JP2014113759A - Three-dimensional contouring method and three-dimensional apparatus - Google Patents

Three-dimensional contouring method and three-dimensional apparatus Download PDF

Info

Publication number
JP2014113759A
JP2014113759A JP2012269730A JP2012269730A JP2014113759A JP 2014113759 A JP2014113759 A JP 2014113759A JP 2012269730 A JP2012269730 A JP 2012269730A JP 2012269730 A JP2012269730 A JP 2012269730A JP 2014113759 A JP2014113759 A JP 2014113759A
Authority
JP
Japan
Prior art keywords
dimensional
solid
support material
dimensional modeling
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269730A
Other languages
Japanese (ja)
Other versions
JP6004269B2 (en
Inventor
Satoshi Kitaoka
聡 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012269730A priority Critical patent/JP6004269B2/en
Publication of JP2014113759A publication Critical patent/JP2014113759A/en
Application granted granted Critical
Publication of JP6004269B2 publication Critical patent/JP6004269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional contouring method and a three-dimensional apparatus each capable of improving the energy saving prospect and safety.SOLUTION: In a three-dimensional contouring method for forming a three-dimensional object having a desired shape, sets of information on the respective lengths and configuration order of a three-dimensional raw material 3 consisting of a solid and configured, in a case where a three-dimensional object scheduled to be contoured is zoned by zoning a three-dimensional space in a state where the respective zones exist as bar-shaped entities, at a site where the three-dimensional object of each zone exists and a support material 4 consisting of a solid and configured at a site where the three-dimensional object does not exist underneath the three-dimensional raw material 3 are generated, and after three-dimensional raw materials 3 and support materials 4 of specified lengths have been configured in a specified order within the respective zones on the basis of these sets of information, mutually adjacent three-dimensional raw materials 3 are joined while the support materials 4 are being removed.

Description

本発明は、被加工物から所望の形状の立体を造形する立体造形方法及び立体造形装置に関するものである。   The present invention relates to a three-dimensional modeling method and a three-dimensional modeling apparatus for modeling a three-dimensional object having a desired shape from a workpiece.

従来、3次元形状の立体モデルを作成する立体造形方法としては、切削RP(Rapid Prototyping)法、光造形法、熱溶解積層法、粉末造形法などが知られている。切削RP法では、発砲スチロールなどの加工が容易な立体素材を切断したり削り出したりして所望の立体を形成する(例えば、特許文献1参照)。切削RP法は、特別な材料を必要としないが、造形すべき立体の下方に空間が形成される形状、いわゆるアンダーカット形状を造形することが困難で、さらに切削加工のため稼働音が大きい。これに対し、光造形法、熱溶解積層法、粉末造形法では、造形されるべき立体を複数の層にスライスして得られる断面群のデータに基づいて造形される。このため、光造形法、熱溶解積層法、粉末造形法では、切削RP法で難しかったアンダーカット形状を容易に造形でき、稼働音も小さいという利点がある。   Conventionally, as a three-dimensional modeling method for creating a three-dimensional shape of a three-dimensional model, a cutting RP (Rapid Prototyping) method, an optical modeling method, a hot melt lamination method, a powder modeling method, and the like are known. In the cutting RP method, a desired solid is formed by cutting or cutting a solid material that is easy to process, such as foamed polystyrene (for example, see Patent Document 1). The cutting RP method does not require a special material, but it is difficult to form a shape in which a space is formed below a solid to be formed, that is, a so-called undercut shape, and operation noise is high due to cutting. On the other hand, in the optical modeling method, the hot melt lamination method, and the powder modeling method, modeling is performed based on data of a cross-sectional group obtained by slicing a solid to be modeled into a plurality of layers. For this reason, the optical modeling method, the hot melt lamination method, and the powder modeling method have an advantage that an undercut shape, which has been difficult with the cutting RP method, can be easily modeled and the operation sound is small.

一般に、光造形法では、液体状の光硬化性樹脂液の液面に紫外線レーザーを照射して、液面部分の光硬化性樹脂を硬化させて一断面の硬化層を形成する。硬化層は造形台上に載るようになっており、この造形台を先の硬化層の厚み分だけ液面から下降させ、再び液面に紫外線レーザーを照射することにより、先の硬化層の上に新たな硬化層を積層する。このような操作を繰り返すことにより、所望の形状の立体が形成される。アンダーカット形状を造形する際には、立体を下方から支持するべく支持材も同様に各層に硬化させながら形成され、最後に支持材が除去される。   In general, in the optical modeling method, the liquid surface of the liquid photocurable resin liquid is irradiated with an ultraviolet laser to cure the photocurable resin on the liquid surface portion to form a cured layer having one cross section. The hardened layer is placed on the modeling table, and this modeling table is lowered from the liquid level by the thickness of the previous hardened layer, and the liquid level is irradiated again with an ultraviolet laser to Laminate a new hardened layer. By repeating such an operation, a solid having a desired shape is formed. When modeling the undercut shape, the support material is also formed while being cured in each layer in order to support the solid from below, and finally the support material is removed.

熱溶解積層法は、立体素材となる熱可塑性樹脂を高温で溶かしノズルの先から造形台上に少しずつ押し出して、順に熱溶着させながら層形成を繰り返して所望の立体を形成する。アンダーカット形状を造形する際には、立体を下方から支持するべく支持材となる熱可塑性樹脂も別のノズルから同様に押し出されて層形成され、最後に支持材が除去される。立体と支持材との間に剥離層を形成することにより、支持材を除去しやすくしてもよい(例えば、特許文献2参照)。   In the hot melt lamination method, a thermoplastic resin serving as a three-dimensional material is melted at a high temperature and extruded from the tip of a nozzle onto a modeling table little by little, and layer formation is repeated while sequentially heat-welding to form a desired solid. When modeling an undercut shape, the thermoplastic resin which becomes a support material in order to support a solid body from below is also extruded from another nozzle to form a layer, and finally the support material is removed. By forming a release layer between the solid body and the support material, the support material may be easily removed (see, for example, Patent Document 2).

粉末造形法は、立体素材となる粉末材料を層状に敷き詰め、高出力のレーザービームを照射して直接焼結したり、インクジェット方式でバインダを添加して硬化させたりしながら層形成を繰り返し、粉末材料の結合体として所望の立体を形成する。粉末造形法でアンダーカット形状を造形する際には、粉末材料が支持材の役割を果たすことになる。このため、支持材は不要で、最後に焼結されていない粉末材料を除去すればよい。   The powder molding method lays powder materials that are three-dimensional materials in layers, repeats layer formation while directly sintering by irradiating with a high-power laser beam, or adding a binder with an inkjet method to cure the powder. A desired solid is formed as a combination of materials. When modeling an undercut shape by a powder modeling method, a powder material will play the role of a support material. For this reason, a support material is unnecessary and the powder material which is not finally sintered should just be removed.

しかしながら、光造形法、熱溶解積層法、粉末造形法においては、立体素材の状態を変化させるために、レーザー照射装置や加熱装置の設置が必要となり、造形時のエネルギー消費が大きいものとなる。また、これらの各方法は、加熱により高温となることが多く、作業上での安全性に難がある。さらに、光造形法で用いる立体素材(光硬化性樹脂)には有害なものが多く、液体のため斜めにするとこぼれるなど、取り扱いに注意が必要で、やはり安全性に難がある。   However, in the optical modeling method, the hot melt lamination method, and the powder modeling method, in order to change the state of the three-dimensional material, it is necessary to install a laser irradiation device and a heating device, and the energy consumption during modeling is large. In addition, each of these methods often becomes high temperature due to heating, and is difficult to work safely. Furthermore, many three-dimensional materials (photo-curing resins) used in stereolithography are harmful and require careful handling, such as spilling when slanted due to liquids, which is also difficult to secure.

本発明は以上の問題点に鑑みなされたものであり、その目的は、省エネルギー及び安全性の向上を図ることができる立体造形方法及び立体造形装置を提供することである。   This invention is made | formed in view of the above problem, The objective is to provide the three-dimensional modeling method and three-dimensional modeling apparatus which can aim at an energy saving and the improvement of safety | security.

上記課題を解決するため、請求項1の発明は、所望の形状の立体を形成する立体造形方法において、各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画して、各区画における立体が存在する箇所に配置する固体よりなる立体素材と、該立体素材の下方で立体が存在しない箇所に配置する固体よりなる支持材との長さ及び配置順の情報を生成し、この情報に基づき、各区画毎に所定長さの立体素材と支持材とを所定の順で配置したのち、該支持材を除去するとともに隣接する該立体素材を互いに接合する。   In order to solve the above-mentioned problems, the invention of claim 1 is a three-dimensional modeling method for forming a three-dimensional object having a desired shape, and divides a solid to be modeled by a section that divides a three-dimensional space so that each section has a rod shape. Information on the length and arrangement order of a solid material made of a solid placed in a place where a solid exists in each section and a support material made of a solid placed in a place below the solid material where a solid does not exist Based on this information, a solid material and a support material having a predetermined length are arranged in a predetermined order for each section, and then the support material is removed and adjacent solid materials are joined to each other.

本発明は、状態変化させる必要のない固体の立体素材を用いているため、レーザー照射装置や加熱装置の設置が不要となり、省エネルギー及び安全性の向上を図ることができるという優れた効果がある。   Since the present invention uses a solid three-dimensional material that does not require a state change, there is no need to install a laser irradiation device or a heating device, and there is an excellent effect that energy saving and safety can be improved.

本実施形態に係る立体像形成装置の構成を示す要部斜視図。1 is a perspective view of a main part showing a configuration of a stereoscopic image forming apparatus according to an embodiment. 積重体の一例を示す斜視図。The perspective view which shows an example of a stacked body. ノズルを備えた立体造形装置の構成を示す模式図。The schematic diagram which shows the structure of the three-dimensional modeling apparatus provided with the nozzle. 立体の一例を示す斜視図。The perspective view which shows an example of a solid | solid. 積重体の要部構成を示す斜視図。The perspective view which shows the principal part structure of a stacked body. 積重体の要部構成を示す斜視図。The perspective view which shows the principal part structure of a stacked body. 除去接着工程を説明する斜視図。The perspective view explaining a removal adhesion process.

以下、本発明を立体造形方法及び立体造形装置に適用した実施形態について図面を参照して説明する。図1は、本実施形態に係る立体造形装置の構成を示す要部斜視図である。本実施形態に係る立体造形装置は、各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画する制御部を備えていることを特徴とする。そして、この制御部は、各区画における立体が存在する箇所に配置する立体素材と、立体素材の下方で立体が存在しない箇所に配置する支持材との長さ及び配置順の情報を生成することを特徴とする。   Hereinafter, an embodiment in which the present invention is applied to a three-dimensional modeling method and a three-dimensional modeling apparatus will be described with reference to the drawings. FIG. 1 is a main part perspective view showing the configuration of the three-dimensional modeling apparatus according to this embodiment. The three-dimensional modeling apparatus according to the present embodiment includes a control unit that divides a solid to be modeled by a section that partitions a three-dimensional space so that each section has a rod shape. And this control part produces | generates the information of the length of the solid material arrange | positioned in the location where the solid in each division exists, and the support material arrange | positioned in the location where a solid does not exist under the solid material, and arrangement order It is characterized by.

図1に示すように、本実施形態に係る立体像形成装置は、造形台1と、造形台1の上方に配置され、造形台1上に立体素材3と支持材4とを供給する供給ユニット2とを備えている。この供給ユニット2は、棒状の立体素材3を格納する立体素材格納部5と、棒状の支持材4を格納する支持材格納部6とを備えている。立体素材3は、造形されるべき立体が存在するべき区画に配置されるものである。支持材4は、造形されるべき立体が存在しないが立体素材を下方から支持するべく配置されるものである。そして、この支持材4は、少なくとも一部が固体の溶液系接着剤で構成され、溶液系接着材は、水などの溶媒中に溶解することによって接着性を回復するものである。そして、この供給ユニット2は、図示しない制御部からの入力信号により図中矢印X・X’(以下、単にXという)方向、及び矢印Y・Y’(以下、単にYという)方向に移動可能な制御されている。ここで制御部は、造形台1を格子状に区画し、区画の位置情報(X、Y方向)と、各区画に占める立体素材と支持材の長さと配置順の情報(Z方向)を得ている。   As shown in FIG. 1, the stereoscopic image forming apparatus according to the present embodiment is arranged above the modeling table 1 and the supply unit that supplies the three-dimensional material 3 and the support material 4 on the modeling table 1. 2 are provided. The supply unit 2 includes a three-dimensional material storage unit 5 that stores a rod-shaped three-dimensional material 3 and a support material storage unit 6 that stores a rod-shaped support material 4. The three-dimensional material 3 is arranged in a section where a solid to be shaped should exist. The support material 4 is arranged so as to support the three-dimensional material from below although there is no solid to be formed. And this support material 4 is comprised at least in part by a solid solution type adhesive, and a solution type adhesive recovers adhesiveness by melt | dissolving in solvents, such as water. The supply unit 2 can be moved in the direction of arrow X · X ′ (hereinafter simply referred to as X) and in the direction of arrow Y · Y ′ (hereinafter simply referred to as Y) by an input signal from a control unit (not shown). Is controlled. Here, the control unit divides the modeling table 1 into a lattice shape, and obtains position information (X and Y directions) of the sections, and information on the length and arrangement order of the three-dimensional material and support material in each section (Z direction). ing.

上記供給ユニット2の立体素材格納部5は、立体素材3をX方向に1列に並べて格納し、立体素材3を造形台1に向けて射出する立体素材射出口5aを備えている。そして、立体素材格納部5は、立体素材射出口5aに連通する立体素材射出路5bに、立体素材3を立体素材射出口5aに向けて1本づつ所定量送り出す立体素材供給ローラ7を備えている。立体素材格納部5の立体素材射出口5aには、立体素材供給ローラ7によって立体素材射出口5aから射出される立体素材3を所定位置で切断する立体素材切断部材8を備えている。立体素材格納部5は、格納する立体素材3を立体素材射出路5bに自重で移動させるべく、その底面5cが立体素材射出路5bに向けて斜め下方に傾斜している。   The three-dimensional material storage unit 5 of the supply unit 2 includes a three-dimensional material injection port 5 a that stores the three-dimensional material 3 in a line in the X direction and injects the three-dimensional material 3 toward the modeling table 1. The three-dimensional material storage unit 5 includes a three-dimensional material supply roller 7 that feeds a predetermined amount of the three-dimensional material 3 one by one toward the three-dimensional material injection port 5a in a three-dimensional material injection path 5b that communicates with the three-dimensional material injection port 5a. Yes. The three-dimensional material outlet 5 a of the three-dimensional material storage unit 5 includes a three-dimensional material cutting member 8 that cuts the three-dimensional material 3 injected from the three-dimensional material injection port 5 a by the three-dimensional material supply roller 7 at a predetermined position. The three-dimensional material storage unit 5 has a bottom surface 5c inclined obliquely downward toward the three-dimensional material injection path 5b in order to move the stored three-dimensional material 3 by its own weight to the three-dimensional material injection path 5b.

同様に、上記供給ユニット2の支持材格納部6は、支持材4をX方向に1列に並べて格納し、支持材4を造形台1に向けて射出する支持材射出口6aを備えている。そして、支持材格納部6は、支持材射出口6aに連通する支持材射出路6bに、支持材4を支持材射出口6aに向けて1本ずつ所定量送り出す支持材供給ローラ9を備えている。支持材格納部6の支持材射出口6aには、支持材供給ローラ9によって支持材射出口6aから射出される支持材4を所定位置で切断する支持材切断部材10を備えている。支持材格納部6は、格納する支持材4を支持材射出路6bに自重で移動させるべく、その底面6cが支持材射出路6bに向けて斜め下方に傾斜している。   Similarly, the support material storage unit 6 of the supply unit 2 includes support material injection ports 6 a that store the support materials 4 in a line in the X direction and inject the support materials 4 toward the modeling table 1. . The support material storage unit 6 includes a support material supply roller 9 that feeds the support material 4 one by one toward the support material injection port 6a on the support material injection path 6b communicating with the support material injection port 6a. Yes. The support material injection port 6 a of the support material storage unit 6 includes a support material cutting member 10 that cuts the support material 4 injected from the support material injection port 6 a by the support material supply roller 9 at a predetermined position. The support material storage section 6 has a bottom surface 6c inclined obliquely downward toward the support material injection path 6b so that the support material 4 to be stored is moved by its own weight to the support material injection path 6b.

このように構成される供給ユニット2は、立体素材3や支持材4を必要な長さで切断し、切断された立体素材3及び支持材4を造形台1の所定の区画上に積み重ねる。   The supply unit 2 configured in this manner cuts the three-dimensional material 3 and the support material 4 with a necessary length, and stacks the cut three-dimensional material 3 and the support material 4 on a predetermined section of the modeling table 1.

上記構成の立体造形装置は、次のように動作する。まず、制御部が、各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画し、区画の位置情報(X、Y方向)を得る。そして、この制御部は、各区画における立体が存在する箇所に配置する立体素材3と、立体素材3の下方で立体が存在しない箇所に配置する支持材4との長さ及び配置順の情報(Z方向)を生成する。   The three-dimensional modeling apparatus having the above-described configuration operates as follows. First, a control part partitions the solid which should be modeled by the partition which divides three-dimensional space so that each partition may become rod shape, and obtains the positional information (X, Y direction) of a partition. And this control part is information on the length and arrangement order of the three-dimensional material 3 arranged at a place where a solid exists in each section and the support material 4 arranged below the three-dimensional material 3 at a place where a solid does not exist ( Z direction).

そして、供給ユニット2は、制御部からの情報を基に、造形台1からの高さが低い立体素材3又は支持材4から順に所定の区画に積み重ねていく。例えば、図1に示す供給ユニット2は、まず始めに、支持材射出口6aが造形台1上に設定された区画1A上方にくるように、X方向、Y方向に移動する。区画1A、1A’とは、長さが一番小さい支持材4が1段目に配置される区画となる。そして、供給ユニット2は、支持材格納部6内の支持材4を支持材供給ローラ9により所定の長さだけ送り出し、支持材切断部材10により切断し、切断した支持材4aを造形台1の区画1A、1A’上に積む。同様に、供給ユニット2は、区画1A、1A’に隣接する他の区画についても、支持材4を高さの短い順に積んでいく。次に、供給ユニット2は、所定の支持材4を積み重ねた後、立体素材射出口5aを所定の区画、例えば区画1Aに隣接する区画1Bの鉛直上方に来るように移動する。そして、立体素材格納部5内の立体素材3を立体素材供給ローラ7により所定の長さだけ送り出し、立体素材切断部材8により切断し、切断した立体素材3bを区画1B上に積む。同様に、供給ユニット2は、区画1B、1B’に隣接する他の区画についても、立体素材3を高さの低い順に積んでいく。このようにして、造形台1の他の区画についても支持材4又は立体素材3が高さの低い順に積み重ねられる。   And the supply unit 2 is piled up to a predetermined division in order from the solid material 3 or the support material 4 with the low height from the modeling stand 1 based on the information from a control part. For example, the supply unit 2 shown in FIG. 1 first moves in the X direction and the Y direction so that the support material injection port 6 a is above the section 1 </ b> A set on the modeling table 1. The sections 1A and 1A 'are sections in which the support material 4 having the smallest length is arranged in the first stage. Then, the supply unit 2 feeds the support material 4 in the support material storage unit 6 by a support material supply roller 9 by a predetermined length, cuts it by the support material cutting member 10, and cuts the cut support material 4 a of the modeling table 1. Stack on compartments 1A, 1A '. Similarly, the supply unit 2 stacks the supporting members 4 in the order of decreasing height in the other sections adjacent to the sections 1A and 1A '. Next, after the predetermined support material 4 is stacked, the supply unit 2 moves the three-dimensional material injection port 5a so as to come vertically above a predetermined section, for example, the section 1B adjacent to the section 1A. Then, the three-dimensional material 3 in the three-dimensional material storage unit 5 is sent out for a predetermined length by the three-dimensional material supply roller 7, cut by the three-dimensional material cutting member 8, and the cut three-dimensional material 3b is stacked on the section 1B. Similarly, the supply unit 2 stacks the three-dimensional materials 3 in the order of increasing height in the other sections adjacent to the sections 1B and 1B '. In this manner, the support material 4 or the three-dimensional material 3 is stacked in the descending order of the other sections of the modeling table 1.

このとき、供給ユニット2は、立体素材3又は支持材4を造形台1上の区画上に直接積むだけではない。供給ユニット2は、立体素材3又は支持材4を、先に積まれた立体素材3又は支持材4の切断面上に積み重ねる。このようにして、XY方向に並ぶ全ての区画について立体素材3と支持材4とを積み重ねる。これにより、例えば、図2に示すように、ワイングラスをZ方向に二等分した形状に積み重ねられた立体素材3と、これを支持する支持材4とが積み重ねられた積重体11が形成される。なお、図1中は、供給ユニット2がX方向のみ移動しながら立体素材3又は支持材4を積み重ねる例を示したが、X方向やY方向に移動しながら、全ての区画上において立体素材3又は支持材4を高さの短い順に積み重ねてもよいことは言うまでもない。   At this time, the supply unit 2 not only directly stacks the three-dimensional material 3 or the support material 4 on the section on the modeling table 1. The supply unit 2 stacks the three-dimensional material 3 or the support material 4 on the cut surface of the three-dimensional material 3 or the support material 4 previously stacked. In this way, the three-dimensional material 3 and the support material 4 are stacked for all the sections arranged in the XY direction. Thereby, for example, as shown in FIG. 2, a stack 11 is formed in which a three-dimensional material 3 stacked in a shape that bisects wine glasses in the Z direction and a support material 4 that supports the three-dimensional material 3 are stacked. The 1 shows an example in which the three-dimensional material 3 or the support material 4 is stacked while the supply unit 2 moves only in the X direction, but the three-dimensional material 3 is moved on all sections while moving in the X direction or the Y direction. Or it cannot be overemphasized that the support material 4 may be stacked in order with a short height.

ところで、本実施形態に係る立体造形装置及び立体造形方法では、非常に小さい切断面となる棒状の立体素材3と棒状の支持材4とを積み重ねることが想定される。そこで、立体素材3と支持材4とを積み重ねる際、立体素材3と支持材4とを予備接着させてもよい。例えば、図3に示す立体造形装置は、立体素材3や支持材4の切断面に溶媒からなる液滴を吐出する液液吐出手段たるノズル12を備えている。ノズル12は、例えば、造形台1上の所定の区画上に支持材4tを積んだ後、この支持材4t上に立体素材3を積み重ねる前に、この支持材4tの切断面上に溶媒からなる液滴13を吐出する。供給ユニット2は、液滴13が滴下され接着性を回復した支持材4tの切断面上に立体素材3を積み重ねることになる。これにより、立体素材3と支持材4とを積み重ねる際に位置ズレしにくくなる。   By the way, in the three-dimensional modeling apparatus and the three-dimensional modeling method according to the present embodiment, it is assumed that the rod-shaped three-dimensional material 3 and the rod-shaped support material 4 that are very small cut surfaces are stacked. Therefore, when the three-dimensional material 3 and the support material 4 are stacked, the three-dimensional material 3 and the support material 4 may be preliminarily bonded. For example, the three-dimensional modeling apparatus shown in FIG. 3 includes a nozzle 12 that is a liquid-liquid discharging unit that discharges droplets made of a solvent onto the cut surfaces of the three-dimensional material 3 and the support material 4. For example, the nozzle 12 is made of a solvent on the cut surface of the support material 4t after the support material 4t is stacked on a predetermined section on the modeling table 1 and before the solid material 3 is stacked on the support material 4t. A droplet 13 is discharged. The supply unit 2 stacks the three-dimensional material 3 on the cut surface of the support material 4t in which the droplets 13 are dropped and the adhesiveness is restored. Thereby, when stacking the three-dimensional material 3 and the support material 4, it becomes difficult to shift the position.

また、本実施形態に係る立体造形装置及び立体造形方法では、図1及び図3に示すように、水平に載置された造形台1に対して、立体素材3と支持材4とを積層させている。しかしながら、本発明はこれに限定されるものではない。例えば、L字状に形成された造形台を水平方向から斜めに傾斜させて設置し、下方に位置する区画から順に立体素材と支持材とを積み重ねてもよい。これにより、立体素材や支持材は切断面だけではなく、立体素材の積み重ね方向と平行な面(以下、側面という)に隣接する他の部材によっても支持されることになるため、位置ズレしにくくなる。   Moreover, in the three-dimensional modeling apparatus and three-dimensional modeling method according to the present embodiment, as shown in FIGS. 1 and 3, the three-dimensional material 3 and the support material 4 are laminated on the modeling table 1 placed horizontally. ing. However, the present invention is not limited to this. For example, a modeling table formed in an L-shape may be installed obliquely from the horizontal direction, and the three-dimensional material and the support material may be stacked in order from the section located below. As a result, the three-dimensional material and the support material are supported not only by the cut surface but also by other members adjacent to the surface parallel to the stacking direction of the three-dimensional material (hereinafter referred to as the side surface), so that it is difficult to shift the position. Become.

次に、立体素材3と支持材4との積重体11から支持材4を除去し、隣接する立体素材3同士を接着させる工程に入る。この工程では、まず立体素材3と支持材4との積重体11を水などの溶媒中に浸漬させる。これにより、支持材4が溶媒中に溶解し除去される。また、溶媒中に溶解した支持材4は、毛細管現象により立体素材3と立体素材3との間に浸透し立体素材3同士を接着させる。その後、立体素材3のみとなった積重体を溶媒中から取り出すことにより、例えば、図4に示すようなワイングラス形状の積重体11’を得ることができる。   Next, the support material 4 is removed from the stacked body 11 of the three-dimensional material 3 and the support material 4 and the adjacent three-dimensional material 3 is bonded to each other. In this step, first, the stack 11 of the three-dimensional material 3 and the support material 4 is immersed in a solvent such as water. Thereby, the support material 4 is dissolved and removed in the solvent. Further, the support material 4 dissolved in the solvent penetrates between the three-dimensional material 3 and the three-dimensional material 3 by a capillary phenomenon, and bonds the three-dimensional material 3 to each other. Thereafter, by removing the stack only made of the three-dimensional material 3 from the solvent, for example, a wineglass-shaped stack 11 ′ as shown in FIG. 4 can be obtained.

なお、本実施形態に係る立体造形装置及び立体造形方法では、支持材4を除去する際、立体素材同士の位置ズレが発生しやすいと想定される。そこで、立体素材の側面に表面加工を施してもよい。例えば、図5に示す立体素材14は、略四角柱状に形成された側面に微小な凹凸が形成されている。これにより、隣接する立体素材14同士の摩擦力が増大し、支持材4の除去中に立体素材14が積み重ね方向や積み重ね方向と交差する方向へ位置ズレすることを抑制することができる。また、この立体素材14の角は面取りされている。これにより、接着工程中に溶解した支持材15が立体素材14同士の空間に毛細管現象により浸積しやすくなり、立体素材14同士を接着しやすくなる。   In the three-dimensional modeling apparatus and the three-dimensional modeling method according to the present embodiment, it is assumed that when the support material 4 is removed, positional displacement between the three-dimensional materials is likely to occur. Therefore, surface processing may be performed on the side surface of the three-dimensional material. For example, the three-dimensional material 14 shown in FIG. 5 has minute irregularities formed on the side surfaces formed in a substantially quadrangular prism shape. Thereby, the frictional force between the adjacent solid materials 14 increases, and it is possible to suppress the positional displacement of the solid materials 14 in the stacking direction or the direction intersecting the stacking direction during the removal of the support material 4. Further, the corners of the three-dimensional material 14 are chamfered. As a result, the support material 15 dissolved during the bonding process is easily immersed in the space between the three-dimensional materials 14 by a capillary phenomenon, and the three-dimensional materials 14 are easily bonded to each other.

また、図6に示す立体素材16や支持材17は、互いに隣接する側面の形状が互いに勘合可能となる形状となっている。これにより、接着工程中の立体素材16の積み重ね方向と交差する方向への位置ズレを防止することができる。また、隣接する立体素材16同士が接触する表面積が大きくなり、溶媒中に溶解した支持材17が毛細管現象により浸透しやすくなり、立体素材16同士を接着しやすくなる。   Further, the three-dimensional material 16 and the support material 17 shown in FIG. 6 have shapes in which the shapes of the side surfaces adjacent to each other can be fitted to each other. Thereby, the position shift to the direction which cross | intersects the stacking direction of the solid material 16 in an adhesion | attachment process can be prevented. Moreover, the surface area which adjacent solid material 16 contacts increases, the support material 17 melt | dissolved in the solvent becomes easy to osmose | permeate by a capillary phenomenon, and it becomes easy to adhere | attach the solid material 16.

また、支持材を除去する際は、立体素材の比重に近い比重、より好ましくは同じ比重となる溶媒を用い、溶媒を下方から徐々に注入することが好ましい。例えば、図7に示すように、収容器20内に立体素材3と支持材4からなる積重体11を入れた後、収容器20の側面の下方に設けられた注入口20aから溶媒21を徐々に注入するとよい。このように、立体素材3に近い比重となる溶媒21を用いることにより、接着工程中に立体素材3が自重により積み重ね方向に位置ズレしてしまうことを防止することができる。また、溶媒21を下方から徐々に注入するようにすることにより、積重体11を全て浸積させるだけの量の溶媒21中に一気に浸積させる場合に比べ、立体素材3の積み重ね方向と交差する方向への位置ズレを防止することができる。   Moreover, when removing a support material, it is preferable to use a specific gravity close to the specific gravity of the three-dimensional material, more preferably a solvent having the same specific gravity, and gradually inject the solvent from below. For example, as shown in FIG. 7, after the stacked body 11 composed of the three-dimensional material 3 and the support material 4 is placed in the container 20, the solvent 21 is gradually introduced from the inlet 20 a provided below the side surface of the container 20. It is better to inject it. Thus, by using the solvent 21 having a specific gravity close to that of the three-dimensional material 3, it is possible to prevent the three-dimensional material 3 from being displaced in the stacking direction by its own weight during the bonding process. In addition, by gradually injecting the solvent 21 from below, it intersects with the stacking direction of the three-dimensional material 3 as compared with the case where it is immersed in the solvent 21 in an amount sufficient to immerse all the stacked bodies 11. Positional displacement in the direction can be prevented.

本実施形態で用いられる立体素材、支持材、支持材を溶解させる溶媒には、従来公知のものを用いることができ、取り扱いが容易な汎用量産材料を用いることができる。例えば、立体素材に区画サイズに裁断されたボール紙を用い、支持材にデンプンのりを用い、溶媒に水を用いることにより、造形作業を容易に安全に行うことができる。   A conventionally known material can be used as the three-dimensional material, the support material, and the solvent for dissolving the support material used in the present embodiment, and general-purpose mass-production materials that can be easily handled can be used. For example, by using cardboard cut to a partition size as a three-dimensional material, using starch paste as a support material, and using water as a solvent, a modeling operation can be performed easily and safely.

また、本実施形態では支持材を溶媒に溶解させることにより除去する例について説明したが、支持材を熱により溶融させて除去させてもよい。この場合には、溶融点の低い支持材を用いることにより、省エネルギー化を図ることが十分可能である。   Moreover, although the example which removes a support material by dissolving in a solvent was demonstrated in this embodiment, you may melt and remove a support material with a heat | fever. In this case, it is sufficiently possible to save energy by using a support material having a low melting point.

なお、本発明は、図1乃至図7に示した立体供給装置に限定されるものではなく、適宜変更が可能である。例えば、本実施形態では、供給ユニット2がXY方向に移動可能に構成されている例を図示したが、本発明は、造形台1と供給ユニット2とが相対位置を変えることが可能な構成であればよい。また、本実施形態においては、供給ユニット2が立体素材3と支持材4の両方を格納している例を図示したが、例えば、互いに独立した動作機構をもつ供給ユニット内に立体素材と支持材をそれぞれ格納してもよい。また、本実施形態では、立体素材3と支持材4とをそれぞれ1列に並べて格納し、自重により立体素材射出路5b及び支持材射出路6bに移動させる構成を図示した。しかし、例えば、供給ユニット2は、立体素材及び支持材を多列で格納してもよく、また立体素材及び支持材を自重によらずに強制的に射出口に向けて送り出す送出機構を備えていてもよい。   The present invention is not limited to the three-dimensional supply device shown in FIGS. 1 to 7 and can be modified as appropriate. For example, in the present embodiment, an example in which the supply unit 2 is configured to be movable in the X and Y directions is illustrated. However, the present invention has a configuration in which the modeling table 1 and the supply unit 2 can change relative positions. I just need it. Further, in the present embodiment, an example in which the supply unit 2 stores both the three-dimensional material 3 and the support material 4 is illustrated. However, for example, the three-dimensional material and the support material are provided in the supply unit having an operation mechanism independent from each other. May be stored respectively. Further, in the present embodiment, the configuration in which the three-dimensional material 3 and the support material 4 are stored in a row and moved to the three-dimensional material injection path 5b and the support material injection path 6b by their own weight is illustrated. However, for example, the supply unit 2 may store the three-dimensional material and the support material in multiple rows, and includes a delivery mechanism that forcibly sends the three-dimensional material and the support material toward the injection port without depending on its own weight. May be.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
所望の形状の立体を形成する立体造形方法において、各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画して、各区画における立体が存在する箇所に配置する固体よりなる立体素材と、該立体素材の下方で立体が存在しない箇所に配置する固体よりなる支持材との長さ及び配置順の情報を生成し、この情報に基づき、各区画毎に所定長さの立体素材と支持材とを所定の順で配置したのち、該支持材を除去するとともに隣接する該立体素材を互いに接合する。
これによれば、上記実施形態について説明したように、状態変化させる必要のない固体の立体素材を用いている。つまり、光造形法のように液体から固体、熱溶解積層法や粉末法のように、固体を一旦液化させた後固化させるなどのように、立体素材を状態変化させる必要がない。よって、従来の光造形法、粉末法、熱溶解積層法のように、レーザー照射装置や加熱装置の設置が不要となり、省エネルギー化を図ることが可能となる。また、造形作業中に熱の発生もほとんどなく、作業上の安全性の向上も図ることができる。さらに、固体の立体素材は、光硬化性樹脂等の液体の立体素材に比べ、取り扱いが容易で、安全性にも優れる。なお、切削RP法では、本発明と同じように状態変化させる必要のない固体の立体素材を用いているが、上述したようにアンダーカット形状を造形することが困難で、稼働音も大きいものとなる。これに対して、本発明は、アンダーカット形状を造形することが容易で、稼働音も小さいものとすることができる。
(態様B)
(態様A)の立体造形方法において、上記立体素材及び上記支持材を所定の長さに切断しながら所定の順で配置する。
これによれば、上記実施形態について説明したように、立体素材及び支持材を必要な長さに切断してから配置する。そのため、最小単位に切断された立体素材や支持材を複数配置する場合に比べ、工程数も少なくなり、位置ズレも発生しにくくなる。
(態様C)
(態様A)又は(態様B)の立体造形方法において、溶液系接着剤を少なくとも一部に含む支持材を溶媒中に溶解させることにより、支持材を除去するとともに、隣接する上記立体素材を接合する。
これによれば、上記実施形態について説明したように、立体素材同士の接合に固体の溶液性接着材からなる支持材を溶解させて用いる。よって、従来の光造形法、粉末法、熱溶解積層法のように、レーザー照射装置や加熱装置の設置が不要となり、省エネルギー化を図ることが可能となる。
(態様D)
(態様C)立体造形方法において、上記支持材の上に上記立体素材を配置する際、該支持材の上に溶媒を吐出してから立体素材を配置する。
これによれば、上記実施形態について説明したように、支持材の上に立体素材を配置する際、立体素材と支持材とが予備接合され、立体素材と支持材との位置ズレが発生しにくくなる。
(態様E)
(態様C)又は(態様D)の立体造形方法において、上記立体素材と上記支持材とを収容する収容器内に、該収容器の底部から該立体素材と同じ比重の溶媒を徐々に注入することにより、支持材を除去するとともに、隣接する上記立体素材を接合する。
これによれば、上記実施形態について説明したように、支持材を除去する際、立体素材の位置ズレを抑制することができる。
(態様F)
所望の形状の立体を形成する立体造形装置において、各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画して、各区画における立体が存在する箇所に配置する固体よりなる立体素材と、該立体素材の下方で且つ立体が存在しない箇所に配置する固体よりなる支持材との長さ及び配置順の情報を生成する生成手段を備え、この情報に基づき、各区画毎に所定長さの立体素材と支持材とを所定の順で配置したのち、該支持材を除去するとともに隣接する該立体素材を互いに接合することを備える。
これによれば、上記実施形態について説明したように、状態変化させる必要のない固体の立体素材を用いている。つまり、光造形法のように液体から固体、熱溶解積層法や粉末法のように、固体を一旦液化させた後固化させるなどのように、立体素材を状態変化させる必要がない。よって、従来の光造形法、粉末法、熱溶解積層法のように、レーザー照射装置や加熱装置の設置が不要となり、省エネルギー化を図ることが可能となる。また、造形作業中に熱の発生もほとんどなく、作業上の安全性の向上も図ることができる。さらに、固体の立体素材は、光硬化性樹脂等の液体の立体素材に比べ、取り扱いが容易で、安全性にも優れる。
(態様G)
(態様F)の立体造形装置において、上記立体素材及び上記支持材を所定の長さに切断しながら所定の順に配置する配置手段を備える。
これによれば、上記実施形態について説明したように、立体素材及び支持材を必要な長さに切断してから配置する。そのため、最小単位に切断された立体素材や支持材を複数配置する場合に比べ、工程数も少なくなり、位置ズレも発生しにくくなる。
(態様H)
(態様F)又は(態様G)の立体造形装置において、上記支持材は、溶媒中に溶解可能な溶液系接着剤を少なくとも一部に含み、溶媒中に溶解することにより除去されるとともに、隣接する上記立体素材を接着する。
立体素材同士の接合に固体の溶液性接着材からなる支持材を溶解させて用いる。よって、従来の光造形法、粉末法、熱溶解積層法のように、レーザー照射装置や加熱装置の設置が不要となり、省エネルギー化を図ることが可能となる。
(態様I)
(態様H)の立体造形装置において、上記支持材の上に上記立体素材を配置する際、該支持材の上に溶媒を吐出する液滴吐出手段を備える。
これによれば、上記実施形態について説明したように、支持材の上に立体素材を配置する際、立体素材と支持材とが予備接合され、立体素材と支持材との位置ズレが発生しにくくなる。
(態様J)
(態様H)又は(態様I)の立体造形装置において、上記立体素材と上記支持材とを収容する収容器内に、該収容器の底部から該立体素材と同じ比重の溶媒を徐々に注入する。
これによれば、上記実施形態について説明したように、支持材を除去する際、立体素材の位置ズレを抑制することができる。
(態様K)
(態様F)(態様G)(態様H)(態様I)又は(態様J)の立体造形装置において、他の立体素材の隣接する面に微小な凹凸が形成されている。
これによれば、上記実施形態で説明したように、支持材を除去する際に、立体素材の位置ズレを抑制することができる。
(態様L)
(態様F)(態様G)(態様H)(態様I)又は(態様J)の立体造形装置において、上記立体素材は、隣接する他の立体素材又は支持材と勘合可能な形状となっている。
これによれば、上記実施形態で説明したように、支持材を除去する際に、立体素材の位置ズレを抑制することができる。
(態様M)
(態様F)(態様G)(態様H)(態様I)(態様J)(態様K)又は(態様L)の立体造形装置において、上記支持材は、水に溶解可能な溶液系接着剤を少なくとも一部に含み、水に溶解することにより除去される。
これによれば、上記実施形態について説明したように、支持材を除去したり、立体素材同士を接合するのに特殊な溶解液を必要とせず、汎用性、安全性に優れた水を用いることをできる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
In a three-dimensional modeling method for forming a three-dimensional object having a desired shape, a solid to be modeled is divided by a section that divides a three-dimensional space so that each section has a rod shape, and is arranged at a place where a solid in each section exists. Information on the length and arrangement order of the three-dimensional material and the support material made of a solid arranged at a position where no solid exists below the three-dimensional material, and based on this information, a predetermined length for each section After arranging the three-dimensional material and the support material in a predetermined order, the support material is removed and the adjacent three-dimensional material is joined to each other.
According to this, as explained about the above-mentioned embodiment, the solid solid material which does not need to change a state is used. That is, there is no need to change the state of the three-dimensional material, such as solidifying the solid once and then solidifying it as in the case of stereolithography, such as solid from liquid, hot-melt lamination method or powder method. Therefore, unlike the conventional stereolithography method, powder method, and hot melt lamination method, it is not necessary to install a laser irradiation device or a heating device, and energy saving can be achieved. In addition, there is almost no heat generation during the modeling work, and it is possible to improve work safety. Furthermore, solid solid materials are easier to handle and have better safety than liquid three-dimensional materials such as photocurable resins. In the cutting RP method, a solid three-dimensional material that does not need to be changed in the same manner as in the present invention is used, but as described above, it is difficult to form an undercut shape and the operating sound is large. Become. On the other hand, according to the present invention, it is easy to form an undercut shape and the operating sound can be reduced.
(Aspect B)
In the three-dimensional modeling method of (Aspect A), the three-dimensional material and the support material are arranged in a predetermined order while being cut into a predetermined length.
According to this, as described in the above embodiment, the three-dimensional material and the support material are cut into necessary lengths and then arranged. Therefore, the number of processes is reduced and positional deviation is less likely to occur compared to the case where a plurality of three-dimensional materials and support materials cut into the minimum unit are arranged.
(Aspect C)
In the three-dimensional modeling method of (Aspect A) or (Aspect B), the support material containing at least a part of the solution-based adhesive is dissolved in a solvent, thereby removing the support material and joining the adjacent three-dimensional materials. To do.
According to this, as described in the above embodiment, a support material made of a solid solution adhesive is dissolved and used for joining three-dimensional materials. Therefore, unlike the conventional stereolithography method, powder method, and hot melt lamination method, it is not necessary to install a laser irradiation device or a heating device, and energy saving can be achieved.
(Aspect D)
(Aspect C) In the three-dimensional modeling method, when the three-dimensional material is arranged on the support material, the three-dimensional material is arranged after discharging the solvent on the support material.
According to this, as described in the above embodiment, when the three-dimensional material is arranged on the support material, the three-dimensional material and the support material are pre-joined, and the three-dimensional material and the support material are less likely to be misaligned. Become.
(Aspect E)
In the three-dimensional modeling method of (Aspect C) or (Aspect D), a solvent having the same specific gravity as that of the three-dimensional material is gradually injected into the container containing the three-dimensional material and the support material from the bottom of the container. Thus, the support material is removed and the adjacent three-dimensional material is joined.
According to this, as explained about the above-mentioned embodiment, when removing a support material, position shift of a solid material can be controlled.
(Aspect F)
In a three-dimensional modeling apparatus that forms a solid with a desired shape, a solid to be modeled by a section that divides a three-dimensional space so that each section becomes a rod shape, and is arranged at a place where a solid in each section exists And a generating means for generating information on the length and arrangement order of the solid material and a support material made of a solid disposed below the solid material at a location where the solid does not exist. After each of the three-dimensional material and the support material having a predetermined length are arranged in a predetermined order, the support material is removed and the adjacent three-dimensional materials are joined to each other.
According to this, as explained about the above-mentioned embodiment, the solid solid material which does not need to change a state is used. That is, there is no need to change the state of the three-dimensional material, such as solidifying the solid once and then solidifying it as in the case of stereolithography, such as solid from liquid, hot-melt lamination method or powder method. Therefore, unlike the conventional stereolithography method, powder method, and hot melt lamination method, it is not necessary to install a laser irradiation device or a heating device, and energy saving can be achieved. In addition, there is almost no heat generation during the modeling work, and it is possible to improve work safety. Furthermore, solid solid materials are easier to handle and have better safety than liquid three-dimensional materials such as photocurable resins.
(Aspect G)
The three-dimensional modeling apparatus according to (Aspect F) includes an arrangement unit that arranges the solid material and the support material in a predetermined order while cutting the solid material and the support material to a predetermined length.
According to this, as described in the above embodiment, the three-dimensional material and the support material are cut into necessary lengths and then arranged. Therefore, the number of processes is reduced and positional deviation is less likely to occur compared to the case where a plurality of three-dimensional materials and support materials cut into the minimum unit are arranged.
(Aspect H)
In the three-dimensional modeling apparatus according to (Aspect F) or (Aspect G), the support material includes at least a part of a solution-based adhesive that can be dissolved in a solvent, and is removed by dissolving in the solvent. Glue the above three-dimensional material.
A support material made of a solid solution adhesive is used for joining three-dimensional materials. Therefore, unlike the conventional stereolithography method, powder method, and hot melt lamination method, it is not necessary to install a laser irradiation device or a heating device, and energy saving can be achieved.
(Aspect I)
In the three-dimensional modeling apparatus according to (Aspect H), when the three-dimensional material is disposed on the support material, the three-dimensional modeling apparatus includes droplet discharge means for discharging a solvent on the support material.
According to this, as described in the above embodiment, when the three-dimensional material is arranged on the support material, the three-dimensional material and the support material are pre-joined, and the three-dimensional material and the support material are less likely to be misaligned. Become.
(Aspect J)
In the three-dimensional modeling apparatus according to (Aspect H) or (Aspect I), a solvent having the same specific gravity as that of the three-dimensional material is gradually injected into the container containing the three-dimensional material and the support material from the bottom of the container. .
According to this, as explained about the above-mentioned embodiment, when removing a support material, position shift of a solid material can be controlled.
(Aspect K)
(Aspect F) (Aspect G) (Aspect H) In the three-dimensional modeling apparatus of (Aspect I) or (Aspect J), minute unevenness is formed on the adjacent surface of another three-dimensional material.
According to this, as explained in the above embodiment, when the support material is removed, it is possible to suppress the positional deviation of the three-dimensional material.
(Aspect L)
(Aspect F) (Aspect G) (Aspect H) In the 3D modeling apparatus of (Aspect I) or (Aspect J), the three-dimensional material has a shape that can be fitted with another adjacent three-dimensional material or support material. .
According to this, as explained in the above embodiment, when the support material is removed, it is possible to suppress the positional deviation of the three-dimensional material.
(Aspect M)
(Aspect F) (Aspect G) (Aspect H) (Aspect I) (Aspect J) In the three-dimensional modeling apparatus of (Aspect K) or (Aspect L), the support material is a solution-based adhesive that is soluble in water. It is contained at least in part and is removed by dissolving in water.
According to this, as explained about the above-mentioned embodiment, it is not necessary to use a special solution for removing the support material or joining the three-dimensional materials, and use water having excellent versatility and safety. Can do.

1 造形台
2 供給ユニット
3、14、16 立体素材
4、15、17 支持材
5 立体素材格納部
6 支持材格納部
7 立体素材供給ローラ
8 立体素材切断部材
9 支持材供給ローラ
10 支持材切断部材
11 積重体
12 ノズル
13 液滴
20 収容器
21 溶媒
DESCRIPTION OF SYMBOLS 1 Modeling table 2 Supply unit 3, 14, 16 Solid material 4, 15, 17 Support material 5 Solid material storage part 6 Support material storage part 7 Solid material supply roller 8 Solid material cutting member 9 Support material supply roller 10 Support material cutting member 11 Stack 12 Nozzle 13 Droplet 20 Container 21 Solvent

特開平9−216200号公報JP-A-9-216200 特開9−24552号公報JP 9-24552 A

Claims (13)

所望の形状の立体を形成する立体造形方法において、
各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画して、各区画における立体が存在する箇所に配置する固体よりなる立体素材と、該立体素材の下方で立体が存在しない箇所に配置する固体よりなる支持材との長さ及び配置順の情報を生成し、
この情報に基づき、各区画毎に所定長さの立体素材と支持材とを所定の順で配置したのち、該支持材を除去するとともに隣接する該立体素材を互いに接合することを特徴とする立体造形方法。
In the three-dimensional modeling method for forming a solid with a desired shape,
A solid to be shaped is partitioned by a partition that divides the three-dimensional space so that each partition becomes a rod shape, and a solid material made of a solid placed in a place where a solid in each partition exists, and a solid below the solid material To generate information on the length and arrangement order of the support material made of solid arranged in a place where there is no
Based on this information, a solid material having a predetermined length for each section and a support material are arranged in a predetermined order, and then the support material is removed and adjacent solid materials are joined to each other. Modeling method.
請求項1の立体造形方法において、
上記立体素材及び上記支持材を所定の長さに切断しながら所定の順で配置することを特徴とする立体造形方法。
In the three-dimensional modeling method of Claim 1,
A three-dimensional modeling method, wherein the three-dimensional material and the support material are arranged in a predetermined order while being cut into a predetermined length.
請求項1又は2の立体造形方法において、
溶液系接着剤を少なくとも一部に含む支持材を溶媒中に溶解させることにより、支持材を除去するとともに、隣接する上記立体素材を接合することを特徴とする立体造形方法。
In the three-dimensional modeling method according to claim 1 or 2,
A three-dimensional modeling method, wherein a support material containing at least a part of a solution-based adhesive is dissolved in a solvent to remove the support material and to join the adjacent three-dimensional materials.
請求項3の立体造形方法において、
上記支持材の上に上記立体素材を配置する際、該支持材の上に溶媒を吐出してから立体素材を配置することを特徴とする立体造形方法。
In the three-dimensional modeling method of Claim 3,
When arranging the three-dimensional material on the support material, the three-dimensional modeling method is characterized by arranging the three-dimensional material after discharging the solvent onto the support material.
請求項3又は4の立体造形方法において、
上記立体素材と上記支持材とを収容する収容器内に、該収容器の底部から該立体素材と同じ比重の溶媒を徐々に注入することにより、支持材を除去するとともに、隣接する上記立体素材を接合することを特徴とする立体造形方法。
In the three-dimensional modeling method according to claim 3 or 4,
The support material is removed by gradually injecting the solvent having the same specific gravity as the solid material into the container containing the solid material and the support material from the bottom of the container, and the adjacent solid material A three-dimensional modeling method characterized by joining the two.
所望の形状の立体を形成する立体造形装置において、
各区画が棒状になるように三次元空間を区画する区画によって造形すべき立体を区画して、各区画における立体が存在する箇所に配置する固体よりなる立体素材と、該立体素材の下方で且つ立体が存在しない箇所に配置する固体よりなる支持材との長さ及び配置順の情報を生成する生成手段を備え、
この情報に基づき、各区画毎に所定長さの立体素材と支持材とを所定の順で配置したのち、該支持材を除去するとともに隣接する該立体素材を互いに接合することを備えることを特徴とする立体造形装置。
In a three-dimensional modeling apparatus that forms a solid with a desired shape,
A three-dimensional material made up of a solid that is to be shaped by a section that divides the three-dimensional space so that each section is in a rod shape, and is placed in a place where a solid in each section exists, and below the three-dimensional material and A generation means for generating information on the length and arrangement order of a support material made of a solid arranged in a place where a solid does not exist,
Based on this information, a solid material and a support material having a predetermined length are arranged in a predetermined order for each section, and then the support material is removed and the adjacent solid materials are joined to each other. 3D modeling device.
請求項6の立体造形装置において、
上記立体素材及び上記支持材を所定の長さに切断しながら所定の順に配置する配置手段を備えることを特徴とする立体造形装置。
The three-dimensional modeling apparatus according to claim 6,
A three-dimensional modeling apparatus, comprising: an arrangement unit that arranges the three-dimensional material and the support material in a predetermined order while cutting into a predetermined length.
請求項6又は7の立体造形装置において、
上記支持材は、溶媒中に溶解可能な溶液系接着剤を少なくとも一部に含み、溶媒中に溶解することにより除去されるとともに、隣接する上記立体素材を接着することを特徴とする立体造形装置。
In the three-dimensional modeling apparatus of Claim 6 or 7,
The support material includes at least a part of a solution-based adhesive that can be dissolved in a solvent, is removed by dissolving in the solvent, and adheres the adjacent three-dimensional material. .
請求項8の立体造形装置において、
上記支持材の上に上記立体素材を配置する際、該支持材の上に溶媒を吐出する液滴吐出手段を備えることを特徴とする立体造形装置。
The three-dimensional modeling apparatus according to claim 8,
A three-dimensional modeling apparatus comprising: a droplet discharge unit that discharges a solvent onto the support material when the solid material is disposed on the support material.
請求項8又は9の立体造形装置において、
上記立体素材と上記支持材とを収容する収容器内に、該収容器の底部から該立体素材と同じ比重の溶媒を徐々に注入することを特徴とする立体造形装置。
In the three-dimensional modeling apparatus of Claim 8 or 9,
A three-dimensional modeling apparatus characterized by gradually injecting a solvent having the same specific gravity as that of the three-dimensional material into a container containing the three-dimensional material and the support material from the bottom of the container.
請求項6、7、8、9又は10の立体造形装置において、
上記立体素材は、他の立体素材の隣接する面に微小な凹凸が形成されていることを特徴とする立体造形装置。
In the three-dimensional modeling apparatus of Claim 6, 7, 8, 9, or 10,
The three-dimensional modeling apparatus, wherein the three-dimensional material has minute irregularities formed on adjacent surfaces of another three-dimensional material.
請求項6、7、8、9、又は10の立体造形装置において、
上記立体素材は、隣接する他の立体素材又は支持材と勘合可能な形状となっていることを特徴とする立体造形装置。
In the three-dimensional modeling apparatus according to claim 6, 7, 8, 9, or 10,
The three-dimensional modeling apparatus, wherein the three-dimensional material has a shape that can be fitted with another adjacent three-dimensional material or support material.
請求項6、7、8、9、10、11又は12の立体造形装置において、
上記支持材は、水に溶解可能な溶液系接着剤を少なくとも一部に含み、水に溶解することにより除去されるとともに、上記立体素材を接着することを特徴とする立体造形装置。
In the three-dimensional modeling apparatus according to claim 6, 7, 8, 9, 10, 11, or 12,
The three-dimensional modeling apparatus characterized in that the support material includes at least a part of a solution-based adhesive that is soluble in water, and is removed by dissolving in water, and the three-dimensional material is bonded.
JP2012269730A 2012-12-10 2012-12-10 3D modeling method and 3D modeling apparatus Expired - Fee Related JP6004269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269730A JP6004269B2 (en) 2012-12-10 2012-12-10 3D modeling method and 3D modeling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269730A JP6004269B2 (en) 2012-12-10 2012-12-10 3D modeling method and 3D modeling apparatus

Publications (2)

Publication Number Publication Date
JP2014113759A true JP2014113759A (en) 2014-06-26
JP6004269B2 JP6004269B2 (en) 2016-10-05

Family

ID=51170300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269730A Expired - Fee Related JP6004269B2 (en) 2012-12-10 2012-12-10 3D modeling method and 3D modeling apparatus

Country Status (1)

Country Link
JP (1) JP6004269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068297A (en) * 2014-09-29 2016-05-09 日本電気株式会社 Lamination molded article and lamination molding method
CN106853676A (en) * 2015-11-09 2017-06-16 罗天珍 The adjoint carving-and-scraping of FDM 3D printings stays the lamination method for pushing up excessive object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309753A (en) * 1997-05-09 1998-11-24 Ricoh Co Ltd Three-dimensional article forming apparatus
JP2002516346A (en) * 1998-05-20 2002-06-04 ストラタシス・インコーポレイテッド Water-soluble rapidly prototyped support and template material
JP2007062050A (en) * 2005-08-29 2007-03-15 Shiyoufuu:Kk Shaping data forming system, manufacturing method and shape data forming program
JP2012509777A (en) * 2008-10-17 2012-04-26 ストラタシス,インコーポレイテッド Support materials for digital manufacturing systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309753A (en) * 1997-05-09 1998-11-24 Ricoh Co Ltd Three-dimensional article forming apparatus
JP2002516346A (en) * 1998-05-20 2002-06-04 ストラタシス・インコーポレイテッド Water-soluble rapidly prototyped support and template material
JP2007062050A (en) * 2005-08-29 2007-03-15 Shiyoufuu:Kk Shaping data forming system, manufacturing method and shape data forming program
JP2012509777A (en) * 2008-10-17 2012-04-26 ストラタシス,インコーポレイテッド Support materials for digital manufacturing systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068297A (en) * 2014-09-29 2016-05-09 日本電気株式会社 Lamination molded article and lamination molding method
CN106853676A (en) * 2015-11-09 2017-06-16 罗天珍 The adjoint carving-and-scraping of FDM 3D printings stays the lamination method for pushing up excessive object

Also Published As

Publication number Publication date
JP6004269B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6669985B2 (en) Manufacturing method of three-dimensional objects
JP6270353B2 (en) Three-dimensional structure and support forming method
TWI606915B (en) 3D printing device with reciprocating spray forming mechanism
CN102905876B (en) A kind of method and apparatus making threedimensional model
US20160039194A1 (en) Additive manufacturing using miscible materials
RU2686748C1 (en) Method and machine for making at least one article made from at least one ceramic and / or metal material by additive production technology
KR20150065788A (en) Method for stabilizing a powder bed by means of vacuum for additive manufacturing
JP6851969B2 (en) Methods and equipment for manufacturing a series of objects
CN107650381B (en) Three-dimensional object molding table, manufacturing device, and manufacturing method
JP2017128770A (en) Method for producing metallic member
WO2019155897A1 (en) Three-dimensional forming method
JP2018024183A (en) Three-dimensional molding system and three-dimensional molding method
WO2018159133A1 (en) Composition for manufacturing three-dimensional printed article, method for manufacturing three-dimensional printed article, and device for manufacturing three-dimensional printed article
JP6004269B2 (en) 3D modeling method and 3D modeling apparatus
JP6628024B2 (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
CN107825698B (en) Three-dimensional modeling apparatus, three-dimensional modeling method, and storage medium
JP2017170742A (en) Manufacturing method of three-dimensional object using additive manufacturing
JP6524318B1 (en) Shaper, and method of manufacturing shaped object
JP2017030253A (en) Three-dimensional molding apparatus
CN109551764B (en) Three-dimensional object manufacturing device and three-dimensional object manufacturing method
JP2019018526A (en) Three-dimensional object forming apparatus and three-dimensional object forming method
TWI616320B (en) Rapid prototyping apparatus
JP2020111801A (en) Method for manufacturing three-dimensional molded article and apparatus for manufacturing three-dimensional molded article
KR20150049736A (en) Three dimensional printer improving printing velocity
TW201800215A (en) Complex three dimensional molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R151 Written notification of patent or utility model registration

Ref document number: 6004269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees