding the metal plate 15 escapes to the steel material 10 via the resistance seam welded portion 14a, the first covering material 11a can be prevented from being melted. The other end in the width direction of the metal plate 15 is welded to the steel material 10. The strip-shaped metal plate 15 is also main-welded to the end portion 11b2 of the second covering material 11b and the end portion 11c1 of the third covering material 11c that face each other. The metal plate 15 is made of seawater resistant stainless steel or nickel base alloy having a pitting index (PI) of 40 or more. When a metal plate having a PI of less than 40 is used, there is a problem that corrosion occurs in seawater. The plate thickness of the metal plate 15 is set to 0.8 mm or more, preferably 1.2 mm or more. When the plate thickness is less than 0.8 mm, there is a problem that general welding such as TIG welding cannot be performed.

図3は、封止板16を金属板15に溶接した段階を示す。封止板16は隣接する一対の金属板15の間の鋼材10の露出部分を覆う。封止板16は隣接する一対の金属板15に跨るように溶接される。封止板16の幅方向の一方の端部は金属板15に溶接され、封止板16の幅方向の他方の端部は残りの金属板15に溶接される。溶接には、TIG溶接、MIG溶接、被覆アーク溶接、プラズマ溶接の少なくとも一つが用いられる。封止板16は孔食指数(PI:Pitting Index)が40以上の耐海水性ステンレス鋼又はニッケル基合金からなる。PIが40未満の金属板を用いた場合、海水中で腐食が発生するという問題がある。封止板16の板厚は0.8mm以上、好ましくは1.2mm以上に設定される。板厚が0.8mm未満の場合、TIG溶接など一般的な溶接ができないという問題がある。   FIG. 3 shows a stage where the sealing plate 16 is welded to the metal plate 15. The sealing plate 16 covers the exposed portion of the steel material 10 between a pair of adjacent metal plates 15. The sealing plate 16 is welded so as to straddle a pair of adjacent metal plates 15. One end in the width direction of the sealing plate 16 is welded to the metal plate 15, and the other end in the width direction of the sealing plate 16 is welded to the remaining metal plate 15. For welding, at least one of TIG welding, MIG welding, covering arc welding, and plasma welding is used. The sealing plate 16 is made of seawater-resistant stainless steel or nickel-base alloy having a pitting index (PI) of 40 or more. When a metal plate having a PI of less than 40 is used, there is a problem that corrosion occurs in seawater. The thickness of the sealing plate 16 is set to 0.8 mm or more, preferably 1.2 mm or more. When the plate thickness is less than 0.8 mm, there is a problem that general welding such as TIG welding cannot be performed.

金属板15は0.8mm以上に設定されるので、金属板15に封止板16を溶接するときの熱は金属板15に逃げ、金属板15に封止板16を問題なく溶接できる。封止板16を金属板15に溶接した後、各被覆板12を鋼材10にスポット溶接してもよい。スポット溶接することで、大面積の被覆板12が波打つのが防止される。   Since the metal plate 15 is set to 0.8 mm or more, heat when the sealing plate 16 is welded to the metal plate 15 escapes to the metal plate 15, and the sealing plate 16 can be welded to the metal plate 15 without any problem. After welding the sealing plate 16 to the metal plate 15, each covering plate 12 may be spot-welded to the steel material 10. Spot welding prevents the covering plate 12 having a large area from wavy.

以上のように封止板16を一対の金属板15に溶接することで、X軸方向に並べた被覆材11a,11b,11cを連結することができ、大きな面積の鋼材10を被覆材11a,11b,11cで一面に覆うことができる。また、被覆材11a,11cのX軸方向の一辺部11a1,11c2は、鋼材10に抵抗シーム溶接後、本溶接される。したがって、被覆材11a,11cの一辺部11a1,11c2から被覆材11a,11c内に海水が浸入することを防止できる。なお、上記実施形態では説明を省略したが、Y軸方向に並べられた複数の被覆板12は鋼材10の周囲に巻かれて無端状に連結される。   By welding the sealing plate 16 to the pair of metal plates 15 as described above, the covering materials 11a, 11b, and 11c arranged in the X-axis direction can be connected, and the steel material 10 having a large area can be connected to the covering material 11a, 11b and 11c can cover the entire surface. Further, the side portions 11a1 and 11c2 in the X-axis direction of the covering materials 11a and 11c are subjected to main welding to the steel material 10 after resistance seam welding. Therefore, seawater can be prevented from entering the covering materials 11a and 11c from the one side portions 11a1 and 11c2 of the covering materials 11a and 11c. In addition, although description was abbreviate | omitted in the said embodiment, the some coating | coated board 12 arranged in the Y-axis direction is wound around the steel material 10, and is connected endlessly.

上記実施形態の被覆方法は工場内で行うこともできるし、設置現場で行うこともできる。大きな構造物を製造する場合、工場で鋼材10の分割体を製造し、設置現場で分割体を結合・溶接することが行われる。この場合、鋼材10の分割体に被覆材11a,11b,11c及び金属板15を溶接するまでの工程が工場で行われ、鋼材10の分割体を溶接し、封止板16を溶接する工程が現場で行われる。封止板16は鋼材10の分割体同士の溶接部を覆うことになる。被覆材11a,11b,11cは鋼材10同士の溶接時の熱の影響を受けないように、鋼材10の分割体同士の溶接部から離れた位置に配置される。   The coating method of the above embodiment can be performed in a factory or at an installation site. When manufacturing a big structure, the division body of the steel material 10 is manufactured at a factory, and a division body is combined and welded at the installation site. In this case, the process until the covering materials 11a, 11b, 11c and the metal plate 15 are welded to the divided body of the steel material 10 is performed at the factory, and the process of welding the divided body of the steel material 10 and welding the sealing plate 16 is performed. Performed on site. The sealing plate 16 covers the welded portion between the divided bodies of the steel material 10. The covering materials 11a, 11b, and 11c are arranged at positions away from the welded portion between the divided bodies of the steel material 10 so as not to be affected by heat during welding of the steel materials 10.

構造物たる鋼材10の形状は、上記実施形態のように平面を持つ形状に形成されてもよいし、例えばジャケットを支持する鋼管柱のように円筒形に形成されてもよい。図4は鋼管21を複数の被覆板22で覆った例を示す。複数の被覆板12は端部同士が重なるように円周方向に並べられる。複数の被覆板22の重なり部23と垂直な一辺部22aは鋼材10に抵抗シーム溶接後、一辺部22aの境界が一辺部22aと鋼管21との間のすきまを塞ぐように本溶接される。抵抗シーム溶接部を符号26で示し、本溶接部を符号27で示す。また、複数の被覆板22の重なり部23も抵抗シーム溶接後、本溶接される。抵抗シーム溶接部を符号28で示し、本溶接部を符号29で示す。これにより、鋼管21と複数の被覆板22との間に生ずるすきまを全て塞ぐことが可能になる。なお、平面に展開したときに重なり部17と垂直な一辺部22aであれば、重なり部17に垂直な一辺部22aであるという。   The shape of the steel material 10 that is a structure may be formed in a shape having a flat surface as in the above-described embodiment, or may be formed in a cylindrical shape, such as a steel pipe column that supports a jacket. FIG. 4 shows an example in which the steel pipe 21 is covered with a plurality of covering plates 22. The plurality of cover plates 12 are arranged in the circumferential direction so that the end portions overlap each other. One side portion 22 a perpendicular to the overlapping portion 23 of the plurality of cover plates 22 is subjected to main welding so that the boundary of the one side portion 22 a closes the gap between the one side portion 22 a and the steel pipe 21 after resistance seam welding to the steel material 10. The resistance seam weld is denoted by reference numeral 26 and the main weld is denoted by reference numeral 27. The overlapping portion 23 of the plurality of cover plates 22 is also subjected to main welding after resistance seam welding. The resistance seam weld is indicated by reference numeral 28 and the main weld is indicated by reference numeral 29. Thereby, it becomes possible to block all the gaps generated between the steel pipe 21 and the plurality of covering plates 22. In addition, if it is one side part 22a perpendicular | vertical to the overlap part 17 when expand | deployed on a plane, it will be said that it is the one side part 22a perpendicular | vertical to the overlap part 17. FIG.

図5は、本実施形態の被覆方法で使用されるインダイレクト抵抗シーム溶接機の概略図を示す。図5(a)に示すように、インダイレクト抵抗シーム溶接機は、紙面と直交する方向に移動可能な移動台31と、移動台31に支持される加圧装置31a,31bと、加圧装置31aによって加圧される溶接側ローラ電極32aと、加圧装置31bによって加圧されるアース側ローラ電極32bと、を備える。溶接側ローラ電極32aは被覆板12の上に載せられ、アース側ローラ電極32bは鋼材10の上に載せられる。アース側ローラ電極32bの加圧力は溶接側ローラ電極32aの加圧力よりも大きく設定される。   FIG. 5 shows a schematic diagram of an indirect resistance seam welder used in the coating method of the present embodiment. As shown in FIG. 5 (a), the indirect resistance seam welder includes a movable table 31 that is movable in a direction perpendicular to the paper surface, pressurizing devices 31a and 31b supported by the movable table 31, and a pressurizing device. The welding side roller electrode 32a pressurized by 31a and the earth side roller electrode 32b pressurized by the pressurization apparatus 31b are provided. The welding side roller electrode 32a is placed on the covering plate 12, and the ground side roller electrode 32b is placed on the steel material 10. The pressing force of the ground side roller electrode 32b is set larger than the pressing force of the welding side roller electrode 32a.

ローラ電極32a,32bの回転軸を含む断面で見たとき、ローラ電極32a,32bの周面には、ローラ電極32a,32bの接触面積を小さくするように傾斜面からなるテーパ部34が設けられる。テーパ部34はローラ電極32a,32bの周面の幅方向の両端部に設けられる。テーパ部34を設けることによって、ローラ電極32a,32bには幅3mm以下の平坦部35が形成される。平坦部35の幅はローラ電極32a,32bの幅よりも小さい。また、ローラ電極32a,32bの周面の幅方向の両端部にテーパ部34の替わりに円弧部を設けることもできるし、ローラ電極32a,32bの周面の全体を円弧部に形成することもできる。ローラ電極32a,32bの直径は100mm〜300mmである。   When viewed in a cross section including the rotation axis of the roller electrodes 32a and 32b, a tapered portion 34 formed of an inclined surface is provided on the peripheral surface of the roller electrodes 32a and 32b so as to reduce the contact area of the roller electrodes 32a and 32b. . The tapered portions 34 are provided at both ends in the width direction of the peripheral surfaces of the roller electrodes 32a and 32b. By providing the taper portion 34, a flat portion 35 having a width of 3 mm or less is formed on the roller electrodes 32a and 32b. The width of the flat portion 35 is smaller than the width of the roller electrodes 32a and 32b. Also, arc portions can be provided at both ends in the width direction of the circumferential surfaces of the roller electrodes 32a and 32b in place of the taper portion 34, or the entire circumferential surfaces of the roller electrodes 32a and 32b can be formed in the arc portions. it can. The diameters of the roller electrodes 32a and 32b are 100 mm to 300 mm.

このようにローラ電極32a,32bに幅3mm以下の平坦部35を形成し、又はローラ電極32a,32bの周面の全体を円弧部に形成することで、ローラ電極32a,32bの接触面積が小さくなるので、ローラ電極32a,32bの加圧力を高くすることができる。このため、被覆板12を段差にならって曲げることが可能になる。被覆板12の板厚は0.3〜0.8mmであり、溶接側ローラ電極32aの加圧力は2000〜6000N、望ましくは3000〜5000Nに設定される。被覆板12の板厚が0.3mm未満であると、溶接側ローラ電極32aで押さえた際に被覆板12にしわが入り、溶接が困難になる。被覆板12の板厚が0.8mmを超えると、被覆板12を変形させることができず、被覆板12が鋼材10に付かなくなる。また、溶接側ローラ電極32aの加圧力が2000N未満であると、被覆板12を変形させることができず、被覆板12が鋼材10に付かなくなる。ローラ電極32aの加圧力が6000Nを超えると、溶接側ローラ電極32aの端部が変形するため、良好なインダイレクト抵抗シーム溶接できる長さが短くなる。   In this way, by forming the flat portion 35 having a width of 3 mm or less on the roller electrodes 32a and 32b, or forming the entire peripheral surface of the roller electrodes 32a and 32b in an arc portion, the contact area of the roller electrodes 32a and 32b is small. Therefore, the pressure applied to the roller electrodes 32a and 32b can be increased. For this reason, it is possible to bend the covering plate 12 along the steps. The plate thickness of the covering plate 12 is 0.3 to 0.8 mm, and the pressure of the welding side roller electrode 32a is set to 2000 to 6000N, preferably 3000 to 5000N. When the thickness of the cover plate 12 is less than 0.3 mm, the cover plate 12 is wrinkled when pressed by the welding side roller electrode 32a, and welding becomes difficult. If the thickness of the covering plate 12 exceeds 0.8 mm, the covering plate 12 cannot be deformed, and the covering plate 12 does not adhere to the steel material 10. Further, if the pressure of the welding side roller electrode 32a is less than 2000 N, the covering plate 12 cannot be deformed, and the covering plate 12 does not adhere to the steel material 10. When the pressing force of the roller electrode 32a exceeds 6000 N, the end of the welding-side roller electrode 32a is deformed, so that the length capable of good indirect resistance seam welding is shortened.

なお、図5(a)には、ローラ電極32a,32bの移動方向から見た正面図が示されているが、図5(a)のローラ電極32a,32bの外形はローラ電極32a,32bの断面形状に一致する。   FIG. 5A shows a front view seen from the moving direction of the roller electrodes 32a and 32b. The outer shape of the roller electrodes 32a and 32b in FIG. 5A is the same as that of the roller electrodes 32a and 32b. Matches the cross-sectional shape.

二つのローラ電極32a,32bは電源を介して電気的に接続される。溶接側ローラ電極32a及びアース側ローラ電極32bを加圧しながら電流を流すと、抵抗の最も大きい被覆板12と鋼材10の接触部分が発熱して接触部分の一部が溶ける。溶けた部分が被覆板12と鋼材10とを固定する抵抗シーム溶接部14a1となる。移動台31を紙面と直交方向に移動させ、溶接側ローラ電極32a及びアース側ローラ電極32bを転がすと、移動方向に細長い連続的な抵抗シーム溶接部14a1が形成される。   The two roller electrodes 32a and 32b are electrically connected via a power source. When a current is applied while pressurizing the welding side roller electrode 32a and the ground side roller electrode 32b, the contact portion between the cover plate 12 having the greatest resistance and the steel material 10 generates heat and a part of the contact portion is melted. The melted portion becomes the resistance seam welded portion 14 a 1 that fixes the covering plate 12 and the steel material 10. When the movable table 31 is moved in the direction orthogonal to the paper surface and the welding side roller electrode 32a and the ground side roller electrode 32b are rolled, a continuous resistance seam welded portion 14a1 elongated in the moving direction is formed.

図5(b)は、被覆板12の重なり部17を溶接するときのインダイレクト抵抗シーム溶接機を示す。溶接側ローラ電極32aは一枚のみの被覆板12の上から重なり部17に乗り上げる。アース側ローラ電極32bは鋼材10の表面に載せられたままである。溶接側ローラ電極32a及びアース側ローラ電極32bを加圧しながら電流を流すと、上側の被覆板12と鋼材10との間のすきまをできるだけ少なくした状態で、上側の被覆板12を鋼材10に抵抗シーム溶接することが可能になる(図1(b)も参照)。   FIG. 5B shows an indirect resistance seam welder when the overlapping portion 17 of the covering plate 12 is welded. The welding-side roller electrode 32a rides on the overlapping portion 17 from the top of only one cover plate 12. The ground side roller electrode 32b remains on the surface of the steel material 10. When an electric current is applied while pressurizing the welding side roller electrode 32a and the ground side roller electrode 32b, the upper covering plate 12 resists the steel member 10 with the gap between the upper covering plate 12 and the steel member 10 reduced as much as possible. Seam welding can be performed (see also FIG. 1B).

複数の被覆板12の端部同士を重ね合わせ、複数の被覆板12の重なり部17と垂直な一辺部11a1を鋼材10に抵抗シーム溶接した。被覆板12の材質及び板厚、インダイレクト抵抗シーム溶接条件は下記の表1のとおりである。なお、すべての実施例及び比較例において、材質:SM490YB、板厚:32mmの鋼材10を用いた。   The end portions of the plurality of covering plates 12 were overlapped, and one side portion 11 a 1 perpendicular to the overlapping portion 17 of the plurality of covering plates 12 was resistance seam welded to the steel material 10. The material and thickness of the covering plate 12 and the indirect resistance seam welding conditions are as shown in Table 1 below. In all of the examples and comparative examples, steel material 10 having a material: SM490YB and a plate thickness: 32 mm was used.

表1において、SUS312L(UNS S31254)は、20Cr-18Ni-6Mo-0.8Cu-0.2Nの組成を有するステンレス鋼、SUS836L(UNS S32053)は、23Cr-25Ni-5.5Mo-0.2Nの組成を有するステンレス鋼、UNS N08354は、23Cr-35Ni-7.5Mo-0.2Nの組成を有するステンレス鋼である。なお、すべての実施例及び比較例において、材質:SM490YB、板厚:32mmの鋼材10を用いた。また、端部30Rとは、ローラ電極の周面の全体に半径30mmの円弧部が形成されることを意味する。   In Table 1, SUS312L (UNS S31254) is stainless steel having a composition of 20Cr-18Ni-6Mo-0.8Cu-0.2N, and SUS836L (UNS S32053) is 23Cr-25Ni-5.5Mo-0.2N. Stainless steel having a composition, UNS N08354, is a stainless steel having a composition of 23Cr-35Ni-7.5Mo-0.2N. In all of the examples and comparative examples, steel material 10 having a material: SM490YB and a plate thickness: 32 mm was used. Further, the end portion 30R means that an arc portion having a radius of 30 mm is formed on the entire peripheral surface of the roller electrode.

インダイレクト抵抗シーム溶接後、被覆板12の一辺部11a1の境界を鋼材10に本溶接した。実施例1〜10では、本溶接時に発生する熱で被覆板12が溶損することはなかった。比較例1では、溶接側ローラ電極32aで押さえた際に被覆板12にしわが入ったため溶接できなかった。比較例2では、段差部で溶接が不連続となった。比較例3では、被覆板12が鋼材10に付かなかった。比較例4では、溶接側ローラ電極32aの端部が変形するため良好な溶接が0.5m程度しかできなかった。   After indirect resistance seam welding, the boundary of the one side portion 11a1 of the cover plate 12 was main-welded to the steel material 10. In Examples 1 to 10, the cover plate 12 was not melted by the heat generated during the main welding. In Comparative Example 1, welding was not possible because the cover plate 12 was wrinkled when pressed by the welding side roller electrode 32a. In Comparative Example 2, welding was discontinuous at the stepped portion. In Comparative Example 3, the covering plate 12 was not attached to the steel material 10. In Comparative Example 4, since the end of the welding roller electrode 32a was deformed, good welding could only be performed about 0.5 m.

Figure 2014124643
Figure 2014124643

なお、本発明は上記実施形態に具現化されるのに限定されることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に変更可能である。   In addition, this invention is not limited to being embodied in the said embodiment, It can change into various embodiment in the range which does not change the summary of this invention.

例えば上記実施形態では、複数の被覆板の一辺部は重なり部に垂直であるが、垂直でなくても交差していればよい。   For example, in the above-described embodiment, one side of the plurality of cover plates is perpendicular to the overlapping portion, but may be crossed even if not perpendicular.

構造物たる鋼材の形状は、箱形に形成されてもよい。鋼材が箱形の場合、被覆板が鋼材の角に合わせて90度折り曲げられる。   The shape of the steel material as the structure may be formed in a box shape. When the steel material is box-shaped, the covering plate is bent 90 degrees in accordance with the corners of the steel material.

複数の被覆板の少なくとも一部を塗装してもよい。例えば、ジャケットと鋼管柱の接続部分は、平面と円筒との接続になるので被覆するのが困難である。このような被覆が困難な部分で腐食が緩和される部分には、耐食性金属板を被覆することなく、耐食性金属板にオーバーラップするように塗装するのが望ましい。   You may paint at least one part of several coating plates. For example, the connecting portion between the jacket and the steel pipe column is difficult to cover because it is a connection between the plane and the cylinder. It is desirable to coat such a portion that is difficult to be coated and where corrosion is alleviated without overlapping the corrosion-resistant metal plate so as to overlap the corrosion-resistant metal plate.

10,21…鋼材
12,22…被覆板
17,23…重なり部
11a1,22a…被覆板の重なり部に垂直な一辺部
32a,32b…ローラ電極
34…ローラ電極のテーパ部
35…ローラ電極の平坦部
DESCRIPTION OF SYMBOLS 10, 21 ... Steel materials 12, 22 ... Cover plate 17, 23 ... Overlapping part 11a1, 22a ... One side part 32a, 32b perpendicular | vertical to the overlap part of a cover plate ... Roller electrode 34 ... Tapered part 35 of roller electrode ... Roller electrode flatness Part

上記課題を解決するために、本発明の一態様は、鋼材の表面に板厚0.3〜0.8mmの複数の被覆板を隣り合う被覆板の端部同士が重なり合うように配置し、ローラ電極によって2000〜6000Nの圧力をかけながら前記複数の被覆板の重なり部と交差する一辺部を前記鋼材に前記重なり部を挟んで連続的に抵抗シーム溶接し、その後、前記複数の被覆板の前記一辺部の境界を前記鋼材に、前記一辺部と前記鋼材との間に生ずるすきまを塞ぐように本溶接することを特徴とする鋼材の被覆方法である。 In order to solve the above problems, according to one aspect of the present invention, a plurality of covering plates having a plate thickness of 0.3 to 0.8 mm are arranged on the surface of a steel material so that ends of adjacent covering plates overlap each other, and a roller While applying pressure of 2000 to 6000 N with an electrode, one side that intersects with the overlapping portion of the plurality of covering plates is continuously resistance seam welded to the steel material with the overlapping portion interposed therebetween, and then the plurality of covering plates The steel material covering method is characterized in that main welding is performed on the steel material at a boundary of one side portion so as to close a gap formed between the one side portion and the steel material.

Claims (7)

鋼材の表面に複数の被覆板を隣り合う被覆板の端部同士が重なり合うように配置し、
ローラ電極によって圧力をかけながら前記複数の被覆板の重なり部と交差する一辺部を前記鋼材に前記重なり部を挟んで連続的に抵抗シーム溶接し、
その後、前記複数の被覆板の前記一辺部の境界を前記鋼材に、前記一辺部と前記鋼材との間に生ずるすきまを塞ぐように本溶接することを特徴とする鋼材の被覆方法。
Arrange a plurality of covering plates on the surface of the steel material so that the ends of the adjacent covering plates overlap each other,
While applying pressure by the roller electrode, one side that intersects the overlapping portion of the plurality of covering plates is continuously resistance seam welded across the overlapping portion to the steel material,
Then, the steel material covering method characterized by carrying out main welding to the steel material at the boundary of the one side portion of the plurality of covering plates so as to close a gap formed between the one side portion and the steel material.
前記隣り合う被覆板の重なり合う端部同士、及び下側の被覆板と鋼材とを前記重なり部に沿って連続的に抵抗シーム溶接し、
その後、前記隣り合う被覆板の重なり合う端部同士をこれらの間に生ずるすきまを塞ぐように本溶接することを特徴とする請求項1に記載の鋼材の被覆方法。
The overlapping end portions of the adjacent cover plates, and the lower cover plate and the steel material are continuously resistance seam welded along the overlap portions,
2. The steel material covering method according to claim 1, wherein the welding is performed by welding the overlapping end portions of the adjacent covering plates so as to close a gap formed between them.
ローラ電極の回転軸を含む断面で見たとき、前記ローラ電極の周面には、前記ローラ電極の接触面積を小さくするように円弧部又はテーパ部が設けられることを特徴とする請求項1又は2に記載の鋼材の被覆方法。   The arc surface or the taper portion is provided on the circumferential surface of the roller electrode so as to reduce a contact area of the roller electrode when viewed in a cross section including the rotation axis of the roller electrode. 2. The method for coating a steel material according to 2. 前記ローラ電極の周面には、幅3mm以下の平坦部が設けられることを特徴とする請求項3に記載の鋼材の被覆方法。   The steel material coating method according to claim 3, wherein a flat portion having a width of 3 mm or less is provided on a peripheral surface of the roller electrode. 前記被覆板の板厚は0.3〜0.8mmに設定され、溶接側ローラ電極の加圧力は2000〜6000Nに設定されることを特徴とする請求項3又は4に記載の鋼材の被覆方法。   The steel material coating method according to claim 3 or 4, wherein a thickness of the covering plate is set to 0.3 to 0.8 mm, and a pressing force of the welding side roller electrode is set to 2000 to 6000 N. . 請求項1ないし5のいずれかに記載の鋼材の被覆方法で製造した被覆構造物。   A covering structure manufactured by the steel covering method according to any one of claims 1 to 5. 請求項1ないし5のいずれかに記載の鋼材の被覆方法に用いられる抵抗シーム溶接機。




A resistance seam welder used in the steel coating method according to any one of claims 1 to 5.




JP2012280962A 2012-12-25 2012-12-25 Steel coating method Active JP5293981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012280962A JP5293981B1 (en) 2012-12-25 2012-12-25 Steel coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280962A JP5293981B1 (en) 2012-12-25 2012-12-25 Steel coating method

Publications (2)

Publication Number Publication Date
JP5293981B1 JP5293981B1 (en) 2013-09-18
JP2014124643A true JP2014124643A (en) 2014-07-07

Family

ID=49396741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280962A Active JP5293981B1 (en) 2012-12-25 2012-12-25 Steel coating method

Country Status (1)

Country Link
JP (1) JP5293981B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020569A (en) * 2015-07-10 2017-01-26 平田ネジ株式会社 Blank manufacturing system and method for bimetal screw

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252122A (en) * 2015-11-02 2016-01-20 中铁宝桥(扬州)有限公司 Welding method for high-performance weather-resistant steel which is at Q345qENH-Q420qENH level and used for bridges
CN108412127B (en) * 2018-04-08 2020-09-01 湖北沛函建设有限公司 Machining device and method for heavy-duty assembly type grouting steel pipe superposed column

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869894B2 (en) * 1996-12-17 2007-01-17 新日鉄エンジニアリング株式会社 Method for coating thin metal sheet on metal substrate surface
JP2001096374A (en) * 1999-09-28 2001-04-10 Kyushu Fukugo Zairyo Kenkyusho:Kk Method of joining steel plate and different metal thin sheet
JP4785443B2 (en) * 2004-06-29 2011-10-05 新日鉄エンジニアリング株式会社 Method and apparatus for coating thin metal sheet on thick metal substrate surface
JP4619942B2 (en) * 2005-12-26 2011-01-26 新日鉄エンジニアリング株式会社 Manufacturing method of coated steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020569A (en) * 2015-07-10 2017-01-26 平田ネジ株式会社 Blank manufacturing system and method for bimetal screw

Also Published As

Publication number Publication date
JP5293981B1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
KR102489467B1 (en) Method for welding metal-based materials that cannot be directly welded to each other using spacers
JP4785443B2 (en) Method and apparatus for coating thin metal sheet on thick metal substrate surface
JP5293981B1 (en) Steel coating method
CA2994926A1 (en) Lap welding method of steel sheet and lap weld joint of steel sheet
CA2828707C (en) Multi-part automobile frame component with improved stiffness obtained by location optimized continuous hybrid laser welding
TWI622445B (en) Spot welding method
JP6108017B2 (en) Spot welding method
JP2007275960A (en) Metallic sheet welding method and structure
EP2841232A1 (en) Flux cored wire and manufacturing method thereof and manufacturing device thereof
JP5949539B2 (en) Electrogas arc welding method
JP2005515074A5 (en)
JP6382593B2 (en) Welding method
CN110722252B (en) Method for assembling and positioning composite joint and aluminum alloy light enclosure wall
JP5234529B1 (en) Steel coating structure and coating method
JP2009000728A (en) Method and structure for joining different metals
JP4975949B2 (en) Welding coating method of corrosion-resistant thin metal sheet on thick metal substrate surface
JP4975948B2 (en) Welding coating method of corrosion-resistant thin metal sheet on thick metal substrate surface
JPH11291044A (en) Manufacture of steel pipe pile coated with titanium clad steel
JP2005152993A (en) Corrosion-proof structure using corrosion-resistant thin metallic sheet
JP4802132B2 (en) Anticorrosion steel pipe resistance and method for manufacturing the same
JP3607808B2 (en) Titanium clad steel plate welding method and anticorrosion structure
JP3898393B2 (en) Corrosion protection method for tidal zones of marine steel structures
JP2020044563A (en) Method of manufacturing component for offshore structure, component for offshore structure
JP4577648B2 (en) Method for manufacturing metal-coated steel pipe
JP2007162117A (en) Corrosion protection structure for connected coated steel tube

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5293981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350