JP2016068297A - Lamination molded article and lamination molding method - Google Patents

Lamination molded article and lamination molding method Download PDF

Info

Publication number
JP2016068297A
JP2016068297A JP2014197734A JP2014197734A JP2016068297A JP 2016068297 A JP2016068297 A JP 2016068297A JP 2014197734 A JP2014197734 A JP 2014197734A JP 2014197734 A JP2014197734 A JP 2014197734A JP 2016068297 A JP2016068297 A JP 2016068297A
Authority
JP
Japan
Prior art keywords
layered object
layered
unique
shape
joint surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014197734A
Other languages
Japanese (ja)
Inventor
雅之 小田
Masayuki Oda
雅之 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014197734A priority Critical patent/JP2016068297A/en
Publication of JP2016068297A publication Critical patent/JP2016068297A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To produce plural lamination molded articles which have a shape of a divided solid body, and joint the lamination molded article with correct orientation and correct arrangement, thereby obtaining a target solid body.SOLUTION: A lamination molded article 100 is a lamination molded article obtained by laminating planar-shaped material layers 1 formed into a predetermined shape. A face obtained by connecting end parts 1a of the material layers 1 becomes a side face 110 of the lamination molded article 100. The side face 110 has a unique irregular shape 10 which is unique to the side face 110 formed by irregularity of the material layer end parts 1a.SELECTED DRAWING: Figure 1

Description

本発明は、積層造形物および積層造形方法に関する。   The present invention relates to an additive manufacturing method and an additive manufacturing method.

近年、3Dプリンターの活用が盛んになっている。3Dプリンターを用いることによって、高価な金型や切削加工を用いることなく、複雑な形状の立体を手軽に作製することができる。またサポート材と呼ばれる造形後に除去する材料を用いることにより、複数の立体が空間を隔てて組み合わされたような構造を一気に作製することも可能である。   In recent years, 3D printers have been actively used. By using a 3D printer, it is possible to easily produce a solid body having a complicated shape without using an expensive mold or cutting process. In addition, by using a material called a support material that is removed after modeling, a structure in which a plurality of solid bodies are combined with a space therebetween can be produced at once.

なお3Dプリンターという呼称に明確な定義はなく、通常は積層造形法によって立体を形成する装置のことを意味する。そして、このような造形方法は、積層造形(Layered Manufacturing)あるいは付加製造(Additive Manufacturing)と総称される。本明細書では、積層造形の呼称を用い、それが上記の付加製造、3Dプリンター等の技術全般を含むものと定義する。   In addition, there is no clear definition in the name of 3D printer, and it usually means a device that forms a solid by the additive manufacturing method. Such a modeling method is generally referred to as layered manufacturing or additive manufacturing. In this specification, the name of additive manufacturing is used, and it is defined as including the above-described general techniques such as additive manufacturing and 3D printer.

積層造形においては、3次元データに基づいて2次元的な所定形状の層を形成し、この層を順次積層していくことにより立体的な構造物を作製する。製造方法には、熱溶解積層方式、光造形方式、粉末焼結方式、インクジェット方式、プロジェクション方式、インクジェット粉末積層方式などがある。   In additive manufacturing, a two-dimensional layer having a predetermined shape is formed based on three-dimensional data, and a three-dimensional structure is produced by sequentially stacking the layers. Manufacturing methods include a hot melt lamination method, an optical shaping method, a powder sintering method, an ink jet method, a projection method, and an ink jet powder lamination method.

上述のように、積層造形法を用いて様々な立体を作成することができるが、何でも作れるわけではなく、例えば大きさに関しては、装置サイズに依存する制約がある。一方で、装置サイズを超えるような積層造形物に対する需要も存在する。   As described above, various three-dimensional objects can be created using the additive manufacturing method. However, anything can be created. For example, the size is restricted depending on the apparatus size. On the other hand, there is a demand for a layered object that exceeds the size of the apparatus.

例えば特許文献1には、そのような需要を満足するための技術が開示されている。この技術では、大きなマスターモデル(立体)を分割した分割マスターモデルを用いる。それぞれの分割マスターモデルは別々に積層造形する。そして各分割モデルを接着することにより、装置サイズの制約を超えた大きさのマスターモデルを作製することができる。   For example, Patent Document 1 discloses a technique for satisfying such a demand. In this technique, a divided master model obtained by dividing a large master model (solid) is used. Each divided master model is separately layered. Then, by adhering the respective divided models, a master model having a size exceeding the limitation of the apparatus size can be produced.

特開2009−847号公報JP 2009-847 A

しかしながら、特許文献1の技術では、分割したパーツを接合する際に、配置を間違えてしまう恐れがあった。これは、それぞれのパーツがどこに配置されるものかを正確に判断する手段が無いためである。分割数が少なく、各パーツの形状が大きく異なる場合には、間違いは起こりにくいが、分割が多数で、形状が類似している場合には、接合ミスのリスクが増大してしまう。   However, in the technique of Patent Document 1, there is a fear that the arrangement may be wrong when the divided parts are joined. This is because there is no means for accurately determining where each part is placed. If the number of divisions is small and the shapes of the parts are greatly different, mistakes are unlikely to occur. However, if the number of divisions is large and the shapes are similar, the risk of joining errors increases.

本発明は上記の問題に鑑みてなされたものであり、積層造形で作製したパーツを正しく接合できる方法を提供することを目的としている。   This invention is made | formed in view of said problem, and it aims at providing the method of joining correctly the parts produced by the layered modeling.

上記の課題を解決するため、本発明の積層造形物は、所定形状に形成された平面状の物質層を積層した積層造形物であって、前記物質層の端部を結んで得られる側面のうち少なくとも1つの側面が前記物質層端部の凹凸によって形成された前記側面に固有の凹凸形状、を有している。   In order to solve the above-described problems, the layered object of the present invention is a layered object formed by laminating a planar material layer formed in a predetermined shape, and has a side surface obtained by connecting end portions of the material layer. Of these, at least one side surface has a concavo-convex shape unique to the side surface formed by the concavo-convex portion of the end portion of the material layer.

本発明の効果は、積層造形で作製したパーツを正しく接合できることである。   The effect of this invention is that the parts produced by additive manufacturing can be joined correctly.

本発明第1の実施の形態を示す斜視図である。It is a perspective view which shows the 1st Embodiment of this invention. 本発明第2の実施の形態を示す斜視図である。It is a perspective view which shows the 2nd Embodiment of this invention. 本発明第3の実施の形態を示す斜視図である。It is a perspective view which shows the 3rd Embodiment of this invention. 本発明第4の実施の形態を示す側面図である。It is a side view which shows the 4th Embodiment of this invention. 本発明第5の実施の形態に関わる側面図である。It is a side view in connection with the 5th Embodiment of this invention. 本発明第5の実施の形態を示す斜視図である。It is a perspective view which shows the 5th Embodiment of this invention. 本発明第5の実施の形態の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the 5th Embodiment of this invention.

以下、図面を参照しながら本発明について詳細に説明する。
(第1の実施の形態)
図1は、第1の実施の形態を示す斜視図である。積層造形物100は、所定形状に形成された平面状の物質層1を積層した積層造形物である。物質層1の端部1aを結んで得られる面が積層造形物100の側面110となる。側面110は物質層端部1aの凹凸によって形成された側面110に固有の固有凹凸形状10を有する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing the first embodiment. The layered object 100 is a layered object obtained by laminating a planar material layer 1 formed in a predetermined shape. A surface obtained by connecting the end portions 1 a of the material layer 1 becomes the side surface 110 of the layered object 100. The side surface 110 has a unique uneven shape 10 unique to the side surface 110 formed by the unevenness of the material layer end 1a.

以上の構成とすることによって、積層造形物100の識別および積層造形物100の向きを識別することができる。
(第2の実施の形態)
図2は、第2の実施の形態を説明するための斜視図である。物質層1の平面状の所定形状は、例えば、物質を短冊状に敷き詰めていくことによって形成することができる。図1では、この短冊の長手方向の端部を用いて側面110に固有凹凸形状10を形成した例を示したが、短冊の短手方向の端部1bを用いて固有凹凸形状10を形成しても良い。図2では、側面110bにおいて、物質が欠落した部分を設け、凹上の固有凹凸形状10を形成している。
With the above configuration, it is possible to identify the layered object 100 and the direction of the layered object 100.
(Second Embodiment)
FIG. 2 is a perspective view for explaining the second embodiment. The planar predetermined shape of the material layer 1 can be formed, for example, by spreading the material in a strip shape. In FIG. 1, an example in which the unique uneven shape 10 is formed on the side surface 110 using the end portion of the strip in the longitudinal direction is shown, but the inherent uneven shape 10 is formed using the end portion 1 b in the short direction of the strip. May be. In FIG. 2, a portion lacking the substance is provided on the side surface 110 b, and the inherent concave / convex shape 10 on the concave is formed.

以上、説明したように、積層造形物100には、物質を短冊状に敷き詰めた場合に、短冊の長手方向、短手方向どちらにも固有凹凸形状10を形成することができる。また凹、凸、どちらを用いても固有凹凸形状10を形成することができる。
(第3の実施の形態)
図3は本発明第3の実施の形態を示す斜視図である。本実施の形態では大きな立体を作製する場合に、立体を分割した分割パーツ20を用いる方法を示す。分割パーツ20の一つ一つは、第1もしくは第2の実施の形態の積層造形物100と同様な構造を有している。
As described above, in the layered object 100, when the substance is spread in a strip shape, the unique uneven shape 10 can be formed in both the longitudinal direction and the short direction of the strip. In addition, the natural uneven shape 10 can be formed by using any one of concave and convex.
(Third embodiment)
FIG. 3 is a perspective view showing a third embodiment of the present invention. In the present embodiment, a method of using a divided part 20 obtained by dividing a solid when a large solid is produced will be described. Each divided part 20 has the same structure as the layered object 100 of the first or second embodiment.

立体を作製するには、まず複数の分割パーツ20を別々に積層造形する。各分割パーツ20を接合することによって大きな立体が得られる。この時、各分割パーツ20を正しい配置と正しい向きで接合しなければならない。   In order to produce a solid body, first, a plurality of divided parts 20 are separately layered. A large solid is obtained by joining the divided parts 20 together. At this time, each divided part 20 must be joined in the correct arrangement and the correct orientation.

本実施の形態では、図3に示すように、各分割パーツ20の各面に固有凹凸形状10を設けている。なお図中の添え字は、それぞれの固有凹凸形状10が違うものであることを示している。命名の規則は任意である。   In the present embodiment, as shown in FIG. 3, a unique uneven shape 10 is provided on each surface of each divided part 20. Note that the subscripts in the figure indicate that the unique uneven shapes 10 are different. The naming convention is arbitrary.

これらの固有凹凸形状10を用いて、分割パーツ20を識別し、各分割パーツ20を正しい配置と向きで接合することができる。また図3のように、接合される2つの面の固有凹凸形状10を同じ形状の凹と凸の関係にしておけば、分割パーツ同士の位置決めを行うことができる。さらに凹凸が噛み合うことで、接合面のせん断強度が向上する。   Using these unique concavo-convex shapes 10, the divided parts 20 can be identified, and each divided part 20 can be joined with the correct arrangement and orientation. In addition, as shown in FIG. 3, if the inherent concave / convex shape 10 of the two surfaces to be joined has a concave and convex relationship with the same shape, the divided parts can be positioned. Furthermore, since the unevenness is engaged, the shear strength of the joint surface is improved.

以上、本実施の形態によれば、分割パーツの正しい配置、位置決め、接合強度の向上を行うことができる。
(第4の実施の形態)
図4は本発明第4の実施の形態を示す側面図である。図4では図の左右方向に長い立体200を、6つの分割パーツ20を接合して作製する例を示している。
As described above, according to the present embodiment, correct placement, positioning, and bonding strength of the divided parts can be performed.
(Fourth embodiment)
FIG. 4 is a side view showing a fourth embodiment of the present invention. FIG. 4 shows an example in which a solid 200 that is long in the left-right direction in the figure is produced by joining six divided parts 20.

分割パーツ20a、20b、・・・は接合面に固有凹凸形状10を有している。接合する2つの面には、同じ形状で凹と凸の固有凹凸形状10が対になって形成されている。例えば分割パーツ20aには凸の固有凹凸形状10aが形成され、分割パーツ20bの対向する面には同じ形状の凹の固有凹凸形状10b‘が形成されている。これらの固有凹凸形状10を用いて接合する相手と向きを識別することができる。また両者を嵌合することで、位置決めを同時に行うことができる。   The divided parts 20a, 20b,... Have a unique uneven shape 10 on the joint surface. The two surfaces to be joined are formed with a pair of concave and convex natural concave / convex shapes 10 having the same shape. For example, the divided part 20a is formed with a convex unique uneven shape 10a, and the concave part 10b 'having the same shape is formed on the opposing surface of the divided part 20b. Using these unique concavo-convex shapes 10, it is possible to identify the mating partner and the direction. Moreover, positioning can be performed simultaneously by fitting both.

固有凹凸形状10の識別は目視を始め光学的に行うことができるが、電気的あるいは磁気的に行っても良い。例えば平板電極との間に電界を印加すれば、容量の分布から固有凹凸形状10のパターンを読み取ることができる。   The identification of the unique concavo-convex shape 10 can be performed optically including visual observation, but may be performed electrically or magnetically. For example, if an electric field is applied to the flat plate electrode, the pattern of the unique uneven shape 10 can be read from the capacitance distribution.

以上説明したように、本実施の形態によれば、積層造形によって形成した分割パーツ20を正確に接合して、大きな立体を作製することができる。
(第5の実施の形態)
図5は本実施の形態で作製する立体200を示す側面図である。この立体200は中空の構造を有しているものとする。本実施の形態では、サポート材を用いて中空構造の分割パーツを作製する。この時サポート材と物質層とが直方体を形成するように積層造形し、単純なブロックを積み上げるように接合する。そして、接合した後に、サポート材を除去すると、目的の立体ができる、という構成になっている。図5には、2方向の側面図(a)、(b)と分割するためのグリッドを示している。
As described above, according to the present embodiment, it is possible to accurately join the divided parts 20 formed by the layered modeling to produce a large solid.
(Fifth embodiment)
FIG. 5 is a side view showing a three-dimensional object 200 manufactured in this embodiment. This solid 200 is assumed to have a hollow structure. In the present embodiment, a divided part having a hollow structure is produced using a support material. At this time, the support material and the material layer are layered so as to form a rectangular parallelepiped, and are joined so that simple blocks are stacked. And after joining, if a support material is removed, it is the structure that the target solid is made. FIG. 5 shows two side views (a) and (b) and a grid for division.

図6は、ここで用いる分割パーツ20の一例である。設計した形状の物質層1と、サポート材とが直方体を形成している。物質層1の側面には固有凹凸形状10x、10y、10zが形成されている。ここでは3カ所に固有凹凸形状10を形成した例を示したが、分割パーツ20を配置すべき相対位置と向きが識別できる情報が得られるようにしておけば、固有凹凸形状10の数は任意に決めて良い。固有凹凸形状10は、例えばバーコードであっても良い。   FIG. 6 is an example of the divided part 20 used here. The material layer 1 having the designed shape and the support material form a rectangular parallelepiped. On the side surface of the material layer 1, unique uneven shapes 10x, 10y, and 10z are formed. Here, an example in which the unique uneven shapes 10 are formed at three locations is shown, but the number of the unique uneven shapes 10 is arbitrary as long as information that can identify the relative position and orientation in which the divided parts 20 should be arranged is obtained. You can decide. The unique uneven shape 10 may be a barcode, for example.

図7は、分割パーツ20を接合する時の手順を示す斜視図である。分割パーツ20に設けられた固有凹凸形状10を参照することによって、その分割パーツ20が接合されるべき相手を正確に知ることができる。そして、その識別結果に基づいて、順次ブロックを積み上げるように分割パーツ20を接合して行く。図では4つの分割パーツ20を接合した状況を示している。この時各分割パーツ20に設けられた固有凹凸形状10を参照することによって、次に接合すべき分割パーツ20と向きを正確に知ることができる。ここで固有凹凸形状10を、例えばバーコードのように機械が情報を取得できるようにしておけば作業の自動化も可能である。例えば、機械がバーコードを読み取り、接着層を形成し、正確に配置して接合するといった作業をおこなうことができる。そして全ての分割パーツ20を接合したら、サポート材2を除去する。以上により目的の立体を得ることができる。   FIG. 7 is a perspective view showing a procedure when joining the divided parts 20. By referring to the unique concavo-convex shape 10 provided in the divided part 20, it is possible to accurately know the partner to which the divided part 20 is to be joined. Then, based on the identification result, the divided parts 20 are joined so that the blocks are sequentially stacked. The figure shows a situation where four divided parts 20 are joined. At this time, by referring to the unique concavo-convex shape 10 provided in each divided part 20, it is possible to accurately know the divided part 20 and the direction to be joined next. Here, if the unique concavo-convex shape 10 can be acquired by a machine such as a barcode, the work can be automated. For example, a machine can read a bar code, form an adhesive layer, accurately place and bond. When all the divided parts 20 are joined, the support material 2 is removed. Thus, the target solid can be obtained.

以上、説明したように、本実施の形態によれば、非常に単純な接合作業によって目的とする立体を得ることができる。   As described above, according to the present embodiment, a target solid can be obtained by a very simple joining operation.

第1の実施の形態から第5の実施の形態までは、積層造形物そのものを使うことを前提としてきた。しかしながら、これらの実施の形態の積層造形物をマスターとして作製したレプリカを用いても、まったく同様の効果を得ることができる。   From the first embodiment to the fifth embodiment, it has been assumed that the layered object itself is used. However, the same effect can be obtained even if a replica produced using the layered object of these embodiments as a master is used.

以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上記実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。   The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.

1 物質層
2 サポート材
10 固有凹凸形状
20 分割パーツ
100 積層造形物
110 側面
200 立体
DESCRIPTION OF SYMBOLS 1 Material layer 2 Support material 10 Intrinsic uneven | corrugated shape 20 Divided parts 100 Laminated modeling 110 Side surface 200 Three-dimensional

Claims (10)

所定形状に形成された平面状の物質層を積層した積層造形物を複数接合して所定形状の立体を構成するための積層造形物であって、前記積層造形物の接合面が前記物質層によって形成された前記接合面固有の凹凸形状を有することを特徴とする積層造形物。   A layered object for forming a solid body having a predetermined shape by joining a plurality of layered objects formed by laminating planar material layers formed in a predetermined shape, wherein the bonding surface of the layered object is formed by the material layer A layered object having an uneven shape unique to the formed joint surface. 前記接合面固有の凹凸形状が接合相手となる積層造形物の接合面に嵌合する前記接合面固有の凹凸形状である、ことを特徴とする請求項1に記載の積層造形物。   The layered object according to claim 1, wherein the uneven shape unique to the joint surface is an uneven shape unique to the joint surface that is fitted to the joint surface of the layered object to be joined. 少なくとも1つの前記積層造形物の前記接合面固有の凹凸形状が前記立体の識別情報を有する、ことを特徴とする請求項1または請求項2に記載の積層造形物。   The layered object according to claim 1 or 2, wherein the uneven shape unique to the joint surface of at least one of the layered objects includes the three-dimensional identification information. 前記識別情報が、光学的あるいは電気的あるいは磁気的に読み出される識別情報である、ことを特徴とする請求項3に記載の積層造形物。   The layered object according to claim 3, wherein the identification information is identification information read optically, electrically, or magnetically. 請求項1乃至請求項4の積層造形物をマスターとして作製された前記積層造形物のレプリカ。   5. A replica of the layered object manufactured using the layered object of claim 1 as a master. 複数の請求項1乃至請求項4の積層造形物または請求項5に記載の積層造形物のレプリカを所定の配置で接合した立体。   A solid body obtained by joining a plurality of layered objects according to claim 1 or 4 or replicas of the layered objects according to claim 5 in a predetermined arrangement. 所定形状に形成された平面状の物質層を積層した積層造形物を複数接合して所定形状の立体を構成するための積層造形物の製造方法であって、所定形状の前記物質層を形成し、前記物質層を積層し、前記積層造形物の接合面に前記物質層からなる前記接合面固有の凹凸形状を形成する、ことを特徴とする積層造形物の製造方法。   A method for manufacturing a layered object for forming a solid body having a predetermined shape by joining a plurality of layered objects formed by laminating planar material layers formed in a predetermined shape, wherein the material layer having a predetermined shape is formed. The method for producing a layered object is characterized by laminating the material layers, and forming a concavo-convex shape unique to the bonding surface made of the substance layer on a bonding surface of the layered object. 前記物質層の周囲に各層の外形が略同一となるようにサポート層を形成する、ことを特徴とする請求項7に記載の積層造形物の製造方法。   The method for manufacturing a layered object according to claim 7, wherein the support layer is formed around the material layer so that the outer shape of each layer is substantially the same. 請求項1乃至請求項4の積層造形物または請求項5に記載の積層造形物のレプリカの接合面に形成された前記接合面固有の凹凸形状に基づいて、前記積層造形物を所定の位置に配置し、前記積層造形物を接合する、ことを特徴とする立体の製造方法。   The layered object is placed in a predetermined position on the basis of the uneven shape unique to the joint surface formed on the joint surface of the layered object of claim 1 to claim 4 or the replica of the layered object of claim 5. A three-dimensional manufacturing method comprising arranging and joining the layered object. 前記積層造形物がサポート層を有する場合に、前記積層造形物の接合後に前記サポート層を除去する、ことを特徴とする請求項9に記載の立体の製造方法。   The three-dimensional manufacturing method according to claim 9, wherein, when the layered object has a support layer, the support layer is removed after joining the layered object.
JP2014197734A 2014-09-29 2014-09-29 Lamination molded article and lamination molding method Pending JP2016068297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197734A JP2016068297A (en) 2014-09-29 2014-09-29 Lamination molded article and lamination molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197734A JP2016068297A (en) 2014-09-29 2014-09-29 Lamination molded article and lamination molding method

Publications (1)

Publication Number Publication Date
JP2016068297A true JP2016068297A (en) 2016-05-09

Family

ID=55863583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197734A Pending JP2016068297A (en) 2014-09-29 2014-09-29 Lamination molded article and lamination molding method

Country Status (1)

Country Link
JP (1) JP2016068297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744710B2 (en) 2016-09-15 2020-08-18 Seiko Epson Corporation Three-dimensional modeling apparatus, three-dimensional modeling method, and computer program
EP3848406A1 (en) 2016-03-30 2021-07-14 Toyobo Co., Ltd. Polyester film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100263A (en) * 1996-09-27 1998-04-21 Suzuki Motor Corp Three-dimensional article shaping method
JP2002251209A (en) * 2001-02-23 2002-09-06 Minolta Co Ltd Data processor, data processing method, recording medium and its program
JP2006167945A (en) * 2004-12-13 2006-06-29 Sugimura Seiko Kk Sheet laminating type three-dimensional shaping method and apparatus therefor
JP2009000847A (en) * 2007-06-20 2009-01-08 Toyo Tire & Rubber Co Ltd Master model and manufacturing method for master model
JP2012158089A (en) * 2011-01-31 2012-08-23 Computer System Kenkyusho:Kk Device and program for generating cad data, and storage medium
US20130189028A1 (en) * 2011-11-04 2013-07-25 Massachusetts Institute Of Technology Hierarchical Functional Digital Materials
JP2013167713A (en) * 2012-02-15 2013-08-29 Pioneer Electronic Corp Manufacturing method of reflection-type plane symmetry imaging element
JP2014113759A (en) * 2012-12-10 2014-06-26 Ricoh Co Ltd Three-dimensional contouring method and three-dimensional apparatus
JP2015145071A (en) * 2014-01-31 2015-08-13 丸井 智敬 Three-dimensional molded article manufactured by use of 3d printer and information transmission system using three-dimensional molded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100263A (en) * 1996-09-27 1998-04-21 Suzuki Motor Corp Three-dimensional article shaping method
JP2002251209A (en) * 2001-02-23 2002-09-06 Minolta Co Ltd Data processor, data processing method, recording medium and its program
JP2006167945A (en) * 2004-12-13 2006-06-29 Sugimura Seiko Kk Sheet laminating type three-dimensional shaping method and apparatus therefor
JP2009000847A (en) * 2007-06-20 2009-01-08 Toyo Tire & Rubber Co Ltd Master model and manufacturing method for master model
JP2012158089A (en) * 2011-01-31 2012-08-23 Computer System Kenkyusho:Kk Device and program for generating cad data, and storage medium
US20130189028A1 (en) * 2011-11-04 2013-07-25 Massachusetts Institute Of Technology Hierarchical Functional Digital Materials
JP2013167713A (en) * 2012-02-15 2013-08-29 Pioneer Electronic Corp Manufacturing method of reflection-type plane symmetry imaging element
JP2014113759A (en) * 2012-12-10 2014-06-26 Ricoh Co Ltd Three-dimensional contouring method and three-dimensional apparatus
JP2015145071A (en) * 2014-01-31 2015-08-13 丸井 智敬 Three-dimensional molded article manufactured by use of 3d printer and information transmission system using three-dimensional molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3848406A1 (en) 2016-03-30 2021-07-14 Toyobo Co., Ltd. Polyester film
US10744710B2 (en) 2016-09-15 2020-08-18 Seiko Epson Corporation Three-dimensional modeling apparatus, three-dimensional modeling method, and computer program

Similar Documents

Publication Publication Date Title
KR102174642B1 (en) A method for the manufacture of a plastics product and a product made by the method
JP2010521362A5 (en)
JP6132186B2 (en) Manufacturing method and apparatus for preform manufacturing base material, and manufacturing method of preform and fiber reinforced plastic
CN105058795A (en) Error compensating method for material-increase manufacturing
KR20090032543A (en) Fabrication method of large scale 3 dimensional structure
CN106273438A (en) Three-dimensional printing molding structure
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
JP2017036484A5 (en)
KR100994935B1 (en) Fabrication method of large scale 3 dimensional structure by layer slicing
JP2016068297A (en) Lamination molded article and lamination molding method
JP4620765B2 (en) Manufacturing method of wood mold used for vacuum forming
JP2012232002A (en) Toy set, and three-dimensional component or placement component used for this toy set
CN103862983B (en) 3D relief painting processing technology
CN113183466A (en) Hybrid component including additive manufacturing
WO2017150289A1 (en) Resin-bonded product and manufacturing method therefor
EP3473413A1 (en) Additive manufacturing methods and systems
WO2017126094A1 (en) Laminated shaped object and device including same, and shaping method
CN104519674A (en) Partial mixed lamination board dislocation prevention method
KR20210079560A (en) Fabrication method of large scale 3 dimensional structure by layer slicing
CN103582533B (en) Metal bonded body
JP5898567B2 (en) Hollow structure manufacturing method, manufacturing apparatus, and end face sealing structure
TWM512796U (en) Magnetic core inductor preform
US9346136B2 (en) Method for manufacturing model
US10016930B2 (en) Printing method of 3D printer
JP5210367B2 (en) Method for producing molded product using wood mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016