JP2014122385A - Forging member and steam turbine rotor using the same, steam turbine moving blade, boiler piping, boiler tube and steam turbine bolt using the same - Google Patents

Forging member and steam turbine rotor using the same, steam turbine moving blade, boiler piping, boiler tube and steam turbine bolt using the same Download PDF

Info

Publication number
JP2014122385A
JP2014122385A JP2012279053A JP2012279053A JP2014122385A JP 2014122385 A JP2014122385 A JP 2014122385A JP 2012279053 A JP2012279053 A JP 2012279053A JP 2012279053 A JP2012279053 A JP 2012279053A JP 2014122385 A JP2014122385 A JP 2014122385A
Authority
JP
Japan
Prior art keywords
mass
steam turbine
same
less
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012279053A
Other languages
Japanese (ja)
Other versions
JP6012454B2 (en
Inventor
Shinya Konno
晋也 今野
Hiroki Kamoshida
宏紀 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012279053A priority Critical patent/JP6012454B2/en
Publication of JP2014122385A publication Critical patent/JP2014122385A/en
Application granted granted Critical
Publication of JP6012454B2 publication Critical patent/JP6012454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large forging member having homogeneity of the grain structure and excellent high-temperature strength.SOLUTION: A forging member comprises 0.005-0.030 mass% C, 0.10 mass% or less Si, 0.10 mass% or less Mn, 15-21 mass% Cr, 25 mass% or less Co and 1.0-1.5 mass% Al, 5.0-17 mass% Mo and W, specified as the formula Mo+0.5W, specified amounts of Ti, Ta and Nb and remaining Ni and unavoidable impurities.

Description

本発明は、鍛造部材及びこれを用いた蒸気タービンロータ、蒸気タービン動翼、ボイラ配管、ボイラチューブ、蒸気タービンボルト等、ガスタービンや蒸気タービンプラント等に用いる高温部品に関する。   The present invention relates to a forged member and a high-temperature component used in a gas turbine, a steam turbine plant, and the like such as a steam turbine rotor, a steam turbine rotor blade, a boiler pipe, a boiler tube, and a steam turbine bolt using the forged member.

蒸気タービンプラントの高温部材は、これまで、鉄鋼材料が用いられてきたが、蒸気温度を向上させることで発電効率を高めることを目的に、高温強度に優れたNi基合金を適用する検討が進められている。   Up to now, steel materials have been used as high-temperature components for steam turbine plants, but studies are underway to apply Ni-based alloys with excellent high-temperature strength for the purpose of increasing power generation efficiency by improving steam temperature. It has been.

Ni基合金は、高温強度に優れているものの、大型部材の製造性が鉄鋼材料と比べて劣ることが問題であり、大型部材の製造性に優れたNi基合金の開発が進められている。大型鋳塊を製造する際に問題となる重力偏析(マクロ偏析)に伴う欠陥の発生は、浮上型偏析加速元素(Al,Ti,W)と沈降型偏析加速元素(Nb,Ta,Mo)とをバランス良く添加すれば抑制できることが明らかとなっており、この知見に基づく合金設計がなされている。   Although Ni-based alloys are excellent in high-temperature strength, the problem is that the productivity of large members is inferior to that of steel materials, and the development of Ni-based alloys that are excellent in the productivity of large members has been underway. Defects associated with gravity segregation (macrosegregation), which is a problem when manufacturing large ingots, are caused by floating segregation acceleration elements (Al, Ti, W) and sedimentation segregation acceleration elements (Nb, Ta, Mo). It has been clarified that the addition can be suppressed in a balanced manner, and an alloy design based on this finding has been made.

偏析特性に優れた合金としては、特許文献1が挙げられる。特許文献1においては、浮上型偏析加速元素(Al,Ti)及び沈降型偏析加速元素(Mo)の添加量がバランスされており、重力偏析が発生せず、Ni基合金としては、大型の鋳塊(850mm以上)の製造が可能である。   Patent document 1 is mentioned as an alloy excellent in the segregation characteristic. In Patent Document 1, the amounts of addition of floating segregation acceleration elements (Al, Ti) and sedimentation segregation acceleration elements (Mo) are balanced, and gravity segregation does not occur. A lump (850 mm or more) can be produced.

国際公開第2009/028671号International Publication No. 2009/028671

特許文献1に記載の合金には、高温強度を高める目的でMoが多く添加されている。しかしながら、Moは凝固の際に液相に濃化するため、凝固が開始するデンドライト中心部とデンドライト境界部とでは、その濃度が異なり、デンドライト境界部の方が、その濃度は高くなる。Moは拡散速度が遅いため、その後、鋳塊を鍛造してもMoの濃度のばらつきは残留する。   In the alloy described in Patent Document 1, a large amount of Mo is added for the purpose of increasing the high-temperature strength. However, since Mo concentrates in the liquid phase during solidification, the concentration is different between the dendrite center portion where the solidification starts and the dendrite boundary portion, and the dendritic boundary portion has a higher concentration. Since Mo has a low diffusion rate, variations in the concentration of Mo remain even after the ingot is forged.

また、特許文献1に記載の合金の場合、Cを多く添加することができるが、Cも凝固の際に液相に濃化するため、凝固が開始するデンドライト中心部とデンドライト境界部とでは、その濃度が異なり、デンドライト境界部の方が、その濃度は高くなる。Cは、Moと比べると拡散速度は速いが、Moと結合し、炭化物を形成すると安定となる。C量がデンドライト境界部でデンドライト中心部よりも濃度が高くなることから、デンドライト中心部よりもデンドライト境界部の方が、炭化物の析出量が多くなる。   Further, in the case of the alloy described in Patent Document 1, a large amount of C can be added. However, since C also concentrates in the liquid phase during solidification, at the dendrite center and the dendrite boundary where solidification starts, The density is different, and the density is higher at the dendrite boundary. C has a faster diffusion rate than Mo, but becomes stable when bonded to Mo and forms carbides. Since the concentration of C is higher at the dendrite boundary than at the center of the dendrite, the amount of carbide precipitated at the dendrite boundary is greater than at the dendrite center.

このように、特許文献1の技術を用いた場合、マクロ偏析は発生しにくいものの、大型鋼塊を作製した際にはMo濃度と炭化物との析出量にばらつきが生じる。デンドライト境界部であった部分ではMo濃度が高いため、デンドライト中心部であった部分と比べて拡散が遅い。また、炭化物の析出量が多いため、鍛造後、再結晶し、結晶粒が成長する際の成長速度が、デンドライト中心部であった部分に比べて遅くなる。   As described above, when the technique of Patent Document 1 is used, macro segregation hardly occurs, but when a large steel ingot is produced, the Mo concentration and the precipitation amount of carbides vary. Since the Mo concentration is high in the portion that is the dendrite boundary portion, the diffusion is slower than the portion that is the dendrite center portion. In addition, since the amount of precipitation of carbide is large, the growth rate when recrystallizing and growing crystal grains after forging is slower than that in the portion that was the center of the dendrite.

これにより、デンドライト中心部であった部分では、結晶粒が大きくなり、混粒組織が形成される。結晶粒が微細な部分では、クリープ強度が弱くなり、クリープ強度が粗粒な部分では疲労強度が弱くなるため、均質な組織と比較して混粒組織では、クリープ強度も疲労強度も低下する。また、Moの濃度が不均質になることにより固溶強化が不均質となり、均質な場合と比較して弱い部分が生じるため、均質な場合と比べて引張強度、疲労強度などが低下する。   Thereby, in the part which was a dendrite center part, a crystal grain becomes large and a mixed grain structure is formed. In the portion where the crystal grains are fine, the creep strength is weak, and in the portion where the creep strength is coarse, the fatigue strength is weak. Therefore, in the mixed grain structure, both the creep strength and the fatigue strength are lowered. Further, since the Mo concentration becomes inhomogeneous, the solid solution strengthening becomes inhomogeneous and a weak portion is generated as compared with the homogeneous case, so that the tensile strength, fatigue strength, etc. are reduced as compared with the homogeneous case.

本発明の目的は、結晶粒組織が均質で、かつ、高温強度が高い大型鍛造部材を得ることにある。   An object of the present invention is to obtain a large forged member having a homogeneous crystal grain structure and high strength at high temperatures.

本発明の鍛造部材は、0.005〜0.030質量%のC、0.10質量%以下のSi、0.10質量%以下のMn、15〜21質量%のCr、25質量%以下のCo、及び1.0〜1.5質量%のAlを含み、式「Mo+0.5W」で規定される量でMo及びWを5.0〜17質量%含み、所定量のTi、Ta及びNbを含み、残部はNi及び不可避的不純物からなる。   The forged member of the present invention comprises 0.005 to 0.030 mass% C, 0.10 mass% or less Si, 0.10 mass% or less Mn, 15 to 21 mass% Cr, or 25 mass% or less. Co and 1.0 to 1.5% by mass of Al, Mo and W in an amount defined by the formula “Mo + 0.5W”, 5.0 to 17% by mass, and predetermined amounts of Ti, Ta and Nb The balance is made of Ni and inevitable impurities.

本発明によれば、結晶粒及び固溶強化量が均一であり、高温強度に優れた大型鍛造品を提供することができる。   According to the present invention, it is possible to provide a large forged product having uniform crystal grains and a solid solution strengthening amount and excellent in high temperature strength.

比較例であるC1で作製した大型鍛造材の組織を示す拡大断面図である。It is an expanded sectional view which shows the structure | tissue of the large sized forging material produced by C1 which is a comparative example. 大型鍛造材における固溶強化元素の分布を示すグラフである。It is a graph which shows distribution of the solid solution strengthening element in a large forged material. 実施例の大型鍛造材のC量と結晶粒度比との関係を示すグラフである。It is a graph which shows the relationship between C amount and the crystal grain size ratio of the large forged material of an Example. 実施例の大型鍛造材のW/Mo比と結晶粒度比との関係を示すグラフである。It is a graph which shows the relationship between W / Mo ratio and the grain size ratio of the large forged material of an Example. 大型鍛造模擬材のクリープ試験結果を示すグラフである。It is a graph which shows the creep test result of a large forge simulation material.

次に示す成分範囲とすることにより、上記の混粒組織及び固溶強化のばらつきを抑制でき、大型の鍛造品でも優れた機械特性が得られる。   By setting it as the component range shown next, the dispersion | variation in said mixed grain structure and solid solution strengthening can be suppressed, and the outstanding mechanical characteristic is acquired also with a large forged product.

特許文献1においては、Cの成分範囲を0.1質量%以下としているが、混粒組織及び固溶強化のばらつきを抑制するためには、0.005〜0.030質量%とすることが望ましい。最も好ましい範囲は、0.005〜0.025質量%である。   In patent document 1, although the component range of C is 0.1 mass% or less, in order to suppress the dispersion | variation in a mixed grain structure and solid solution strengthening, it is set as 0.005-0.030 mass%. desirable. The most preferred range is 0.005 to 0.025 mass%.

Cr量は、耐食性を保つため、15質量%以上添加することが望ましい。しかしながら、添加しすぎると、有害相が析出し、強度特性が悪化することから、21質量%以下とすることが好ましい。すなわち、好ましい範囲は、15質量%〜21質量%である。さらに、最も好ましい範囲は、19質量%〜21質量%である。   The Cr content is preferably added in an amount of 15% by mass or more in order to maintain corrosion resistance. However, if it is added too much, a harmful phase is precipitated and the strength characteristics are deteriorated. That is, a preferable range is 15% by mass to 21% by mass. Furthermore, the most preferable range is 19% by mass to 21% by mass.

Coは、固溶強化元素であり、添加することが好ましい。しかしながら、過剰に添加すると、析出強化相であるγ’相を不安定にするため、25質量%以下(0質量%は含まない。)とすることが望ましい。   Co is a solid solution strengthening element and is preferably added. However, when excessively added, the γ ′ phase, which is a precipitation strengthening phase, becomes unstable, so it is desirable that the amount be 25% by mass or less (excluding 0% by mass).

Mo及びWは、固溶強化元素であり、添加することで高温強度が向上する。しかしながら、添加しすぎると、有害相が析出し、材料を脆化させる。好ましい範囲は、式「Mo+0.5W」で規定される量でMo及びWを5.0〜17質量%である。   Mo and W are solid solution strengthening elements, and the high temperature strength is improved by adding them. However, when it is added too much, a harmful phase precipitates and the material becomes brittle. A preferable range is 5.0 to 17% by mass of Mo and W in an amount defined by the formula “Mo + 0.5W”.

また、Wは、Moとは逆の偏析特性を示し、デンドライト中心部で濃度が高くなり、デンドライト境界部で濃度が低くなる。このため、WとMoとをバランス良く添加すると、Wの濃度が低い部分では、Moの濃度が高くなり、Moの濃度が低い部分では、Wの濃度が高くなる。この結果、固溶強化及び拡散速度が一様になり、混粒組織が抑制できるとともに、固溶強化のばらつきによる強度の低下も抑制できる。このためには、WとMoとの含有量の比であるW/Moを0.5〜1.5とすることが有効である。   W shows segregation characteristics opposite to those of Mo, and the concentration is high at the center of the dendrite and the concentration is low at the dendrite boundary. For this reason, when W and Mo are added in a well-balanced manner, the Mo concentration is high in the portion where the W concentration is low, and the W concentration is high in the portion where the Mo concentration is low. As a result, the solid solution strengthening and the diffusion rate become uniform, the mixed grain structure can be suppressed, and a decrease in strength due to variations in solid solution strengthening can also be suppressed. For this purpose, it is effective to set W / Mo, which is the ratio of the contents of W and Mo, to 0.5 to 1.5.

Al、Ti、Nb及びTaは、γ’相を安定化する元素であるが、添加しすぎると、γ’相が過剰に析出し、延性が低下する。よって、Alの好ましい添加範囲は、1.0〜1.5質量%であり、Tiの好ましい添加範囲は、1.0〜2.0質量%であり、Taの好ましい添加範囲は、0.1〜0.6質量%であり、Nbの好ましい添加範囲は、0.1〜0.6質量%である。TiとTaとNbとの総和である「Ti+Ta+Nb」の最も好ましい範囲は、1.45〜2質量%である。Si及びMnは、材料を脆化させる元素であり、それぞれ、0.1質量%以下とすることが望ましい。   Al, Ti, Nb, and Ta are elements that stabilize the γ 'phase. However, if added too much, the γ' phase is excessively precipitated and ductility is lowered. Therefore, the preferable addition range of Al is 1.0 to 1.5 mass%, the preferable addition range of Ti is 1.0 to 2.0 mass%, and the preferable addition range of Ta is 0.1 It is -0.6 mass%, and the preferable addition range of Nb is 0.1-0.6 mass%. The most preferable range of “Ti + Ta + Nb”, which is the sum of Ti, Ta, and Nb, is 1.45 to 2% by mass. Si and Mn are elements that embrittle the material, and each of them is desirably 0.1% by mass or less.

以下、実施例及び比較例を用いて説明する。   Hereinafter, description will be made using Examples and Comparative Examples.

表1は、供試材の化学成分をまとめて示したものである。   Table 1 summarizes the chemical components of the test materials.

Figure 2014122385
Figure 2014122385

このうち、比較例であるC1及び実施例であるLCW3について、高周波真空溶解及びエレクトロスラグ再溶解により750mm径の鋳塊を作製し、熱間鍛造により300mmφの鍛造素材(約3トン)を作製した。鍛造素材を1150℃で2時間溶体化した後、断面中央部において組織観察を行った。   Among these, for C1 as a comparative example and LCW3 as an example, an ingot having a diameter of 750 mm was produced by high-frequency vacuum melting and electroslag remelting, and a 300 mmφ forging material (about 3 tons) was produced by hot forging. . After the forging material was melted at 1150 ° C. for 2 hours, the structure was observed at the center of the cross section.

図1は、C1の組織を示したものである。   FIG. 1 shows the organization of C1.

本図から、C1においては細粒部と粗粒部とからなる帯状組織が形成されていることがわかる。   From this figure, it can be seen that in C1, a band-like structure composed of a fine grain part and a coarse grain part is formed.

これに対して、LCW3においては、図示していないが、明瞭な帯状組織は観察されなかった。   On the other hand, in the LCW3, although not shown, a clear band structure was not observed.

図2は、断面組織におけるエネルギー分散型X線分析(EDX線分析)の結果を示したものである。横軸は、粗粒部(中央)から細粒部(中央)までの位置を規格化した値を示している。縦軸は、Mo+0.5Wの値、すなわち、質量基準によるMoの含有量とWの含有量の0.5倍とを足した値を示している。   FIG. 2 shows the results of energy dispersive X-ray analysis (EDX-ray analysis) in a cross-sectional structure. The horizontal axis indicates a value obtained by standardizing the position from the coarse grain part (center) to the fine grain part (center). The vertical axis represents a value of Mo + 0.5W, that is, a value obtained by adding the Mo content on the mass basis and 0.5 times the W content.

本図に示すように、比較例(従来例)であるC1の場合、Mo+0.5Wの値が位置によって大きく変動している。言い換えると、粗粒部においては細粒部に比べてMo+0.5Wの値が小さくなっている。これに対して、実施例であるLCW3の場合は、Mo+0.5Wの値が位置によらず、ほぼ一定である。   As shown in the figure, in the case of C1, which is a comparative example (conventional example), the value of Mo + 0.5W varies greatly depending on the position. In other words, the value of Mo + 0.5W is smaller in the coarse grain part than in the fine grain part. On the other hand, in the case of LCW3 which is an example, the value of Mo + 0.5W is almost constant regardless of the position.

この結果から、本発明によれば、組織の均質化及び固溶強化量の均質化が達成できることがわかる。   From this result, it can be seen that according to the present invention, homogenization of the structure and homogenization of the solid solution strengthening amount can be achieved.

次に、横方向一方向凝固炉を用いて、大型鋼塊を模擬した試験材を作製した。模擬材の偏析指数は約10〜1の範囲である。ここで、偏析指数10は1トンクラスの鍛造材を、偏析指数1は10トンクラスの鍛造材を模擬している。偏析指数が約1の試験材を熱間鍛造し、その後、組織観察を実施した。   Next, a test material simulating a large steel ingot was produced using a lateral unidirectional solidification furnace. The segregation index of the simulated material is in the range of about 10-1. Here, the segregation index 10 simulates a 1 ton class forging, and the segregation index 1 simulates a 10 ton class forging. A test material having a segregation index of about 1 was hot forged, and then the structure was observed.

図3は、実施例の大型鍛造材のC量と結晶粒度比との関係を示すグラフである。横軸は、質量基準による炭素の含有量(C量)を示している。縦軸は、粗粒部における粒径と細粒部における粒径との比である結晶粒径比を示している。図中の各データ(黒丸)に対応するように実施例及び比較例の試番が記載してある。   FIG. 3 is a graph showing the relationship between the amount of C and the grain size ratio of the large forged material of the example. The horizontal axis indicates the carbon content (C amount) based on mass. The vertical axis represents the crystal grain size ratio, which is the ratio between the grain size in the coarse grain part and the grain size in the fine grain part. The trial numbers of the examples and comparative examples are described so as to correspond to the respective data (black circles) in the figure.

本図から、C量が小さいほど結晶粒径比が小さくなっていることがわかる。   From this figure, it can be seen that the smaller the amount of C, the smaller the crystal grain size ratio.

C量が多いと著しく混粒となり、結晶粒径比が大きくなる。これに対して、C量が0.030質量%以下の場合、鍛造材全体が均質な組織となり、結晶粒径比は1に近くなる。   When the amount of C is large, it becomes extremely mixed and the crystal grain size ratio increases. On the other hand, when the C content is 0.030% by mass or less, the entire forged material has a homogeneous structure, and the crystal grain size ratio is close to 1.

結晶粒径比が小さいことは、明瞭な帯状組織が観察されない状態に対応している。したがって、C量は、0.030質量%以下であることが望ましく、0.025質量%以下であることが更に望ましい。   A small crystal grain size ratio corresponds to a state where no clear band structure is observed. Therefore, the C content is desirably 0.030% by mass or less, and more desirably 0.025% by mass or less.

図4は、W/Moと結晶粒径比との関係を示したものである。横軸は、W/Moの値、すなわち、質量基準によるWの含有量とMoの含有量との比を示している。縦軸は、結晶粒径比を示している。図中の各データ(黒丸)に対応するように実施例及び比較例の試番が記載してある。   FIG. 4 shows the relationship between W / Mo and the crystal grain size ratio. The horizontal axis shows the value of W / Mo, that is, the ratio between the W content and the Mo content on a mass basis. The vertical axis represents the crystal grain size ratio. The trial numbers of the examples and comparative examples are described so as to correspond to the respective data (black circles) in the figure.

本図から、W/Moが1の場合に結晶粒径比が最も小さくなっていることがわかる。また、W/Moが0.5〜1.5の範囲にある場合、結晶粒径比が3以下となり、比較的均質な組織になることがわかる。   From this figure, it can be seen that when W / Mo is 1, the crystal grain size ratio is the smallest. It can also be seen that when W / Mo is in the range of 0.5 to 1.5, the crystal grain size ratio is 3 or less, resulting in a relatively homogeneous structure.

図5は、大型鋼塊模擬材のクリープ試験結果を示したものである。横軸は、偏析指数を示している。縦軸は、クリープ破断時間を示している。ここで、偏析指数は、(冷却速度)と(凝固速度)1.1との積であり、鍛造材の大きさに対応する指数であって、鍛造材の径が小さくなるほど大きくなる。 FIG. 5 shows the creep test result of the large steel ingot simulation material. The horizontal axis indicates the segregation index. The vertical axis represents the creep rupture time. Here, the segregation index is a product of (cooling rate) and (solidification rate) 1.1, and is an index corresponding to the size of the forging material, and increases as the diameter of the forging material decreases.

本図に示すように、比較例(従来例)であるC3の場合、偏析指数が小さくなる(鍛造材の径が大きくなる)に従って、クリープ破断時間が短くなる。すなわち、クリープ強度が低下する。これに対して、実施例であるLC1及びWLC3の場合は、偏析指数が小さくなっても、クリープ破断時間が短くなることがなく、クリープ強度の低下が軽微である。   As shown in this figure, in the case of C3 which is a comparative example (conventional example), the creep rupture time becomes shorter as the segregation index becomes smaller (the diameter of the forged material becomes larger). That is, the creep strength decreases. On the other hand, in the case of LC1 and WLC3 which are examples, even when the segregation index is small, the creep rupture time is not shortened, and the decrease in creep strength is slight.

以上の結果から、本発明によれば、結晶粒組織が均質で、かつ、高温強度が高い大型鍛造部材を得ることができる。   From the above results, according to the present invention, it is possible to obtain a large forged member having a uniform crystal grain structure and high strength at high temperatures.

Claims (8)

0.005〜0.030質量%のC、0.10質量%以下のSi、0.10質量%以下のMn、15〜21質量%のCr、25質量%以下のCo、及び1.0〜1.5質量%のAlを含み、式「Mo+0.5W」で規定される量でMo及びWを5.0〜17質量%含み、Ti、Ta及びNbの合計含有量が1.45〜2.0質量%であり、残部はNi及び不可避的不純物からなることを特徴とする鍛造部材。   0.005-0.030 mass% C, 0.10 mass% or less Si, 0.10 mass% or less Mn, 15-21 mass% Cr, 25 mass% or less Co, and 1.0- 1.5% by mass of Al, 5.0 to 17% by mass of Mo and W in an amount defined by the formula “Mo + 0.5W”, and the total content of Ti, Ta and Nb is 1.45-2 0.0% by mass, the balance being Ni and inevitable impurities. WとMoとの含有量の比は、質量基準で0.5〜1.5であることを特徴とする請求項1記載の鍛造部材。   The forged member according to claim 1, wherein the content ratio of W and Mo is 0.5 to 1.5 on a mass basis. 0.005〜0.030質量%のC、0.10質量%以下のSi、0.10質量%以下のMn、15〜21質量%のCr、25質量%以下のCo、及び1.0〜1.5質量%のAlを含み、式「Mo+0.5W」で規定される量でMo及びWを5.0〜17質量%含み、1.0〜2.0質量%のTi、0.1〜0.6質量%のTa、及び0.1〜0.6質量%のNbを含み、残部はNi及び不可避的不純物からなり、WとMoとの含有量の比は、質量基準で0.5〜1.5であることを特徴とする鍛造部材。   0.005-0.030 mass% C, 0.10 mass% or less Si, 0.10 mass% or less Mn, 15-21 mass% Cr, 25 mass% or less Co, and 1.0- 1.5% by mass of Al, 5.0 to 17% by mass of Mo and W in an amount specified by the formula “Mo + 0.5W”, 1.0 to 2.0% by mass of Ti, 0.1% It contains ~ 0.6 mass% Ta and 0.1-0.6 mass% Nb, the balance is made of Ni and inevitable impurities, and the content ratio of W and Mo is 0. A forged member characterized by being 5-1.5. 請求項1〜3のいずれか一項に記載の鍛造部材を用いたことを特徴とする蒸気タービンロータ。   The steam turbine rotor using the forged member as described in any one of Claims 1-3. 請求項1〜3のいずれか一項に記載の鍛造部材を用いたことを特徴とする蒸気タービン動翼。   A steam turbine rotor blade comprising the forged member according to claim 1. 請求項1〜3のいずれか一項に記載の鍛造部材を用いたことを特徴とするボイラ配管。   Boiler piping using the forged member according to any one of claims 1 to 3. 請求項1〜3のいずれか一項に記載の鍛造部材を用いたことを特徴とするボイラチューブ。   The boiler tube using the forged member as described in any one of Claims 1-3. 請求項1〜3のいずれか一項に記載の鍛造部材を用いたことを特徴とする蒸気タービンボルト。   A steam turbine bolt using the forged member according to any one of claims 1 to 3.
JP2012279053A 2012-12-21 2012-12-21 Forged member and steam turbine rotor, steam turbine rotor blade, boiler piping, boiler tube and steam turbine bolt using the same Expired - Fee Related JP6012454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279053A JP6012454B2 (en) 2012-12-21 2012-12-21 Forged member and steam turbine rotor, steam turbine rotor blade, boiler piping, boiler tube and steam turbine bolt using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279053A JP6012454B2 (en) 2012-12-21 2012-12-21 Forged member and steam turbine rotor, steam turbine rotor blade, boiler piping, boiler tube and steam turbine bolt using the same

Publications (2)

Publication Number Publication Date
JP2014122385A true JP2014122385A (en) 2014-07-03
JP6012454B2 JP6012454B2 (en) 2016-10-25

Family

ID=51403122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279053A Expired - Fee Related JP6012454B2 (en) 2012-12-21 2012-12-21 Forged member and steam turbine rotor, steam turbine rotor blade, boiler piping, boiler tube and steam turbine bolt using the same

Country Status (1)

Country Link
JP (1) JP6012454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394620A (en) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 Machining and forming process of high-strength nickel-based high-temperature alloy bar
CN111471897A (en) * 2020-05-08 2020-07-31 华能国际电力股份有限公司 Preparation and forming process of high-strength nickel-based high-temperature alloy
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129942A (en) * 1987-11-13 1989-05-23 Daido Steel Co Ltd Ni-based alloy having excellent hot workability
JPH0674224A (en) * 1992-05-21 1994-03-15 Mitsubishi Heavy Ind Ltd High-temperature bolt material
JP2003113434A (en) * 2001-10-04 2003-04-18 Hitachi Metals Ltd Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JP2006070360A (en) * 2004-09-03 2006-03-16 Haynes Internatl Inc Ni-Cr-Co ALLOY FOR ADVANCED GAS TURBINE ENGINE
JP2011084812A (en) * 2009-09-15 2011-04-28 Hitachi Ltd HIGH-STRENGTH Ni-BASED FORGED SUPERALLOY, AND METHOD FOR PRODUCING THE SAME
JP2012036485A (en) * 2010-08-11 2012-02-23 Toshiba Corp Ni-BASED ALLOY FOR FORGED PART IN STEAM-TURBINE AND FORGED PART IN STEAM-TURBINE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129942A (en) * 1987-11-13 1989-05-23 Daido Steel Co Ltd Ni-based alloy having excellent hot workability
JPH0674224A (en) * 1992-05-21 1994-03-15 Mitsubishi Heavy Ind Ltd High-temperature bolt material
JP2003113434A (en) * 2001-10-04 2003-04-18 Hitachi Metals Ltd Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JP2006070360A (en) * 2004-09-03 2006-03-16 Haynes Internatl Inc Ni-Cr-Co ALLOY FOR ADVANCED GAS TURBINE ENGINE
JP2011084812A (en) * 2009-09-15 2011-04-28 Hitachi Ltd HIGH-STRENGTH Ni-BASED FORGED SUPERALLOY, AND METHOD FOR PRODUCING THE SAME
JP2012036485A (en) * 2010-08-11 2012-02-23 Toshiba Corp Ni-BASED ALLOY FOR FORGED PART IN STEAM-TURBINE AND FORGED PART IN STEAM-TURBINE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
CN111394620A (en) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 Machining and forming process of high-strength nickel-based high-temperature alloy bar
CN111471897A (en) * 2020-05-08 2020-07-31 华能国际电力股份有限公司 Preparation and forming process of high-strength nickel-based high-temperature alloy

Also Published As

Publication number Publication date
JP6012454B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
US8864919B2 (en) Nickel based forged alloy, gas turbine member using said alloy and gas turbine using said member
JP4261562B2 (en) Ni-Fe based forged superalloy excellent in high temperature strength and high temperature ductility, its manufacturing method, and steam turbine rotor
JP2017075403A (en) Nickel-based heat-resistant superalloy
JP5500452B2 (en) Ni-based alloy manufacturing method and Ni-based alloy
JPWO2018151222A1 (en) Ni-base heat-resistant alloy and method for producing the same
JP5995158B2 (en) Ni-base superalloys
CN102625856A (en) Nickel-based superalloy and parts made from said superalloy
JP4409409B2 (en) Ni-Fe base superalloy, method for producing the same, and gas turbine
AU2017200656A1 (en) Ni-based superalloy for hot forging
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP2005002929A (en) Steam turbine rotor and steam turbine plant
JP6012454B2 (en) Forged member and steam turbine rotor, steam turbine rotor blade, boiler piping, boiler tube and steam turbine bolt using the same
JP6068935B2 (en) Ni-base casting alloy and steam turbine casting member using the same
CA2955322C (en) Ni-based superalloy for hot forging
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5981250B2 (en) Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component
WO2011138952A1 (en) Heat-resistant nickel-based superalloy containing annealing twins and heat-resistant superalloy member
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
JP6419102B2 (en) Ni-base superalloy and method for producing Ni-base superalloy
JP6213185B2 (en) Nickel base alloy
JP2014058702A (en) Ni BASED ALLOY FOR CASTING AND TURBINE CASTING COMPONENT
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP2015086432A (en) Austenitic heat resistant steel and turbine component
Yoo et al. Correlation of the microstructural degradation and mechanical strength of Ni-based superalloy after thermal exposure
JP6173822B2 (en) Austenitic heat resistant steel and turbine parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees