JP2014119553A - Optical deflector - Google Patents

Optical deflector Download PDF

Info

Publication number
JP2014119553A
JP2014119553A JP2012273609A JP2012273609A JP2014119553A JP 2014119553 A JP2014119553 A JP 2014119553A JP 2012273609 A JP2012273609 A JP 2012273609A JP 2012273609 A JP2012273609 A JP 2012273609A JP 2014119553 A JP2014119553 A JP 2014119553A
Authority
JP
Japan
Prior art keywords
light
optical deflector
incident
electrode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273609A
Other languages
Japanese (ja)
Other versions
JP5991911B2 (en
Inventor
Seiji Toyoda
誠治 豊田
Ikutake Yagi
生剛 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2012273609A priority Critical patent/JP5991911B2/en
Publication of JP2014119553A publication Critical patent/JP2014119553A/en
Application granted granted Critical
Publication of JP5991911B2 publication Critical patent/JP5991911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical deflector that reduces power source load by reducing electrostatic capacity and that prevents deflection displacement between incident light and emission light.SOLUTION: An optical deflector according to the invention comprises a pair of light incident/outgoing faces that sandwich an electro-optical crystal between a pair of parallel quadrangular electrode faces and that are perpendicular to the electrode faces and parallel to each other, each incident/outgoing face having a light non-reflection coat part and a high light reflection coat part identical in area such that light is made incident on the light non-reflection coat part and light made incident on the deflector is reflected from the high light reflection coat part. The deflection direction of light is perpendicular to the electrode face.

Description

本発明は、電気光学効果を有するKLTN結晶(K1-yyTa1-xx3)を用いた光偏向器に関する。 The present invention relates to an optical deflector using a KLTN crystal having an electro-optic effect (K 1-y L y Ta 1-x b x O 3).

光の進行方向を変える光偏向器のうち、内部電荷と2次の電気光学効果を利用するKTN(KTa1-xNbx3)光偏向器は、ガルバノミラーやポリゴンミラー、MEMSミラー等と異なり、可動部を持たない固体素子である。KTN結晶は、電圧を印可することによって、プリズムのように光の形状を変えず、方向のみ変化させる、すなわち電気光学効果を有する。特にKTN結晶は、低い電圧で屈折率が大きく変わる、つまり電気光学効果が大きい物質として知られている。したがって、KTNを用いると、レンズ、プリズム、ミラーといったごく一般的な部品を、それらが高速で動く必要がある用途に対して、置き換えることができ、光の方向を機械的に変更するガルバノミラー、ポリゴンミラーおよびMEMSミラーに比べて、高速に動作することができる。 Among optical deflectors that change the traveling direction of light, KTN (KTa 1-x Nb x O 3 ) optical deflectors that use internal charges and secondary electro-optic effects are galvanometer mirrors, polygon mirrors, MEMS mirrors, etc. In contrast, it is a solid element having no moving parts. The KTN crystal has an electro-optic effect by applying a voltage, and changing only the direction without changing the shape of light like a prism. In particular, the KTN crystal is known as a substance having a large change in refractive index at a low voltage, that is, a large electro-optic effect. Thus, with KTN, galvanometer mirrors that mechanically change the direction of light, can replace very common components such as lenses, prisms, and mirrors for applications where they need to move at high speeds, Compared with a polygon mirror and a MEMS mirror, it can operate at high speed.

また、電気光学プリズムや音響光学偏向器など、他の固体素子の光偏向器と異なり、素子内部を光が透過する長さが長いほど、偏向角が大きくなるという特徴を持っている。   Further, unlike other solid-state optical deflectors such as an electro-optic prism and an acousto-optic deflector, the longer the light is transmitted through the element, the larger the deflection angle.

NTT技術ジャーナル2009年11月号「新たな可能性を拓くKTN結晶とその応用技術」八木生剛著NTT Technical Journal, November 2009 "KTN crystals that open up new possibilities and their applied technologies" written by Takeshi Yagi

KTN結晶は極めて誘電率の大きな誘電体であり、KTNを用いた素子は必然的に静電容量が大きくなるため、高周波で使うときに変位電流が大きくなり、偏向を制御する電源回路に大きな負荷がかかってしまうという欠点がある。   A KTN crystal is a dielectric having a very large dielectric constant, and an element using KTN inevitably has a large capacitance. Therefore, a displacement current becomes large when used at a high frequency, and a large load is applied to a power supply circuit for controlling deflection. There is a disadvantage that it takes.

静電容量は(誘電率)×(電極面積)÷(電極間距離)で与えられるから、電極面積を大きくしないで、光を結晶内で反射させ、結晶内の同じ領域を複数回光が周回するようにして、静電容量に比して偏向角を大きくする方法がとられてきた。   Capacitance is given by (dielectric constant) x (electrode area) ÷ (distance between electrodes), so the light is reflected within the crystal without increasing the electrode area, and the light circulates multiple times in the same region in the crystal. Thus, a method of increasing the deflection angle as compared with the capacitance has been taken.

図1に、従来の、KTNを用いた光偏向器100の構造を示す。図1に記載の光偏向器100は、6面体構造に形成され、KTN誘電体101と、長方形の電極面102と、KTM誘電体101の側面に形成された入射光面103と、出射光面104と、入射光面102に施した高反射(HR:High Reflection)コート105、および無反射(AR:Anti Reflection)コート106、出射光面104に施したHRコート107、およびARコート108を有する。KTN誘電体101は2枚の電極面102に挟まれている。   FIG. 1 shows a structure of a conventional optical deflector 100 using KTN. An optical deflector 100 shown in FIG. 1 is formed in a hexahedral structure, and includes a KTN dielectric 101, a rectangular electrode surface 102, an incident light surface 103 formed on a side surface of the KTM dielectric 101, and an outgoing light surface. 104, a high reflection (HR) coat 105 applied to the incident light surface 102, an anti reflection (AR) coat 106, an HR coat 107 applied to the outgoing light surface 104, and an AR coat 108. . The KTN dielectric 101 is sandwiched between two electrode surfaces 102.

入射光は、入射光面103のARコート104を施した部分から光偏向器100の内部(誘電体101)に入射する。光偏向器100には、電圧が印加されているため、入射光面103から入射した光は、誘電体101内で屈折・偏向される。光の偏向方向は電極面102に垂直である。出射光面104のHRコート107を施した部分で反射する。更に入射光面103のHRコート105を施した部分で再度反射し、反射した光は出射光面104のARコート108を施した部分から出射する。偏向器100の六面体の中で光路が2回折り返すことで、1回目反射と2回目反射の間の光路が、1回目反射前と半分、2回目反射後と半分共有される構造である。   Incident light enters the inside of the optical deflector 100 (dielectric 101) from a portion of the incident light surface 103 where the AR coating 104 is applied. Since a voltage is applied to the optical deflector 100, the light incident from the incident light surface 103 is refracted and deflected in the dielectric 101. The light deflection direction is perpendicular to the electrode surface 102. Reflected by the portion of the outgoing light surface 104 where the HR coating 107 is applied. Further, the light is reflected again at the portion of the incident light surface 103 where the HR coating 105 is applied, and the reflected light is emitted from the portion of the outgoing light surface 104 where the AR coating 108 is applied. In the hexahedron of the deflector 100, the optical path is folded twice, so that the optical path between the first reflection and the second reflection is shared by half before the first reflection and half after the second reflection.

この構造の場合、偏向器100の内部において偏向に使われない領域が残り、無用に静電容量を高め、電源回路に負荷を与えるという欠点があった。   In the case of this structure, there remains a region that is not used for deflection in the deflector 100, and there is a disadvantage that the capacitance is unnecessarily increased and a load is applied to the power supply circuit.

また、偏向方向とは異なる方向に、入射光と出射光の光軸がずれており、光学軸の調整に手間取るという欠点があった。   Further, the optical axes of the incident light and the outgoing light are shifted in a direction different from the deflection direction, and there is a drawback that it takes time to adjust the optical axis.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、図1の従来のKTNを用いた光偏向器の構造を基礎として、結晶の不要部分をそぎ落とすことにより、静電容量を小さくして電源負荷を低減するとともに、入射光と出射光の偏向のずれをなくした光偏向器を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to scrape off unnecessary portions of the crystal based on the structure of the optical deflector using the conventional KTN of FIG. Another object of the present invention is to provide an optical deflector that reduces the load on the power source by reducing the capacitance and eliminates the deviation of the deflection between the incident light and the outgoing light.

具体的には、本発明の第1の実施形態の光偏向器は、電気光学結晶を互いに平行な一対の平行四辺形の電極面で挟み、前記電極面に垂直でかつ互いに平行な一対の光入出射面であって、前記各入出射面内にそれぞれ同じ面積をもつ光無反射コート部と光高反射コート部が形成され、前記光無反射コート部において外部から光が入射され、前記光高反射コートにおいて前記偏向器内に入射した光が反射される、光入出射面を備え、光の偏向方向は前記電極面に垂直であることを特徴とする。   Specifically, the optical deflector according to the first embodiment of the present invention includes a pair of light beams sandwiched between a pair of parallelogram electrode surfaces parallel to each other and perpendicular to the electrode surfaces and parallel to each other. A light non-reflective coating part and a light high-reflective coating part having the same area are formed in each of the light incident / exit surfaces, and light is incident from the outside in the light non-reflective coating part. The high reflection coating includes a light incident / exit surface on which light incident on the deflector is reflected, and a light deflection direction is perpendicular to the electrode surface.

また、本発明の第2の実施形態の光偏向器は、電気光学結晶を互いに平行な一対の五角形の電極面で挟み、前記一対の電極面に垂直な5つの長方形の側面であって、前記隣り合う1対の光の入出射面であって、光無反射コートが施された、光の入出射面と、3つの光の反射面とが形成された側面で囲まれた7面体に形成され、光の偏向方向は前記電極面に垂直であることを特徴とする。   An optical deflector according to a second embodiment of the present invention includes five rectangular side surfaces sandwiching an electro-optic crystal between a pair of parallel pentagonal electrode surfaces and perpendicular to the pair of electrode surfaces, A pair of adjacent light incident / exit surfaces, which are formed into a seven-sided body surrounded by side surfaces formed with a light incident / exit surface and three light reflecting surfaces, which are provided with a light non-reflective coating. The light deflection direction is perpendicular to the electrode surface.

また、本発明の第1及び第2の実施形態の光偏向器の前記電気光学結晶は、タンタル酸ニオブ酸カリウム(KTa1-xNbx3)を主成分とする単結晶であることを特徴とする。 Further, the electro-optic crystal of the optical deflector according to the first and second embodiments of the present invention is a single crystal mainly composed of potassium tantalate niobate (KTa 1-x Nb x O 3 ). Features.

本発明の光偏向器は、静電容量を小さくして電源負荷を低減するとともに、入射光と出射光の偏向のずれをなくすことができる。   The optical deflector of the present invention can reduce the capacitance by reducing the capacitance, and can eliminate the deviation of the deflection of the incident light and the emitted light.

従来のKTNを用いた光偏向器100の構造を示す図である。It is a figure which shows the structure of the optical deflector 100 using the conventional KTN. 本発明の第1の実施形態にかかるKTNを用いた光偏向器200の構造を示す図である。It is a figure which shows the structure of the optical deflector 200 using KTN concerning the 1st Embodiment of this invention. 本発明の第2の実施形態にかかるKTNを用いた光偏向器300の構造を示す図である。It is a figure which shows the structure of the optical deflector 300 using KTN concerning the 2nd Embodiment of this invention.

[第1の実施形態]
図2に本発明の第1の実施形態に係るKTNを用いた光偏向器200の構造を示す。図2に記載の光偏向器200は、6面体に形成され、図1に記載の従来の光偏向器の、内部における偏向に使用されない領域をそぎ落とした構造を有する。
[First Embodiment]
FIG. 2 shows the structure of an optical deflector 200 using KTN according to the first embodiment of the present invention. An optical deflector 200 shown in FIG. 2 is formed in a hexahedron, and has a structure in which a region not used for internal deflection of the conventional optical deflector shown in FIG.

図2に記載の光偏向器200は、KTN誘電体201および電極面202が平行四辺形に形成されており、KTM誘電体201の側面に、長方形に形成された入射光面203、出射光面204を有している。入射光面203には、高反射(HR:High Reflection)コート205、および無反射(AR:Anti Reflection)コート206が、出射光面204にはHRコート207およびARコート208が施されている。KTN誘電体201は2枚の電極面202に挟まれている。   The optical deflector 200 shown in FIG. 2 has a KTN dielectric 201 and an electrode surface 202 formed in a parallelogram, and an incident light surface 203 and an outgoing light surface formed in a rectangular shape on the side surface of the KTM dielectric 201. 204. The incident light surface 203 is provided with a high reflection (HR) coating 205 and a non-reflection (AR) coating 206, and the outgoing light surface 204 is provided with an HR coating 207 and an AR coating 208. The KTN dielectric 201 is sandwiched between two electrode surfaces 202.

ここで、HRコート205(207)とARコート206(208)の比率は1:1である。光入射面203は3.4mm×1mmの長方形で、内、1.7mm×1mmはARコートを施された部分であり、残り1.7mm×1mmはHRコートを施された部分である。電極面202は4.4mm×4mmの長方形から、図1に記載の光偏向器100に示すような2か所の不要部分(底辺0.88mm、高さ4mmの直角三角形)を切り落とした平行四辺形に形成されている。これによって、静電容量が不要部分を除去しない場合の4/5になり、電源負荷を下げることができる。   Here, the ratio between the HR coat 205 (207) and the AR coat 206 (208) is 1: 1. The light incident surface 203 is a 3.4 mm × 1 mm rectangle, of which 1.7 mm × 1 mm is an AR-coated portion, and the remaining 1.7 mm × 1 mm is a HR-coated portion. The electrode surface 202 is a parallelogram obtained by cutting off two unnecessary parts (a right triangle with a base of 0.88 mm and a height of 4 mm) as shown in the optical deflector 100 shown in FIG. 1 from a rectangle of 4.4 mm × 4 mm. It is formed into a shape. As a result, the capacitance becomes 4/5 of the case where unnecessary portions are not removed, and the power load can be reduced.

入射光は、入射光面203のARコート206を施した部分から、電圧が印加された光偏向器200の内部に進入し、光偏向器200の内部で屈折・偏向する。光の偏向方向は電極面202に垂直である。侵入した入射光は、出射光面204のHRコート207を施した部分で1回目の反射を行なう。次に入射光面203のHRコート205を施した部分で第2回目の反射を行なう。反射した光は出射光面204のARコート208を施した部分から屈折して出射する。偏向器200の中で光路が2回折り返すことで、1回目反射と2回目反射の間の光路が、1回目反射前と半分、2回目反射後と半分共有される構造であることは偏向器100と同様である。   Incident light enters the inside of the optical deflector 200 to which a voltage is applied from the portion of the incident light surface 203 where the AR coating 206 is applied, and is refracted and deflected inside the optical deflector 200. The light deflection direction is perpendicular to the electrode surface 202. The incident light that has entered enters the portion of the outgoing light surface 204 where the HR coating 207 is applied, and is reflected for the first time. Next, the second reflection is performed at the portion of the incident light surface 203 where the HR coating 205 is applied. The reflected light is refracted and emitted from the portion of the outgoing light surface 204 where the AR coating 208 is applied. The deflector 200 has a structure in which the optical path between the first reflection and the second reflection is shared by half before and after the first reflection and half after the second reflection because the optical path is folded twice in the deflector 200. 100.

[第2の実施形態]
図3に本発明の第2の実施形態に係るKTNを用いた光偏向器200の構造を示す。図3に記載の光偏向器300は、7面体に形成され、五角形の電極構造をとることを特徴としている。
[Second Embodiment]
FIG. 3 shows the structure of an optical deflector 200 using KTN according to the second embodiment of the present invention. The optical deflector 300 shown in FIG. 3 is formed in a seven-sided body and has a pentagonal electrode structure.

図3に記載の光偏向器300は、五角形に形成されたKTN誘電体301および電極面302が五角形に形成されており、電極面に垂直の側面303〜307を有する。KTN誘電体301は2枚の電極面302に挟まれている。KTM誘電体200の側面303〜307の1つである303には、長方形に形成された入射光面(入射光面303とする)が形成され、入射光面303の隣の側面である側面304には出射光面(出射光面304とする)が形成されている。各側面は、電極面に垂直な長方形であり、入射光面303、出射光面304にはARコートが施されているが、他の3つの側面305、306及び307はコートがされていない。KTN誘電体201は2枚の電極面202に挟まれている。   The optical deflector 300 shown in FIG. 3 has a pentagonal KTN dielectric 301 and an electrode surface 302 formed in a pentagon, and has side surfaces 303 to 307 perpendicular to the electrode surface. The KTN dielectric 301 is sandwiched between two electrode surfaces 302. A rectangular incident light surface (referred to as an incident light surface 303) is formed on one of the side surfaces 303 to 307 of the KTM dielectric 200, and a side surface 304 that is a side surface adjacent to the incident light surface 303. Is formed with an outgoing light surface (referred to as an outgoing light surface 304). Each side surface is a rectangle perpendicular to the electrode surface, and AR coating is applied to the incident light surface 303 and the outgoing light surface 304, but the other three side surfaces 305, 306, and 307 are not coated. The KTN dielectric 201 is sandwiched between two electrode surfaces 202.

入射光は、入射光面303から、電圧が印加された光偏向器300の内部に進入し、光偏向器200の内部で偏向する。次に3つの側面のうち側面305で全反射され、全反射された光は更に側面306及び側面307で全反射される。側面307で全反射された光は、出射光面304から出射する。偏向器300の中で光路が3回折り返すようにすることで、KTN結晶内では光のオーバーラップが大きくなり、静電容量の上昇を抑えることができるだけでなく、入射光と出射光の偏向に垂直方向の軸ずれをなくすことが可能となる。   The incident light enters the optical deflector 300 to which a voltage is applied from the incident light surface 303 and is deflected inside the optical deflector 200. Next, of the three side surfaces, the light is totally reflected by the side surface 305, and the totally reflected light is further totally reflected by the side surface 306 and the side surface 307. The light totally reflected by the side surface 307 is emitted from the outgoing light surface 304. By making the optical path return three times in the deflector 300, the overlap of light increases in the KTN crystal, and not only can the increase in capacitance be suppressed, but also the deflection of incident light and outgoing light. It is possible to eliminate vertical axis misalignment.

100、200、300 光偏向器
101、201、301 KTN誘電体
102、202、302 電極面
103、203、303 入射光面
104、204、304 出射光面
105、107、205、207 HRコート
106、108、206、208 ARコート
305〜307 側面
100, 200, 300 Optical deflectors 101, 201, 301 KTN dielectrics 102, 202, 302 Electrode surfaces 103, 203, 303 Incident light surfaces 104, 204, 304 Emitted light surfaces 105, 107, 205, 207 HR coat 106, 108, 206, 208 AR coating 305-307 Side

Claims (3)

電気光学結晶を互いに平行な一対の平行四辺形の電極面で挟んだ光偏向器であって、
前記電極面に垂直でかつ互いに平行な一対の光入出射面であって、前記各入出射面内にそれぞれ同じ面積をもつ光無反射コート部と光高反射コート部が形成され、前記光無反射コート部において外部から光が入射され、前記光高反射コートにおいて前記偏向器内に入射した光が反射される、光入出射面を備え、
光の偏向方向は前記電極面に垂直であること
を特徴とする光偏向器。
An optical deflector in which an electro-optic crystal is sandwiched between a pair of parallelogrammic electrode surfaces parallel to each other,
A pair of light incident / exit surfaces perpendicular to the electrode surface and parallel to each other, wherein a light non-reflective coating portion and a light high reflection coating portion having the same area are formed in each of the light incident / exit surfaces, A light incident / exit surface is provided in which light is incident from the outside in the reflective coating portion, and the light incident in the deflector is reflected in the high light reflective coating,
An optical deflector characterized in that a light deflection direction is perpendicular to the electrode surface.
電気光学結晶を互いに平行な一対の五角形の電極面で挟んだ光偏向器であって、
前記一対の電極面に垂直な5つの長方形の側面であって、
前記隣り合う1対の光の入出射面であって、光無反射コートが施された、光の入出射面と、
3つの光の反射面と
が形成された側面で囲まれた7面体に形成され、
光の偏向方向は前記電極面に垂直である
ことを特徴とする光偏向器。
An optical deflector sandwiching an electro-optic crystal between a pair of parallel pentagonal electrode surfaces,
5 rectangular sides perpendicular to the pair of electrode surfaces,
A pair of adjacent light incident / exit surfaces, which are provided with a light non-reflective coating,
It is formed in a seven-sided body surrounded by three side surfaces formed with three light reflecting surfaces.
An optical deflector characterized in that a light deflection direction is perpendicular to the electrode surface.
前記電気光学結晶は、タンタル酸ニオブ酸カリウム(KTa1-xNbx3)を主成分とする単結晶であることを特徴とする、前記請求項1及び2のいずれか1項に記載の光偏向器。 3. The electro-optic crystal according to claim 1 , wherein the electro-optic crystal is a single crystal mainly composed of potassium tantalate niobate (KTa 1-x Nb x O 3 ). 4. Optical deflector.
JP2012273609A 2012-12-14 2012-12-14 Optical deflector Active JP5991911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273609A JP5991911B2 (en) 2012-12-14 2012-12-14 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273609A JP5991911B2 (en) 2012-12-14 2012-12-14 Optical deflector

Publications (2)

Publication Number Publication Date
JP2014119553A true JP2014119553A (en) 2014-06-30
JP5991911B2 JP5991911B2 (en) 2016-09-14

Family

ID=51174449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273609A Active JP5991911B2 (en) 2012-12-14 2012-12-14 Optical deflector

Country Status (1)

Country Link
JP (1) JP5991911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038465A (en) * 2014-08-07 2016-03-22 日本電信電話株式会社 Electrooptic device
JP2016051108A (en) * 2014-09-01 2016-04-11 日本電信電話株式会社 Light deflector device and device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
JP2011081362A (en) * 2009-09-14 2011-04-21 Ricoh Co Ltd Optical waveguide electro-optic device and process of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
JP2011081362A (en) * 2009-09-14 2011-04-21 Ricoh Co Ltd Optical waveguide electro-optic device and process of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038465A (en) * 2014-08-07 2016-03-22 日本電信電話株式会社 Electrooptic device
JP2016051108A (en) * 2014-09-01 2016-04-11 日本電信電話株式会社 Light deflector device and device including the same

Also Published As

Publication number Publication date
JP5991911B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP4382317B2 (en) Liquid crystal variable wavelength filter device
US10168586B2 (en) Electrically tunable optical phase modulation element
JP2010026079A (en) Optical device
CN104184030A (en) Tunable laser
JP5991911B2 (en) Optical deflector
US8131124B2 (en) Optical guided mode spatial switches and their fabrication
KR20090093427A (en) All optical switch using surface plasmon resonance
JP2018112625A (en) Two-dimensional light deflector
JP5285008B2 (en) Internal reflection type optical deflector
US7580594B2 (en) Optical modulation element and optical modulation device having the same
JPS61160003A (en) Optical interference measuring device
JP6300209B2 (en) Optical deflection element and optical deflection apparatus
JP2013044762A (en) Electro-optical element and manufacturing method thereof, and optical deflection device using electro-optical element
JP5222256B2 (en) Optical deflector
JP2016045400A (en) Electrooptic device
US8509576B2 (en) Optical switch, image display device, image forming device, and method for manufacturing optical switch
TW201439624A (en) Electro-optic modulator
RU2405179C1 (en) Electrooptic modulator on mach-zehnder interferometre circuit
JP6491615B2 (en) Optical deflector
JP5069267B2 (en) Variable focus lens
JP6322883B2 (en) Optical deflection element
JP2011059342A (en) Light deflector
JP5299421B2 (en) Light switch
JP6346572B2 (en) Variable focus lens
JP6335111B2 (en) Variable focus lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R150 Certificate of patent or registration of utility model

Ref document number: 5991911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250