JP2014120831A - ヘリカルアンテナ - Google Patents

ヘリカルアンテナ Download PDF

Info

Publication number
JP2014120831A
JP2014120831A JP2012272955A JP2012272955A JP2014120831A JP 2014120831 A JP2014120831 A JP 2014120831A JP 2012272955 A JP2012272955 A JP 2012272955A JP 2012272955 A JP2012272955 A JP 2012272955A JP 2014120831 A JP2014120831 A JP 2014120831A
Authority
JP
Japan
Prior art keywords
wavelength
antenna
helical antenna
impedance
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012272955A
Other languages
English (en)
Inventor
Ryohei Kaneko
亮平 金古
Hiroshi Hirasawa
拓 平澤
Koji Kajiyama
貢司 梶山
Masatoshi Hamada
正稔 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012272955A priority Critical patent/JP2014120831A/ja
Publication of JP2014120831A publication Critical patent/JP2014120831A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

【課題】本願発明は、小型化、広帯域化及びインピーダンスの安定化を実現できるヘリカルアンテナ1を提供する。
【解決手段】ヘリカルアンテナ1は、接地型で、直列共振モード及び並列共振モードが同時に発生する複合モードで動作するものであり、搬送波の波長λ/4以上、かつ、波長λ×2倍以下の線長と、波長λ/2069以上、かつ、波長λ以下の直径Dと、波長λ/857以上、かつ、波長λ以下の軸長hと、波長λ/6667以上、かつ、波長λ/6000以下のピッチ幅pとを有する。
【選択図】図1

Description

本願発明は、複合モードを発生させるヘリカルアンテナに関する。
従来から、同軸線路の中心導体による内部導体と、金属線を密巻きにしたコイル状導体による外部導体とを組み合わせた小型のヘリカルアンテナが知られている(非特許文献1)。この非特許文献1に記載の技術では、一般的なアンテナの最大寸法が波長λ/10程度であるのに対し、波長λ/26又は波長λ/80程度の寸法にヘリカルアンテナを小型化することができる。
また、従来のアンテナにおいて、複数の共振周波数を近接した周波数で発生させる広帯域化技術が知られている(非特許文献2)。この非特許文献2に記載の技術では、逆Fアンテナに付加素子を設けることで、比帯域幅で約14%、広帯域化することができる。
また、従来から、波長λ/10程度の寸法のアンテナに対するインピーダンス安定を、人体ファントムによる実験やFDTD法(Finite-Difference Time-Domain method:時間領域差分法)による電磁解析で求める技術が知られている(非特許文献3)。
ここで、携帯端末の普及や高機能化、そしてより低い周波数帯の有効利用を考慮すると、ヘリカルアンテナのさらなる小型化、広帯域化及びインピーダンスの安定化が必要となるが、非特許文献1〜3に記載の技術では不十分である。
そこで、従来のヘリカルアンテナにおいて、複合モードを発生させる技術が提案されている(非特許文献4)。この複合モードとは、物理的には1つのアンテナに見えるが、電波的には2つのアンテナが並列接続され、広帯域になるモードのことである。
三ツ木真一、他「密巻き型小型ヘリカルアンテナ」、電子情報通信学会論文誌.B,Vol.J87-B No.4,pp.524-534,2004年4月 関根秀一、他「並列共振を用いた広帯域逆Fアンテナの設計」、電子情報通信学会論文誌.B,Vol.J86-B No.9,pp.1806-1815,2003年9月 小川晃一「携帯端末アンテナシステムの評価・解析・高性能化技術」、電子情報通信学会論文誌.B,Vol.J93-B No.9,pp.1100-1114,2010年9月 森下久「小型携帯端末用アンテナ:設計概念から将来展望まで」、電子情報通信学会論文誌.B,Vol.J88-B No.9,pp.1601-1612,2005年9月
しかし、非特許文献4に記載の技術では、複合モードの具体的な生成条件が明らかになっておらず、ヘリカルアンテナの小型化、広帯域化及びインピーダンスの安定化が困難であるという問題がある。
そこで、本願発明は、小型化、広帯域化及びインピーダンスの安定化を実現できるヘリカルアンテナを提供することを課題とする。
前記した課題を解決するため、本願第1発明に係るヘリカルアンテナは、接地型で、直列共振及び並列共振が同時に発生する複合モードのヘリカルアンテナであって、搬送波の波長λ/4以上、かつ、波長λ×2倍以下の線長と、長λ/2069以上、かつ、波長λ以下の直径と、波長λ/857以上、かつ、波長λ以下の軸長と、波長λ/6667以上、かつ、波長λ/6000以下のピッチ幅と、を有することを特徴とする。
かかる構成によれば、ヘリカルアンテナは、線長、直径、軸長及びピッチ幅が前記範囲のために、複合モードを発生させることができる。
また、前記した課題を解決するため、本願第2発明に係るヘリカルアンテナは、非接地型で、直列共振及び並列共振が同時に発生する複合モードのヘリカルアンテナであって、搬送波の波長λ/2以上、かつ、波長λ×2倍以下の線長と、波長λ/2069以上、かつ、波長λ以下の直径と、波長λ×2/857以上、かつ、波長λ以下の軸長と、波長λ/6667以上、かつ、波長λ/6000以下のピッチ幅と、を有することを特徴とする。
かかる構成によれば、ヘリカルアンテナは、線長、直径、軸長及びピッチ幅が前記範囲のために、複合モードを発生させることができる。
本願第3発明に係るヘリカルアンテナは、ローディングインコイル又はローディングコンデンサの少なくとも一方が付加されたことを特徴とする。
かかる構成によれば、ヘリカルアンテナは、所望周波数の搬送波に対し、物理的に線長が長い又は短い場合でも、これら素子を付加することで、この搬送波に合わせて共振周波数を調整することができる。
本願第1,2発明に係るヘリカルアンテナは、複合モードを発生させ、小型化、広帯域化及びインピーダンスの安定化を実現することができる。
本願第3発明に係るヘリカルアンテナは、搬送波に合わせて共振周波数を調整することができる。
(a)は本願発明の実施形態に係るヘリカルアンテナの構造を示す外観図であり、(b)は従来のモノポールアンテナの構造を示す外観図である。 従来の空中線の並列接続による広帯域化を説明する説明図である。 従来の空中線の並列接続による周波数特性を説明する説明図である。 従来の中波空中線の並列接続による周波数特性を説明する説明図である。 従来の複共振空中線の等価回路を示す回路図である。 図1のヘリカルアンテナの等価回路を示す回路図である。 本願発明の変形例に係るヘリカルアンテナの構造を示す外観図である。 図7のヘリカルアンテナのインピーダンスの測定結果を示すグラフである。 本願発明の実施例1に係るヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 比較例1のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 比較例2のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 比較例3のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例2〜5の実験方法を説明する説明図である。 参考例1の実験方法を説明する説明図である。 参考例1のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例2のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例3のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例4のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例5のヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 参考例1〜5における軸長と、巻き数と、直径との関係を説明する説明図である。 本願発明の実施例2に係るヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。 本願発明の実施例3に係るヘリカルアンテナにおいて、インピーダンスの測定結果を示すグラフである。
以下、本願発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各実施形態において、同一の部材には同一の符号を付し、説明を省略した。
[ヘリカルアンテナの構造]
図1を参照して、本願発明の実施形態に係るヘリカルアンテナ1の構造について、説明する。
図1(a)に示すように、ヘリカルアンテナ1は、接地型で複合モードを発生させるものであり、搬送波の波長λ/4以上、かつ、波長λ×2以下の線長と、波長λ/2069以上、かつ、波長λ以下の直径Dと、波長λ/857以上、かつ、波長λ以下の軸長hと、波長λ/6667以上、かつ、波長λ/6000以下のピッチ幅pとを有する。
なお、線長は、ヘリカルアンテナ1(アンテナ素子2)の一方から他方の端までの長さを表す。
すなわち、ヘリカルアンテナ1は、図1(b)のモノポールアンテナ90をコイル状に巻いたものであり、給電点インピーダンスを整合しやすい値とし、放射抵抗を増加させて放射効率を高めている。これによって、ヘリカルアンテナ1は、波長λよりも直径D、ピッチ幅p、軸長hがかなり短くなり、小型化を実現できる。
このヘリカルアンテナ1は、導電性の素材(例えば、アルミニウム、銅)でアンテナ素子2を製造することができる。また、ヘリカルアンテナ1は、絶縁性の素材(例えば、プラスチックや発泡スチロール)で形成された円柱状の保持部材4(図13)に、アンテナ素子2を巻きつけて保持してもよい。
また、ヘリカルアンテナ1は、その給電方法が制限されず、送受信機や給電線とインピーダンス整合を取るため、抵抗を大きくできる給電方法を用いることが好ましい。例えば、ヘリカルアンテナ1は、インピーダンス変換回路による給電法、偏位給電法、又は、タップ給電法を用いることができる。
<複合モードの概略>
複合モードの概略について、説明する(適宜図1参照)。
ヘリカルアンテナ1は、物理的には1つのアンテナであるが、所定の条件(複合モードの生成条件)を満たすことで、複合モードを発生させる。
複合モードとは、ループアンテナ及びモノポールアンテナの並列接続のように、直列共振モード及び並列共振モードが同時に生成されるモードのことである。言い換えるなら、複合モードは、ループ配列とモノポール配列とが等価的に並列接続され、広帯域化を実現したモードである。
この複合モードにおいて、誘導性リアクタンスは、ループ配列によって増加し、モノポール配列の容量性リアクタンスと相殺する。そのため、ヘリカルアンテナ1は、ヘリカル構造を調整することにより、軸長hを一般的なモノポールアンテナやダイポールアンテナよりもかなり短くでき、自己共振による広帯域化を実現できる。さらに、ヘリカルアンテナ1は、同一周波数において、ループ配列及びモノポール配列それぞれの直列共振に加え、これら配列の並列接続に起因した並列共振が生じることから、さらなる広帯域化を実現できる。
ここで、ヘリカルアンテナ1の自己インピーダンス(放射抵抗R、インダクタンスXL、キャパシタンスXC)は、以下の式(1)で得られる。この式(1)において、Nは巻き数を示す。
Figure 2014120831
式(1)より、ヘリカルアンテナ1は、軸長hがかなり短くなるが、アンテナ素子2の長さが従来の空中線(アンテナ)とほぼ同一であるため、十分な電流経路長が確保され、周囲環境の影響を受けにくくなる。さらに、ヘリカルアンテナ1は、電気的に平衡な構造のため、不平衡電流がアース(不図示)上に誘起されず、アンテナ素子近傍に存在する物体の影響を軽減でき、インピーダンスが安定する。
<<空中線の並列接続による広帯域化>>
従来の空中線の並列接続による広帯域化は、ヘリカルアンテナ1における複合モードと本質的に同一原理のため、図2を参照して説明する。
空中線は、小型化すると、放射効率、利得若しくは帯域幅の何れか、又は、全てが劣化することが知られている。すなわち、空中線の広帯域化は、小型化と相対的な関係にある。
ここで、空中線の広帯域化を達成するために、線長が波長λ/2の空中線91と、線長が波長λ/4の空中線92とを並列接続する方法が考えられる。図2に示すように、複共振空中線94は、コイル、コンデンサ等の付加素子(不図示)を接続することで、各空中線91,92単体の直列共振α,βに加え、空中線91,92の並列接続により並列共振γが生じる。これによって、複共振空中線94は、複数の周波数で共振が得られ、広帯域化を図ることができる。
空中線91,92単体であれば、周波数が高くなるほど誘導性リアクタンスが大きくなり、直列共振周波数を超えると強い容量性リアクタンスになる特性が繰り返し出現する。一方、2本の空中線91,92による並列共振モードは、2本の空中線91,92の並列接続のため、周波数が高くなるほど誘導性リアクタンスが減少し、直列共振周波数を超えると強い誘導性リアクタンスになる特性が繰り返し出現する。つまり、並列共振モードは、空中線91,91単体に比べ、逆の周波数特性となる。
なお、交流電源93は、空中線91,92に電力を供給する給電部である。
以上より、波長λ/2の空中線92と、この空中線92の直列共振周波数(インピーダンス特性が発散)が並列共振周波数(インピーダンス特性が収束)に一致するλ/4の空中線91とを並列接続すればよい。これによって、図3の実線が示すように、多くの周波数において、インピーダンスの急激な変動が生じる直列共振を打ち消すと共に、直列共振とは逆特性を有する並列接続によるインピーダンス特性が加わるため、広い周波数でインピーダンスを一定にできる。
この図3では、横軸が周波数fを示し、縦軸がインピーダンス(R,X)を示す。また、図3では、並列接続時の周波数特性を実線で図示し、波長λ/2の空中線91の周波数特性を破線で図示し、波長λ/4の空中線92の周波数特性を点線で図示した。
この広帯域化手法を、例えば、中波空中線に適用した場合を考える。この場合、線長が500メートル及び250メートルの空中線を並列接続することで、図4に示すように、300KHz、900KHz、1500KHzで複共振が発生し、広帯域化を実現できる。
この図4では、横軸が周波数fを示し、縦軸がインピーダンス(X)を示す。また、図4では、線長が500メートルの空中線の周波数特性を実線で図示し、線長が250メートルの空中線の周波数特性を破線で図示した。
<<並列接続した複共振空中線の自己共振手法>>
前記した複共振空中線94は、非常時にすぐ利用可能とするため、空中線単体で自己共振が実現され、整合不要であることが好ましい。そこで、図5を参照し、複共振空中線94の自己共振手法について、説明する。
ここでは、波長λに対し、線長が短い2本の空中線を想定し、それぞれ空中線95,96と呼ぶ。この空中線95,96のインピーダンスは、実部と虚部との合計となる。従って、空中線95,96の等価回路は、実部を示す抵抗Rと、虚部を示すリアクタンス(コイル又はコンデンサ)Xとの直列接続で表すことができる。図5では、空中線95の等価回路がR1,X1の直列接続であり、空中線96の等価回路がR2,X2の直列接続である。
この場合、交流電源93から見て、複共振空中線94のインピーダンスZは、以下の式(2)で表すことができる(jは虚数単位)。また、虚部を0Ωにするため、この式(2)は、以下の式(3)に変形することができる。
Figure 2014120831
Figure 2014120831
前記した式(3)より、虚部が0Ωとなるには、以下の3条件が考えられる。
条件1:X1=X2=0
条件2:R1+X1=R2+X2=0
条件3:X2(R1+X1)=−X1(R2+X2
条件1は、空中線95,96の一方が所望周波数で直列共振となることを考慮すると、虚部が0Ωにならないため、成立しない。また、条件2は、実数の二乗が0にならないため、成立しない。さらに、条件3は、空中線95が並列共振、空中線96が直列共振であると仮定し、X1=0、X2=±∞とすると、成立しない。
このように、以上3つの条件は、全て成立しない。そこで、図6に示すように、交流電源93に、DC(Direct Current)カット用のコンデンサXCを直列接続することを考える。ここで、コンデンサXCは、容量性リアクタンスを有し、これに任意の値を設定できると仮定する。この場合、虚部が0Ωとなる条件は、以下の式(4)で表すことができる。そして、この式(4)では、共振周波数より搬送波の周波数を若干高くすれば、X2≒+∞となるため、|XC|≒0となる。
Figure 2014120831
以上より、複共振空中線94では、X1=0という条件に加え、前記した式(4)を満たすコンデンサXCを交流電源93に直列接続することにより、虚部を0Ωにすることができる。さらに、虚部が0Ωとなる条件下では、複共振空中線94は、誘導性リアクタンスを有し、コンデンサXCがLPF(Low Pass Filter)を形成することから、雑音除去等の電波品質改善効果も期待できる。
次に、複共振空中線94の実部を50Ω(複共振空中線94に接続する送受信機の抵抗値)とする手法について説明する。
空中線95が並列共振、空中線96が直列共振であると考え、前記した式(2)にX1=0を代入すると、実部は、以下の式(5)で表すことができる。そして、この式(5)は、R=50を代入し、X2を左辺に移動させると、式(6)に変形することができる。
Figure 2014120831
Figure 2014120831
前記した式(6)が成立するためには、右辺の平方根内が0又は正の値であり、X2=±∞であることから、同項の分母が限りなく0に近い必要がある。すなわち、前記した式(6)が成立する条件は、以下の式(7)及び式(8)で表すことができる。
Figure 2014120831
Figure 2014120831
前記した式(8)より、R1≒50が得られる。また、前記した式(7)は、以下の式(9)に変形することができる。式(9)にR1≒50を代入することで、式(10)を得ることができる。いかなる空中線も抵抗Rを持つことを考慮すると、式(10)が必ず成立するものと考えられる。従って、空中線95が並列共振状態、空中線96が直列共振状態である複共振空中線94では、R1=50を満たせば、実部が50Ωとなる。
Figure 2014120831
Figure 2014120831
すなわち、複共振空中線94を自己共振させる条件(すなわち、実部が50Ω、虚部が0Ωとなる条件)は、以下の4条件にまとめることができる。
条件A:空中線95は、抵抗R1が50Ω、リアクタンスX1が0Ωであり、搬送波の周波数fで並列共振状態となる、線長λ/4のダイポールアンテナと等価なものする。
条件B:空中線96は、搬送波の周波数fで直列共振状態となる、素子長λ/2のダイポールアンテナと等価なものとする。
条件C:空中線96は、前記した式(6)を満たすコイルX2を付加する。
条件D:複共振空中線94は、空中線95,96を並列接続し、前記した式(4)を満たすコンデンサXCを基部に付加する。
前記したように、従来の空中線の並列接続による広帯域化は、ヘリカルアンテナ1の複合モードと本質的に同一原理である。従って、ヘリカルアンテナ1は、前記した寸法により条件A〜Dを満たし、図6の空中線95,96を並列接続したのと同様が得られ、複合モードを発生させることができる。
(変形例)
本願発明は、前記した実施形態に限定されず、その趣旨を逸脱しない範囲で様々な変形を加えることができる。
図7に示すように、ヘリカルアンテナ1は、ローディングコンデンサ(ローディングキャパシタ)3を付加してもよい。このとき、ヘリカルアンテナ1のインピーダンスは、図8に示すように、虚部が0Ωとなる(破線)。これによって、ヘリカルアンテナ1は、複合モードをより安定して発生させると共に、搬送波に合わせて共振周波数を調整することができる。
この図8では、横軸が周波数を示し、縦軸がインピーダンスを示す。また、図8では、インピーダンスの実部を実線で図示し、虚部を破線で図示した。
なお、ヘリカルアンテナ1は、ローディングコンデンサ3を付加する場所が特に制限されず、アンテナ素子2の基部、中間又は頂点に付加してもよい。
また、ヘリカルアンテナ1は、ローディングコンデンサ3の代わりにローディングインコイル(ローディングインダクタ、不図示)を付加してもよい。さらに、ヘリカルアンテナ1は、ローディングコンデンサ3及びローディングインコイルの両方を付加してもよい。
これらローディングコンデンサ3やローディングインコイルは、一般的なものであるため、詳細な説明を省略する。
(実施例1、比較例1〜3:ヘリカルアンテナの線長)
図9〜図12を参照し、本願発明の実施例1及び比較例1〜3について、説明する(適宜図1参照)。
様々な線長のヘリカルアンテナ1に対し、500KHz〜1500KHzの周波数レンジの搬送波を用いて、インピーダンスを測定した。
実施例1として、線長が波長λ/4のヘリカルアンテナ1の測定結果を図9に図示した。
比較例1として、線長が波長λ/16のヘリカルアンテナ1の測定結果を図10に図示した。
比較例2として、線長が波長λ/8のヘリカルアンテナ1の測定結果を図11に図示した。
比較例3として、線長が波長3λ/16のヘリカルアンテナ1の測定結果を図12に図示した。
図9〜図12では、横軸が周波数を示し、縦軸がインピーダンスを示す(図15〜図22も同様)。
また、図9〜図12では、周波数の1スケールが100KHzである。
また、図9〜図12では、インピーダンスの実部(実線)は、レンジが0〜1KΩであり、1スケールが100Ωである。
また、図9〜図12では、インピーダンスの虚部(破線)は、レンジが±1KΩであり、1スケールが200Ωである。
実施例1(図9)では、実部が一定となっており、広帯域であることがわかる。一方、比較例1〜3(図10〜図12)では、実部が一定とならず、広帯域化が困難であることがわる。以上より、ヘリカルアンテナ1の線長は、波長λ/4以上にすればよいと考えられる。
(参考例1〜5の実験方法)
図13,図14を参照し、参考例1〜5の実験方法について、説明する(適宜図1参照)。
ヘリカルアンテナ1の線長を一定(波長λ/4)とし、ピッチ幅p又は直径Dの何れか一方を変化させ、そのときのインピーダンスを測定する実験を行った。なお、ヘリカルアンテナ1は、線長を一定であれば、ピッチ幅pの変化に応じて、軸長hも変化することになる。
具体的には、図13に示すように、ヘリカルアンテナ1は、発泡スチロ−ルの保持部材3にアンテナ素子2を巻きつけ、アンテナ素子2の一端をインピーダンス測定器97に接続した。また、インピーダンス測定器97は、接地させた。このとき、搬送波の周波数fが5MHz、つまり、波長λが60メートルであった。このとき、搬送波の周波数fが5MHz、つまり、波長λが60メートルであった。
また、図14に示すように、アンテナ素子2(図13)を覆い隠すようにアルミ箔98を巻き付けて、ピッチ幅p=0の状態を再現し、このときのインピーダンスも測定した。
(参考例1〜3:ヘリカルアンテナのピッチ幅、軸長)
図15〜図17を参照し、参考例1〜3について、説明する(適宜図1参照)。
参考例1として、図14のように、ピッチ幅p=0のヘリカルアンテナ1の測定結果を図15に図示した。
図15では、周波数は、レンジが2MHz〜20MHzであり、1スケールが200KHzである。
また、図15では、インピーダンスの実部(実線)は、レンジが0〜1KΩであり、1スケールが100Ωである。
また、図15では、インピーダンスの虚部(破線)は、レンジが±5KΩであり、1スケールが1KΩである。
参考例2として、ピッチ幅p=0.02メートル(3.25×10−4λ)のヘリカルアンテナ1の測定結果を図16に図示した。
参考例3として、ピッチ幅p=0.03メートル(5×10−4λ)のヘリカルアンテナ1の測定結果を図17に図示した。
図16,図17では、周波数は、レンジが2MHz〜22MHzであり、1スケールが220KHzである。
また、図16,図17では、インピーダンスの実部(実線)は、レンジが0〜500Ωであり、1スケールが50Ωである。
また、図16,図17では、インピーダンスの虚部(破線)は、レンジが±10KΩであり、1スケールが2KΩである。
図15〜図17より、ピッチ幅pを変化させた場合のインピーダンスの傾向がわかる。具体的には、実部は、ピッチ幅pを短くすることにより、全周波数において増大することがわかる。この理由は、ピッチ幅pの減少が軸長hの減少につながり、軸長hの減少によるモノポール成分の実部減少量と比較して、巻き数Nの増加によるループ成分の実部増大量が大きくなるためと考えられる。
また、虚部は、ピッチ幅pを短くすることにより、全周波数において増大すると共に、共振周波数間隔が長くなることがわかる。ここで、虚部が増大する理由は、巻き数Nの増大により、誘導性リアクタンスが増大するためと考えられる。また、共振周波数間隔が長くなる理由は、軸長hの減少が伝送線路長の減少につながり、インピーダンスのcot関数の周期が長くなるためと考えられる。
(参考例4,5:ヘリカルアンテナの直径)
図18,図19を参照し、参考例4,5について、説明する(適宜図1参照)。
参考例4として、直径D=0.1メートル(1.65×10−3λ)のヘリカルアンテナ1の測定結果を図18に図示した。
参考例5として、直径D=0.2メートル(3.25×10−3λ)のヘリカルアンテナ1の測定結果を図19に図示した。
図18,図19では、周波数は、レンジが2MHz〜20MHzであり、1スケールが200KHzである。
また、図18,図19では、インピーダンスの実部(実線)は、レンジが0〜500Ωであり、1スケールが50Ωである。
また、図18,図19では、インピーダンスの虚部(破線)は、レンジが±10KΩであり、1スケールが1KΩである。
図18,図19より、直径Dを変化させた場合のインピーダンスの傾向がわかる。具体的には、実部は、直径Dを長くすることにより、全周波数において減少することがわかる。この理由は、直径Dの延長によるループ成分の実部増大量と比較して、軸長h及び巻き数Nの減少による、モノポール成分及びループ成分の実部減少量が大きいためと考えられる。
また、虚部は、直径Dを長くすることにより、全周波数において増大すると共に、共振周波数間隔が長くなることがわかる。ここで、虚部が増大する理由は、直径Dの増大により、誘導性リアクタンスが増大するためと考えられる。また、共振周波数間隔が長くなる理由は、軸長hの減少が伝送線路長の減少につながり、インピーダンスのcot関数の周期が長くなるためと考えられる。
(軸長、巻き数及び直径の関係)
図20に示すように、参考例1〜5のまとめると、軸長h、巻き数N及び直径Dが次の関係を有することがわかる。
軸長h、巻き数N及び直径Dが増大すると、太線で図示したインピーダンスの実部が増大することがわかる(矢印a)。
巻き数N及び直径Dが増大すると、インピーダンスの虚部が増大することがわかる(矢印b)。
軸長hが減少すると、伝送路経路長が短くなり、共振周波数間隔が長くなる(矢印c)。
そして、前記した関係を考慮し、インピーダンスの実部を50Ω(送受信機の抵抗R)とするには、ヘリカルアンテナ1は、ピッチ幅pを=0.01メートル(λ/6000)、直径D=0.029メートル(λ/2069)、及び、軸長h=0.07メートル(λ/857)とすればよい。
なお、巻き数Nは、ヘリカルアンテナ1のピッチ幅p及び軸長hからおのずと求まるため、詳細な説明を省略する。
(実施例2,3)
図21,図22を参照し、本願発明の実施例2,3について、説明する(適宜図1参照)。
ここで、線長が波長λ/4、直径Dがλ/1200、軸長hがλ/187.5、ピッチ幅pがλ/6667のヘリカルアンテナ1を制作した。そして、実施例2として、このヘリカルアンテナ1に人が近づいたときのインピーダンスを測定し、その結果を図21に図示した。
また、線長が波長λ/4、 直径Dがλ/600、軸長hがλ/480、ピッチ幅pがλ/6000のヘリカルアンテナ1を制作した。そして、実施例3として、このヘリカルアンテナ1に人が近づいたときのインピーダンスを測定し、その結果を図22に図示した。
図21,図22では、周波数は、レンジが500KHz〜1500KHzであり、1スケールが100KHzである。
また、図21,図22では、インピーダンスの実部(実線)は、レンジが0〜100Ωであり、1スケールが10Ωである。
また、図21,図22では、インピーダンスの虚部(破線)は、レンジが±2KΩであり、1スケールが400Ωである。
実施例2,3(図21,図22)から、ヘリカルアンテナ1は、人が至近距離(波長λ/1200)まで接近しても、インピーダンスの変動が少なく、インピーダンスが安定していることがわかる。
(実施例1〜3及び参考例1〜5のまとめ)
実施例1〜3から、ヘリカルアンテナ1の線長は、搬送波の波長λ/4以上であればよいことがわかる。
また、技術常識を考慮して、ヘリカルアンテナ1の線長は、波長λの2倍以下であればよいと考えられる。
参考例1〜5から、ヘリカルアンテナ1の直径Dは、波長λ/2069以上であればよいことがわかる。
また、技術常識を考慮して、ヘリカルアンテナ1の直径Dは、波長λ以下であればよいと考えられる。
さらに、実施例2,3から、ヘリカルアンテナ1の直径Dは、波長λ/1200以上、波長λ/600以下であればより好ましいことがわかる。
参考例1〜5から、ヘリカルアンテナ1の軸長hは、波長λ/857以上であればよいことがわかる。
また、技術常識を考慮して、ヘリカルアンテナ1の軸長hは、波長λ以下であればよいと考えられる。
さらに、実施例2,3から、ヘリカルアンテナ1の軸長hは、波長λ/480以上、λ/187.5以下であればより好ましいことがわかる。
実施例2,3及び参考例1〜5から、ヘリカルアンテナ1のピッチ幅pは、波長λ/6667以上、波長λ/6000以下であればよいことがわかる。
なお、ヘリカルアンテナ1は、搬送波の周波数帯が特に制限されず、様々な周波数帯の搬送波でも複合モードを発生させることは言うまでもない。
なお、ヘリカルアンテナ1は、接地型に制限されず、非接地型としてもよい。非接地型のヘリカルアンテナ1は、接地面下部の射影がないため、接地型に比べ、線長が2倍必要で、同直径及び同ピッチ幅で、軸長hが2倍必要になる。つまり、非接地型のヘリカルアンテナ1は、線長が波長λ/2以上、軸長hが波長λ×2/857以上必要になる。
1 ヘリカルアンテナ
2 アンテナ素子
3 ローディングコンデンサ
4 保持部材

Claims (3)

  1. 接地型で、直列共振及び並列共振が同時に発生する複合モードのヘリカルアンテナであって、
    搬送波の波長λ/4以上、かつ、前記波長λ×2以下の線長と、
    前記波長λ/2069以上、かつ、前記波長λ以下の直径と、
    前記波長λ/857以上、かつ、前記波長λ以下の軸長と、
    前記波長λ/6667以上、かつ、前記波長λ/6000以下のピッチ幅と、
    を有することを特徴とするヘリカルアンテナ。
  2. 非接地型で、直列共振及び並列共振が同時に発生する複合モードのヘリカルアンテナであって、
    搬送波の波長λ/2以上、かつ、前記波長λ×2以下の線長と、
    前記波長λ/2069以上、かつ、前記波長λ以下の直径と、
    前記波長λ×2/857以上、かつ、前記波長λ以下の軸長と、
    前記波長λ/6667以上、かつ、前記波長λ/6000以下のピッチ幅と、
    を有することを特徴とするヘリカルアンテナ。
  3. ローディングインコイル又はローディングコンデンサの少なくとも一方が付加されたことを特徴とする請求項1又は請求項2に記載のヘリカルアンテナ。
JP2012272955A 2012-12-14 2012-12-14 ヘリカルアンテナ Pending JP2014120831A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272955A JP2014120831A (ja) 2012-12-14 2012-12-14 ヘリカルアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012272955A JP2014120831A (ja) 2012-12-14 2012-12-14 ヘリカルアンテナ

Publications (1)

Publication Number Publication Date
JP2014120831A true JP2014120831A (ja) 2014-06-30

Family

ID=51175347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272955A Pending JP2014120831A (ja) 2012-12-14 2012-12-14 ヘリカルアンテナ

Country Status (1)

Country Link
JP (1) JP2014120831A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162726A (ja) * 2015-03-05 2016-09-05 パナソニックIpマネジメント株式会社 照明器具
CN113839178A (zh) * 2021-09-22 2021-12-24 维沃移动通信有限公司 天线装置和智能手表

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521536U (ja) * 1991-08-30 1993-03-19 日本電信電話株式会社 腕時計形受信機
JP2005522134A (ja) * 2002-04-04 2005-07-21 イー・エム・ダヴリュー・アンテナ カンパニー リミテッド デュアルバンドアンテナ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521536U (ja) * 1991-08-30 1993-03-19 日本電信電話株式会社 腕時計形受信機
JP2005522134A (ja) * 2002-04-04 2005-07-21 イー・エム・ダヴリュー・アンテナ カンパニー リミテッド デュアルバンドアンテナ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162726A (ja) * 2015-03-05 2016-09-05 パナソニックIpマネジメント株式会社 照明器具
CN113839178A (zh) * 2021-09-22 2021-12-24 维沃移动通信有限公司 天线装置和智能手表
CN113839178B (zh) * 2021-09-22 2024-06-18 维沃移动通信有限公司 天线装置和智能手表

Similar Documents

Publication Publication Date Title
JP6189373B2 (ja) ワイヤレス電力磁気共振器における高効率および高電力伝送
JP4699931B2 (ja) アンテナ
Ghosh et al. A loop loading technique for the miniaturization of non-planar and planar antennas
US20040263409A1 (en) Coaxial inductor and dipole EH antenna
US20140253398A1 (en) Tunable antenna
US20060250319A1 (en) Antenna apparatus and method of forming same
KR20120102173A (ko) 무선 전력 인가를 위한 안테나
JP2010536315A (ja) 共振器のqファクタを増大させること
JP2006033798A (ja) アンテナ装置及び携帯無線端末
US8860618B2 (en) Internal FM antenna
TWI427859B (zh) antenna
CA2666896A1 (en) Multiple-band collinear dipole antenna
TW201442351A (zh) 具有延伸穿過管狀區段之電導體之偶極天線組件及其相關方法
US7034767B2 (en) Helical coil, Magnetic core antenna
EP3723195B1 (en) Combination near-field and far-field antenna
JP2003152427A (ja) 密巻き小型ヘリカルアンテナ
JP2014120831A (ja) ヘリカルアンテナ
EP2056399A1 (en) Dual band helical antenna with wide bandwidth
US2866197A (en) Tuned antenna system
US20100013731A1 (en) Coaxial cable dipole antenna for high frequency applications
JP5848287B2 (ja) アンテナ装置
JP2005020228A (ja) アンテナ装置
JP5648653B2 (ja) アンテナ
KR100797044B1 (ko) 1/4 파장의 급전선을 갖는 안테나
Perri et al. Very short meander monopole antennas

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307