JP2014115084A - Gas sensor - Google Patents
Gas sensor Download PDFInfo
- Publication number
- JP2014115084A JP2014115084A JP2012266906A JP2012266906A JP2014115084A JP 2014115084 A JP2014115084 A JP 2014115084A JP 2012266906 A JP2012266906 A JP 2012266906A JP 2012266906 A JP2012266906 A JP 2012266906A JP 2014115084 A JP2014115084 A JP 2014115084A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- gas
- lgs
- acoustic wave
- saw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 63
- 239000013078 crystal Substances 0.000 claims abstract description 40
- 230000035945 sensitivity Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 51
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 230000002452 interceptive effect Effects 0.000 abstract 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 64
- 239000010453 quartz Substances 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- 230000004044 response Effects 0.000 description 17
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000003993 interaction Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000012855 volatile organic compound Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000005526 G1 to G0 transition Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 241000252506 Characiformes Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241001313099 Pieris napi Species 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000003965 capillary gas chromatography Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical group [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、極性ガスに対するガスセンサを高感度化するために、圧電結晶基板のイオン結合性を評価し、これがある指標以上(望ましくは50%以上)である結晶を選択することにより、弾性表面波の減衰をもたらす感応膜を使用せずに極性ガスを吸着させ、弾性表面波とガスとの相互作用距離を増大させることを特徴とする新規なガスセンサの構成法に関するものである。 In order to increase the sensitivity of a gas sensor for polar gas, the present invention evaluates the ion binding property of a piezoelectric crystal substrate, and selects a crystal having a certain index or higher (preferably 50% or higher) to thereby generate a surface acoustic wave. The present invention relates to a novel gas sensor construction method characterized in that polar gas is adsorbed without using a sensitive film that causes attenuation, and the interaction distance between the surface acoustic wave and the gas is increased.
環境中の揮発性有機化合物(volatile organic compounds; VOC)を現場で測定するためには、低消費電力化と軽量化が必要であり、ガスを室温で測定できる弾性表面波(surface acoustic wave;SAW)センサが有用である(例えば、非特許文献1参照)。 In order to measure volatile organic compounds (VOC) in the environment, it is necessary to reduce power consumption and weight, and surface acoustic waves (SAW) that can measure gas at room temperature; ) A sensor is useful (see, for example, Non-Patent Document 1).
SAWセンサは、SAW素子におけるSAWの伝搬経路に感応膜を成膜することにより、作製される。ここで感応膜は、ガスを吸収または吸着してその密度、弾性率、粘性減衰、導電率等を変化させることにより、SAWの音速と減衰とを変化させる。SAWセンサの感度は、SAWとガスとの相互作用距離の増大および感応膜におけるガスの検出効率の向上により、高めることができる。 The SAW sensor is manufactured by forming a sensitive film on the SAW propagation path in the SAW element. Here, the sensitive film changes the sound speed and attenuation of the SAW by absorbing or adsorbing gas and changing its density, elastic modulus, viscous attenuation, conductivity, and the like. The sensitivity of the SAW sensor can be increased by increasing the interaction distance between the SAW and the gas and improving the gas detection efficiency in the sensitive film.
SAWとガスとの相互作用距離に基づく高感度化に関して、平面SAWセンサは回折により相互作用距離の増大に限界があった。一方、本発明者らが所属するグループで開発した球状SAWセンサ(ボールSAWセンサ)は、SAWの自然なコリメートビームが多重周回する現象を利用して、相互作用距離を平面型センサよりも著しく増加させることができたため、高感度化に有用である(例えば、特許文献1、2、3、非特許文献2参照)。 Regarding the enhancement of sensitivity based on the interaction distance between the SAW and the gas, the planar SAW sensor has a limit in increasing the interaction distance due to diffraction. On the other hand, the spherical SAW sensor (ball SAW sensor) developed by the group to which the inventors belong belongs to the phenomenon that SAW's natural collimated beam circulates multiple times, and the interaction distance is significantly increased compared to the planar sensor. Therefore, it is useful for increasing the sensitivity (see, for example, Patent Documents 1, 2, 3, and Non-Patent Document 2).
感応膜によるガスの検出効率の向上に関して、アルコールのような極性VOCに対する高感度化を室温で達成するためには、感応膜を設けてこれにガスを吸収または吸着させることが必要である。ガスクロマトグラフのガス分離カラムに用いられる固定相物質は感応膜材料として有用であり(例えば、非特許文献1参照)、一般に極性ガスは極性の固定相物質に保持されやすいことが知られている(例えば、非特許文献3参照)。例えば、n−ブタノールの測定では、極性ガス分析用の固定相である両親媒性物質(界面活性剤)における親水基が最表面に配向するように作製された感応膜が、水晶振動子センサの高感度化に有用だった(例えば、非特許文献4参照)。しかし、感応膜を設けることはSAWの減衰を増加させるため、伝搬距離を増加させることができず、一層の高感度化を妨げるという問題がある。 Regarding the improvement of gas detection efficiency by the sensitive film, in order to achieve high sensitivity to polar VOCs such as alcohol at room temperature, it is necessary to provide a sensitive film and absorb or adsorb the gas on the sensitive film. A stationary phase substance used in a gas separation column of a gas chromatograph is useful as a sensitive membrane material (see, for example, Non-Patent Document 1), and it is generally known that a polar gas is easily retained by a polar stationary phase substance ( For example, refer nonpatent literature 3). For example, in the measurement of n-butanol, a sensitive film prepared so that the hydrophilic group in the amphiphile (surfactant), which is a stationary phase for polar gas analysis, is oriented on the outermost surface, It was useful for high sensitivity (for example, refer nonpatent literature 4). However, the provision of the sensitive film increases the attenuation of the SAW, so that the propagation distance cannot be increased, and there is a problem that higher sensitivity is hindered.
ここで、SAW素子には、水晶や、電気機械結合係数が水晶よりも約3倍大きいランガサイト(La3Ga5SiO14;LGS)が用いられる(例えば、非特許文献5参照)。これらの結晶には共にSiの酸素四面体が存在するが、LGSにはさらにLaとGaの酸素多面体が存在する(例えば、非特許文献6参照)。 Here, as the SAW element, quartz or Langasite (La 3 Ga 5 SiO 14 ; LGS) whose electromechanical coupling coefficient is about three times larger than that of quartz is used (for example, see Non-Patent Document 5). Both of these crystals have an oxygen tetrahedron of Si, but LGS also has an oxygen polyhedron of La and Ga (see, for example, Non-Patent Document 6).
水晶とLGSは共に、紫外線照射により親水化することができる(例えば、非特許文献7参照)。親水化された表面は極性VOCの吸着に有用であるが、これを感応膜の代わりに用いたSAWセンサは報告されていない。また、水晶とLGSによる極性VOCの吸着特性の違いはまだ未解明である。 Both quartz and LGS can be hydrophilized by ultraviolet irradiation (see, for example, Non-Patent Document 7). The hydrophilized surface is useful for the adsorption of polar VOCs, but no SAW sensor using this instead of a sensitive membrane has been reported. Moreover, the difference in the adsorption characteristics of polar VOC between quartz and LGS is still unclear.
尚、結晶表面の極性は、結晶を構成する原子間結合の性質に依存する。結合の極性はイオン結合性により評価することができ、原子Aと原子Bの原子間結合のイオン結合性は、式(1)で定義される(例えば、非特許文献8参照)。
本発明は、弾性表面波ガスセンサにおける感応膜によるSAWの減衰を除去して、更なるセンサの高感度化を図ることができるガスセンサを提供することを目的としている。 An object of the present invention is to provide a gas sensor capable of removing the SAW attenuation due to the sensitive film in the surface acoustic wave gas sensor and further increasing the sensitivity of the sensor.
本発明は、圧電結晶基板のイオン結合性を評価し、これがある指標以上(望ましくは50%以上)である結晶を選択することにより、弾性表面波の減衰をもたらす感応膜を使用せずに極性ガスを吸着させ、弾性表面波とガスの相互作用距離を増大させることを特徴とする新規なガスセンサの構成法を提供する。 The present invention evaluates the ionic bonding properties of a piezoelectric crystal substrate, and selects a crystal that has a certain index or higher (preferably 50% or higher), so that the polarity can be obtained without using a sensitive film that causes surface acoustic wave attenuation. Provided is a novel gas sensor construction method characterized in that gas is adsorbed and the interaction distance between the surface acoustic wave and the gas is increased.
すなわち、本発明に係るガスセンサは、50%以上のイオン結合性を有する構成要素を持つ圧電結晶基板に弾性表面波を伝搬させ、前記圧電結晶基板の表面に極性ガス分子を吸着させることにより生じた前記弾性表面波の音速または減衰の変化を利用することを特徴とする。 That is, the gas sensor according to the present invention is produced by propagating a surface acoustic wave to a piezoelectric crystal substrate having a component having an ion binding property of 50% or more and adsorbing polar gas molecules on the surface of the piezoelectric crystal substrate. A change in sound velocity or attenuation of the surface acoustic wave is used.
本発明の詳細な説明を水晶とLGSを例にとって示す。式(1)において、水晶とLGSを構成する各元素の電気陰性度O:3.44、Si:1.90、Ga:1.81、La:1.10を代入して計算した、Si−O、Ga−O、La−O結合(Bonding)におけるイオン結合性(Ionic character)を、表1に示す。LGSに含まれるLa−OおよびGa−O結合のイオン結合性は、Si−O結合よりも高く、特にLa−O結合は著しく高い。このように、LGSは結晶のイオン結合性が高いために表面の極性も強く、ブタノールのような極性VOCを強く吸着して、センサとして有利であると考えられる。 The detailed description of the present invention will be given by taking quartz and LGS as examples. In formula (1), Si− calculated by substituting the electronegativity O: 3.44, Si: 1.90, Ga: 1.81, and La: 1.10 of each element constituting quartz and LGS. Table 1 shows ionic bonds in O, Ga-O, and La-O bonds (bonding). The ionic bondability of La—O and Ga—O bonds contained in LGS is higher than that of Si—O bonds, and in particular, La—O bonds are significantly higher. As described above, LGS has a high surface ion polarity due to its high ionic bondability, and is strongly advantageous as a sensor by strongly adsorbing polar VOC such as butanol.
尚、このような表面は、一度極性ガスを吸着すると、この吸着層により感度の高い表面が被覆され感度が低下する。本発明では、酸素雰囲気における紫外線照射により、この吸着層を除去することにより、感度を向上させる方法も提示する。すなわち、本発明に係るガスセンサは、使用前に、前記圧電結晶基板の表面を酸素雰囲気に暴露して紫外光を照射しておくことが好ましい。また、使用した前記圧電結晶基板の表面を酸素雰囲気に暴露して紫外光を照射することにより高イオン結合性の表面を露出させ、感度を再生させることが好ましい。 In addition, once polar gas is adsorbed on such a surface, the surface with high sensitivity is covered with this adsorption layer, and the sensitivity is lowered. In the present invention, a method for improving the sensitivity by removing the adsorption layer by ultraviolet irradiation in an oxygen atmosphere is also presented. That is, the gas sensor according to the present invention is preferably irradiated with ultraviolet light by exposing the surface of the piezoelectric crystal substrate to an oxygen atmosphere before use. Moreover, it is preferable to expose the surface of the used piezoelectric crystal substrate to an oxygen atmosphere and irradiate ultraviolet light to expose the surface having high ion binding property and regenerate sensitivity.
また、SAWとガスとの相互作用距離を増大させる方法として、ボールSAW素子を用いてもよい。すなわち、本発明に係るガスセンサは、前記圧電結晶基板が球状をなしていてもよい。ただし、本発明はLGS結晶を用いることに限定されるものでなく、紫外線照射を必須とするものではなく、ボールSAWセンサを用いることに限定されるものでないことは、言うまでもない。 As a method for increasing the interaction distance between the SAW and the gas, a ball SAW element may be used. That is, in the gas sensor according to the present invention, the piezoelectric crystal substrate may be spherical. However, it goes without saying that the present invention is not limited to using an LGS crystal, does not necessarily require ultraviolet irradiation, and is not limited to using a ball SAW sensor.
本発明によれば、極性ガスに対する高感度化なガスセンサを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the highly sensitive gas sensor with respect to polar gas can be provided.
以下、図面に基づき、本発明の実施の形態について説明する。
実施例として、従来から良く用いられている水晶と、最近使用されだしたLGSに着目し、これらのイオン結合性の相違を利用したセンサ構成法の有用性を示す。なお、通常の弾性表面波センサで相互作用長を増大させるものとして、反射器を用いた共振器が知られているが、本実施例では、低濃度ガスに対する応答をSAWの多重周回現象を利用して増幅するボールSAWセンサを使用することにより、5.8ppbの検出限界という、SAWセンサ中の最高感度を達成できることを示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As an example, paying attention to the conventionally used quartz and the recently used LGS, the usefulness of the sensor construction method using the difference in these ion binding properties will be shown. Note that a resonator using a reflector is known as a normal surface acoustic wave sensor that increases the interaction length. In this embodiment, the response to a low-concentration gas is obtained by using the SAW multi-turn phenomenon. By using a ball SAW sensor that amplifies in this way, it is shown that the highest sensitivity in the SAW sensor, a detection limit of 5.8 ppb, can be achieved.
水晶とLGSの吸着性の違いの検証方法として、水の接触角測定を示す。基板には鏡面研磨されたST−cutの水晶、および48.5oY−26oXのLGSを用いた。水晶とランガサイトの結晶構造を図1に示す。これらの結晶にはSiO4の四面体が共通に含まれているが、LGSにはさらにLaとGaの酸素多面体が存在する。 The water contact angle measurement is shown as a method for verifying the difference in adsorption between quartz and LGS. As the substrate, mirror-polished ST-cut quartz and 48.5 o Y-26 o X LGS were used. The crystal structure of quartz and langasite is shown in FIG. These crystals contain a common tetrahedral of SiO 4 , but LGS further includes La and Ga oxygen polyhedra.
まず、水晶やLGSの表面に付着した有機物の汚染物質の除去を目的とした有機洗浄として、アセトン、イソプロピルアルコール、脱イオン(deionized;DI)水の順に、5分間の超音波洗浄を各2回ずつ行った。また、酸洗浄として、濃硫酸と過酸化水素水とを1:2の体積比で混合した溶液に20分浸漬(ピラニアエッチング)した後に、ビーカー内をDI水で6回置換してリンスし、5分間の超音波洗浄を2回行った。次に、表面を親水化するためUV照射を行った。UV照射による一般的な効果を図2に示す。低圧水銀ランプ(Low pressure mercury lamp)には、波長が254nmと185nmのUVが含まれる。酸素雰囲気でこれらのUVを発生させると、185nmのUVは酸素分子からオゾンを発生させ、254nmのUVはオゾンを分解して活性酸素原子を発生させるとともに、基板の汚染物質を構成する多くの有機物(Organic contamination)に吸収される。従って、活性酸素と有機物との化学反応が進んで、有機物はCO2やH2Oとして揮発除去される。UV照射の効果を検証するために、有機洗浄を行った基板に低圧水銀ランプ(28mW/cm2)によりUVを30分間照射した。 First, as an organic cleaning for the purpose of removing organic contaminants attached to the surface of crystal or LGS, ultrasonic cleaning is performed twice for 5 minutes each in the order of acetone, isopropyl alcohol, and deionized (DI) water. I went one by one. Also, as acid cleaning, after immersion for 20 minutes (piranha etching) in a mixed solution of concentrated sulfuric acid and hydrogen peroxide solution in a volume ratio of 1: 2, the inside of the beaker is replaced with DI water 6 times and rinsed, The ultrasonic cleaning for 5 minutes was performed twice. Next, UV irradiation was performed to make the surface hydrophilic. The general effect of UV irradiation is shown in FIG. The low pressure mercury lamp includes UV with wavelengths of 254 nm and 185 nm. When these UVs are generated in an oxygen atmosphere, UV of 185 nm generates ozone from oxygen molecules, and UV of 254 nm decomposes ozone to generate active oxygen atoms, and many organic substances that constitute substrate contaminants. (Organic contamination). Accordingly, the chemical reaction between the active oxygen and the organic substance proceeds, and the organic substance is volatilized and removed as CO 2 or H 2 O. In order to verify the effect of UV irradiation, the substrate that had been subjected to organic cleaning was irradiated with UV for 30 minutes by a low-pressure mercury lamp (28 mW / cm 2 ).
各方法で処理した基板に、1μlの脱イオン水を滴下して接触角を測定した結果を、図3に示す。図3(a)〜(c)は水晶の場合を、図3(d)〜(e)はLGSの場合を表す。有機洗浄した試料において、水晶の接触角はθ=12°(図3(a))、LGSはθ=17°(図3(d))だった。一方、酸洗浄した試料において、水晶はθ=0°(図3(b))、LGSはθ=25°(図3(e))だった。次に、有機洗浄した後にUV照射した試料において、水晶とLGSは共にθ=0°となった(図3(c)(f))。このように、LGSの接触角をθ=0°とすることは容易でないことが分かった。 FIG. 3 shows the result of measuring the contact angle by dropping 1 μl of deionized water on the substrate treated by each method. 3A to 3C show the case of quartz, and FIGS. 3D to 3E show the case of LGS. In the organically cleaned sample, the crystal contact angle was θ = 12 ° (FIG. 3A), and LGS was θ = 17 ° (FIG. 3D). On the other hand, in the acid-washed sample, quartz was θ = 0 ° (FIG. 3B), and LGS was θ = 25 ° (FIG. 3E). Next, in the sample irradiated with UV after organic cleaning, both quartz and LGS were θ = 0 ° (FIGS. 3C and 3F). Thus, it has been found that it is not easy to set the contact angle of LGS to θ = 0 °.
次に、UV照射した水晶とLGS基板を、極性VOCの指標物質として多用されるn−ブタノール(ブタノール)に浸漬した後にスピンドライヤーにより乾燥して、図4に示すような接触角の変化から、吸着性を評価した。図4(a)および(b)は水晶の場合を、図4(c)および(d)はLGSの場合を表す。水晶では、ブタノール浸漬および乾燥後も接触角がθ=0°(図4(b))で変化しなかったが、LGSではθ=19°(図4(d))に増加した。従って、ブタノールは水晶表面に吸着せず遠心力により除去されたが、LGS表面には強く吸着して遠心力では除去されず、接触角を増加させたことがわかった。 Next, the UV-irradiated crystal and the LGS substrate are dipped in n-butanol (butanol), which is frequently used as a polar VOC indicator substance, and then dried by a spin dryer. From the change in contact angle as shown in FIG. Adsorbability was evaluated. 4A and 4B show the case of quartz, and FIGS. 4C and 4D show the case of LGS. In the case of quartz, the contact angle did not change at θ = 0 ° (FIG. 4B) even after butanol immersion and drying, but in LGS, the contact angle increased to θ = 19 ° (FIG. 4D). Therefore, it was found that butanol did not adsorb on the quartz surface but was removed by centrifugal force, but strongly adsorbed on the LGS surface and not removed by centrifugal force, increasing the contact angle.
次に、有機洗浄の後に30分間UV照射して親水化したLGSのボールSAWセンサを構成した。比較対象として、同処理により水晶のボールSAWセンサを構成した。 Next, an LGS ball SAW sensor was made hydrophilic by UV irradiation for 30 minutes after organic cleaning. As a comparison object, a crystal ball SAW sensor was constructed by the same processing.
ボールSAWセンサの原理を図5に示す。圧電結晶球のZ軸に垂直な大円を赤道と定義する。赤道において開口長が式(2)で表されるすだれ状電極(Interdigital transducer;IDT)を作製すると、SAWの回折による拡散と球面による集束とがバランスして自然にコリメートされたSAWが赤道上を伝搬する。
このSAWは、球の支持部により散乱されないために長距離伝搬する。伝搬経路の感応膜がガス分子と反応すると、質量負荷および粘弾性変化により感応膜の音速と減衰が変化するため、パルス信号やバースト信号で励振したSAWの遅延時間と振幅が変化する。ここでは、UV照射して親水化した結晶表面を用いる。最後に、遅延時間と振幅の変化は周回数に比例して増加するために、多重周回したSAWを測定することにより、感応膜の音速および減衰の変化を高感度に測定することができる。 This SAW propagates for a long distance because it is not scattered by the support portion of the sphere. When the sensitive film in the propagation path reacts with gas molecules, the sound speed and attenuation of the sensitive film change due to changes in mass load and viscoelasticity, so that the delay time and amplitude of the SAW excited by the pulse signal or burst signal change. Here, a crystal surface hydrophilized by UV irradiation is used. Finally, since the delay time and the change in amplitude increase in proportion to the number of turns, the sound speed and attenuation change of the sensitive film can be measured with high sensitivity by measuring the SAW after multiple turns.
低濃度のブタノールガスを再現性良く作製するために、メタノールで希釈したブタノールを卓上型ガスクロマトグラフ(gas chromatograph;GC)により分離して測定した。実験装置の模式図を図6に示す。 In order to produce a low-concentration butanol gas with good reproducibility, butanol diluted with methanol was measured by separation using a bench-top gas chromatograph (GC). A schematic diagram of the experimental apparatus is shown in FIG.
GCのガスラインに注入された混合試料ガスは、Heキャリアガスにより100%ポリジメチルシロキサン固定相のオープンチューブカラム(内径0.32mm、長さ5m)に運ばれ、各成分は固定相への溶解度の差により時間的に分離される。これらはボールSAWセンサと熱伝導度検出器(Thermal Conductivity Detector;TCD)により検出され、横軸を時間にして縦軸に各検出器の応答をプロットすることによりクロマトグラムが得られる。ここで、カラム内のキャリア流速は6ml/minとし、カラムとボールSAWセンサはGCオーブンにより35oCに保った。また、TCDは200oCで使用した。ボールSAWセンサは直径3.3mmであり、z軸シリンダーに、開口230μm、ラインアンドスペース4μm、10対のIDTを持つ。SAWの励振および周回波の遅延時間変化の測定は、デジタル型直交検波器により行った。尚、測定周回数は、応答のS/Nが最大になるように決定した。 The mixed sample gas injected into the GC gas line is transported to a 100% polydimethylsiloxane stationary phase open tube column (inner diameter 0.32 mm, length 5 m) by He carrier gas, and each component has solubility in the stationary phase. Are separated in terms of time. These are detected by a ball SAW sensor and a thermal conductivity detector (TCD), and a chromatogram is obtained by plotting the response of each detector on the vertical axis with time on the horizontal axis. Here, the carrier flow rate in the column was 6 ml / min, and the column and the ball SAW sensor were kept at 35 ° C. by a GC oven. TCD was used at 200 ° C. The ball SAW sensor has a diameter of 3.3 mm, and has an opening of 230 μm, a line and space of 4 μm, and 10 pairs of IDTs in a z-axis cylinder. The SAW excitation and the measurement of the change in the delay time of the circulating wave were performed with a digital quadrature detector. The number of measurement laps was determined so that the response S / N was maximized.
30分間UV照射した水晶ボールSAWセンサの結果を、図7に示す。1/100に希釈されたブタノールを0.1μl注入して、スプリット比80で測定した。ブタノールガス濃度は、ピークにおいて9ppmだった。ここでは、GCにおいてキャリアガスの圧力損失は主にカラムで生じると考えられるため、センサでは大気圧であると仮定して気体の状態方程式を用いて濃度を評価した。 The result of the quartz ball SAW sensor irradiated with UV for 30 minutes is shown in FIG. 0.1 μl of butanol diluted to 1/100 was injected and measured at a split ratio of 80. The butanol gas concentration was 9 ppm at the peak. Here, since it is considered that the pressure loss of the carrier gas mainly occurs in the column in the GC, the concentration was evaluated using the gas equation of state on the assumption that the sensor is at atmospheric pressure.
図7(a)はボールSAWセンサの15周目の周回波を用いて測定した遅延時間変化であり、溶媒(Solvent)であるメタノールに続いてブタノール(Butanol)のピークが測定された。ガスによる正の遅延時間変化は、吸着による質量負荷に起因する。挿入されたグラフは、破線で囲われた部分の拡大図である。ベースラインのクロマトグラムに対してピーク測定に影響の大きい周波数範囲(0.17Hz〜1.7Hz)でFFTフィルタリングを適用して、RMS振幅を求めることによりノイズを測定した。その結果、9.0ppmのブタノールは、S/N=170で測定された。一方、図7(b)に示すTCD信号では、明瞭なピークが得られなかった。従って、親水性の表面は、ブタノールを検出可能なことが確認された。 FIG. 7A shows a change in delay time measured using the 15th round wave of the ball SAW sensor, and a butanol peak was measured following methanol as a solvent. The positive delay time change due to the gas is due to the mass load due to adsorption. The inserted graph is an enlarged view of a portion surrounded by a broken line. Noise was measured by applying an FFT filtering in a frequency range (0.17 Hz to 1.7 Hz) having a large influence on the peak measurement with respect to the baseline chromatogram to obtain an RMS amplitude. As a result, 9.0 ppm of butanol was measured at S / N = 170. On the other hand, a clear peak was not obtained in the TCD signal shown in FIG. Therefore, it was confirmed that the hydrophilic surface can detect butanol.
LGSボールSAWセンサについて同様の実験を行った結果を図8に示す。1/1000に希釈されたブタノールを0.5μl注入してスプリット比80で測定したため、ピークにおける濃度は4.5ppmだった。図8(a)はボールSAWセンサの40周目の周回波を用いて測定した遅延時間変化である。LGSセンサでは、水晶の場合よりも大きな吸着応答が見られた。この応答はS/N=530であるため、LGSのセンサは4.5ppmのブタノールを水晶のセンサよりも高いS/Nで検出することができた。尚、脱離応答のテーリングは、接触角の測定で示された親水性のLGS表面におけるブタノールの強い吸着現象に起因すると考えられる。 FIG. 8 shows the result of a similar experiment performed on the LGS ball SAW sensor. Since 0.5 μl of butanol diluted 1/1000 was injected and measured at a split ratio of 80, the concentration at the peak was 4.5 ppm. FIG. 8A shows a change in delay time measured using the 40th round wave of the ball SAW sensor. In the LGS sensor, a larger adsorption response was observed than in the case of quartz. Since this response is S / N = 530, the LGS sensor was able to detect 4.5 ppm butanol at a higher S / N than the quartz sensor. The tailing of the desorption response is considered to be caused by the strong butanol adsorption phenomenon on the hydrophilic LGS surface shown by the contact angle measurement.
次に、より低濃度のブタノールを用いて吸着応答を測定した結果を図9に示す。ピーク濃度180ppbのブタノールは明瞭に検出できた。更に90ppbのブタノールも検出できた。このように、LGSセンサにおける非常に高感度な吸着応答は、危険な極性ガスの初期の検出に有用であると考えられる。 Next, the result of measuring the adsorption response using a lower concentration of butanol is shown in FIG. Butanol with a peak concentration of 180 ppb was clearly detectable. Furthermore, 90 ppb butanol could also be detected. Thus, the very sensitive adsorption response in the LGS sensor is considered useful for the initial detection of dangerous polar gases.
尚、別のUV照射LGSセンサにおいて、1.8ppmのブタノールを連続して20回測定すると応答は半減した。また、50ppmのブタノールを測定した後にGCのキャリアガスを止めた状態で1日放置すると、同じ濃度のブタノールに対する応答が見られなくなった。これは、GCの配管、カラム、センサセル等に吸着されていたブタノールが徐々に放出されてLGSセンサに吸着し続けたためと考えられる。しかし、応答が見られなくなったセンサにUV照射を行うと、劣化前と同程度の応答を再生することができた。従って、UV照射したLGSセンサは、極性VOCを過度に吸着して感度が低下しても、酸素雰囲気でUV照射することにより感度を再生できると考えられる。 In another UV irradiation LGS sensor, when 1.8 ppm butanol was continuously measured 20 times, the response was halved. In addition, if the GC carrier gas was stopped after measuring 50 ppm of butanol for 1 day, no response to the same concentration of butanol was observed. This is considered to be because butanol adsorbed on the GC pipe, column, sensor cell, etc. was gradually released and continued to be adsorbed on the LGS sensor. However, when UV irradiation was performed on a sensor in which no response was observed, a response similar to that before deterioration could be reproduced. Therefore, it is considered that the LGS sensor irradiated with UV can regenerate the sensitivity by UV irradiation in an oxygen atmosphere even if the sensitivity decreases due to excessive adsorption of polar VOC.
UV照射した水晶(UV−irradiated quartz)とLGS(UV−irradiated LGS)のボールSAWセンサで測定した遅延時間応答のブタノールガス濃度依存性を図10に示す。ここで、ボールSAW素子に低減衰な有機感応膜を作製可能な軸外スピンコート法により界面活性剤を成膜したLGSセンサ(Siponate LGS)の結果も、従来技術との比較として記載する。この界面活性剤はドデシルベンゼンスルホン酸ナトリウムであり、GCにおいて極性ガスの分離に用いられる固定相物質である。界面活性剤の疎水基をセンサ表面に付着させて親水基を露出させる目的で、ヘキサメチルジシラザンで処理したLGSセンサに、3wt%のトルエン溶液を用いて3000prm、20sの条件で成膜した。 FIG. 10 shows the butanol gas concentration dependence of the delay time response measured with a ball SAW sensor of UV-irradiated quartz (UV-irradiated quartz) and LGS (UV-irradiated LGS). Here, the result of an LGS sensor (Siponate LGS) in which a surfactant is formed by an off-axis spin coating method capable of producing a low-damping organic sensitive film on the ball SAW element is also described as a comparison with the prior art. This surfactant is sodium dodecylbenzenesulfonate and is a stationary phase material used for separation of polar gases in GC. For the purpose of attaching the hydrophobic group of the surfactant to the sensor surface and exposing the hydrophilic group, a film was formed on an LGS sensor treated with hexamethyldisilazane using a 3 wt% toluene solution under conditions of 3000 prm and 20 s.
図10の実線は、各センサにおいて最も高い感度を与える応答から求めた比例関係であり、濃度1ppmにおける応答量は感度を表す。破線は、RMSノイズの2倍の値である。検出限界は、実線と点線の交点における濃度で表される。親水化したLGSセンサは、水晶センサよりも感度が高くノイズも低かった。尚、LGSセンサおよび水晶センサ共に、高濃度のブタノールに対して応答が飽和する挙動が見られた。一方、感応膜を用いたセンサでは応答の飽和は見られなかったが、LGSセンサよりも1桁以上感度が低かった。UV未照射の水晶およびLGSセンサを含めて各センサで達成された検出限界(Detection limit)を表2に示す。UV照射して親水化したLGSセンサにより、最も低い検出限界である5.8ppbを達成した。従って、このセンサはppbオーダーのブタノールを検出可能であることが示された。 The solid line in FIG. 10 is a proportional relationship obtained from the response giving the highest sensitivity in each sensor, and the response amount at a concentration of 1 ppm represents the sensitivity. The dashed line is twice the value of RMS noise. The detection limit is represented by the concentration at the intersection of the solid line and the dotted line. The hydrophilized LGS sensor had higher sensitivity and lower noise than the quartz sensor. Note that both the LGS sensor and the quartz sensor showed a behavior in which the response was saturated with a high concentration of butanol. On the other hand, in the sensor using the sensitive film, the response was not saturated, but the sensitivity was lower by one digit or more than that of the LGS sensor. Table 2 shows the detection limits achieved with each sensor including UV unirradiated quartz and LGS sensors. The lowest detection limit of 5.8 ppb was achieved with a LGS sensor hydrophilized by UV irradiation. Therefore, it was shown that this sensor can detect butanol of ppb order.
Claims (4)
4. The gas sensor according to claim 1, wherein the piezoelectric crystal substrate has a spherical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012266906A JP6213761B2 (en) | 2012-12-06 | 2012-12-06 | How to use the gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012266906A JP6213761B2 (en) | 2012-12-06 | 2012-12-06 | How to use the gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014115084A true JP2014115084A (en) | 2014-06-26 |
JP6213761B2 JP6213761B2 (en) | 2017-10-18 |
Family
ID=51171260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012266906A Active JP6213761B2 (en) | 2012-12-06 | 2012-12-06 | How to use the gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6213761B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079509A1 (en) * | 2016-10-27 | 2018-05-03 | 国立研究開発法人物質・材料研究機構 | Gas sensor device and method for removing gas components |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09221392A (en) * | 1996-02-16 | 1997-08-26 | Matsushita Electric Ind Co Ltd | Composite piezoelectric substrate and its production |
JP2009109343A (en) * | 2007-10-30 | 2009-05-21 | Toppan Printing Co Ltd | Spherical surface acoustic wave element for odor sensor and odor sensing system |
-
2012
- 2012-12-06 JP JP2012266906A patent/JP6213761B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09221392A (en) * | 1996-02-16 | 1997-08-26 | Matsushita Electric Ind Co Ltd | Composite piezoelectric substrate and its production |
JP2009109343A (en) * | 2007-10-30 | 2009-05-21 | Toppan Printing Co Ltd | Spherical surface acoustic wave element for odor sensor and odor sensing system |
Non-Patent Citations (1)
Title |
---|
永井弘樹、外10名: "「ボールSAWセンサによる極性ガスの高感度測定」", 圧電材料・デバイスシンポジウム2011講演論文集, JPN6016034938, 31 January 2011 (2011-01-31), JP, pages 121 - 126 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079509A1 (en) * | 2016-10-27 | 2018-05-03 | 国立研究開発法人物質・材料研究機構 | Gas sensor device and method for removing gas components |
JPWO2018079509A1 (en) * | 2016-10-27 | 2019-09-19 | 国立研究開発法人物質・材料研究機構 | Gas sensor device and gas component removal method |
Also Published As
Publication number | Publication date |
---|---|
JP6213761B2 (en) | 2017-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mintova et al. | Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices | |
Wang et al. | Effect of particle size on the adsorption and desorption properties of oxide nanoparticles | |
US8904850B1 (en) | Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere | |
Martin et al. | Gas sensing with acoustic devices | |
Penza et al. | Thin-film bulk-acoustic-resonator gas sensor functionalized with a nanocomposite Langmuir–Blodgett layer of carbon nanotubes | |
Yim et al. | CO2-selective nanoporous metal-organic framework microcantilevers | |
WO2015088446A1 (en) | Surface acoustic wave sensor for influenza detection | |
Kabir et al. | Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications | |
Nieuwenhuizen et al. | Surface acoustic wave gas sensor for nitrogen dioxide using phthalocyanines as chemical interfaces. Effects of nitric oxide, halogen gases, and prolonged heat treatment | |
Zheng et al. | Advances in the chemical sensors for the detection of DMMP—A simulant for nerve agent sarin | |
Wang et al. | Passive wireless surface acoustic wave CO2 sensor with carbon nanotube nanocomposite as an interface layer | |
Lim et al. | Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite | |
Barauskas et al. | CO2 and SO2 interactions with methylated poly (ethylenimine)-functionalized capacitive micromachined ultrasonic transducers (CMUTs): gas sensing and degradation mechanism | |
Kumar et al. | Design performance and frequency response analysis of SAW-based sensor for dichloromethane gas sensing amidst the COVID-19 | |
Siegal et al. | Nanoporous carbon films for gas microsensors | |
JP6213761B2 (en) | How to use the gas sensor | |
Kabir et al. | Investigating the cross-interference effects of alumina refinery process gas species on a SAW based mercury vapor sensor | |
Pohl et al. | Optical carbon dioxide detection in the visible down to the single digit ppm range using plasmonic perfect absorbers | |
Sappati et al. | Printed acoustic sensor for low concentration volatile organic compound monitoring | |
Benz et al. | High temperature mass detection using a carbon nanotube bilayer modified quartz crystal microbalance as a GC detector | |
Ricco | SAW Chemical Sensors: An Expanding Role with Global Impact | |
Si et al. | Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films | |
Zamani et al. | Mesoporous silica: a suitable adsorbent for amines | |
Shinar et al. | Graphite microparticles as coatings for quartz crystal microbalance-based gas sensors | |
JP6124327B2 (en) | Metal detection sensor and metal detection method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170321 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6213761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |