JP2014121000A - Transmission device and transmission system - Google Patents

Transmission device and transmission system Download PDF

Info

Publication number
JP2014121000A
JP2014121000A JP2012275874A JP2012275874A JP2014121000A JP 2014121000 A JP2014121000 A JP 2014121000A JP 2012275874 A JP2012275874 A JP 2012275874A JP 2012275874 A JP2012275874 A JP 2012275874A JP 2014121000 A JP2014121000 A JP 2014121000A
Authority
JP
Japan
Prior art keywords
circuit
transmission
quality
control unit
voltage control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275874A
Other languages
Japanese (ja)
Other versions
JP6184092B2 (en
Inventor
Tomoyuki Nakata
友幸 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012275874A priority Critical patent/JP6184092B2/en
Publication of JP2014121000A publication Critical patent/JP2014121000A/en
Application granted granted Critical
Publication of JP6184092B2 publication Critical patent/JP6184092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Communication Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement reduction in power consumption regardless of the magnitude of a PAR.SOLUTION: A transmission device comprises: a reception unit 11 including a reception circuit 3 for converting a received optical signal to an electric signal and a voltage control unit 4 for controlling drive voltage of the reception circuit 3; a BER monitor 5 for monitoring quality of the electric signal converted by the reception circuit 3; and an overall control circuit 9 for controlling the voltage control unit 4 on the basis of a result of the monitoring by the BER monitor 5. The overall control circuit 9 controls the voltage control unit 4 so as to reduce a power consumption amount within a range where the quality monitored by the BER monitor 5 keeps the required quality.

Description

この発明は、伝送装置の低消費電力化に関するものであり、特に信号の品質をモニタリングし、デバイス、制御回路への印加電圧を制御することにより、必要性能を確保しつつ、低消費電力化を実現する伝送装置および伝送システムに関するものである。   The present invention relates to a reduction in power consumption of a transmission apparatus, and in particular, by monitoring signal quality and controlling a voltage applied to a device and a control circuit, the required performance is ensured while reducing power consumption. The present invention relates to a transmission apparatus and a transmission system to be realized.

インターネット、携帯電話/スマートフォンの普及に伴い、通信ネットワークは社会インフラとしての重要性を高めている。また、通信ネットワークの大容量化が加速度的に進んでいるため、伝送装置の消費電力の抑制が重要な課題となっている。   With the spread of the Internet and mobile phones / smartphones, communication networks are becoming increasingly important as social infrastructure. In addition, since the increase in capacity of communication networks is accelerating, suppression of power consumption of transmission devices is an important issue.

これまでも、一部の伝送装置では不要時の電源供給を制限したり、待機電力を低下したりする方策がとられてきた。無線伝送装置では、トラフィック量に応じて伝送速度や伝送方式を最適化することで電力増加を抑圧する技術も開発されている。一方、バックボーンネットワークに用いられる光伝送装置では、超高速化することで伝送ビットあたりの消費電力を低下するアプローチが主流であり、伝送環境、伝送性能に応じて装置の消費電力を最適化するアプローチは殆ど実用化されていない。   In the past, some transmission devices have taken measures to limit power supply when not needed or to reduce standby power. In the wireless transmission device, a technology for suppressing an increase in power by optimizing a transmission rate and a transmission method according to a traffic amount has been developed. On the other hand, for optical transmission equipment used in backbone networks, approaches that reduce power consumption per transmission bit by increasing the speed are the mainstream, and approaches that optimize equipment power consumption according to the transmission environment and transmission performance Is not practically used.

また、伝送装置の電源回路の最適制御方法に関しては、例えば特許文献1に開示される技術が知られている。
図5は特許文献1に開示された従来の伝送装置の構成を示す図である。この特許文献1には、伝送路回路から出力する信号の振幅に基づいて電源電圧を制御することにより、高い電力効率を得る方式が示されている。詳細を以下に説明する。
For example, a technique disclosed in Patent Document 1 is known as an optimal control method for a power supply circuit of a transmission apparatus.
FIG. 5 is a diagram illustrating a configuration of a conventional transmission device disclosed in Patent Document 1. In FIG. Japanese Patent Application Laid-Open No. H10-228688 discloses a method of obtaining high power efficiency by controlling a power supply voltage based on the amplitude of a signal output from a transmission line circuit. Details will be described below.

図5に示す伝送装置は、送信データをシリアルパラレル変換するS/P変換部111と、キャリアマッパ112と、周波数領域のデータを時間領域信号に変換するIFFT変換部121と、IFFT変換部121からのデータを内部バッファに保存し、順に出力するP/S変換部122と、差動アナログ信号を出力するDA変換器123と、BPF(バンドパスフィルタ)124と、伝送路駆動回路(ドライバ)125と、ドライバ送出抵抗126,126と、トランス127と、伝送路128とから構成されている。ドライバ用電源ユニット131は、電源制御部141および電源回路142から構成されている。この信号伝送装置では、DMT(Discrete Multi Tone)のように、瞬間最大出力電圧と平均出力電圧との比率PAR(Peak Average Ratio)が極めて大きい場合、出力電圧が低いときにはドライバの駆動電圧を下げ、出力電圧が高いときにはドライバの駆動電圧を上げるという制御を行うことにより、電力効率を上げている。具体的には、受信信号をIFFT変換部121で1シンボル分の時間領域データに変換し、変換されたデータ列をP/S変換部122の内臓バッファで蓄積する間に、電源制御部141が該データ列をドライバ125より出力するのに必要な最低電圧に設定を行う。 The transmission apparatus shown in FIG. 5 includes an S / P converter 111 for serial / parallel conversion of transmission data, a carrier mapper 112, an IFFT converter 121 for converting frequency domain data into a time domain signal, and an IFFT converter 121. Are stored in the internal buffer, and sequentially output, a P / S converter 122, a DA converter 123 that outputs a differential analog signal, a BPF (bandpass filter) 124, and a transmission line driver circuit (driver) 125. And driver sending resistors 126 1 and 126 2 , a transformer 127, and a transmission path 128. The driver power supply unit 131 includes a power supply control unit 141 and a power supply circuit 142. In this signal transmission device, when the ratio PAR (Peak Average Ratio) between the instantaneous maximum output voltage and the average output voltage is extremely large, such as DMT (Discrete Multi Tone), the drive voltage of the driver is lowered when the output voltage is low, When the output voltage is high, the power efficiency is increased by controlling the drive voltage of the driver. Specifically, the power supply control unit 141 converts the received signal into time-domain data for one symbol by the IFFT conversion unit 121 and accumulates the converted data string in the built-in buffer of the P / S conversion unit 122. The minimum voltage necessary for outputting the data string from the driver 125 is set.

特願2000−619891号公報Japanese Patent Application No. 2000-619891

上記特許文献1に開示された伝送装置では、PARが極めて大きい場合は、電力効率を上げることができる。しかしながら、PARが小さい場合などには電力効率を上げることはできず、消費電力を下げられないという課題がある。そして、伝送ネットワークや装置の環境、達成されている伝送性能に応じて消費電力を最小化することはできず、十分な省電力化が実現されないという課題がある。   In the transmission apparatus disclosed in Patent Document 1, when the PAR is extremely large, the power efficiency can be increased. However, when the PAR is small, there is a problem that the power efficiency cannot be increased and the power consumption cannot be reduced. In addition, there is a problem that power consumption cannot be minimized according to the environment of the transmission network or device and the transmission performance achieved, and sufficient power saving cannot be realized.

この発明は、上記のような課題を解決するためになされたもので、PARが大きい場合、小さい場合に関わらず消費電力低下を実現する伝送装置および伝送システムを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a transmission apparatus and a transmission system that realizes a reduction in power consumption regardless of whether the PAR is large or small.

この発明に係る伝送装置は、受信した光信号を電気信号に変換する受信回路、および、受信回路の駆動電圧を制御する受信回路電圧制御部を有する受信部と、受信回路により変換された電気信号の品質をモニタする品質モニタ手段と、品質モニタ手段によるモニタ結果に基づいて、受信回路電圧制御部を制御する全体制御回路とを備え、全体制御回路は、品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電量を低下させるよう受信回路電圧制御部を制御するものである。   A transmission apparatus according to the present invention includes a receiving circuit that converts a received optical signal into an electric signal, a receiving unit that has a receiving circuit voltage control unit that controls a driving voltage of the receiving circuit, and an electric signal converted by the receiving circuit. Quality monitoring means for monitoring the quality of the receiver and an overall control circuit for controlling the receiving circuit voltage control section based on the monitoring result by the quality monitoring means. The overall control circuit requires the quality monitored by the quality monitoring means. The receiving circuit voltage control unit is controlled so as to reduce the power consumption within a range in which the quality of the signal is maintained.

また、この発明に係る伝送装置は、電気信号を光信号に変換して送信する送信回路、および、送信回路の駆動電圧を制御する送信回路電圧制御部を有する送信部と、送信回路からの光信号を受信した伝送装置において、当該光信号が電気信号に変換されてモニタされた当該電気信号の品質を、モニタする品質モニタ手段と、品質モニタ手段によるモニタ結果に基づいて、送信回路電圧制御部を制御する全体制御回路とを備え、全体制御回路は、品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電力を低下するよう送信回路電圧制御部を制御するものである。   In addition, a transmission device according to the present invention includes a transmission circuit that converts an electrical signal into an optical signal and transmits the signal, a transmission unit that includes a transmission circuit voltage control unit that controls a drive voltage of the transmission circuit, and a light from the transmission circuit. In the transmission apparatus that has received the signal, the quality of the electrical signal monitored by converting the optical signal into an electrical signal, and the transmission circuit voltage control unit based on the monitoring result by the quality monitoring unit The overall control circuit controls the transmission circuit voltage control unit so as to reduce the power consumption within a range in which the quality monitored by the quality monitoring means maintains the required quality.

また、この発明に係る伝送装置は、受信した光信号を電気信号に変換する受信回路を有する受信部と、電気信号を光信号に変換して送信する送信回路を有する送信部と、受信回路により変換された電気信号の品質、および、送信回路からの光信号を受信した伝送装置において、当該光信号が電気信号に変換されてモニタされた当該電気信号の品質を、モニタする品質モニタ手段と、受信部および送信部の両方の機能実現に必要な共通回路と、共通回路の駆動電圧を制御する共通回路電圧制御部と、品質モニタ手段によるモニタ結果に基づいて、共通回路電圧制御部を制御する全体制御回路とを備え、全体制御回路は、品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電力を低下するよう共通回路電圧制御部を制御するものである。   The transmission apparatus according to the present invention includes a receiving unit having a receiving circuit that converts a received optical signal into an electric signal, a transmitting unit having a transmitting circuit that converts an electric signal into an optical signal, and a receiving circuit. Quality monitoring means for monitoring the quality of the converted electrical signal and the quality of the electrical signal monitored by converting the optical signal into an electrical signal in the transmission apparatus that has received the optical signal from the transmission circuit; Controls the common circuit voltage control section based on the common circuit necessary for realizing the functions of both the reception section and the transmission section, the common circuit voltage control section for controlling the driving voltage of the common circuit, and the monitoring result by the quality monitoring means. An overall control circuit, and the overall control circuit controls the common circuit voltage control unit so as to reduce power consumption within a range in which the quality monitored by the quality monitoring means maintains the required quality. It is intended.

この発明によれば、上記のように構成したので、PARが大きい場合、小さい場合に関わらず消費電力低下を実現できるという効果がある。   According to this invention, since it comprised as mentioned above, there exists an effect that a power consumption fall is realizable irrespective of the case where it is small when PAR is large.

本発明の実施の形態1に係る伝送装置の構成を示す図である。It is a figure which shows the structure of the transmission apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る伝送装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the transmission apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る伝送システムの構成を示す図である。It is a figure which shows the structure of the transmission system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る伝送システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the transmission system which concerns on Embodiment 2 of this invention. 従来の伝送装置の構成を示す図である。It is a figure which shows the structure of the conventional transmission apparatus.

以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1は本発明の実施の形態1に係る伝送装置の構成を示す図である。
本発明による伝送装置は、図1に示すように、送信回路1、電圧制御部(送信回路電圧制御部)2、受信回路3、電圧制御部(受信回路電圧制御部)4、BERモニタ(品質モニタ手段)5、対向BERモニタ(品質モニタ手段)6、共通回路7、電圧制御部8および全体制御回路9から構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a transmission apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the transmission apparatus according to the present invention includes a transmission circuit 1, a voltage control unit (transmission circuit voltage control unit) 2, a reception circuit 3, a voltage control unit (reception circuit voltage control unit) 4, a BER monitor (quality). Monitor means) 5, counter BER monitor (quality monitor means) 6, common circuit 7, voltage control unit 8, and overall control circuit 9.

送信回路1は、電気信号を光信号に変換して、当該光信号を対向する不図示の伝送装置(対向装置)に送信するものである。
電圧制御部2は、送信回路1の駆動電圧を制御するものである。
この送信回路1および電圧制御部2は送信部10を構成する。
The transmission circuit 1 converts an electrical signal into an optical signal, and transmits the optical signal to a transmission device (opposite device) (not shown) that faces the optical signal.
The voltage control unit 2 controls the drive voltage of the transmission circuit 1.
The transmission circuit 1 and the voltage control unit 2 constitute a transmission unit 10.

受信回路3は、対向装置から光信号を受信し、当該光信号を電気信号に変換するものである。
電圧制御部4は、受信回路3の駆動電圧を制御するものである。
この受信回路3および電圧制御部4は受信部11を構成する。
The receiving circuit 3 receives an optical signal from the opposing device and converts the optical signal into an electric signal.
The voltage control unit 4 controls the drive voltage of the receiving circuit 3.
The receiving circuit 3 and the voltage control unit 4 constitute a receiving unit 11.

BERモニタ5は、受信回路3により変換された電気信号の品質(例えば、符号誤り率(BER:Bit Error Rate)や符号誤り数)を測定するものである。
対向BERモニタ6は、送信回路1からの光信号を受信した伝送装置(対向装置)において、当該光信号が電気信号に変換されてモニタされた当該電気信号の品質を、モニタするものである。この際、対向BERモニタ6は、対向装置から送信された品質情報(BER)をモニタする。
The BER monitor 5 measures the quality of the electrical signal converted by the receiving circuit 3 (for example, a bit error rate (BER) or the number of code errors).
The counter BER monitor 6 monitors the quality of the electrical signal monitored by converting the optical signal into an electrical signal in the transmission apparatus (opposite apparatus) that has received the optical signal from the transmission circuit 1. At this time, the opposite BER monitor 6 monitors quality information (BER) transmitted from the opposite device.

共通回路7は、送信部10および受信部11の両方の機能を実現するために必要な回路である。
電圧制御部8は、共通回路7の駆動電圧を制御するものである。
The common circuit 7 is a circuit necessary for realizing the functions of both the transmission unit 10 and the reception unit 11.
The voltage control unit 8 controls the drive voltage of the common circuit 7.

全体制御回路9は、伝送装置全体を制御するものである。この際、全体制御回路9は、BERモニタ5によるモニタ結果に基づいて、所要の品質(BER)を維持する範囲で消費電力を低下するよう電圧制御部4を制御する。また、対向BERモニタ6によるモニタ結果に基づいて、所要の品質(BER)を維持する範囲で消費電力を低下するよう電圧制御部2を制御する。さらに、BERモニタ5および対向BERモニタ6によるモニタ結果に基づいて、所要の品質(BER)を維持する範囲で消費電力を低下するよう電圧制御部8を制御する。   The overall control circuit 9 controls the entire transmission apparatus. At this time, the overall control circuit 9 controls the voltage control unit 4 based on the monitoring result by the BER monitor 5 so as to reduce the power consumption within a range in which the required quality (BER) is maintained. Moreover, based on the monitoring result by the opposing BER monitor 6, the voltage control part 2 is controlled so that power consumption may be reduced in the range which maintains required quality (BER). Furthermore, based on the monitoring results from the BER monitor 5 and the counter BER monitor 6, the voltage control unit 8 is controlled so as to reduce the power consumption within a range in which the required quality (BER) is maintained.

次に、上記のように構成された伝送装置の動作について、図2を参照しながら説明する。まず、受信部11の低消費電力化を実現するための制御方法について説明を行う。
受信部11では、対向する伝送装置からの光信号を受信し、受信回路3にて光電気変換を行い、当該光信号を電気信号に変換する。次いで、BERモニタ5は、変換された電気信号の品質をモニタするためにBER測定を行う。次いで、全体制御回路9は、BERモニタ5により測定されたBERの値を入力とし、該当回路(受信回路3)の電圧制御部(電圧制御部4)を制御する。以下、全体制御回路9の動作を、図2を参照しながら説明する。
Next, the operation of the transmission apparatus configured as described above will be described with reference to FIG. First, a control method for realizing low power consumption of the receiving unit 11 will be described.
The receiving unit 11 receives an optical signal from the opposing transmission device, performs photoelectric conversion in the receiving circuit 3, and converts the optical signal into an electrical signal. Next, the BER monitor 5 performs BER measurement to monitor the quality of the converted electrical signal. Next, the overall control circuit 9 receives the value of the BER measured by the BER monitor 5 and controls the voltage control unit (voltage control unit 4) of the corresponding circuit (reception circuit 3). Hereinafter, the operation of the overall control circuit 9 will be described with reference to FIG.

全体制御回路9の動作では、図2に示すように、まず、BERモニタ(BERモニタ5、対向BERモニタ6)により測定されたBERの値(BER0)をリファレンスBER値として受取る(ステップST21)。   In the operation of the overall control circuit 9, as shown in FIG. 2, first, a BER value (BER0) measured by a BER monitor (BER monitor 5, counter BER monitor 6) is received as a reference BER value (step ST21).

BER値(BER0)を受け取った後に、該当回路(受信回路3、送信回路1、共通回路7)の電圧制御部(電圧制御部4、電圧制御部2、電圧制御部8)に対して、該当回路の駆動電圧を下げる命令を出す(ステップST22)。   After receiving the BER value (BER0), the voltage control unit (voltage control unit 4, voltage control unit 2, voltage control unit 8) of the corresponding circuit (reception circuit 3, transmission circuit 1, common circuit 7) A command for lowering the drive voltage of the circuit is issued (step ST22).

該当回路の駆動電圧を下げた後、BERモニタにより測定されたBERの値(BER1)を現状BER値として受取る(ステップST23)。   After the drive voltage of the corresponding circuit is lowered, the BER value (BER1) measured by the BER monitor is received as the current BER value (step ST23).

次いで、リファレンスBER値(BER0)と現状BER値(BER1)とを比較し、BERの変動幅が閾値以内かどうかを確認する(ステップST24)。   Next, the reference BER value (BER0) is compared with the current BER value (BER1) to check whether or not the fluctuation range of the BER is within a threshold (step ST24).

このステップST24においてBERの変動幅が閾値以内である場合には、さらに駆動電圧を下げるために、該当回路の電源制御部に対して駆動電圧を下げる命令を出す(ステップST25)。その後、シーケンスはステップST23に戻る。   If the fluctuation range of the BER is within the threshold in step ST24, a command to lower the drive voltage is issued to the power supply control unit of the corresponding circuit in order to further lower the drive voltage (step ST25). Thereafter, the sequence returns to step ST23.

一方、ステップST24においてBERの変動幅が閾値を超えている場合には、下げすぎた駆動電圧を元に戻すために、該当回路に設定している駆動電圧を1つ前に設定していた駆動電圧になるよう、該当回路の電源制御部に対して駆動電圧を上げる設定を行い、設定を完了する(ステップST26,27)。   On the other hand, if the fluctuation range of BER exceeds the threshold value in step ST24, the drive voltage set to the previous circuit is set to the previous drive voltage in order to restore the drive voltage that has been lowered too much. The setting is made to increase the drive voltage to the power supply control unit of the corresponding circuit so that the voltage becomes the voltage, and the setting is completed (steps ST26 and 27).

次に、送信部10の低消費電力化を実現するための制御方法について説明を行う。
送信部10では、送信回路1により対向装置に対し光信号を送信し、当該対向装置でBER測定が行われる。次いで、低消費電力化を行う伝送装置(自機)は、対向装置でBER測定された結果(品質情報)を受信し、対向BERモニタ6にてモニタした後、全体制御回路9に入力する。次いで、全体制御回路9は、対向BERモニタ6により測定されたBERの値を入力とし、該当回路(送信回路1)の電圧制御部(電圧制御部2)を制御する。この際の全体制御回路9の動作は、受信部11の消費電力化を実現する際の動作と同様であり、図2のフローに従って動作する。
Next, a control method for realizing low power consumption of the transmission unit 10 will be described.
In the transmission unit 10, the transmission circuit 1 transmits an optical signal to the opposite device, and BER measurement is performed in the opposite device. Next, the transmission device (own device) that reduces power consumption receives the result (quality information) measured by the opposite device, monitors it with the opposite BER monitor 6, and then inputs the result to the overall control circuit 9. Next, the overall control circuit 9 receives the BER value measured by the counter BER monitor 6 as input, and controls the voltage control unit (voltage control unit 2) of the corresponding circuit (transmission circuit 1). The operation of the overall control circuit 9 at this time is the same as the operation when realizing the power consumption of the receiving unit 11, and operates according to the flow of FIG.

最後に、共通回路7の低消費電力化を実現するための制御方法について説明を行う。
共通回路7は送信部10および受信部11の両方に影響を与える回路であるため、共通回路7の駆動電圧を変化させると、伝送装置の送受に影響を与える。例えばエラー訂正符号の付加、エラー訂正を行っているFEC−LSIなどがそれに該当する。
共通回路7の低消費電力化を実現するための制御方法は、受信部11の低消費電力化を実現する方法、送信部10の低消費電力化を実現する方法と同様であり、BERモニタ5により測定されたBERの値および対向BERモニタ6により測定されたBERの値の両方より、全体制御回路9が該当回路(共通回路7)の電圧制御部(電圧制御部8)を制御することで行う。この際、共通回路7の駆動電圧を変化させることにより、送信側変化の結果得られるBER値、受信側変化の結果得られるBER値の2種類のBER値が得られるが、2つのBER値の内、よりBER値の悪い方と電圧変更前のBER値を比較することにより、図2のフローに従い、共通部分の電圧制御を行うことが可能である。
Finally, a control method for realizing low power consumption of the common circuit 7 will be described.
Since the common circuit 7 is a circuit that affects both the transmission unit 10 and the reception unit 11, changing the drive voltage of the common circuit 7 affects transmission / reception of the transmission apparatus. For example, FEC-LSI that performs error correction code addition and error correction corresponds to this.
The control method for realizing the low power consumption of the common circuit 7 is the same as the method for realizing the low power consumption of the receiving unit 11 and the method of realizing the low power consumption of the transmitting unit 10, and the BER monitor 5 The overall control circuit 9 controls the voltage control unit (voltage control unit 8) of the corresponding circuit (common circuit 7) based on both the BER value measured by the BER and the BER value measured by the counter BER monitor 6. Do. At this time, by changing the driving voltage of the common circuit 7, two types of BER values, that is, a BER value obtained as a result of the change on the transmission side and a BER value obtained as a result of the change on the reception side are obtained. By comparing the BER value with a worse BER value with the BER value before the voltage change, it is possible to perform voltage control of the common portion according to the flow of FIG.

以上のように、この実施の形態1によれば、BERモニタ5または/および対向BERモニタ6によりBER測定を行い、その結果に基づいて送信部10、受信部11、共通回路7の低消費電力化を行うように構成したので、PARが大きい場合、小さい場合に関わらず消費電力低下を実現することができる。   As described above, according to the first embodiment, the BER measurement is performed by the BER monitor 5 and / or the counter BER monitor 6, and the low power consumption of the transmission unit 10, the reception unit 11, and the common circuit 7 is based on the result. Therefore, the power consumption can be reduced regardless of whether the PAR is large or small.

実施の形態2.
図3は本発明の実施の形態2に係る伝送システムの構成を示す図である。この図3に示す伝送装置Aおよび伝送装置Bは、図1に示す実施の形態1に係る伝送装置の構成と同一である。なお、伝送装置Aの内部構成については符号に接尾記号aを付し、伝送装置Bの内部構成については符号に接尾記号bを付している。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of a transmission system according to Embodiment 2 of the present invention. Transmission apparatus A and transmission apparatus B shown in FIG. 3 have the same configuration as that of the transmission apparatus according to the first embodiment shown in FIG. Note that the suffix “a” is attached to the reference numeral for the internal configuration of the transmission apparatus A, and the suffix “b” is attached to the reference sign for the internal configuration of the transmission apparatus B.

図3に示すような2つの伝送装置A,Bが対向した伝送システムにおいて、それぞれの伝送装置A,Bが独自のタイミングで低消費電力化を実現する制御を開始すると、どちらの伝送装置A,Bも正しく低消費電力化を実現するための制御を行えない。そこで、両伝送装置A,Bの低消費電力化の制御を実現するため、それぞれの伝送装置A,Bに図4に示すシーケンスを持たせ制御を行う。   In the transmission system in which two transmission apparatuses A and B face each other as shown in FIG. 3, when each transmission apparatus A and B starts control for realizing low power consumption at a unique timing, which transmission apparatus A and B B cannot correctly perform control for realizing low power consumption. Therefore, in order to realize the control for reducing the power consumption of both transmission apparatuses A and B, the transmission apparatuses A and B have the sequence shown in FIG.

まず、伝送装置Aの全体制御回路9aは、図2に示すフローに従い、受信部11a、送信部10a、共通回路7a部分の低消費電力化の制御を実施する(ステップST41〜43)。なお各ステップST41〜43は、同時に制御を開始すると、最適電圧に調整できないため、1つの処理が完了した後に次の処理に移り、同時に制御が動き出さないように制御する。   First, the overall control circuit 9a of the transmission apparatus A performs control for reducing power consumption of the receiving unit 11a, the transmitting unit 10a, and the common circuit 7a according to the flow shown in FIG. 2 (steps ST41 to ST43). In addition, since each step ST41-43 cannot adjust to an optimal voltage if control is started simultaneously, it will control to the next process after one process is completed, and control will not start simultaneously.

次いで、伝送装置Bは、伝送装置A側の制御フローが完了したかどうかを確認する(ステップST44)。すなわち、伝送装置Aにおいて低消費電力化の制御が完了した後、伝送装置Bに対して制御が完了したことを示す信号を出力し、この信号を伝送装置Bが受け取ることで伝送装置A側の制御フローの完了を確認する。
なお、伝送装置A側の低消費電力化のための制御が完了するまでは、伝送装置Bは低消費電力化のための制御を開始しない。そして、伝送装置Bでは、伝送装置Aからの信号のBER測定を実施して、その測定結果を伝送装置Aに送信する動作、および、伝送装置Aにて受信側制御を行えるよう、伝送装置Aに対し主信号を送信する動作を行う。
Next, the transmission apparatus B confirms whether or not the control flow on the transmission apparatus A side is completed (step ST44). That is, after the transmission apparatus A completes the control for reducing the power consumption, a signal indicating that the control is completed is output to the transmission apparatus B, and the transmission apparatus B receives the signal to transmit the signal on the transmission apparatus A side. Confirm the completion of the control flow.
Note that the transmission apparatus B does not start the control for reducing the power consumption until the control for reducing the power consumption on the transmission apparatus A side is completed. Then, the transmission apparatus B performs the BER measurement of the signal from the transmission apparatus A, transmits the measurement result to the transmission apparatus A, and allows the transmission apparatus A to perform reception side control. The main signal is transmitted.

このステップST44において伝送装置Aが低消費電力化のための制御を完了した場合には、伝送装置Bの全体制御回路9bは、伝送装置A側と同様に、図2に示すフローに従い、受信部11b、送信部10b、共通回路7b部分の低消費電力化の制御を実施する(ステップST45〜47)。
このとき、伝送装置B側の低消費電力化のための制御が完了するまでは、伝送装置Aは低消費電力化のための制御を開始しない。そして、伝送装置Aでは、伝送装置Bからの信号のBER測定を実施し、その測定結果を伝送装置Bに送信する動作、および、伝送装置Bにて受信側制御を行えるよう、伝送装置Bに対し主信号を送信する動作を行う。
When the transmission apparatus A completes the control for reducing power consumption in step ST44, the overall control circuit 9b of the transmission apparatus B follows the flow shown in FIG. 11b, the transmitter 10b, and the common circuit 7b are controlled to reduce power consumption (steps ST45 to 47).
At this time, the transmission apparatus A does not start the control for reducing the power consumption until the control for reducing the power consumption on the transmission apparatus B side is completed. Then, the transmission apparatus A performs the BER measurement of the signal from the transmission apparatus B, transmits the measurement result to the transmission apparatus B, and allows the transmission apparatus B to perform reception-side control. The main signal is transmitted.

以上のように、この実施の形態2によれば、伝送装置A,Bが対向する伝送システムにおいて、各伝送装置A,Bの全体制御回路9a,9bが電圧制御を当該伝送装置A,B間でシーケンシャルに実施するように構成したので、両伝送装置A,Bにおいて正しく低消費電力化を実現することができる。   As described above, according to the second embodiment, in the transmission system in which the transmission apparatuses A and B face each other, the overall control circuits 9a and 9b of the transmission apparatuses A and B perform voltage control between the transmission apparatuses A and B. Therefore, both transmission apparatuses A and B can correctly realize low power consumption.

なお、全体制御回路9による電圧制御は、任意のタイミング(初めの1回だけや、手動で制御し直すなど)で行うことが可能である。また、一定周期毎に制御を行うことも可能であり、一定周期毎に制御を行うことにより、伝送路の状態変化に追従することも可能となる。   The voltage control by the overall control circuit 9 can be performed at an arbitrary timing (for example, only once at the beginning, or manually controlled again). Further, it is possible to perform control at regular intervals, and it is possible to follow changes in the state of the transmission path by performing control at regular intervals.

また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .

1,1a,1b 送信回路、2,2a,2b 電圧制御部(送信回路電圧制御部)、3,3a,3b 受信回路、4,4a,4b 電圧制御部(受信回路電圧制御部)、5,5a,5b BERモニタ(品質モニタ手段)、6,6a,6b 対向BERモニタ(品質モニタ手段)、7,7a,7b 共通回路、8,8a,8b 電圧制御部、9,9a,9b 全体制御回路、10,10a,10b 送信部、11,11a,11b 受信部。   1, 1a, 1b transmission circuit, 2, 2a, 2b voltage control unit (transmission circuit voltage control unit), 3, 3a, 3b reception circuit, 4, 4a, 4b voltage control unit (reception circuit voltage control unit), 5, 5a, 5b BER monitor (quality monitor means), 6, 6a, 6b Opposing BER monitor (quality monitor means), 7, 7a, 7b Common circuit, 8, 8a, 8b Voltage controller, 9, 9a, 9b Overall control circuit 10, 10a, 10b transmitter, 11, 11a, 11b receiver.

Claims (6)

受信した光信号を電気信号に変換する受信回路、および、上記受信回路の駆動電圧を制御する受信回路電圧制御部を有する受信部と、
上記受信回路により変換された電気信号の品質をモニタする品質モニタ手段と、
上記品質モニタ手段によるモニタ結果に基づいて、上記受信回路電圧制御部を制御する全体制御回路とを備え、
上記全体制御回路は、上記品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電量を低下させるよう上記受信回路電圧制御部を制御する
ことを特徴とする伝送装置。
A receiving circuit that converts a received optical signal into an electrical signal, and a receiving unit that has a receiving circuit voltage control unit that controls a driving voltage of the receiving circuit;
Quality monitoring means for monitoring the quality of the electrical signal converted by the receiving circuit;
An overall control circuit for controlling the receiving circuit voltage control unit based on the monitoring result by the quality monitoring means,
The transmission apparatus according to claim 1, wherein the overall control circuit controls the reception circuit voltage control unit so as to reduce power consumption within a range in which the quality monitored by the quality monitoring means maintains a required quality.
電気信号を光信号に変換して送信する送信回路、および、上記送信回路の駆動電圧を制御する送信回路電圧制御部を有する送信部と、
上記送信回路からの光信号を受信した伝送装置において、当該光信号が電気信号に変換されてモニタされた当該電気信号の品質を、モニタする品質モニタ手段と、
上記品質モニタ手段によるモニタ結果に基づいて、上記送信回路電圧制御部を制御する全体制御回路とを備え、
上記全体制御回路は、上記品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電力を低下するよう上記送信回路電圧制御部を制御する
ことを特徴とする伝送装置。
A transmission circuit that converts an electrical signal into an optical signal and transmits the transmission circuit; and a transmission unit having a transmission circuit voltage control unit that controls a drive voltage of the transmission circuit;
In the transmission apparatus that has received the optical signal from the transmission circuit, quality monitoring means for monitoring the quality of the electrical signal monitored by converting the optical signal into an electrical signal;
An overall control circuit for controlling the transmission circuit voltage control unit based on the monitoring result by the quality monitoring means,
The transmission apparatus according to claim 1, wherein the overall control circuit controls the transmission circuit voltage control unit so as to reduce power consumption within a range in which the quality monitored by the quality monitoring means maintains a required quality.
受信した光信号を電気信号に変換する受信回路を有する受信部と、
電気信号を光信号に変換して送信する送信回路を有する送信部と、
上記受信回路により変換された電気信号の品質、および、上記送信回路からの光信号を受信した伝送装置において、当該光信号が電気信号に変換されてモニタされた当該電気信号の品質を、モニタする品質モニタ手段と、
上記受信部および上記送信部の両方の機能実現に必要な共通回路と、
上記共通回路の駆動電圧を制御する共通回路電圧制御部と、
上記品質モニタ手段によるモニタ結果に基づいて、上記共通回路電圧制御部を制御する全体制御回路とを備え、
上記全体制御回路は、上記品質モニタ手段によりモニタされた品質が所要の品質を維持する範囲で消費電力を低下するよう上記共通回路電圧制御部を制御する
ことを特徴とする伝送装置。
A receiving unit having a receiving circuit for converting the received optical signal into an electrical signal;
A transmission unit having a transmission circuit for converting an electrical signal into an optical signal and transmitting the optical signal;
Monitor the quality of the electrical signal converted by the receiving circuit and the quality of the electrical signal monitored by converting the optical signal into an electrical signal in the transmission apparatus that has received the optical signal from the transmitting circuit. Quality monitoring means;
A common circuit necessary for realizing the functions of both the receiver and the transmitter;
A common circuit voltage control unit for controlling the driving voltage of the common circuit;
An overall control circuit for controlling the common circuit voltage control unit based on the monitoring result by the quality monitoring means,
The transmission apparatus according to claim 1, wherein the overall control circuit controls the common circuit voltage control unit so that power consumption is reduced within a range in which the quality monitored by the quality monitoring means maintains a required quality.
上記品質モニタ手段は、電気信号の品質として符号誤り率または符号誤り数をモニタする
ことを特徴とする請求項1から請求項3のうちのいずれか1項記載の伝送装置。
The transmission apparatus according to any one of claims 1 to 3, wherein the quality monitoring means monitors a code error rate or a number of code errors as the quality of an electric signal.
上記全体制御回路は、一定周期間隔または任意のタイミングで電圧制御を行う
ことを特徴とする請求項1から請求項4のうちのいずれか1項記載の伝送装置。
The transmission apparatus according to claim 1, wherein the overall control circuit performs voltage control at a constant cycle interval or at an arbitrary timing.
請求項1から請求項5のうちのいずれか1項記載の伝送装置を対向させた伝送システムにおいて、
上記各伝送装置の全体制御回路は、電圧制御を当該伝送装置間でシーケンシャルに実施する
ことを特徴とする伝送システム。
In the transmission system in which the transmission device according to any one of claims 1 to 5 is opposed,
The overall control circuit of each transmission device performs voltage control sequentially between the transmission devices.
JP2012275874A 2012-12-18 2012-12-18 Transmission apparatus and transmission system Expired - Fee Related JP6184092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275874A JP6184092B2 (en) 2012-12-18 2012-12-18 Transmission apparatus and transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275874A JP6184092B2 (en) 2012-12-18 2012-12-18 Transmission apparatus and transmission system

Publications (2)

Publication Number Publication Date
JP2014121000A true JP2014121000A (en) 2014-06-30
JP6184092B2 JP6184092B2 (en) 2017-08-23

Family

ID=51175460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275874A Expired - Fee Related JP6184092B2 (en) 2012-12-18 2012-12-18 Transmission apparatus and transmission system

Country Status (1)

Country Link
JP (1) JP6184092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086676A (en) * 2018-11-19 2020-06-04 株式会社リコー Digital circuit system, power supply voltage adjustment method, and power supply voltage adjustment program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072546A1 (en) * 1999-05-21 2000-11-30 Fujitsu Limited Signal transmission apparatus
JP2011082743A (en) * 2009-10-06 2011-04-21 Nec Corp Optical signal receiving circuit, and method for controlling the optical signal receiving circuit
JP2011522479A (en) * 2008-05-27 2011-07-28 エクステラ コミュニケーションズ リミティド Automatic pre-emphasis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072546A1 (en) * 1999-05-21 2000-11-30 Fujitsu Limited Signal transmission apparatus
JP2011522479A (en) * 2008-05-27 2011-07-28 エクステラ コミュニケーションズ リミティド Automatic pre-emphasis
JP2011082743A (en) * 2009-10-06 2011-04-21 Nec Corp Optical signal receiving circuit, and method for controlling the optical signal receiving circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086676A (en) * 2018-11-19 2020-06-04 株式会社リコー Digital circuit system, power supply voltage adjustment method, and power supply voltage adjustment program
JP7211028B2 (en) 2018-11-19 2023-01-24 株式会社リコー Digital circuit system, power supply voltage adjustment method, and power supply voltage adjustment program

Also Published As

Publication number Publication date
JP6184092B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
CN113170348B (en) Method and apparatus for a terminal and a base station in a wireless communication system supporting Discontinuous Reception (DRX) operation
CN106603400B (en) Data transmission method and gateway based on narrowband Internet of things
US10667214B2 (en) Methods and apparatus for wireless communication via a predefined sequence of a change of a characteristic of a wireless signal
CN101552656B (en) The method of management transmission time interval (tti) bundle transmission and communication device
TW201342854A (en) System and method for power control in a physical layer device
KR20100039404A (en) Method and apparatus for power scaling in peer-to-peer communications
JP2013507890A (en) Energy management for wireless devices
CN101742708B (en) Operating methods of wireless access point equipment and wireless access point equipment
WO2018219011A1 (en) Data transmission method and communication device
JP5367166B2 (en) Mobile communication terminal
JP5654431B2 (en) Base station apparatus and sleep control method for the base station apparatus
US12107677B2 (en) Rate matching method, device and storage medium
JP5393885B2 (en) Reception device, data identification / reproduction device, PON system, and data identification / reproduction method
CN111162927A (en) Communication method, device and equipment of Ethernet
JPWO2008149550A1 (en) Power line communication apparatus and power line communication method
US11848794B1 (en) Data transmission using alert signals to carry data
WO2015042854A1 (en) Method and device for adjusting sending power
KR20180123391A (en) Method And Apparatus for Controlling Keep Alive Packet Transmission
JP6184092B2 (en) Transmission apparatus and transmission system
CN102624769B (en) Pipeline network device and related data transmission method
CN102402851A (en) Remote controller, receiver and sound remote control method
KR20220140481A (en) Method and apparatus for configuring time domain resource allocation
JP2017526303A (en) Power amplification processing method and apparatus
US8311013B2 (en) Method for efficiently increasing hand-off and access reliability
JPWO2016084297A1 (en) Communication apparatus and communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6184092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees