JP2014111740A - Method for producing thermoplastic resin - Google Patents

Method for producing thermoplastic resin Download PDF

Info

Publication number
JP2014111740A
JP2014111740A JP2013228364A JP2013228364A JP2014111740A JP 2014111740 A JP2014111740 A JP 2014111740A JP 2013228364 A JP2013228364 A JP 2013228364A JP 2013228364 A JP2013228364 A JP 2013228364A JP 2014111740 A JP2014111740 A JP 2014111740A
Authority
JP
Japan
Prior art keywords
mass
polymerization
parts
monomers
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013228364A
Other languages
Japanese (ja)
Other versions
JP6193094B2 (en
Inventor
Masahiro Watabe
真大 渡部
Kohei Okumura
耕平 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2013228364A priority Critical patent/JP6193094B2/en
Publication of JP2014111740A publication Critical patent/JP2014111740A/en
Application granted granted Critical
Publication of JP6193094B2 publication Critical patent/JP6193094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To cut production cost and improve production efficiency by reducing switching loss, when a continuous polymerization of thermoplastic resins of different kinds or compositions is performed.SOLUTION: A method for producing thermoplastic resins includes charging a monomer, a molecular weight regulating agent, a polymerization initiator, and as occasion demands, a solvent into a polymerization reactor and continuously performing a polymerization step (a) of a first thermoplastic resin and a polymerization step (b) of a second thermoplastic resin. Further, the method includes a switching step (c) for changing the charge ratio of at least one selected from the group comprising the monomer and the molecular weight regulating agent, after the polymerization step (a) or before the polymerization step (b). In the switching step (c), a step (c-1) for excessively changing the charge ratio of raw materials in comparison to the difference between the charge ratios of the raw materials in the polymerization step (a) and the polymerization step (b), than the charge ratio of the raw materials in the polymerization step (b), and maintaining the charge ratio, and a step (c-2) for changing the charge ratio to the charge ratio in the polymerization step (b) are successively performed.

Description

本発明は、熱可塑性樹脂の製造方法に関する。   The present invention relates to a method for producing a thermoplastic resin.

近年、熱可塑性樹脂の製造方法において、一の熱可塑性樹脂の重合工程から、他の異なる種類の熱可塑性樹脂の重合工程へと切り替える際や、同種の熱可塑性樹脂の重合工程であって、途中から銘柄や組成を変更した重合工程へと切り替える際に発生する、いわゆる切替えロスが問題となっている。
近年のエコ、省エネの観点からも、このような切替えロスの低減化が求められている。切替えロスを極力低減化し、効率のよい異種熱可塑性樹脂への切り替えや、同種の熱可塑性樹脂における銘柄等の切替えが可能な、熱可塑性樹脂の製造方法を用いることにより、コスト削減のみならず、安定生産、樹脂品質の向上にも繋げることが可能となる。
In recent years, in a method for producing a thermoplastic resin, when switching from a polymerization process of one thermoplastic resin to a polymerization process of another different type of thermoplastic resin, or in the polymerization process of the same kind of thermoplastic resin, There is a problem of so-called switching loss that occurs when switching to a polymerization process in which the brand and composition are changed.
From the viewpoint of ecology and energy saving in recent years, there is a demand for reducing such switching loss. By reducing the switching loss as much as possible and using a thermoplastic resin manufacturing method that enables switching to a different kind of thermoplastic resin and switching the brand of the same type of thermoplastic resin, not only cost reduction, It is possible to lead to stable production and improvement of resin quality.

特に、熱可塑性樹脂の中でも光学材料として使用されている熱可塑性樹脂、例えば、ポリメタクリル酸メチル(PMMA)に代表されるメタクリル系樹脂は、その高い透明性から、光学材料、車両用部品、建築用材料、レンズ、家庭用品、OA機器、照明機器等の分野で幅広く使用されているが、製造工程において上述したような切替えロスの低減化を図ることにより、各種樹脂材料や成形体において、コスト削減や品質向上等のメリットが大いに期待できる。   In particular, thermoplastic resins used as optical materials among thermoplastic resins, for example, methacrylic resins typified by polymethyl methacrylate (PMMA), have high transparency, so optical materials, automotive parts, and construction Widely used in the fields of industrial materials, lenses, household goods, OA equipment, lighting equipment, etc., the cost of various resin materials and molded products can be reduced by reducing the switching loss as described above in the manufacturing process. Benefits such as reduction and quality improvement can be greatly expected.

例えば、特許文献1には、メタクリル系樹脂の重合工程において、重合途中で反応器内の材料等を調整しながら連続重合を行う、メタクリル系樹脂の製造方法が提案されている。   For example, Patent Document 1 proposes a method for producing a methacrylic resin, in which a continuous polymerization is performed while adjusting the material in the reactor during the polymerization in the polymerization process of the methacrylic resin.

特開平10−87705号公報JP-A-10-87705

しかしながら、前記従来の技術は、同種のメタクリル系樹脂を連続重合に関するものであるが、異なる種類や、異なる組成の熱可塑性樹脂を、切り替えロスを効果的に低減化しながら連続的に重合する技術に関するものではない。   However, the conventional technique relates to continuous polymerization of the same kind of methacrylic resin, but relates to a technique of continuously polymerizing different types and different compositions of thermoplastic resins while effectively reducing switching loss. It is not a thing.

そこで本発明においては、異なる種類又は異なる組成の熱可塑性樹脂を連続的に重合する際、切り替えロスを効果的に低減化し、製造コスト削減及び生産効率の向上を達成する、熱可塑性樹脂の製造方法を提供することを目的とする。   Therefore, in the present invention, when continuously polymerizing different types or compositions of thermoplastic resins, a method for producing a thermoplastic resin, which effectively reduces switching loss and achieves reduction in production cost and improvement in production efficiency. The purpose is to provide.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、熱可塑性樹脂の製造方法において、異なる種類又は異なる組成の熱可塑性樹脂の重合へ変更する際、重合反応器内への切替え原料の投入を、特定の方法で実施することにより、短時間で異なる種類又は異なる組成の熱可塑性樹脂の重合工程へと切り替えることが可能となり、コスト削減、生産効率の向上が達成可能であることを見出し、本発明を成すに至った。
すなわち、本発明は、以下の通りである。
As a result of intensive studies to solve the above problems, the present inventors have switched to polymerization reactors when changing to polymerization of thermoplastic resins of different types or compositions in the thermoplastic resin production method. It is possible to switch to a polymerization process for different types or compositions of thermoplastic resins in a short time by introducing raw materials in a specific way, and cost reduction and improvement in production efficiency can be achieved. The present invention has been found.
That is, the present invention is as follows.

〔1〕
重合反応器内に、1種又は複数種の単量体、分子量調整剤、重合開始剤、及び必要に応じて溶媒を投入し、
第1の熱可塑性樹脂の重合工程(a)と、第2の熱可塑性樹脂の重合工程(b)とを、連続して行う、熱可塑性樹脂の製造方法であって、
前記重合工程(a)後、前記重合工程(b)前に、前記1種又は複数種の単量体、及び前記分子量調整剤からなる群より選ばれる、少なくともいずれか一の仕込み比率を変更する切り替え工程(c)を有し、
前記重合工程(a)における全単量体100質量%に対する、所定の単量体の仕込み比率をX質量%とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する分子量調整剤の仕込み比率をG質量部とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する重合開始剤の仕込み比率をM質量部とし、
前記重合工程(b)における全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY質量%とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する分子量調整剤の仕込み比率をH質量部とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する重合開始剤の仕込み比率をN質量部としたとき、
前記切り替え工程(c)は、以下の(条件1)を満足する、熱可塑性樹脂の製造方法。
(条件1):
下記工程(c−1)、工程(c−2)を順次行うものとし、切り替え工程(c)は、
前記工程(c−1)における全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ質量%としたときの、前記X質量%との差分|Z−X|、及び前記工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI質量部としたときの、前記G質量部との差分|I−G|のうちの、少なくともいずれか一方が、それぞれ、前記Y質量%、前記X質量%の差分|Y−X|、前記H質量部、前記G質量部の差分|H−G|よりも大きくなるように、仕込み比率を変更し、維持する工程(c−1)と、
重合反応器内へ供給する前記所定の単量体の仕込み比率、及び前記分子量調整剤の仕込み比率を、それぞれ、Y質量%、H質量部に変更する工程(c−2)と、
を含む。
〔2〕
前記(条件1)の切り替え工程(c)において、
前記工程(c−1)の、前記所定の単量体の仕込み比率を変更し維持する時間T1(分)が、
切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、
0.1≦T1/θ≦5.0の範囲であり、
前記X(質量%)、前記Y(質量%)、前記Z(質量%)は、下記(i)式又は(ii)式に従う、前記〔1〕に記載の熱可塑性樹脂の製造方法。
X<Yの場合、 Y<Z、かつ0.1≦Z−Y≦20 ・・・(i)
X>Yの場合、 Y>Z かつ0.1≦Y−Z≦20 ・・・(ii)
〔3〕
連続溶液重合又は連続塊状重合を行う、前記〔1〕又は〔2〕に記載の熱可塑性樹脂の製造方法。
〔4〕
メタクリル酸エステル単量体:20〜100質量%と、前記メタクリル酸エステル単量体に共重合可能な少なくとも1種の他のビニル単量体:0〜80質量%からなる単量体混合液を用いる、前記〔1〕乃至〔3〕のいずれか一に記載の熱可塑性樹脂の製造方法。
〔5〕
前記(条件1)の切り替え工程(c)において、
前記工程(c−1)において配合する分子量調整剤の仕込み比率を変更し維持する時間T2(分)が、切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、
0.1≦T2/θ≦5.0の範囲であり、
前記G(質量部)、前記H(質量部)、前記I(質量部)は、下記(iii)式又は(iv)式に従う、前記〔1〕乃至〔4〕のいずれか一に記載の熱可塑性樹脂組成物の製造方法。
G<Hの場合、H<Iかつ0.01≦I−H≦2.0 ・・・(iii)
G>Hの場合、H>Iかつ0.01≦H−I≦2.0 ・・・(iv)
(G、H、Iは、それぞれ、重合工程(a)、重合工程(b)、工程(c−1)における、全単量体100質量部に対する、分子量調整剤の量(質量部)を示す。)
〔6〕
前記切り替え工程(c)において、
以下の(条件2)を満足する、前記〔1〕乃至〔5〕のいずれか一に記載の熱可塑性樹脂の製造方法。
(条件2):
前記切り替え工程(c)の工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)で配合する重合開始剤の仕込み比率をO質量部としたときの、前記M質量部との差分|O−M|が、
前記N質量部、前記M質量部の差分|N−M|以下となるように仕込み比率を変更する。
[1]
In the polymerization reactor, one or more kinds of monomers, a molecular weight modifier, a polymerization initiator, and a solvent as required,
A method for producing a thermoplastic resin, comprising continuously performing a polymerization step (a) of a first thermoplastic resin and a polymerization step (b) of a second thermoplastic resin,
After the polymerization step (a), before the polymerization step (b), at least any one charging ratio selected from the group consisting of the one or more monomers and the molecular weight modifier is changed. Having a switching step (c),
The charging ratio of the predetermined monomer with respect to 100% by mass of all monomers in the polymerization step (a) is X% by mass,
With respect to 100 parts by mass of all the monomers in the polymerization step (a), the charging ratio of the molecular weight modifier blended in the polymerization step (a) is G parts by mass,
With respect to 100 parts by mass of all monomers in the polymerization step (a), the charging ratio of the polymerization initiator blended in the polymerization step (a) is M parts by mass,
The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomers in the polymerization step (b) is Y mass%,
The charging ratio of the molecular weight modifier to be blended in the polymerization step (b) is 100 parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b).
When the charging ratio of the polymerization initiator blended in the polymerization step (b) is N parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b),
The switching step (c) is a method for producing a thermoplastic resin, which satisfies the following (Condition 1).
(Condition 1):
The following step (c-1) and step (c-2) are performed sequentially, and the switching step (c)
X mass% when the charging ratio of the predetermined monomer blended in the step (c-1) is Z mass% with respect to 100 mass% of all monomers in the step (c-1) Of the molecular weight modifier blended in the step (c-1) with respect to 100 parts by mass of all the monomers blended in the step (c-1) At least one of the differences | IG | from the G mass part is the Y mass%, the X mass% difference | YX |, the H mass part, the A step (c-1) of changing and maintaining the charging ratio so as to be larger than the difference | HG |
A step (c-2) of changing the charging ratio of the predetermined monomer to be fed into the polymerization reactor and the charging ratio of the molecular weight modifier to Y mass% and H mass parts, respectively;
including.
[2]
In the switching step (c) of (Condition 1),
In the step (c-1), the time T1 (minute) for changing and maintaining the charging ratio of the predetermined monomer is as follows:
For the raw material residence time θ (min) in the polymerization reactor in the switching step (c),
0.1 ≦ T1 / θ ≦ 5.0,
Said X (mass%), said Y (mass%), and said Z (mass%) are the manufacturing methods of the thermoplastic resin as described in said [1] according to the following (i) Formula or (ii) Formula.
When X <Y, Y <Z and 0.1 ≦ Z−Y ≦ 20 (i)
When X> Y, Y> Z and 0.1 ≦ Y−Z ≦ 20 (ii)
[3]
The method for producing a thermoplastic resin according to [1] or [2], wherein continuous solution polymerization or continuous bulk polymerization is performed.
[4]
A monomer mixture consisting of 20 to 100% by weight of a methacrylic acid ester monomer and at least one other vinyl monomer copolymerizable to the methacrylic acid ester monomer: 0 to 80% by weight. The method for producing a thermoplastic resin according to any one of [1] to [3].
[5]
In the switching step (c) of (Condition 1),
The time T2 (min) for changing and maintaining the charging ratio of the molecular weight modifier to be blended in the step (c-1) is relative to the raw material residence time θ (min) in the polymerization reactor in the switching step (c).
0.1 ≦ T2 / θ ≦ 5.0,
Said G (mass part), said H (mass part), and said I (mass part) are the heat as described in any one of said [1] thru | or [4] according to the following (iii) Formula or (iv) Formula. A method for producing a plastic resin composition.
When G <H, H <I and 0.01 ≦ I−H ≦ 2.0 (iii)
When G> H, H> I and 0.01 ≦ HI ≦ 2.0 (iv)
(G, H, and I respectively indicate the amount (parts by mass) of the molecular weight modifier with respect to 100 parts by mass of all monomers in the polymerization step (a), the polymerization step (b), and the step (c-1). .)
[6]
In the switching step (c),
The method for producing a thermoplastic resin according to any one of [1] to [5], wherein the following (Condition 2) is satisfied.
(Condition 2):
When the charging ratio of the polymerization initiator blended in the step (c-1) is set to O parts by mass with respect to 100 parts by mass of all monomers blended in the step (c-1) of the switching step (c), The difference | OM− with respect to the M mass part is
The charging ratio is changed so that the difference | N−M | or less between the N parts by mass and the M parts by mass.

本発明によれば、異なる種類又は異なる組成の熱可塑性樹脂を連続して重合する際、原料の組成変更で生じる切り替えロスを効果的に低減でき、製造コスト削減及び生産効率の向上が可能な、熱可塑性樹脂の製造方法を提供できる。   According to the present invention, when continuously polymerizing different types or different compositions of thermoplastic resins, it is possible to effectively reduce the switching loss caused by the composition change of the raw materials, and the production cost can be reduced and the production efficiency can be improved. A method for producing a thermoplastic resin can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明する。
以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
なお、本明細書において、重合前のモノマー成分のことを「〜単量体」といい、「単量体」を省略することもある。
また、重合体を構成する構成単位のことを「〜単量体単位」といい、単に「〜単位」と表記することもある。
Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified within the scope of the gist.
In the present specification, the monomer component before polymerization is referred to as “˜monomer”, and “monomer” may be omitted.
In addition, the structural unit constituting the polymer is referred to as “˜monomer unit”, and may be simply referred to as “˜unit”.

本実施形態の熱可塑性樹脂組成物の製造方法は、
重合反応器内に、1種又は複数種の単量体(以下、重合単量体と記載する場合がある。)、分子量調整剤、重合開始剤、及び必要に応じて溶媒を投入し、
第1の熱可塑性樹脂の重合工程(a)と、第2の熱可塑性樹脂の重合工程(b)とを、連続して行う、熱可塑性樹脂の製造方法であって、
前記重合工程(a)後、前記重合工程(b)前に、前記1種又は複数種の単量体、及び前記分子量調整剤からなる群より選ばれる、少なくともいずれか一の仕込み比率を変更する切り替え工程(c)を有し、
前記重合工程(a)における全単量体100質量%に対する、所定の単量体の仕込み比率をX質量%とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する分子量調整剤の仕込み比率をG質量部とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する重合開始剤の仕込み比率をM質量部とし、
前記重合工程(b)における全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY質量%とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する分子量調整剤の仕込み比率をH質量部とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する重合開始剤の仕込み比率をN質量部としたとき、
前記切り替え工程(c)は、以下の(条件1)を満足するものとする。
(条件1):
下記工程(c−1)、工程(c−2)を順次行うものとし、切り替え工程(c)は、前記工程(c−1)における全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ質量%としたときの、前記X質量%との差分|Z−X|、及び前記工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI質量部としたときの、前記G質量部との差分|I−G|のうちの、少なくともいずれか一方が、それぞれ、前記Y質量%、前記X質量%の差分|Y−X|、前記H質量部、前記G質量部の差分|H−G|よりも大きくなるように、仕込み比率を変更し、維持する工程(c−1)と、
重合反応器内へ供給する前記所定の単量体の仕込み比率、及び前記分子量調整剤の仕込み比率を、それぞれ、Y質量%、H質量部に変更する工程(c−2)と、
を含む。
なお、前記第1の熱可塑性樹脂と前記第2の熱可塑性樹脂は、異なる種類の熱可塑性物、又は同種であるが組成の異なる熱可塑性樹脂であるものとする。
The method for producing the thermoplastic resin composition of the present embodiment is as follows:
In the polymerization reactor, one or more types of monomers (hereinafter may be referred to as polymerization monomers), a molecular weight modifier, a polymerization initiator, and a solvent as necessary,
A method for producing a thermoplastic resin, comprising continuously performing a polymerization step (a) of a first thermoplastic resin and a polymerization step (b) of a second thermoplastic resin,
After the polymerization step (a), before the polymerization step (b), at least any one charging ratio selected from the group consisting of the one or more monomers and the molecular weight modifier is changed. Having a switching step (c),
The charging ratio of the predetermined monomer with respect to 100% by mass of all monomers in the polymerization step (a) is X% by mass,
With respect to 100 parts by mass of all the monomers in the polymerization step (a), the charging ratio of the molecular weight modifier blended in the polymerization step (a) is G parts by mass,
With respect to 100 parts by mass of all monomers in the polymerization step (a), the charging ratio of the polymerization initiator blended in the polymerization step (a) is M parts by mass,
The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomers in the polymerization step (b) is Y mass%,
The charging ratio of the molecular weight modifier to be blended in the polymerization step (b) is 100 parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b).
When the charging ratio of the polymerization initiator blended in the polymerization step (b) is N parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b),
The switching step (c) satisfies the following (Condition 1).
(Condition 1):
The following step (c-1) and step (c-2) are sequentially performed, and the switching step (c) is performed in the step (c-1) with respect to 100% by mass of all monomers in the step (c-1). ) The difference | Z-X | from the X mass% when the charging ratio of the predetermined monomer to be blended is Z mass%, and all monomers blended in the step (c-1) At least one of the differences | IG | from the G parts by mass when the charge ratio of the molecular weight modifier blended in the step (c-1) to 100 parts by mass is I parts by mass. Are changed to be larger than the difference | Y−X | between the Y mass% and the X mass%, the difference between the H mass part and the G mass part | HG |, respectively. Maintaining step (c-1);
A step (c-2) of changing the charging ratio of the predetermined monomer to be fed into the polymerization reactor and the charging ratio of the molecular weight modifier to Y mass% and H mass parts, respectively;
including.
The first thermoplastic resin and the second thermoplastic resin are different types of thermoplastics or the same type of thermoplastic resin but different compositions.

(重合工程(a))
重合工程(a)においては、重合反応器内に、1種又は複数種の単量体、分子量調整剤、重合開始剤、必要に応じて溶媒を投入し、所定の組成の第1の熱可塑性樹脂の重合を行う。
(Polymerization step (a))
In the polymerization step (a), one or a plurality of monomers, a molecular weight regulator, a polymerization initiator, and a solvent as necessary are introduced into the polymerization reactor, and a first thermoplastic resin having a predetermined composition is obtained. Polymerize the resin.

<重合反応器>
前記重合反応器としては、例えば、混合装置、温度調節装置を備え、連続的に原料の供給と反応液の排出を行うことができる供給口と排出口を備えた容器を単独又は複数直列に接続した構成の反応器を用いることができる。
前記供給口に、重合原料を連続的に供給し、排出口から反応液を連続的に排出する。
重合反応器は連続重合が可能であれば特に限定されるものではない。例えば、ダブルヘリカルリボン、ピッチドバドル、タービン、アンカー型等の攪拌翼により均一に攪拌可能で、均一な反応液組成が得られる完全混合型反応器を用いることができる。
<Polymerization reactor>
As the polymerization reactor, for example, a mixing device and a temperature control device are provided, and a container having a supply port and a discharge port capable of continuously supplying raw materials and discharging reaction liquids is connected singly or in series. A reactor having the structure described above can be used.
The polymerization raw material is continuously supplied to the supply port, and the reaction liquid is continuously discharged from the discharge port.
The polymerization reactor is not particularly limited as long as continuous polymerization is possible. For example, a fully mixed reactor that can be uniformly stirred by a stirring blade such as a double helical ribbon, a pitched paddle, a turbine, or an anchor type and can obtain a uniform reaction liquid composition can be used.

<熱可塑性樹脂>
重合工程(a)、及び後述する重合工程(b)により製造する熱可塑性樹脂としては、連続重合により得られる樹脂であれば、特に限定されない。
例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、シンジオタクテックポリスチレン系樹脂、ABS系樹脂(アクリロニトリル−ブタジエン−スチレン系共重合体)、メタクリル系樹脂、AS系樹脂(アクリロニトリル−スチレン系共重合体)、BAAS系樹脂(ブタジエン−アクリロニトリル−アクリロニトリルゴム−スチレン系共重合体、MBS系樹脂(メチルメタクリレート−ブタジエン−スチレン系共重合体)、AAS系樹脂(アクリロニトリル−アクリロニトリルゴム−スチレン系共重合体)、MS系樹脂(メチルメタクリレート−スチレン系共重合体)等が挙げられる。
本実施形態の熱可塑性樹脂組成物の製造方法は、特に、メタクリル系樹脂、MS系樹脂の製造方法として好適に利用できる。
なお、上述したように、重合工程(a)により製造される第1の熱可塑性樹脂と、後述する重合工程(b)により製造される第2の熱可塑性樹脂とは、種類又は組成が異なっている。
<Thermoplastic resin>
The thermoplastic resin produced by the polymerization step (a) and the polymerization step (b) described later is not particularly limited as long as it is a resin obtained by continuous polymerization.
For example, polyethylene resin, polypropylene resin, polystyrene resin, syndiotactic polystyrene resin, ABS resin (acrylonitrile-butadiene-styrene copolymer), methacrylic resin, AS resin (acrylonitrile-styrene copolymer) Coalescence), BAAS resin (butadiene-acrylonitrile-acrylonitrile rubber-styrene copolymer, MBS resin (methyl methacrylate-butadiene-styrene copolymer), AAS resin (acrylonitrile-acrylonitrile rubber-styrene copolymer) ), MS resin (methyl methacrylate-styrene copolymer) and the like.
The method for producing a thermoplastic resin composition of the present embodiment can be suitably used particularly as a method for producing a methacrylic resin and an MS resin.
As described above, the first thermoplastic resin produced by the polymerization step (a) and the second thermoplastic resin produced by the polymerization step (b) described below are different in type or composition. Yes.

<単量体>
重合工程(a)及び後述する重合工程(b)により製造される熱可塑性樹脂としては、メタクリル系樹脂が好適な樹脂として挙げられる。
当該メタクリル系樹脂は、重合用の単量体として、メタクリル酸エステル単量体と、当該メタクリル酸エステル単量体に共重合可能な他のビニル単量体を用い、これらを共重合することにより製造できる。
なお、本実施形態の熱可塑性樹脂の製造方法において用いる単量体としては、以下のメタクリル酸エステル単量体、当該メタクリルエステル単量体に共重合可能な他のビニル単量体に限定されるものではなく、上述した各種熱可塑性樹脂を構成する単量体単位を形成する各種単量体を用いることができる。
<Monomer>
As the thermoplastic resin produced by the polymerization step (a) and the polymerization step (b) described later, a methacrylic resin can be mentioned as a suitable resin.
The methacrylic resin is obtained by copolymerizing a methacrylic acid ester monomer and another vinyl monomer copolymerizable with the methacrylic acid ester monomer as monomers for polymerization. Can be manufactured.
In addition, as a monomer used in the manufacturing method of the thermoplastic resin of this embodiment, it is limited to the following methacrylic acid ester monomers and other vinyl monomers copolymerizable with the methacrylic ester monomers. Instead, various monomers that form monomer units constituting the various thermoplastic resins described above can be used.

[メタクリル酸エステル単量体]
メタクリル酸エステル単量体としては、下記一般式(1)で示される単量体が好ましい例として挙げられる。
[Methacrylic acid ester monomer]
As a methacrylic acid ester monomer, the monomer shown by following General formula (1) is mentioned as a preferable example.

前記一般式(1)中、R1はメチル基を表す。
また、R2は炭素数が1〜12の基を表し、炭素上に水酸基を有していてもよい。
メタクリル酸エステル単量体としては、以下に限定されるものではないが、例えば、メタクリル酸ブチル、メタクリル酸エチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸(2−エチルヘキシル)、メタクリル酸(t−ブチルシクロヘキシル)、メタクリル酸ベンジル、メタクリル酸(2,2,2−トリフルオロエチル)等が挙げられ、代表的なものはメタクリル酸メチルである。
上記メタクリル酸エステル単量体は、一種のみを単独で使用してもよく、二種以上を組み合わせて使用してもよい。
In the general formula (1), R 1 represents a methyl group.
R 2 represents a group having 1 to 12 carbon atoms, and may have a hydroxyl group on the carbon.
Examples of the methacrylic acid ester monomer include, but are not limited to, for example, butyl methacrylate, ethyl methacrylate, methyl methacrylate, propyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, methacrylic acid. Examples include acid (2-ethylhexyl), methacrylic acid (t-butylcyclohexyl), benzyl methacrylate, methacrylic acid (2,2,2-trifluoroethyl), and a typical one is methyl methacrylate.
The said methacrylic acid ester monomer may be used individually by 1 type, and may be used in combination of 2 or more type.

[メタクリル酸エステル単量体に共重合可能な、他のビニル単量体]
メタクリル系樹脂を構成する、上述したメタクリル酸エステル単量体に共重合可能な他のビニル単量体としては、下記一般式(2)で表されるアクリル酸エステル単量体が好ましい例として挙げられる。
[Other vinyl monomers copolymerizable with methacrylate monomers]
As another vinyl monomer that can be copolymerized with the above-mentioned methacrylic acid ester monomer constituting the methacrylic resin, an acrylate monomer represented by the following general formula (2) is given as a preferred example. It is done.

前記一般式(2)中、Rは水素原子であり、Rは炭素数が1〜18のアルキル基である。 In the general formula (2), R 3 is a hydrogen atom, and R 4 is an alkyl group having 1 to 18 carbon atoms.

前記一般式(2)で表されるアクリル酸エステル単量体としては、以下に限定されるものではないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸2−エチルヘキシル等が挙げられる。
特に、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルが好ましく、さらには、アクリル酸メチルが入手しやすく、より好ましい。
Examples of the acrylate monomer represented by the general formula (2) include, but are not limited to, methyl acrylate, ethyl acrylate, n-propyl acrylate, and n-butyl acrylate. , Sec-butyl acrylate, 2-ethylhexyl acrylate and the like.
In particular, methyl acrylate, ethyl acrylate, and n-butyl acrylate are preferable, and methyl acrylate is easily available and more preferable.

また、前記メタクリル酸エステル単量体に共重合可能な、前記式(2)のアクリル酸エステル単量体以外の他のビニル単量体としては、以下に限定されるものではないが、例えば、アクリル酸やメタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸、桂皮酸等の不飽和基含有二価カルボン酸及びそれらのアルキルエステル;スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、p−エチルスチレン、m−エチルスチレン、о−エチルスチレン、p−tert−ブチルスチレン、イソプロペニルベンセン(α−メチルスチレン)等のスチレン系単量体;1−ビニルナフタレン、2−ビニルナフタレン、1,1−ジフェニルエチレン、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;無水マレイン酸、無水イタコン酸等の不飽和カルボン酸無水物類;マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のN−置換マレイミド等;アクリルアミド、メタクリルアミド等のアミド類;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸又はメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ジ(メタ)アクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの;ジビニルベンゼン等の多官能モノマー等が挙げられる。
上記メタクリル酸エステル単量体に共重合可能なアクリル酸エステル単量体や、上記例示したアクリル酸エステル単量体以外のビニル系単量体は、一種のみを単独で使用してもよく、二種以上を組み合わせて使用してもよい。
In addition, the vinyl monomer other than the acrylic acid ester monomer of the formula (2) that can be copolymerized with the methacrylic acid ester monomer is not limited to the following, for example, Α, β-unsaturated acids such as acrylic acid and methacrylic acid, unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, cinnamic acid, and alkyl esters thereof; styrene, o-methylstyrene, m -Methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, о-ethyl Styrene monomers such as styrene, p-tert-butylstyrene, isopropenyl benzene (α-methylstyrene); 1-vinylnaphthalene, 2-vinyl Aromatic vinyl compounds such as naphthalene, 1,1-diphenylethylene, isopropenyltoluene, isopropenylethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, isopropenylpentylbenzene, isopropenylhexylbenzene, isopropenyloctylbenzene; acrylonitrile, Vinyl cyanide compounds such as methacrylonitrile; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; maleimide, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, etc. N-substituted maleimides and the like; Amides such as acrylamide and methacrylamide; Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tri Ethylene glycol such as ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, or the like, esterified with both terminal hydroxyl groups of acrylic acid or methacrylic acid; neopentyl glycol di (meth) acrylate, di ( One obtained by esterifying the hydroxyl group of two alcohols such as (meth) acrylate with acrylic acid or methacrylic acid; One obtained by esterifying a polyhydric alcohol derivative such as trimethylolpropane or pentaerythritol with acrylic acid or methacrylic acid; divinylbenzene, etc. And other polyfunctional monomers.
As for the acrylic acid ester monomer copolymerizable with the above methacrylic acid ester monomer and vinyl monomers other than the above exemplified acrylic acid ester monomer, only one kind may be used alone. You may use combining a seed | species or more.

熱可塑性樹脂を構成する、上述したメタクリル酸エステル単量体に共重合可能な他のビニル単量体単位の含有量は、耐熱性と流動性の観点より、メタクリル系樹脂中において、メタクリル酸エステル単量体20〜100質量%に対して、0〜80質量%であることが好ましい。より好ましくは0.1〜80質量%であり、さらにより好ましくは0.5〜70質量%であり、さらにより好ましくは1〜60質量%であり、よりさらに好ましくは2〜50質量%である。
熱可塑性樹脂においては、耐熱性、加工性等の特性を向上させる目的で、上記例示したビニル単量体以外のビニル系単量体を適宜添加して共重合させてもよい。
The content of the other vinyl monomer units that can be copolymerized with the above-mentioned methacrylic acid ester monomer constituting the thermoplastic resin is the methacrylic acid ester in the methacrylic resin from the viewpoint of heat resistance and fluidity. It is preferable that it is 0-80 mass% with respect to 20-100 mass% of monomers. More preferably, it is 0.1-80 mass%, More preferably, it is 0.5-70 mass%, More preferably, it is 1-60 mass%, More preferably, it is 2-50 mass% .
In the thermoplastic resin, for the purpose of improving characteristics such as heat resistance and processability, a vinyl monomer other than the vinyl monomers exemplified above may be added as appropriate and copolymerized.

<分子量調整剤>
熱可塑性樹脂を製造する際には、本発明の目的を損わない範囲で、分子量の制御を行うことができる。
分子量の制御方法としては、下記の分子量調整剤を用いる方法が挙げられる。
分子量調整剤としては、以下に限定されるものではないが、例えば、アルキルメルカプタン類、ジメチルアセトアミド、ジメチルホルムアミド、トリエチルアミン等の連鎖移動剤、ジチオカルバメート類、トリフェニルメチルアゾベンゼン、テトラフェニルエタン誘導体等のイニファータ等を用いることができる。また、これらの添加量を調整することにより、分子量を調整することも可能である。
前記分子量調整剤を用いる場合、取扱性や安定性の観点から、アルキルメルカプタン類が好適に用いられる。当該アルキルメルカプタン類としては、以下に限定されるものではないが、例えば、n−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−テトラデシルメルカプタン、n−オクタデシルメルカプタン、2−エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(チオグリコート)、ペンタエリスリトールテトラキス(チオグリコレート)等が挙げられる。
これらは、目的とする熱可塑性樹脂の分子量に応じて適宜添加することができるが、一般的には使用する全単量体の総量100質量部に対して0.001質量部〜3質量部の範囲で用いられる。
<Molecular weight regulator>
When producing a thermoplastic resin, the molecular weight can be controlled within a range that does not impair the object of the present invention.
Examples of the method for controlling the molecular weight include a method using the following molecular weight modifier.
Examples of molecular weight modifiers include, but are not limited to, chain transfer agents such as alkyl mercaptans, dimethylacetamide, dimethylformamide, and triethylamine, dithiocarbamates, triphenylmethylazobenzene, and tetraphenylethane derivatives. An iniferter or the like can be used. Moreover, it is also possible to adjust the molecular weight by adjusting these addition amounts.
When the molecular weight regulator is used, alkyl mercaptans are preferably used from the viewpoints of handleability and stability. The alkyl mercaptans include, but are not limited to, for example, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan, Examples include 2-ethylhexyl thioglycolate, ethylene glycol dithioglycolate, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), and the like.
These can be appropriately added according to the molecular weight of the desired thermoplastic resin, but generally 0.001 to 3 parts by mass with respect to 100 parts by mass of the total amount of all monomers used. Used in a range.

また、その他の分子量制御方法としては、重合方法を適宜変更する方法、後述する重合開始剤の量を調整する方法、重合温度を調整する方法等が挙げられる。
これらの分子量制御方法は、一種の方法のみを用いてもよく、二種以上の方法を併用してもよい。
Other molecular weight control methods include a method of appropriately changing the polymerization method, a method of adjusting the amount of the polymerization initiator described later, a method of adjusting the polymerization temperature, and the like.
As these molecular weight control methods, only one type of method may be used, or two or more types may be used in combination.

<重合開始剤>
本実施形態において熱可塑性樹脂を製造する際には、重合開始剤を用いる。
重合開始剤としては、ラジカル重合を行う場合は、以下に限定されるものではないが、例えば、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ステアリルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレート、ジラウロイルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン等の有機過酸化物や、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2,2'−アゾビス−4−メトキシ−2,4−アゾビスイソブチロニトリル、2,2'−アゾビス−2,4−ジメチルバレロニトリル、2,2'−アゾビス−2−メチルブチロニトリル等のアゾ系の一般的なラジカル重合開始剤を挙げることができる。
これらは一種のみを単独で用いてもよく、二種以上を併用してもよい。
これらのラジカル開始剤と適当な還元剤とを組み合わせてレドックス系開始剤として用いてもよい。
これらの重合開始剤は、使用する全単量体の総量100質量部に対して、0〜1質量部の範囲で用いるのが一般的であり、重合を行う温度と重合開始剤の半減期を考慮して適宜選択することができる。
塊状重合法やキャスト重合法、懸濁重合法を行う場合には、熱可塑性樹脂の着色を防止できるという観点から、重合開始剤としては、過酸化系開始剤のラウロイルパーオキサイド、デカノイルパーオキサイド、及びt−ブチルパーオキシ−2−エチルヘキサノエート等を好適に用いることができ、ラウロイルパーオキサイドが特に好適に使用される。
また、メタクリル系樹脂の溶液重合方法を一例として挙げると、90℃以上の高温下で溶液重合を行う場合には、重合開始剤としては、半減期が10時間になる温度(10時間半減期温度)が80℃以上で、かつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤等を用いることが好ましい。このような重合開始剤としては、例えば、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2−(カルバモイルアゾ)イソブチロニトリル、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン等が挙げられる。
<Polymerization initiator>
In producing the thermoplastic resin in the present embodiment, a polymerization initiator is used.
As a polymerization initiator, when performing radical polymerization, it is not limited to the following. For example, di-t-butyl peroxide, lauroyl peroxide, stearyl peroxide, benzoyl peroxide, t-butyl peroxide Neodecanate, t-butylperoxypivalate, dilauroyl peroxide, dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3, Organic peroxides such as 3,5-trimethylcyclohexane and 1,1-bis (t-butylperoxy) cyclohexane, azobisisobutyronitrile, azobisisovaleronitrile, 1,1-azobis (1-cyclohexane) Carbonitrile), 2,2′-azobis-4-methoxy-2,4-azobis Examples include azo-based general radical polymerization initiators such as isobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, and 2,2′-azobis-2-methylbutyronitrile. .
These may be used alone or in combination of two or more.
A combination of these radical initiators and an appropriate reducing agent may be used as a redox initiator.
These polymerization initiators are generally used in the range of 0 to 1 part by mass with respect to 100 parts by mass of the total amount of all monomers used, and the polymerization temperature and the half-life of the polymerization initiator are determined. It can be selected as appropriate in consideration.
In the case of performing bulk polymerization method, cast polymerization method or suspension polymerization method, from the viewpoint of preventing coloring of the thermoplastic resin, the polymerization initiators are lauroyl peroxide and decanoyl peroxide as peroxide initiators. And t-butylperoxy-2-ethylhexanoate can be preferably used, and lauroyl peroxide is particularly preferably used.
Further, as an example of a solution polymerization method of a methacrylic resin, when solution polymerization is performed at a high temperature of 90 ° C. or higher, a polymerization initiator has a half-life temperature of 10 hours (10-hour half-life temperature). It is preferable to use a peroxide, an azobis initiator or the like that is 80 ° C. or higher and is soluble in the organic solvent used. Examples of such a polymerization initiator include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di (benzoyl). Peroxy) hexane, 1,1-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) isobutyronitrile, 1,1-bis (t-butylperoxy) cyclohexane, and the like.

<溶媒>
熱可塑性樹脂を製造する際には、重合反応器内に溶媒を含んでいてもよい。
溶媒としては、上述した1種又は複数種の単量体と非反応性で、かつ重合単量体に対して溶解性があり、重合単量体より沸点が高い溶媒が好ましい。
メタクリル系樹脂を溶液重合法により製造する場合を一例として挙げると、蒸留塔ボトム及び蒸留塔内部で、メタクリル酸メチル単量体、メタクリル酸メチル単量体と共重合可能な単量体、さらには除去すべき不純物を溶解させ、かつ、メタクリル酸メチル単量体、メタクリル酸メチルと共重合可能な単量体より高い沸点を有している液体であることが好ましい。このような溶媒としては、以下に限定されるものではないが、例えば、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等の芳香族化合物;オクタン、デカン等の脂肪族化合物;デカリン等の脂環族化合物;酢酸ブチル、酢酸ペンチル等のエステル化合物;1,1,1,2−テトラクロロエタン、1,1,2,2− テトラクロロエタン等のハロゲン化合物等が挙げられる。
溶媒の沸点は、メタクリル酸メチル単量体及びメタクリル酸メチルと共重合可能な単量体の沸点より高いことが好ましく、より好ましくは10℃以上、さらに好ましくは20℃ 以上、さらにより好ましくは30℃以上沸点が高いものとする。
上述した各種溶媒の中でも、特にアルキルベンゼンが、重合に悪影響を及ぼすことがなく、かつ重合で生成する不純物の溶解性も高いため、好ましい。
また、アルキルベンゼンの中でも、トルエン、キシレン、エチルベンゼンが好ましく、特にキシレン、エチルベンゼンが、適度な沸点を有し、脱揮にも負荷が少なく、又、重合に悪影響を及ぼすこともなく、重合で生成する不純物の溶解性も高く、かつ工業的に安価に入手することができるため、より好ましい。
溶媒の量は、溶媒の沸点によっても異なるが、重合時の全混合物の質量(100質量%)に対して60質量%以下であることが好ましく、より好ましくは25質量%以下、さらに好ましくは15質量%以下、さらにより好ましくは10質量%以下である。下限は0.1質量%である。0.1質量%であっても溶媒の沸点が高ければ、蒸留塔ボトムは溶媒が主成分となり、ここでの重合によるトラブルは防止できる。
溶媒量が全混合物の質量(100質量%)に対して60質量%以下とすることにより、実用上良好な耐熱分解性が得られ、0.1質量%以上とすることにより、重合反応器の底部で重合反応が起こることを防止でき、安定した重合工程を実施できる。
溶媒は、一種のみを単独で用いてもよく、二種以上を併用してもよい。
<Solvent>
When manufacturing a thermoplastic resin, the polymerization reactor may contain a solvent.
As the solvent, a solvent that is non-reactive with the above-mentioned one or more monomers and is soluble in the polymerization monomer and has a higher boiling point than the polymerization monomer is preferable.
As an example of the case where a methacrylic resin is produced by a solution polymerization method, a methyl methacrylate monomer, a monomer copolymerizable with a methyl methacrylate monomer, It is preferably a liquid that dissolves the impurities to be removed and has a boiling point higher than that of the methyl methacrylate monomer and the monomer copolymerizable with methyl methacrylate. Examples of such solvents include, but are not limited to, aromatic compounds such as toluene, xylene, ethylbenzene, and diethylbenzene; aliphatic compounds such as octane and decane; alicyclic compounds such as decalin; acetic acid Examples include ester compounds such as butyl and pentyl acetate; halogen compounds such as 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane.
The boiling point of the solvent is preferably higher than the boiling points of the methyl methacrylate monomer and the monomer copolymerizable with methyl methacrylate, more preferably 10 ° C. or higher, further preferably 20 ° C. or higher, and even more preferably 30. The boiling point is higher than ℃.
Among the various solvents described above, alkylbenzene is particularly preferable because it does not adversely affect the polymerization and the solubility of impurities generated by the polymerization is high.
Of the alkylbenzenes, toluene, xylene, and ethylbenzene are preferable. Particularly, xylene and ethylbenzene have an appropriate boiling point, have a low load for devolatilization, and are produced by polymerization without adversely affecting the polymerization. The solubility of impurities is high, and it is more preferable because it can be obtained industrially at low cost.
The amount of the solvent varies depending on the boiling point of the solvent, but is preferably 60% by mass or less, more preferably 25% by mass or less, and still more preferably 15% with respect to the mass (100% by mass) of the entire mixture at the time of polymerization. It is 10 mass% or less, More preferably, it is 10 mass% or less. The lower limit is 0.1% by mass. Even if it is 0.1% by mass, if the boiling point of the solvent is high, the bottom of the distillation column becomes the main component of the solvent, and troubles due to polymerization here can be prevented.
When the amount of the solvent is 60% by mass or less with respect to the mass (100% by mass) of the entire mixture, practically good thermal decomposition resistance is obtained, and by setting it to 0.1% by mass or more, the polymerization reactor A polymerization reaction can be prevented from occurring at the bottom, and a stable polymerization process can be performed.
A solvent may be used individually by 1 type and may use 2 or more types together.

<重合方法>
重合工程(a)、及び後述する重合工程(b)は、特に制限されないが、例えば、塊状重合、溶液重合、懸濁重合法、及び乳化重合法からなる群より選ばれるいずれかの方法により重合反応を実施でき、好ましくは塊状重合、溶液重合及び懸濁重合法であり、より好ましくは溶液重合法、塊状重合法であり、さらに好ましくは溶液重合法である。
本実施形態の熱可塑性樹脂の製造方法においては、後述する切り替え工程(c)を介して、重合工程(a)及び重合工程(b)において連続重合を行うものであり、生産性の観点から、連続溶液重合又は連続塊状重合が好ましい。
重合温度は、重合方法に応じて適宜最適の温度を選択することができる。メタクリル系樹脂を溶液重合する場合を一例として挙げると、重合温度は、好ましくは50℃以上200℃以下であり、より好ましくは60℃以上180℃以下であり、さらに好ましくは70℃以上170℃以下である。
<Polymerization method>
The polymerization step (a) and the polymerization step (b) to be described later are not particularly limited. For example, polymerization is performed by any method selected from the group consisting of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. The reaction can be carried out, preferably bulk polymerization, solution polymerization and suspension polymerization, more preferably solution polymerization and bulk polymerization, and still more preferably solution polymerization.
In the method for producing a thermoplastic resin of the present embodiment, continuous polymerization is performed in the polymerization step (a) and the polymerization step (b) via a switching step (c) described later, and from the viewpoint of productivity, Continuous solution polymerization or continuous bulk polymerization is preferred.
As the polymerization temperature, an optimum temperature can be appropriately selected according to the polymerization method. Taking as an example the case of solution polymerization of a methacrylic resin, the polymerization temperature is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 60 ° C. or higher and 180 ° C. or lower, and further preferably 70 ° C. or higher and 170 ° C. or lower. It is.

(切り替え工程(c))
本実施形態においては、上記重合工程(a)の後、後述する重合工程(b)前に、重合反応器内へ供給する成分として、前記1種又は複数の単量体、及び前記分子量調整剤からなる群より選ばれる、少なくともいずれか一の原料の仕込み比率を変更する、切り替え工程(c)を実施する。
前記重合工程(a)中における全単量体100質量%、すなわち重合工程(a)で仕込む全単量体100質量%に対する、重合工程(a)で仕込む所定の単量体の仕込み比率をX質量%とし、前記重合工程(a)における全単量体100質量部に対する前記重合工程(a)において配合する分子量調整剤の仕込み比率をG質量部とし、前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する重合開始剤の仕込み比率をM質量部とし、前記重合工程(b)における全単量体100質量%、すなわち重合工程(b)で仕込む全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY質量%とし、前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する分子量調整剤の仕込み比率をH質量部とし、前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する重合開始剤の仕込み比率をN質量部としたときに、前記切り替え工程(c)は、以下の(条件1)を満足するものとする。
(条件1):
重合工程(b)における原料の仕込み比率よりも、重合工程(a)と重合工程(b)との原料の仕込み比率の差分に比して過剰に原料の仕込み比率を変更し、維持する工程(c−1)、重合工程(b)における仕込み比率に変更する工程(c−2)を順次行うものとし、切り替え工程(c)は、前記工程(c−1)における全単量体100質量%、すなわち工程(c−1)で仕込む全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ質量%としたときの、前記X質量%との差分|Z−X|及び前記工程(c−1)における全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI質量部としたときの、前記G質量部との差分|I−G|のうちの、少なくともいずれか一方が、それぞれ、前記Y質量%、前記X質量%との差分|Y−X|、前記H質量部、前記G質量部との差分|H−G|よりも大きくなるように、仕込み比率を変更し、維持する工程(c−1)と、重合反応器内へ供給する前記所定の単量体の仕込み比率、及び前記分子量調整剤の仕込み比率を、それぞれ、Y質量%、H質量部に変更する工程(c−2)と、を含む。
(Switching step (c))
In the present embodiment, after the polymerization step (a) and before the polymerization step (b) described later, as the components to be supplied into the polymerization reactor, the one or more monomers and the molecular weight regulator A switching step (c) is performed in which the charge ratio of at least one raw material selected from the group consisting of:
The charging ratio of the predetermined monomer charged in the polymerization step (a) with respect to 100% by mass of the total monomer in the polymerization step (a), that is, 100% by mass of the total monomer charged in the polymerization step (a) is X % By weight, the charging ratio of the molecular weight modifier blended in the polymerization step (a) to 100 parts by weight of the total monomers in the polymerization step (a) is G parts by mass, and the total single amount in the polymerization step (a). The amount of the polymerization initiator blended in the polymerization step (a) with respect to 100 parts by mass of the body is M parts by mass, and the total amount of monomers in the polymerization step (b) is 100% by mass, that is, charged in the polymerization step (b). The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomer is Y mass%, and the total monomer amount in the polymerization step (b) is 100 parts by mass. The polymerization initiator blended in the polymerization step (b) with respect to 100 parts by weight of the total monomers in the polymerization step (b), where the charging ratio of the molecular weight modifier blended in the polymerization step (b) is H parts by mass. When the charging ratio is N parts by mass, the switching step (c) satisfies the following (Condition 1).
(Condition 1):
The process of changing and maintaining the raw material charge ratio excessively compared to the difference in the raw material charge ratio between the polymerization process (a) and the polymerization process (b) rather than the raw material charge ratio in the polymerization step (b) ( c-1) and the step (c-2) of changing to the charging ratio in the polymerization step (b) are sequentially performed, and the switching step (c) is performed by 100% by mass of all monomers in the step (c-1). That is, the X mass when the charging ratio of the predetermined monomer blended in the step (c-1) is Z mass% with respect to 100 mass% of all monomers charged in the step (c-1). % When the charge ratio of the molecular weight modifier blended in the step (c-1) is 100 parts by mass with respect to 100 parts by mass of all monomers in the step (c-1). Of the difference | I−G | , At least one of them is larger than the difference | Y−X | from the Y mass% and the X mass%, and the difference | HG− from the H mass part and the G mass part, respectively. The step (c-1) of changing and maintaining the charging ratio, the charging ratio of the predetermined monomer to be fed into the polymerization reactor, and the charging ratio of the molecular weight modifier are respectively Y mass%, (C-2) which changes to H mass part.

<重合工程(b)における原料の仕込み比率よりも、重合工程(a)と重合工程(b)との原料の仕込み比率の差分に比して過剰に原料の仕込み比率を変更し、維持する工程(c−1)>
工程(c−1)においては、当該工程(c−1)における全単量体100質量%、すなわち工程(c−1)で仕込む全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ質量%としたときの、前記X質量%との差分|Z−X|、及び前記工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI質量部としたときの、前記G質量部との差分|I−G|のうちの、少なくともいずれか一方が、それぞれ、前記Y質量%、前記X質量%の差分|Y−X|、前記H質量部、G質量部の差分|H−G|よりも大きくなるように、仕込み比率を変更し、維持する。
<The process of changing and maintaining the raw material charge ratio excessively compared to the difference in the raw material charge ratios of the polymerization process (a) and the polymerization process (b) rather than the raw material charge ratio in the polymerization step (b) (C-1)>
In the step (c-1), the step (c-1) with respect to 100% by mass of all monomers in the step (c-1), that is, 100% by mass of all monomers charged in the step (c-1). The difference | Z-X | from the X mass% when the charging ratio of the predetermined monomer to be blended in Z is Z mass%, and all the monomers 100 blended in the step (c-1) At least one of the differences | IG | from the G parts by mass when the charge ratio of the molecular weight modifier blended in the step (c-1) to parts by mass is I parts by mass. The charging ratio is changed and maintained so as to be larger than the difference | Y−X | between the Y mass% and the X mass%, and the difference | H−G | between the H mass part and the G mass part, respectively. .

先ず、単量体の仕込み比率が、重合工程(a)と重合工程(b)とで変更される場合の、切り替え工程(c)について以下に記載する。
<単量体を過剰量へ変更し維持する工程(c−1)>
連続重合による熱可塑性樹脂の製造方法において、全単量体100質量%に対して、所定の単量体としての任意の単量体AをX質量%含む第1の熱可塑性樹脂を重合する重合工程(a)を、前記所定の単量体としての前記単量体AをY(≠X)質量%含む第2の熱可塑性樹脂を重合する重合工程(b)へと切り替える、切り替え工程(c)を実施するものとする。
前記切り替え工程(c)は、工程(c−1)及び工程(c−2)からなるものとし、前記工程(c−1)においては、当該工程(c−1)における全単量体100質量%、すなわち工程(c−1)で配合する全単量体100質量%に対する、工程(c−1)で配合する前記任意の単量体Aの仕込み比率Z質量%の、前記X質量%との差分|Z−X|が、前記重合工程(a)と前記重合工程(b)における前記任意の単量体Aの仕込み比率であるX質量%とY質量%との差分|Y−X|よりも大きくなるように、仕込み比率を変更し維持する。
このとき、前記X(質量%)、前記Y(質量%)、前記Z(質量%)は、下記(i)式又は(ii)式に従うことが好ましい。
X<Yの場合、 Y<Z、かつ0.1≦Z−Y≦20 ・・・(i)
X>Yの場合、 Y>Z かつ0.1≦Y−Z≦20 ・・・(ii)
First, it describes below about the switching process (c) in case the preparation ratio of a monomer is changed by the polymerization process (a) and the polymerization process (b).
<Step (c-1) of changing and maintaining the monomer to an excessive amount>
In the method for producing a thermoplastic resin by continuous polymerization, polymerization for polymerizing a first thermoplastic resin containing X mass% of an arbitrary monomer A as a predetermined monomer with respect to 100 mass% of all monomers. A switching step (c) that switches the step (a) to a polymerization step (b) for polymerizing a second thermoplastic resin containing Y (≠ X) mass% of the monomer A as the predetermined monomer. ) Shall be implemented.
The switching step (c) includes a step (c-1) and a step (c-2). In the step (c-1), 100 masses of all monomers in the step (c-1). %, That is, the X mass% of the charging ratio Z mass% of the arbitrary monomer A blended in the step (c-1) with respect to 100 mass% of all monomers blended in the step (c-1), and Difference | Z−X | is the difference | Y−X | between the X mass% and the Y mass%, which is the charging ratio of the arbitrary monomer A in the polymerization step (a) and the polymerization step (b). The charging ratio is changed and maintained so that it becomes larger.
At this time, it is preferable that the X (mass%), the Y (mass%), and the Z (mass%) comply with the following formula (i) or (ii).
When X <Y, Y <Z and 0.1 ≦ Z−Y ≦ 20 (i)
When X> Y, Y> Z and 0.1 ≦ Y−Z ≦ 20 (ii)

さらに、切り替え工程(c)においては、工程(c−1)の仕込み比率を変更し維持する時間T1(分)が、切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、0.1≦T1/θ≦5.0の範囲であることが好ましい。   Furthermore, in the switching step (c), the time T1 (minute) for changing and maintaining the charge ratio in the step (c-1) is the raw material residence time θ (minute) in the polymerization reactor in the switching step (c). On the other hand, the range of 0.1 ≦ T1 / θ ≦ 5.0 is preferable.

なお、|Y−Z|(Y−Zの絶対値)は、原料変更の効率及び運転安定性の観点から、0.1質量%以上20質量%以下であることが好ましく、15質量%以下がより好ましく、13質量%以下がさらに好ましく、10質量%以下がさらにより好ましい。
ここでの運転安定性とは、重合反応器内の均一混合性や運転条件、例えば、反応温度の安定性、さらには樹脂の品質安定性のことを意味する。
In addition, | YZ | (absolute value of YZ) is preferably 0.1% by mass or more and 20% by mass or less, and preferably 15% by mass or less from the viewpoint of the efficiency of raw material change and operation stability. More preferably, it is more preferably 13% by mass or less, and still more preferably 10% by mass or less.
Here, the operational stability means the homogeneity in the polymerization reactor and the operational conditions, for example, the stability of the reaction temperature, and the quality stability of the resin.

また、任意の単量体Aの全単量体100質量%に対する仕込み比率(X質量%)を、前記工程(c−1)で、Z(質量%)に過剰に変更し維持する時間T1(分)は、上述したように、前記切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、0.1≦T1/θ≦5.0の範囲であることが好ましい。T1/θが0.1以上であることより、効率よく組成変更が可能となり、T1/θが5.0以下であることより、生産効率が維持される傾向にある。
T1/θは、より好ましくは0.3以上4.0以下であり、さらに好ましくは0.5以上3.0以下である。
In addition, in the step (c-1), the charging ratio (X% by mass) of the arbitrary monomer A with respect to 100% by mass of all monomers is excessively changed to Z (% by mass) for a time T1 ( Min) is preferably in the range of 0.1 ≦ T1 / θ ≦ 5.0 with respect to the raw material residence time θ (min) in the polymerization reactor in the switching step (c), as described above. . When T1 / θ is 0.1 or more, the composition can be changed efficiently, and when T1 / θ is 5.0 or less, production efficiency tends to be maintained.
T1 / θ is more preferably 0.3 or more and 4.0 or less, and further preferably 0.5 or more and 3.0 or less.

次に、分子量調整剤の仕込み比率が、重合工程(a)と重合工程(b)とで変更される場合における切り替え工程(c)について以下に記載する。
<分子量調整剤を過剰量へ変更し維持する工程(c−1)>
重合工程(a)においては、所定の分子量調整剤としての任意の分子量調整剤Fを、重合工程(a)で重合反応器内へ供給する全単量体100質量部に対してG質量部仕込むものとし、前記重合工程(b)においては、前記分子量調整剤Fを、当該重合工程(b)における全単量体100質量部、すなわち重合工程(b)で供給する全単量体100質量部に対してH質量部仕込むものとする。
前記切り替え工程(c)は、工程(c−1)及び後述する工程(c−2)からなるものとし、前記工程(c−1)においては、当該工程(c−1)における全単量体100質量部に対する前記任意の分子量調節剤Fの仕込み比率I質量部の、前記G質量部との差分|I−G|が、前記重合工程(a)と前記重合工程(b)における前記任意の分子量調整剤Fの仕込み比率である前記G質量部と前記H質量部との差分|H−G|よりも大きくなるように仕込み比率を変更し維持する。
このとき、前記G質量部、前記H質量部、前記I質量部は、(iii)式又は(iv)式に従うことが好ましい。
G<Hの場合、H<Iかつ0.01≦I−H≦2.0 ・・・(iii)
G>Hの場合、H>Iかつ0.01≦H−I≦2.0 ・・・(iv)
(G、H、Iは、それぞれ、重合工程(a)、重合工程(b)、工程(c−1)における、全単量体100質量部に対する、分子量調整剤の仕込み比率(質量部)を示す。)
Next, it describes below about the switching process (c) in case the preparation ratio of a molecular weight regulator is changed by the polymerization process (a) and the polymerization process (b).
<Step (c-1) of changing and maintaining the molecular weight modifier to an excess amount>
In the polymerization step (a), an arbitrary molecular weight regulator F as a predetermined molecular weight regulator is charged in G parts by mass with respect to 100 parts by mass of all monomers supplied into the polymerization reactor in the polymerization step (a). In the polymerization step (b), the molecular weight regulator F is added to 100 parts by mass of all monomers in the polymerization step (b), that is, 100 parts by mass of all monomers supplied in the polymerization step (b). On the other hand, the H mass part is charged.
The switching step (c) includes a step (c-1) and a step (c-2) to be described later. In the step (c-1), all monomers in the step (c-1) The difference | I−G | of the charging ratio I parts by mass of the arbitrary molecular weight regulator F relative to 100 parts by mass with the G parts by mass is the arbitrary in the polymerization step (a) and the polymerization step (b). The charge ratio is changed and maintained so as to be larger than the difference | HG | between the G parts by mass and the H parts by mass, which is the charge ratio of the molecular weight modifier F.
At this time, it is preferable that the G mass part, the H mass part, and the I mass part follow the formula (iii) or the formula (iv).
When G <H, H <I and 0.01 ≦ I−H ≦ 2.0 (iii)
When G> H, H> I and 0.01 ≦ HI ≦ 2.0 (iv)
(G, H, and I are the charge ratio (parts by mass) of the molecular weight modifier to 100 parts by mass of all monomers in the polymerization step (a), polymerization step (b), and step (c-1), respectively. Show.)

さらに、切り替え工程(c)の工程(c−1)において配合する分子量調整剤の仕込み比率を変更し維持する時間T2(分)が、切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、0.1≦T2/θ≦5.0の範囲であることが好ましい。   Further, the time T2 (minute) for changing and maintaining the charging ratio of the molecular weight modifier blended in the step (c-1) of the switching step (c) is the raw material residence time θ in the polymerization reactor in the switching step (c). It is preferable that 0.1 ≦ T2 / θ ≦ 5.0 with respect to (minutes).

また、|H−I|(H−Iの絶対値)は、原料の切替え効率及び運転安定性の点より、0.01質量部以上2.0質量部以下であることが好ましく、1.0質量部以下がより好ましく、0.7質量部以下がさらに好ましく、0.5質量部以下がさらにより好ましい。   In addition, | HI | (absolute value of HI) is preferably 0.01 parts by mass or more and 2.0 parts by mass or less from the viewpoint of switching efficiency of raw materials and operational stability. Less than or equal to mass parts is more preferred, less than or equal to 0.7 parts by mass and even more preferably less than or equal to 0.5 parts by mass.

さらに、任意の分子量調整剤Fを過剰量に変更し維持する時間T2(分)は、上述したように、切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、0.1≦T2/θ≦5.0の範囲であることが好ましい。T2/θが0.1以上であることより、効率よく分子量調整剤Fの変更が可能となり、T1/θが5.0以下であることより、生産効率が維持される傾向にある。
T2/θは、より好ましくは、0.3以上4.0以下であり、さらに好ましくは、0.5以上3.0以下である。
Furthermore, as described above, the time T2 (minute) for changing and maintaining the optional molecular weight modifier F to an excessive amount is as described above with respect to the raw material residence time θ (minute) in the polymerization reactor in the switching step (c). It is preferable that the range is 0.1 ≦ T2 / θ ≦ 5.0. When T2 / θ is 0.1 or more, the molecular weight regulator F can be changed efficiently, and when T1 / θ is 5.0 or less, production efficiency tends to be maintained.
T2 / θ is more preferably 0.3 or more and 4.0 or less, and further preferably 0.5 or more and 3.0 or less.

<重合工程(b)における仕込み比率に変更する工程(c−2)>
前記工程(c−1)の維持時間(T1、T2)経過後、重合反応器内へ供給する前記単量体及び/又は前記分子量調整剤の仕込み比率を、それぞれ、Y質量%、H質量部に変更する操作を行う。
<Step (c-2) of changing to charge ratio in polymerization step (b)>
After the maintenance time (T1, T2) of the step (c-1) has elapsed, the charging ratios of the monomer and / or the molecular weight regulator supplied into the polymerization reactor are respectively Y mass% and H mass part. Perform the operation to change to.

(切り替え工程(c)における重合開始剤の仕込み比率の変更)
本実施形態においては、上述した重合工程(a)において、任意の重合開始剤Pを、重合工程(a)における全単量体、すなわち重合工程(a)で仕込む全単量体100質量部に対してM質量部仕込むものとし、前記重合工程(b)において、前記任意の重合開始剤Pを、重合工程(b)における全単量体100質量部、すなわち重合工程(b)で仕込む全単量体100質量部に対してN質量部仕込むものとしたとき、前記切り替え工程(c)における工程(c−1)においては、当該工程(c−1)における全単量体100質量部に対する前記重合開始剤の仕込み比率O(質量部)と、前記M質量部との差分|O−M|が、前記重合工程(a)と前記重合工程(b)の前記重合開始剤の仕込み比率の差分|N−M|以下となるように仕込み比率を変更することが好ましい。
重合開始剤は、前記M質量部から前記N質量部へ一気に変更するのではなく、逐次的に変更することが好ましい。
上記のように、重合開始剤の仕込み比率の切り替えを行うことにより、重合反応の不安定化を抑制でき、配合比率の変更に要する時間がかえって短縮できる。
(Change of charge ratio of polymerization initiator in switching step (c))
In the present embodiment, in the polymerization step (a) described above, an arbitrary polymerization initiator P is added to all the monomers in the polymerization step (a), that is, 100 parts by mass of all monomers charged in the polymerization step (a). In the polymerization step (b), 100 parts by mass of the total monomers in the polymerization step (b), that is, the total amount of monomers charged in the polymerization step (b) is used. In the step (c-1) in the switching step (c), the polymerization with respect to 100 parts by mass of all monomers in the step (c-1) is performed when N parts by mass are charged with respect to 100 parts by mass of the body. The difference | O−M | between the charge ratio O (parts by mass) of the initiator and the M parts by mass is the difference between the charge ratios of the polymerization initiators in the polymerization step (a) and the polymerization step (b) | N-M | It is preferable to change the rate.
The polymerization initiator is preferably changed sequentially rather than changing from the M parts by mass to the N parts by mass.
As described above, by switching the charging ratio of the polymerization initiator, destabilization of the polymerization reaction can be suppressed, and the time required for changing the blending ratio can be shortened.

本実施形態の熱可塑性樹脂の製造方法においては、上記切り替え工程(c)において、上述の(条件1)のように実施することにより、重合反応器内の材料組成を効率よく重合工程(b)の配合組成に切り替えることができる。
なお、重合反応器内の材料の組成の変更に要した時間、すなわち重合工程(a)における材料の組成から、重合工程(b)における材料の組成へと変更されるために要した時間は、熱可塑性樹脂の生産性の観点より、前記切り替え工程(c)における原料滞留時間θ(分)との関係において、2.5θ分以下であることが好ましく、2.3θ分以下であることがより好ましく、2.0θ以下であることがさらに好ましい。
ここでの組成変更に要した時間とは、重合反応器から払い出した、第1の熱可塑性樹脂を重合するための材料組成が、第2の熱可塑性樹脂を重合するための材料組成に変更された時間を言い、部分的な切替わりではなく、均一かつ安定的に樹脂組成がなされた時間を言う。
上述したように、本実施形態の熱可塑性樹脂の製造方法においては、重合反応器内の材料組成を効率よく切り替えられるため、目的とする組成比率を有する高品質の熱可塑性樹脂の生産効率を向上させることができ、目的とする組成比率を有さない低品質の熱可塑性樹脂の発生を低減化することができる。
In the manufacturing method of the thermoplastic resin of this embodiment, in the said switching process (c), it implements like above-mentioned (condition 1), The polymerization composition (b) efficiently converts the material composition in a polymerization reactor. It is possible to switch to the blend composition.
The time required for changing the composition of the material in the polymerization reactor, that is, the time required for changing from the composition of the material in the polymerization step (a) to the composition of the material in the polymerization step (b), From the viewpoint of the productivity of the thermoplastic resin, in relation to the raw material residence time θ (minute) in the switching step (c), it is preferably 2.5θ minutes or less, more preferably 2.3θ minutes or less. Preferably, it is 2.0θ or less.
The time required for the composition change here is that the material composition for polymerizing the first thermoplastic resin discharged from the polymerization reactor is changed to the material composition for polymerizing the second thermoplastic resin. The time when the resin composition is made uniformly and stably, not the partial switching.
As described above, in the method for producing a thermoplastic resin of the present embodiment, the material composition in the polymerization reactor can be switched efficiently, so that the production efficiency of a high-quality thermoplastic resin having a target composition ratio is improved. The generation of low-quality thermoplastic resin that does not have the desired composition ratio can be reduced.

(重合工程(b))
上述した切り替え工程(c)後、1種又は複数種の単量体、分子量調整剤、重合開始剤、必要に応じて溶媒を用い、重合反応器内で、所定の組成の第2の熱可塑性樹脂の重合を行う。
重合反応器、単量体、分子量調整剤、重合開始剤、溶媒については、上述した重合工程(a)と同様のものを用いることができ、重合方法についても、重合工程(a)と同様の方法を適用できる。
(Polymerization step (b))
After the switching step (c), the second thermoplastic resin having a predetermined composition is used in the polymerization reactor using one or more monomers, a molecular weight regulator, a polymerization initiator, and a solvent as necessary. Polymerize the resin.
About a polymerization reactor, a monomer, a molecular weight regulator, a polymerization initiator, and a solvent, the thing similar to the polymerization process (a) mentioned above can be used, and also about the polymerization method, it is the same as the polymerization process (a). The method can be applied.

(添加剤)
本実施形態の熱可塑性樹脂の製造時には、樹脂の剛性や寸法安定性等の他の特性を付与するため、本発明の効果を損なわない範囲で各種の添加剤を添加することができる。
添加剤としては、以下に限定されるものではないが、例えば、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系等の可塑剤;高級脂肪酸、高級脂肪酸エステル、高級脂肪酸のモノ、ジ、又はトリグリセリド系等の離型剤;ポリエーテル系、ポリエーテルエステル系、ポリエーテルエステルアミド系、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩等の帯電防止剤;酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤等の安定剤;難燃剤、難燃助剤、硬化剤、硬化促進剤、導電性付与剤、応力緩和剤、結晶化促進剤、加水分解抑制剤、潤滑剤、衝撃付与剤、摺動性改良剤、相溶化剤、核剤、強化剤、補強剤、流動調整剤、染料、増感材、着色用顔料、ゴム質重合体、増粘剤、沈降防止剤、タレ防止剤、充填剤、消泡剤、カップリング剤、防錆剤、抗菌・防黴剤、防汚剤、導電性高分子等が挙げられる。
(Additive)
During the production of the thermoplastic resin of the present embodiment, various additives such as the rigidity and dimensional stability of the resin can be imparted, and various additives can be added within a range that does not impair the effects of the present invention.
Examples of the additive include, but are not limited to, plasticizers such as phthalate ester, fatty acid ester, trimellitic acid ester, phosphate ester, and polyester; higher fatty acid, higher fatty acid ester , Higher fatty acid mono-, di-, or triglyceride-based mold release agents; polyether-based, polyether ester-based, polyether ester amide-based, alkyl sulfonates, alkyl benzene sulfonates, etc .; anti-oxidants , Stabilizers such as UV absorbers, heat stabilizers, light stabilizers; flame retardants, flame retardant aids, curing agents, curing accelerators, conductivity imparting agents, stress relaxation agents, crystallization accelerators, hydrolysis inhibitors , Lubricants, impact imparting agents, slidability improvers, compatibilizers, nucleating agents, reinforcing agents, reinforcing agents, flow regulators, dyes, sensitizers, coloring pigments, rubbery polymers, thickeners, Anti descending agents, anti-sagging agents, fillers, antifoaming agents, coupling agents, rust inhibitors, antibacterial and antifungal, antifouling agent, conductive polymers.

前記熱安定剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール系酸化防止剤、リン系加工安定剤等の酸化防止剤等が挙げられ、ヒンダードフェノール系酸化防止剤が好ましい。
具体的には、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオンアミド、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、4,6−ビス(ドデシルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリン)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミン)フェノール等が挙げられ、熱安定性効果の観点から、ペンタエリスリトールテラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。
Examples of the heat stabilizer include, but are not limited to, antioxidants such as hindered phenol antioxidants and phosphorus processing stabilizers, and hindered phenol antioxidants. preferable.
Specifically, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl) -4-hydroxyphenylpropionamide, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6- Triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, 4,6-bis (dodecylthiomethyl) -o-cresol, ethylenebis (oxy) Ethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate, hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3 , 5-Tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5- Tris [(4-tert-butyl-3-hydroxy-2,6-xylin) methyl] -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di -Tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamine) phenol and the like, and pentaerythritol terakis [ - (3,5-di -tert- butyl-4-hydroxyphenyl) propionate are preferred.

前記紫外線吸収剤としては、以下に限定されるものではないが、例えば、ベンゾトリアゾール系化合物、ベンゾトリアジン系化合物、ベンゾエート系化合物、ベンゾフェノン系化合物、オキシベンゾフェノン系化合物、フェノール系化合物、オキサゾール系化合物、マロン酸エステル系化合物、シアノアクリレート系化合物、ラクトン系化合物、サリチル酸エステル系化合物、ベンズオキサジノン系化合物等が挙げられ、紫外線吸収性能の観点から、好ましくはベンゾトリアゾール系化合物、ベンゾトリアジン系化合物である。   Examples of the ultraviolet absorber include, but are not limited to, for example, benzotriazole compounds, benzotriazine compounds, benzoate compounds, benzophenone compounds, oxybenzophenone compounds, phenol compounds, oxazole compounds, Examples include malonic acid ester compounds, cyanoacrylate compounds, lactone compounds, salicylic acid ester compounds, and benzoxazinone compounds. From the viewpoint of ultraviolet absorption performance, benzotriazole compounds and benzotriazine compounds are preferred. .

上述した添加剤は、単独で用いてもよく、一種単独で用いても、二種以上を併用して用いてもよい。
添加方法としては、従来公知の方法を用いればよく、特に限定されるものではない。例えば、単量体及び/又は溶媒に溶解させた状態で重合反応器に添加する方法、添加剤を直接反応器に添加する方法、重合反応器から排出される樹脂に添加する方法等が挙げられる。
The additives described above may be used alone, or may be used alone or in combination of two or more.
As the addition method, a conventionally known method may be used, and it is not particularly limited. For example, a method of adding to a polymerization reactor in a state dissolved in a monomer and / or a solvent, a method of adding an additive directly to the reactor, a method of adding to a resin discharged from the polymerization reactor, etc. .

以下、本発明について、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples and comparative examples, but the present invention is not limited thereto.

〔評価方法〕
後述する実施例及び比較例により製造した熱可塑性樹脂の評価を下記により行った。
(1 熱可塑性樹脂の組成分析)
1H−NMR測定より、(i)メタクリル酸エステル単量体由来の繰り返し単位、(ii)メタクリル酸エステル単量体に共重合可能な少なくとも1種の他のビニル単量体由来の繰り返し単位を同定し、その存在量を算出した。
測定機器:ブルーカー株式会社製 DPX−400
測定溶媒:CDCl、又はd6−DMSO
測定温度:40℃
〔Evaluation method〕
Evaluation of the thermoplastic resin manufactured by the Example and comparative example which are mentioned later was performed by the following.
(1 Composition analysis of thermoplastic resin)
From 1H-NMR measurement, (i) a repeating unit derived from a methacrylic ester monomer and (ii) a repeating unit derived from at least one other vinyl monomer copolymerizable with the methacrylic ester monomer are identified. The abundance was calculated.
Measuring instrument: DPX-400 manufactured by Blue Car Co., Ltd.
Measuring solvent: CDCl 3 or d6-DMSO
Measurement temperature: 40 ° C

(2 熱可塑性樹脂の重量平均分子量(Mw)の測定)
熱可塑性樹脂の重量平均分子量(Mw)を下記の装置及び条件で測定した。
・測定装置:東ソー株式会社製ゲルパーミエーションクロマトグラフィー(HLC−8320GPC)
・カラム:TSKguardcolumn SuperH−H 1本、TSKgel SuperHM−M 2本、TSKgel SuperH2500 1本を順に直列接続して使用した。
本カラムでは、高分子量が早く溶出し、低分子量は溶出する時間が遅い。
・検出器 :RI(示差屈折)検出器
(検出感度:3.0mV/min)
・カラム温度:40℃
・サンプル :0.02gのメタクリル系樹脂のテトラヒドロフラン10mL溶液
・注入量 :10μL
・展開溶媒 :テトラヒドロフラン、流速;0.6mL/min
内部標準として、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を、0.1g/L添加した。
・検量線用標準サンプルとして、単分散の重量ピーク分子量が既知で分子量が異なる以下の10種のポリメタクリル酸メチル(Polymethyl methacrylate Calibration Kit PL2020−0101 M−M−10)を用いた。
ピーク分子量(Mp)
標準試料1 1,916,000
標準試料2 625,500
標準試料3 298,900
標準試料4 138,600
標準試料5 60,150
標準試料6 27,600
標準試料7 10,290
標準試料8 5,000
標準試料9 2,810
標準試料10 850
上記の条件で、熱可塑性樹脂の溶出時間に対する、RI検出強度を測定した。
GPC溶出曲線におけるエリア面積と、7次近似式の検量線を基に熱可塑性樹脂の重量平均分子量(Mw)を求めた。
(2 Measurement of weight average molecular weight (Mw) of thermoplastic resin)
The weight average molecular weight (Mw) of the thermoplastic resin was measured with the following apparatus and conditions.
-Measuring apparatus: Tosoh Corporation gel permeation chromatography (HLC-8320GPC)
Column: One TSKguardcolumn SuperH-H, two TSKgel SuperHM-M, and one TSKgel SuperH2500 were connected in series in this order.
In this column, the high molecular weight elutes early and the low molecular weight elutes slowly.
Detector: RI (differential refraction) detector (detection sensitivity: 3.0 mV / min)
-Column temperature: 40 ° C
-Sample: 10 mL tetrahydrofuran solution of 0.02 g methacrylic resin-Injection amount: 10 μL
Developing solvent: tetrahydrofuran, flow rate; 0.6 mL / min
As an internal standard, 0.1 g / L of 2,6-di-t-butyl-4-methylphenol (BHT) was added.
The following 10 polymethyl methacrylate calibration kits (PL2020-0101 M-10) having different molecular weights and known monodisperse weight peak molecular weights were used as standard samples for calibration curves.
Peak molecular weight (Mp)
Standard sample 1 1,916,000
Standard sample 2 625,500
Standard sample 3 298,900
Standard sample 4 138,600
Standard sample 5 60,150
Standard sample 6 27,600
Standard sample 7 10,290
Standard sample 85,000
Standard sample 9 2,810
Standard sample 10 850
Under the above conditions, the RI detection intensity with respect to the elution time of the thermoplastic resin was measured.
The weight average molecular weight (Mw) of the thermoplastic resin was determined based on the area area in the GPC elution curve and a calibration curve of a seventh-order approximation formula.

〔実施例1〕
メタクリル酸メチル98質量%、所定の単量体:アクリル酸メチル(X質量%=)2.0質量%の、単量体10kg溶液100質量部に対し、溶媒としてエチルベンゼン10質量部、重合開始剤として1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.010質量部、連鎖移動剤であるオクチルメルカプタン0.20質量部を追加し、ラボ完全混合型重合反応器(リフラックスコンデンサー付き、SUS316製)で重合温度140℃、原料滞留時間80分で重合し、重合転化率48%まで連続的に重合させた(重合工程(a))。
次に、切り替え工程(c)を実施した。
切り替え工程(c)においては、先ず、メタクリル酸メチル95質量%、所定の単量体:アクリル酸メチル(Z質量%=)5.0質量%とし、溶媒量、重合開始剤量、連鎖移動剤量は上述と同条件として重合を実施した(工程(c−1))。
当該切り替え工程(c)の工程(c−1)においては、原料の仕込み比率を変更し維持する時間(T1)=80分、重合温度を140℃とした。
なお、切り替え工程(c)においても、重合反応器に原料滞留時間(θ)は、80分とした。
原料の仕込み比率を変更し維持する時間(T1)=80分後は、目的とする組成比(メタクリル酸メチル96質量%、所定の単量体:アクリル酸メチル:Y質量%=4.0質量%)での仕込み比率に変え(工程(c−2))、連続的に重合を行った(重合工程(b))。
前記切り替え工程(c)の開始から、2.0θ分経過した後の重合反応器からの払い出しポリマーの組成比を1H−NMRで測定したところ、目的とするメタクリル酸メチル/アクリル酸メチル=96質量%/4.0質量%の比率の熱可塑性樹脂が得られていることが分かった。また、重量平均分子量が10.2万であった。
[Example 1]
10 parts by mass of ethylbenzene as a solvent with respect to 100 parts by mass of a 10 kg monomer solution of 98% by mass of methyl methacrylate and a predetermined monomer: 2.0% by mass of methyl acrylate (X mass% =), a polymerization initiator 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane (0.010 parts by mass) and octyl mercaptan (0.20 parts by mass) as a chain transfer agent were added, and a laboratory complete mixed polymerization reaction Polymerization was conducted at a polymerization temperature of 140 ° C. and a raw material residence time of 80 minutes in a vessel (with a reflux condenser, manufactured by SUS316), and the polymerization was continuously polymerized to a polymerization conversion rate of 48% (polymerization step (a)).
Next, the switching step (c) was performed.
In the switching step (c), first, 95% by mass of methyl methacrylate and a predetermined monomer: methyl acrylate (Z% by mass =) of 5.0% by mass, solvent amount, polymerization initiator amount, chain transfer agent Polymerization was carried out under the same conditions as described above (step (c-1)).
In the step (c-1) of the switching step (c), the time (T1) for changing and maintaining the raw material charge ratio was 80 minutes, and the polymerization temperature was 140 ° C.
In the switching step (c), the raw material residence time (θ) in the polymerization reactor was 80 minutes.
After the raw material charge ratio is changed and maintained (T1) = 80 minutes, the desired composition ratio (methyl methacrylate 96 mass%, predetermined monomer: methyl acrylate: Y mass% = 4.0 mass) %) (Step (c-2)) and continuously polymerized (polymerization step (b)).
When the composition ratio of the polymer discharged from the polymerization reactor after lapse of 2.0θ minutes from the start of the switching step (c) was measured by 1H-NMR, the target methyl methacrylate / methyl acrylate = 96 mass It was found that a thermoplastic resin having a ratio of% / 4.0% by mass was obtained. Moreover, the weight average molecular weight was 102,000.

〔実施例2〜7〕、〔比較例1〜3〕
実施例1と同様の重合反応器を用いて、重合温度を140℃とし、下記表1に記載の原料滞留時間(θ)及び各原料を過剰量に変更し維持する時間(T1、T2)に従い、熱可塑性樹脂を製造した。
単量体としては、メタクリル酸メチル、アクリル酸メチル、スチレンを用い、重合開始剤、分子量調整剤及び溶媒は実施例1と同様のものを使用した。
なお、表1中、重合工程(a)における全単量体100質量%に対する、所定の単量体の仕込み比率をX(質量%)とし、重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する分子量調整剤の仕込み比率をG(質量部)とした。
重合工程(b)における全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY(質量%)とし、重合工程(b)における全単量体100質量部に対する分子量調整剤の仕込み比率をH(質量部)とした。
切り替え工程(c)の、工程(c−1)における全単量体100質量%に対する、所定の単量体の仕込み比率をZ(質量%)とし、工程(c−1)における全単量体100質量部に対する、前記工程(c−1)で配合する分子量調整剤の仕込み比率をI(質量部)とした。
比較例1においては、工程(c−1)において単量体量を|Y−Z|>0の条件で変更せず、また維持する時間を(T1)=0とした。すなわち切り替え工程(c)を実施しなかった。
比較例2においては、工程(c−1)において分子量調整剤量を過剰量添加せず、また維持する時間(T2)=0とした。すなわち切り替え工程(c)を実施しなかった。
比較例3においては、工程(c−1)において単量体量を|Y−Z|>0の条件で変更せず、また維持する時間を(T1)=0とした。すなわち切り替え工程(c)を実施しなかった。
重合反応器からの払い出しポリマーを随時、1H−NMR及びGPCを用いて分析した。
また、ポリマーの最終目的組成の変更に要した時間を測定した。
[Examples 2 to 7], [Comparative Examples 1 to 3]
Using the same polymerization reactor as in Example 1, the polymerization temperature was set to 140 ° C., and the raw material residence time (θ) described in Table 1 below and the time for changing and maintaining each raw material in excess (T1, T2) were used. A thermoplastic resin was produced.
As the monomer, methyl methacrylate, methyl acrylate and styrene were used, and the same polymerization initiator, molecular weight modifier and solvent as those in Example 1 were used.
In Table 1, the charging ratio of a predetermined monomer to 100% by mass of all monomers in the polymerization step (a) is X (% by mass), and 100 parts by mass of all monomers in the polymerization step (a). The charging ratio of the molecular weight modifier to be blended in the polymerization step (a) was G (parts by mass).
The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomer in the polymerization step (b) is Y (mass%), and the total single amount in the polymerization step (b). The charging ratio of the molecular weight modifier to 100 parts by mass of the body was H (parts by mass).
In the switching step (c), the charging ratio of the predetermined monomer with respect to 100% by mass of all monomers in the step (c-1) is Z (% by mass), and all monomers in the step (c-1) The charging ratio of the molecular weight modifier blended in the step (c-1) with respect to 100 parts by mass was defined as I (parts by mass).
In Comparative Example 1, the monomer amount was not changed under the condition of | YZ |> 0 in the step (c-1), and the maintaining time was (T1) = 0. That is, the switching step (c) was not performed.
In Comparative Example 2, an excessive amount of the molecular weight regulator was not added in the step (c-1), and the maintenance time (T2) was set to 0. That is, the switching step (c) was not performed.
In Comparative Example 3, the monomer amount was not changed in the step (c-1) under the condition of | YZ |> 0, and the maintaining time was (T1) = 0. That is, the switching step (c) was not performed.
The polymer discharged from the polymerization reactor was analyzed from time to time using 1H-NMR and GPC.
Further, the time required for changing the final target composition of the polymer was measured.

〔実施例8〕
メタクリル酸メチル45質量%、所定の単量体:スチレン(X質量%=)55質量%の、単量体10kg溶液100質量部に対し、溶媒としてエチルベンゼン10質量部、重合開始剤として1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.01質量部、連鎖移動剤であるオクチルメルカプタン0.2質量部を追加し、ラボ完全混合型重合反応機(リフラックスコンデンサー付き、SUS316製)で重合温度140℃、原料滞留時間80分で重合し、重合転化率35%まで連続的に重合させた(重合工程(a))。
次に切り替え工程(c)を実施した。
切り替え工程(c)においては、原料の組成を変更する際、原料の仕込み比率を変更し維持する時間(T1)=80分、メタクリル酸メチル60質量%、所定の単量体:スチレン(Z質量%=)40質量%の原料組成で、重合温度140℃下、重合反応器に原料滞留時間(θ)が70分となるように投入を行った(工程(c−1))。
原料の仕込み比率を変更し維持する時間(T1)=80分後は、メタクリル酸メチル55質量%、所定の単量体:スチレン(Y質量%=)45質量%の比率に変え(工程(c−2))、連続的に重合を行った(工程(b))。
前記切り替え工程(c)の開始から、2.5θ分経過した後の重合反応器からの払い出しポリマーの組成比を1H−NMRで測定したところ、目的とするメタクリル酸メチル/スチレン=55質量%/45質量%の比率のポリマーが得られていることが分かった。また、重量平均分子量が9.4万であった。
Example 8
10 parts by mass of ethylbenzene as a solvent and 1,1 as a polymerization initiator with respect to 100 parts by mass of a 10 kg monomer solution of 45% by mass of methyl methacrylate and 55% by mass of a predetermined monomer: styrene (X% by mass =) -0.01 parts by mass of bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and 0.2 parts by mass of octyl mercaptan as a chain transfer agent were added. Polymerization was carried out at a polymerization temperature of 140 ° C. and a raw material residence time of 80 minutes with a condenser (manufactured by SUS316), and was continuously polymerized to a polymerization conversion of 35% (polymerization step (a)).
Next, the switching step (c) was performed.
In the switching step (c), when changing the composition of the raw material, the time to change and maintain the raw material charge ratio (T1) = 80 minutes, methyl methacrylate 60 mass%, predetermined monomer: styrene (Z mass) % =) With a raw material composition of 40 mass%, the polymerization reactor was charged at a polymerization temperature of 140 ° C. so that the raw material residence time (θ) was 70 minutes (step (c-1)).
After the raw material charge ratio is changed and maintained (T1) = 80 minutes, the ratio is changed to a ratio of 55% by weight of methyl methacrylate and 45% by weight of a predetermined monomer: styrene (Y% by weight =) (step (c) -2)), and continuously polymerized (step (b)).
From the start of the switching step (c), the composition ratio of the polymer discharged from the polymerization reactor after 2.5? Minutes had been measured by 1H-NMR, and the target methyl methacrylate / styrene = 55% by mass / It was found that a polymer with a ratio of 45% by mass was obtained. Moreover, the weight average molecular weight was 94,000.

〔実施例9〕
メタクリル酸メチル85質量%、スチレン10質量%、所定の単量体:メタクリル酸(X質量%=)5.0質量%の、単量体10kg溶液100質量部に対し、溶媒としてエチルベンゼン10質量部、重合開始剤として1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.010質量部、連鎖移動剤であるオクチルメルカプタン0.20質量部を追加し、ラボ完全混合型重合反応機(リフラックスコンデンサー付き、SUS316製)で重合温度140℃、原料滞留時間80分で重合し、重合転化率45%まで連続的に重合させた(重合工程(a))。
次に切り替え工程(c)を実施した。
当該切り替え工程(c)においては、原料の組成を変更する際、原料の仕込み比率を変更し維持する時間(T1)=80分、メタクリル酸メチル89質量%、スチレン10質量%、所定の単量体メタクリル酸(Z質量%=)1質量%の原料組成で、重合温度を140℃とし、重合反応器に原料滞留時間(θ)が80分となるように投入を行った(工程(c−1))。
原料の仕込み比率を変更し維持する時間(T1)=80分後は、目的とするメタクリル酸メチル87質量%、スチレン10質量%、メタクリル酸(Y質量%=)3.0質量%の比率に変え(工程(c−2))、連続的に重合を行った(重合工程(b))。
前記切り替え工程(c)の開始から、2.0θ分経過した後の重合反応器からの払い出しポリマーの組成比を1H−NMRで測定したところ、目的とするメタクリル酸メチル/スチレン/メタクリル酸=87質量%/10質量%/3.0質量%の比率のポリマーが得られていることが分かった。また、重量平均分子量が9.0万であった。
Example 9
10 parts by mass of ethylbenzene as a solvent with respect to 100 parts by mass of a 10 kg monomer solution of 85% by mass of methyl methacrylate, 10% by mass of styrene, and 5.0% by mass of a predetermined monomer: methacrylic acid (X mass%). , 0.01 part by mass of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane as a polymerization initiator and 0.20 part by mass of octyl mercaptan as a chain transfer agent were added to complete the laboratory. Polymerization was conducted at a polymerization temperature of 140 ° C. and a raw material residence time of 80 minutes in a mixed polymerization reactor (with a reflux condenser, manufactured by SUS316), and the polymerization was continuously carried out to a polymerization conversion rate of 45% (polymerization step (a)).
Next, the switching step (c) was performed.
In the switching step (c), when changing the composition of the raw material, the time for changing and maintaining the raw material charge ratio (T1) = 80 minutes, 89% by weight of methyl methacrylate, 10% by weight of styrene, a predetermined single amount The raw material composition was 1% by mass of methacrylic acid (Z mass =), the polymerization temperature was 140 ° C., and the polymerization reactor was charged so that the raw material residence time (θ) was 80 minutes (step (c- 1)).
After the raw material charge ratio is changed and maintained (T1) = 80 minutes, the target methyl methacrylate is 87% by mass, styrene is 10% by mass, and methacrylic acid (Y% by mass =) is 3.0% by mass. It changed (process (c-2)) and superposed | polymerized continuously (polymerization process (b)).
When the composition ratio of the polymer discharged from the polymerization reactor after lapse of 2.0θ minutes from the start of the switching step (c) was measured by 1H-NMR, the target methyl methacrylate / styrene / methacrylic acid = 87. It was found that a polymer with a ratio of mass% / 10 mass% / 3.0 mass% was obtained. Moreover, the weight average molecular weight was 90000.

〔実施例10〜15〕
実施例1と同様の重合反応器を用いて、重合温度を140℃とし、下記表1に記載の、切り替え工程(c)のおける重合反応器内の原料滞留時間(θ)、及び切り替え工程(c)の工程(c−1)における各原料を過剰量に変更し維持する時間(T1、T2)に従い、熱可塑性樹脂を製造した。
重合に用いる単量体は、メタクリル酸メチル及びアクリル酸メチルのみとし、重合開始剤、分子量調整剤及び溶媒は実施例1と同様のものを使用した。
なお、表1中、重合工程(a)における、全単量体100質量%に対する所定の単量体(アクリル酸メチル)の仕込み比率をX(質量%)、重合工程(a)における全単量体100質量部に対する分子量調整剤の仕込み比率をG(質量部)、重合工程(a)における全単量体100質量部に対する重合開始剤の仕込み比率をM(質量部)とした。
重合工程(b)における全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY(質量%)、重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する分子量調整剤の仕込み比率をH(質量部)、重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する重合開始剤の仕込み比率をN(質量部)とした。
工程(c−1)における全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ(質量%)、前記工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI(質量部)とした。
このとき、重合開始剤については、M質量部からN質量部になるように逐次的に変更を行った。
[Examples 10 to 15]
Using the same polymerization reactor as in Example 1, the polymerization temperature was set to 140 ° C., and the raw material residence time (θ) in the polymerization reactor in the switching step (c) described in Table 1 below and the switching step ( According to the time (T1, T2) in which each raw material in the step (c-1) of c) was changed to an excessive amount and maintained, a thermoplastic resin was produced.
The monomers used for the polymerization were only methyl methacrylate and methyl acrylate, and the same polymerization initiator, molecular weight modifier and solvent as those in Example 1 were used.
In Table 1, the charging ratio of the predetermined monomer (methyl acrylate) with respect to 100% by mass of the total monomer in the polymerization step (a) is X (% by mass), and the total unit amount in the polymerization step (a). The charging ratio of the molecular weight modifier to 100 parts by mass of the body was G (parts by mass), and the charging ratio of the polymerization initiator to 100 parts by mass of all monomers in the polymerization step (a) was M (parts by mass).
The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomer in the polymerization step (b) is Y (% by mass), and the total monomer in the polymerization step (b). The charging ratio of the molecular weight modifier blended in the polymerization step (b) with respect to 100 parts by mass is H (parts by mass), and blended in the polymerization step (b) with respect to 100 parts by mass of all monomers in the polymerization step (b). The charging ratio of the polymerization initiator was N (parts by mass).
In the step (c-1), the charging ratio of the predetermined monomer to be blended in the step (c-1) with respect to 100% by mass of all monomers in the step (c-1) is Z (% by mass). The charging ratio of the molecular weight modifier to be blended in the step (c-1) with respect to 100 parts by mass of all the monomers to be blended was defined as I (parts by mass).
At this time, the polymerization initiator was sequentially changed from M parts by mass to N parts by mass.

〔実施例16〕
メタクリル酸メチル15質量、所定の単量体:スチレン(X質量%=)85質量%の、単量体10kg溶液100質量部に対し、溶媒としてエチルベンゼン10質量部、重合開始剤として1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.020質量部、連鎖移動剤であるオクチルメルカプタン0.20質量部を追加し、ラボ完全混合型重合反応機(リフラックスコンデンサー付き、SUS316製)で重合温度140℃、原料滞留時間60分で重合し、重合転化率40%まで連続的に重合させた(重合工程(a))。
次に切り替え工程(c)を実施した。
当該切り替え工程(c)においては、原料の組成を変更する際、原料の仕込み比率を変更し維持する時間(T1)=90分、メタクリル酸メチル9.0質量%、所定の単量体:スチレン(Z質量%=)91質量%の原料組成で、重合温度を140℃とし、切り替え工程(c)における重合反応器内の原料滞留時間(θ)が80分となるように投入を行った(工程(c−1))。
前記原料の仕込み比率を変更し維持する時間(T1)=80分後は、目的とするメタクリル酸メチル11質量%、所定の単量体:スチレン(Y質量%=)89質量%の比率に変え(工程(c−2))、連続的に重合を行った(重合工程(b))。
前記切り替え工程(c)の開始から、2.4θ分経過した後の重合反応器からの払い出しポリマーの組成比を1H−NMRで測定したところ、目的とするメタクリル酸メチル/スチレン=11質量%/89質量%の比率のポリマーが得られていることが分かった。また、重量平均分子量が8.5万であった。
Example 16
15 parts by mass of methyl methacrylate and 85 parts by mass of a predetermined monomer: 85% by mass of styrene (100 parts by mass of a monomer), 10 parts by mass of ethylbenzene as a solvent and 1,1- Add 0.020 parts by mass of bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and 0.20 parts by mass of octyl mercaptan, which is a chain transfer agent, and add a laboratory fully mixed polymerization reactor (Reflux condenser). Attached, manufactured by SUS316) at a polymerization temperature of 140 ° C. and a raw material residence time of 60 minutes, and continuously polymerized to a polymerization conversion rate of 40% (polymerization step (a)).
Next, the switching step (c) was performed.
In the switching step (c), when changing the composition of the raw material, the time for changing and maintaining the raw material charge ratio (T1) = 90 minutes, 9.0% by weight of methyl methacrylate, a predetermined monomer: styrene (Z mass% =) The raw material composition was 91 mass%, the polymerization temperature was 140 ° C., and the raw material residence time (θ) in the polymerization reactor in the switching step (c) was 80 minutes ( Step (c-1)).
After the raw material charge ratio is changed and maintained (T1) = 80 minutes, the target methyl methacrylate is changed to 11% by mass and a predetermined monomer: styrene (Y% by mass =) 89% by mass. (Process (c-2)), it superposed | polymerized continuously (polymerization process (b)).
When the composition ratio of the polymer discharged from the polymerization reactor after 2.4? Minutes had elapsed from the start of the switching step (c) was measured by 1H-NMR, the target methyl methacrylate / styrene = 11% by mass / It was found that a polymer with a ratio of 89% by mass was obtained. Moreover, the weight average molecular weight was 85,000.

〔実施例17〕
実施例16の切り替え工程(c)において、重合開始剤を0.020質量部から0.023質量部へ逐次的に変更した。その他の条件は、実施例16と同様に実施した。
Example 17
In the switching step (c) of Example 16, the polymerization initiator was sequentially changed from 0.020 parts by mass to 0.023 parts by mass. Other conditions were the same as in Example 16.

表1に示すように、実施例1〜9においては、組成変更に要した時間がいずれも短く、原料の切り替えが速やかに行われたことが分かった。
また、実施例10〜15においては、重合開始剤を逐次的に変更したことにより、実施例1〜9と同様に組成変更に要した時間が短縮できた。
さらに、実施例16、17においては、スチレン系樹脂の原料の切り替えを実施したが、メタクリル系樹脂の原料の切り替えと同様に組成変更に要した時間が短縮できた。
比較例1〜3においては、本発明の切り替え工程を実施しなかったため、組成変更に要した時間が短縮できなかった。
As shown in Table 1, in Examples 1 to 9, it was found that the time required for the composition change was short, and the raw materials were switched quickly.
Moreover, in Examples 10-15, the time required for the composition change was shortened similarly to Examples 1-9 by changing the polymerization initiator sequentially.
Furthermore, in Examples 16 and 17, the styrene resin raw material was switched, but the time required for the composition change could be shortened in the same manner as the switching of the methacrylic resin raw material.
In Comparative Examples 1 to 3, since the switching step of the present invention was not performed, the time required for the composition change could not be shortened.

本発明は、原料の切り替えロスを低減化でき、製造コスト削減、生産効率の向上の観点から有利な熱可塑性樹脂の製造方法として、産業上の利用可能性を有している。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability as a method for producing a thermoplastic resin that can reduce the loss of material switching and is advantageous from the viewpoints of reducing production costs and improving production efficiency.

Claims (6)

重合反応器内に、1種又は複数種の単量体、分子量調整剤、重合開始剤、及び必要に応じて溶媒を投入し、
第1の熱可塑性樹脂の重合工程(a)と、第2の熱可塑性樹脂の重合工程(b)とを、連続して行う、熱可塑性樹脂の製造方法であって、
前記重合工程(a)後、前記重合工程(b)前に、前記1種又は複数種の単量体、及び前記分子量調整剤からなる群より選ばれる、少なくともいずれか一の仕込み比率を変更する切り替え工程(c)を有し、
前記重合工程(a)における全単量体100質量%に対する、所定の単量体の仕込み比率をX質量%とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する分子量調整剤の仕込み比率をG質量部とし、
前記重合工程(a)における全単量体100質量部に対する、前記重合工程(a)において配合する重合開始剤の仕込み比率をM質量部とし、
前記重合工程(b)における全単量体100質量%に対する、前記重合工程(b)において配合する前記所定の単量体の仕込み比率をY質量%とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する分子量調整剤の仕込み比率をH質量部とし、
前記重合工程(b)における全単量体100質量部に対する、前記重合工程(b)において配合する重合開始剤の仕込み比率をN質量部としたとき、
前記切り替え工程(c)は、以下の(条件1)を満足する、熱可塑性樹脂の製造方法。
(条件1):
下記工程(c−1)、工程(c−2)を順次行うものとし、切り替え工程(c)は、
前記工程(c−1)における全単量体100質量%に対する、前記工程(c−1)において配合する前記所定の単量体の仕込み比率をZ質量%としたときの、前記X質量%との差分|Z−X|、及び前記工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)において配合する分子量調整剤の仕込み比率をI質量部としたときの、前記G質量部との差分|I−G|のうちの、少なくともいずれか一方が、それぞれ、前記Y質量%、前記X質量%の差分|Y−X|、前記H質量部、前記G質量部の差分|H−G|よりも大きくなるように、仕込み比率を変更し、維持する工程(c−1)と、
重合反応器内へ供給する前記所定の単量体の仕込み比率、及び前記分子量調整剤の仕込み比率を、それぞれ、Y質量%、H質量部に変更する工程(c−2)と、
を含む。
In the polymerization reactor, one or more kinds of monomers, a molecular weight modifier, a polymerization initiator, and a solvent as required,
A method for producing a thermoplastic resin, comprising continuously performing a polymerization step (a) of a first thermoplastic resin and a polymerization step (b) of a second thermoplastic resin,
After the polymerization step (a), before the polymerization step (b), at least any one charging ratio selected from the group consisting of the one or more monomers and the molecular weight modifier is changed. Having a switching step (c),
The charging ratio of the predetermined monomer with respect to 100% by mass of all monomers in the polymerization step (a) is X% by mass,
With respect to 100 parts by mass of all the monomers in the polymerization step (a), the charging ratio of the molecular weight modifier blended in the polymerization step (a) is G parts by mass,
With respect to 100 parts by mass of all monomers in the polymerization step (a), the charging ratio of the polymerization initiator blended in the polymerization step (a) is M parts by mass,
The charging ratio of the predetermined monomer to be blended in the polymerization step (b) with respect to 100% by mass of the total monomers in the polymerization step (b) is Y mass%,
The charging ratio of the molecular weight modifier to be blended in the polymerization step (b) is 100 parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b).
When the charging ratio of the polymerization initiator blended in the polymerization step (b) is N parts by mass with respect to 100 parts by mass of all monomers in the polymerization step (b),
The switching step (c) is a method for producing a thermoplastic resin, which satisfies the following (Condition 1).
(Condition 1):
The following step (c-1) and step (c-2) are performed sequentially, and the switching step (c)
X mass% when the charging ratio of the predetermined monomer blended in the step (c-1) is Z mass% with respect to 100 mass% of all monomers in the step (c-1) Of the molecular weight modifier blended in the step (c-1) with respect to 100 parts by mass of all the monomers blended in the step (c-1) At least one of the differences | IG | from the G mass part is the Y mass%, the X mass% difference | YX |, the H mass part, the A step (c-1) of changing and maintaining the charging ratio so as to be larger than the difference | HG |
A step (c-2) of changing the charging ratio of the predetermined monomer to be fed into the polymerization reactor and the charging ratio of the molecular weight modifier to Y mass% and H mass parts, respectively;
including.
前記(条件1)の切り替え工程(c)において、
前記工程(c−1)の、前記所定の単量体の仕込み比率を変更し維持する時間T1(分)が、
切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、
0.1≦T1/θ≦5.0の範囲であり、
前記X(質量%)、前記Y(質量%)、前記Z(質量%)は、下記(i)式又は(ii)式に従う、請求項1に記載の熱可塑性樹脂の製造方法。
X<Yの場合、 Y<Z、かつ0.1≦Z−Y≦20 ・・・(i)
X>Yの場合、 Y>Z かつ0.1≦Y−Z≦20 ・・・(ii)
In the switching step (c) of (Condition 1),
In the step (c-1), the time T1 (minute) for changing and maintaining the charging ratio of the predetermined monomer is as follows:
For the raw material residence time θ (min) in the polymerization reactor in the switching step (c),
0.1 ≦ T1 / θ ≦ 5.0,
The said X (mass%), the said Y (mass%), and the said Z (mass%) are the manufacturing methods of the thermoplastic resin of Claim 1 according to the following (i) Formula or (ii) Formula.
When X <Y, Y <Z and 0.1 ≦ Z−Y ≦ 20 (i)
When X> Y, Y> Z and 0.1 ≦ Y−Z ≦ 20 (ii)
連続溶液重合又は連続塊状重合を行う、請求項1又は2に記載の熱可塑性樹脂の製造方法。   The manufacturing method of the thermoplastic resin of Claim 1 or 2 which performs continuous solution polymerization or continuous block polymerization. メタクリル酸エステル単量体:20〜100質量%と、前記メタクリル酸エステル単量体に共重合可能な少なくとも1種の他のビニル単量体:0〜80質量%からなる単量体混合液を用いる、請求項1乃至3のいずれか一項に記載の熱可塑性樹脂の製造方法。   A monomer mixture consisting of 20 to 100% by weight of a methacrylic acid ester monomer and at least one other vinyl monomer copolymerizable to the methacrylic acid ester monomer: 0 to 80% by weight. The manufacturing method of the thermoplastic resin as described in any one of Claims 1 thru | or 3 used. 前記(条件1)の切り替え工程(c)において、
前記工程(c−1)において配合する分子量調整剤の仕込み比率を変更し維持する時間T2(分)が、切り替え工程(c)における重合反応器内の原料滞留時間θ(分)に対して、
0.1≦T2/θ≦5.0の範囲であり、
前記G(質量部)、前記H(質量部)、前記I(質量部)は、下記(iii)式又は(iv)式に従う、請求項1乃至4のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
G<Hの場合、H<Iかつ0.01≦I−H≦2.0 ・・・(iii)
G>Hの場合、H>Iかつ0.01≦H−I≦2.0 ・・・(iv)
(G、H、Iは、それぞれ、重合工程(a)、重合工程(b)、工程(c−1)における、全単量体100質量部に対する、分子量調整剤の量(質量部)を示す。)
In the switching step (c) of (Condition 1),
The time T2 (min) for changing and maintaining the charging ratio of the molecular weight modifier to be blended in the step (c-1) is relative to the raw material residence time θ (min) in the polymerization reactor in the switching step (c).
0.1 ≦ T2 / θ ≦ 5.0,
The thermoplastic resin according to any one of claims 1 to 4, wherein G (mass part), H (mass part), and I (mass part) are in accordance with the following formula (iii) or (iv): A method for producing the composition.
When G <H, H <I and 0.01 ≦ I−H ≦ 2.0 (iii)
When G> H, H> I and 0.01 ≦ HI ≦ 2.0 (iv)
(G, H, and I respectively indicate the amount (parts by mass) of the molecular weight modifier with respect to 100 parts by mass of all monomers in the polymerization step (a), the polymerization step (b), and the step (c-1). .)
前記切り替え工程(c)において、
以下の(条件2)を満足する、請求項1乃至5のいずれか一項に記載の熱可塑性樹脂の製造方法。
(条件2):
前記切り替え工程(c)の工程(c−1)において配合する全単量体100質量部に対する、前記工程(c−1)で配合する重合開始剤の仕込み比率をO質量部としたときの、前記M質量部との差分|O−M|が、
前記N質量部、前記M質量部の差分|N−M|以下となるように仕込み比率を変更する。
In the switching step (c),
The method for producing a thermoplastic resin according to any one of claims 1 to 5, wherein the following (Condition 2) is satisfied.
(Condition 2):
When the charging ratio of the polymerization initiator blended in the step (c-1) is set to O parts by mass with respect to 100 parts by mass of all monomers blended in the step (c-1) of the switching step (c), The difference | OM− with respect to the M mass part is
The charging ratio is changed so that the difference | N−M | or less between the N parts by mass and the M parts by mass.
JP2013228364A 2012-11-02 2013-11-01 Method for producing thermoplastic resin Active JP6193094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228364A JP6193094B2 (en) 2012-11-02 2013-11-01 Method for producing thermoplastic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012242919 2012-11-02
JP2012242919 2012-11-02
JP2013228364A JP6193094B2 (en) 2012-11-02 2013-11-01 Method for producing thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2014111740A true JP2014111740A (en) 2014-06-19
JP6193094B2 JP6193094B2 (en) 2017-09-06

Family

ID=51169078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228364A Active JP6193094B2 (en) 2012-11-02 2013-11-01 Method for producing thermoplastic resin

Country Status (1)

Country Link
JP (1) JP6193094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017097979A1 (en) * 2015-12-09 2017-06-15 Arkema France Method of preparation of a composition comprising a copolymer of methyl methacrylate and methacrylic acid
JP2020530040A (en) * 2017-07-31 2020-10-15 アルケマ フランス Compositions comprising copolymers containing methyl methacrylate, (meth) acrylic acid and styrene monomers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286804A (en) * 1996-04-19 1997-11-04 Mitsubishi Gas Chem Co Inc Continuous production of methacrylic resin
JP2003128708A (en) * 2001-10-24 2003-05-08 Sumitomo Chem Co Ltd Method for shifting production grade of polymer and apparatus therefor
JP2003327606A (en) * 2002-05-16 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for mixing liquid raw material and process for manufacturing synthetic resin plate
JP2004352948A (en) * 2003-05-30 2004-12-16 Japan Polypropylene Corp Method for producing polymer
US20060276603A1 (en) * 2005-06-03 2006-12-07 Hartley Ivan J Method for reducing off-grade product production during reaction transitions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286804A (en) * 1996-04-19 1997-11-04 Mitsubishi Gas Chem Co Inc Continuous production of methacrylic resin
JP2003128708A (en) * 2001-10-24 2003-05-08 Sumitomo Chem Co Ltd Method for shifting production grade of polymer and apparatus therefor
JP2003327606A (en) * 2002-05-16 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for mixing liquid raw material and process for manufacturing synthetic resin plate
JP2004352948A (en) * 2003-05-30 2004-12-16 Japan Polypropylene Corp Method for producing polymer
US20060276603A1 (en) * 2005-06-03 2006-12-07 Hartley Ivan J Method for reducing off-grade product production during reaction transitions
JP2008542497A (en) * 2005-06-03 2008-11-27 ユニベーション・テクノロジーズ・エルエルシー How to reduce production of off-grade products during reaction transition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017097979A1 (en) * 2015-12-09 2017-06-15 Arkema France Method of preparation of a composition comprising a copolymer of methyl methacrylate and methacrylic acid
CN108602926A (en) * 2015-12-09 2018-09-28 阿肯马法国公司 The method for preparing the composition of the copolymer comprising methyl methacrylate and methacrylic acid
JP2018536744A (en) * 2015-12-09 2018-12-13 アルケマ フランス Method for preparing a composition comprising methyl methacrylate and a copolymer of methacrylic acid
US11359043B2 (en) 2015-12-09 2022-06-14 Trinseo Europe Gmbh Method of preparation of a composition comprising a copolymer of methyl methacrylate and methacrylic acid
JP2020530040A (en) * 2017-07-31 2020-10-15 アルケマ フランス Compositions comprising copolymers containing methyl methacrylate, (meth) acrylic acid and styrene monomers
US11634572B2 (en) 2017-07-31 2023-04-25 Trinseo Europe Gmbh Composition comprising a copolymer comprising methyl methacrylate, (meth)acrylic acid and styrene monomers
JP7329495B2 (en) 2017-07-31 2023-08-18 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Compositions containing copolymers containing methyl methacrylate, (meth)acrylic acid and styrene monomers

Also Published As

Publication number Publication date
JP6193094B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6148802B1 (en) Method for producing methacrylic resin
JP2021107563A (en) Methacrylic resin and process for producing the same
JP5022444B2 (en) Thermoplastic resin with uniform composition and narrow molecular weight distribution and method for producing the same
JP7198720B2 (en) Methacrylic resin composition and molded article
JP6193094B2 (en) Method for producing thermoplastic resin
JP6570371B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP6951931B2 (en) Methacrylic resin composition, molded product
TW202219081A (en) Thermoplastic resin composition, method of preparing the same, and molded article manufactured using the same
CN106232652A (en) Block polymer
CN108690149B (en) Resin composition and tackifier
US10174145B1 (en) Methacrylic resin
JP2019131809A (en) Thermoplastic resin composition and molded body thereof
WO2011142384A1 (en) Method for producing methacrylic polymer
CN106661304B (en) Methacrylic resin composition for hot plate non-contact welding, molded article, and method for producing same
KR100829850B1 (en) Continuous bulk polymerization process of rubber-modified transparent styrenic resin having uniform composition, good transparency and high impact strength
JP2010260987A (en) Method for producing acrylic copolymer
WO2019225299A1 (en) Two-color injection-molded article
JP2018035225A (en) Methacrylic resin
JP5008155B2 (en) Acrylic resin production method, acrylic resin, and molded article
JP4833529B2 (en) Rubber-modified styrenic resin composition
JPH0892322A (en) Cross-linked resin
JP2019202537A (en) Two-color injection-molded article
JP2019119853A (en) Resin composition
JPH0853517A (en) Resin having high refractive index and excellent heat resistance for optical material
JPH0848725A (en) High-refractive index resin for optical material excellent in heat resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6193094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350